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1 Introduction

Recent years have witnessed advances in the heavy baryon spectroscopy, with

the discoveries of the heavy baryons involving the b and c quarks. Since the

spin of the baryon carries information on the spin of the heavy quark, the

study of the heavy baryons might also lead us to study the spin effects at

the loop level in the standard model.

To study the meson-baryon couplings, a non-perturbative method is needed.

Among all non-perturbative approaches, the QCD sum rules approach [1]-[3]

has received special attention to study the properties of hadrons. In the case

of the light baryons, this method has been successfully applied for calculation

of the meson-baryon coupling constants. The pion-nucleon coupling constant

has been studied in traditional three-point QCD sum rules [4]-[12]. The kaon-

baryon coupling constants have also been calculated in the same framework

in [13]-[16]. The latter has also been studied in light cone QCD sum rules

(LCQSR) in [17]. The coupling constant for K meson-octet baryons and π

meson-octet baryons have also been calculated in [18] in LCQSR.

The QCD sum rules is also applied to the study of the heavy hadron mass

spectrum (see e.g. [19]). The masses are also studied in QCD string model

[20] and using quark model in [21, 22]. In [22], sum rules between the masses

of the heavy baryons derived using the quark model has been analyzed and

experimental tests of sum rules for heavy baryon masses have been discussed

in [23]. In the present work, using the general form of the current for ΣQ

and ΛQ baryons, we calculate the gΣQΛQπ (Q = b and c) coupling constants

in the framework of the LCQSR approach. Having computed the coupling

constants, we also evaluate the total decay widths for strong ΣQ −→ ΛQπ

decays and compare our results with the predictions of the relativistic three-

quark model (RTQM) [24], light-front quark model (LFQM) [25] and existing
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experimental data. The paper encompasses three sections: in the next sec-

tion, we calculate the LCQSR for the coupling constant gΣQΛQπ. Section III

is devoted to the numerical analysis of the coupling constant gΣQΛQπ, our

prediction for the total decay rates and discussion.

2 Light cone QCD sum rules for the coupling

constant gΣQΛQπ

To calculate the coupling constant gΣQΛQπ in LCQSR, one starts with a

suitably chosen correlation function. In this work, the following correlation

functions is chosen:

Π = i

∫

d4xeipx〈π(q) | T {ηΛQ
(x)η̄ΣQ

(0)} | 0〉, (1)

where ηΣQ
and ηΛQ

are the interpolating currents of the heavy baryons ΣQ

and ΛQ. In this correlator, the hadrons are represented by their interpolating

quark currents. This correlation function can be calculated in two different

ways: on the one hand, inserting complete sets of hadronic states into the

correlation function, it can be expressed in terms of hadronic parameters such

as the masses, residues and the coupling constants. On the other hand, it can

be calculated in terms of quark-gluon parameters in the deep Euclidean region

when p2 → −∞ and (p+q)2 → −∞. The coupling constant is determined by

matching these two different representations of the correlation function and

applying double Borel transformation with respect to the momentum of both

hadrons to suppress the contributions of the higher states and continuum.

The derivation of the physical (or phenomenological) representation of

the correlation function follows the same lines as in the case of light hadrons

(see e.g. [18]). For completeness, we repeat the derivation below. First, one

inserts two complete sets of states between the interpolating currents in (1)
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with quantum numbers of the ΣQ and ΛQ baryons.

Π =
〈0 | ηΛQ

| ΛQ(p2)〉
p22 −m2

ΛQ

〈ΛQ(p2)π(q) | ΣQ(p1)〉
〈ΣQ(p1) | ηΣQ

| 0〉
p21 −m2

ΣQ

+ ...,

(2)

where p1 = p+ q, p2 = p, and ... stands for the contributions of higher states

and continuum. The vacuum to baryon matrix element of the interpolating

currents are defined as

〈0 | ηB | B(p, s)〉 = λBuB(p, s), (3)

where B = ΣQ or ΛQ, uB(p, s) is a spinor describing the baryon B and λB

is the residue of the B baryon. The last ingredient is the matrix element

〈ΛQ(p2)π(q) | ΣQ(p1)〉 which can be parameterized in terms of the coupling

constant gΣQΛQπ as

〈ΛQ(p2)π(q) | ΣQ(p1)〉 = gΣQΛQπu(p2)iγ5u(p1).

(4)

Using Eqs. (2-4) and summing over the spin of the baryons, the following

representation of the correlator for the phenomenological side is obtained:

Π = i
gΣQΛQπλΛQ

λΣQ

(p21 −m2
ΣQ

)(p22 −m2
ΛQ

)

[

− 6p 6qγ5 −mΣQ
6qγ5

+ (mΛQ
−mΣQ

) 6pγ5 + (mΣQ
mΛQ

− p2)γ5
]

. (5)

Note that, the structures 6 pγ5 and γ5 have very small coefficient due to the

fact that mΣQ
≃ mΛQ

, hence they will not yield reliable sum rules.

To calculate the representation of the correlation function, Eq. (1), from

QCD side, we need the explicit expressions of the interpolating currents for

ΣQ and ΛQ baryons. In principal, any operator having the same quantum
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numbers as the corresponding baryon can be used. It is well known that

there is a continuum of choices for the heavy spin-1
2
baryons interpolating

currents that does not contain any derivatives. The general form of the ΣQ

and ΛQ currents can be written as (see also [26])

ηΣQ
= − 1√

2
ǫabc

{

(uaTCQb)γ5d
c + β(uaTCγ5Q

b)dc

− [(QaTCdb)γ5u
c + β(QaTCγ5d

b)uc]
}

,

ηΛQ
=

1√
6
ǫabc

{

2[(uaTCdb)γ5Q
c + β ′(uaTCγ5d

b)Qc] + (uaTCQb)γ5d
c

+ β ′(uaTCγ5Q
b)dc + (QaTCdb)γ5u

c + β ′(QaTCγ5d
b)uc

}

,

(6)

where β and β ′ are arbitrary parameters. For simplicity, we assume β = β ′.

The β = −1 corresponds to the Ioffe current and C is the charge conjugation

operator and a, b and c are color indices.

After contracting out all quark pairs in Eq. (1), the following expression

for the correlation function in terms of the quark propagators is obtained

Π =
i√
3
ǫabcǫa′b′c′

∫

d4xeipx〈π(q) |
{

γ5S
ca′

Q S ′ab′

u Sbc′

d γ5

− γ5S
cb′

Q S ′ba′

d Sac′

u γ5 − 1/2(γ5S
ca′

d S ′bb′

Q Sac′

u γ5 − γ5S
cb′

u S ′aa′

Q Sbc′

d γ5

+ Tr[Sba′

Q S ′ab′

u ]γ5S
cc′

d γ5 − Tr[Sba′

d S ′ab′

Q ]γ5S
cc′

u γ5)

+ β

[

γ5S
ca′

Q γ5S
′ab′

u Sbc′

d − γ5S
cb′

Q γ5S
′ba′

d Sac′

u + Sca′

Q S ′ab′

u γ5S
bc′

d γ5

− Scb′

Q S ′ba′

d γ5S
ac′

u γ5 + 1/2(γ5S
cb′

u γ5S
′aa′

Q Sbc′

d − γ5S
ca′

d γ5S
′bb′

Q Sac′

u

− Sca′

d S ′bb′

Q γ5S
ac′

u γ5 + Scb′

u S ′aa′

Q γ5S
bc′

d γ5 − Scc′

d γ5Tr[γ5S
ba′

Q S ′ab′

u ]

+ Scc′

u γ5Tr[γ5S
ba′

d S ′ab′

Q ]− γ5S
cc′

d Tr[Sba′

Q γ5S
′ab′

u ] + γ5S
cc′

u Tr[Sba′

d γ5S
′ab′

Q ])

]

+ β2

[

Sca′

Q γ5S
′ab′

u γ5S
bc′

d + Scb′

Q γ5S
′ba′

d γ5S
ac′

u + 1/2(Scb′

u γ5S
′aa′

Q γ5S
bc′

d
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− Sca′

d γ5S
′bb′

Q γ5S
ac′

u − Tr[γ5S
ab′

u γ5S
′ba′

Q ]Scc′

d + Tr[γ5S
ab′

Q γ5S
′ba′

d ]Scc′

u )

]}

| 0〉,

(7)

where S ′ = CSTC and SQ(q) (q = u, d) is the full heavy (light) quark

propagator. Note that, the Eq. (7) is a schematical representation for the

full expression. To obtain the full expression from the Eq. (7), one should

replace Su by u(0)ū(x) to calculate the emission from the u quark, and then

add to this the result obtained by replacing Sd by d(0)d̄(x). From Eq. (7),

it follows that the expression of the light and heavy quark propagators are

needed.

The light cone expansion of the quark propagator in the external field is

calculated in [27]. The propagator receives contributions from higher Fock

states proportional to the condensates of the operators q̄Gq, q̄GGq and q̄qq̄q,

where G is the gluon field strength tensor. In this work, we neglect contri-

butions with two gluons as well as four quark operators due to the fact that

their contributions are small [28]. In this approximation, the heavy and light

quark propagators have the following expressions:

SQ(x) = Sfree
Q (x)− igs

∫

d4k

(2π)4
e−ikx

∫ 1

0

dv

[ 6k +mQ

(m2
Q − k2)2

Gµν(vx)σµν

+
1

m2
Q − k2

vxµG
µνγν

]

,

Sq(x) = Sfree
q (x)− 〈q̄q〉

12
− x2

192
m2

0〈q̄q〉

−igs
∫ 1

0

du

[ 6x
16π2x2

Gµν(ux)σµν − uxµGµν(ux)γ
ν i

4π2x2

]

. (8)

The expression of the free light and heavy quark propagators in the x

representation are:

Sfree
q =

i 6x
2π2x4

,
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Sfree
Q =

m2
Q

4π2

K1(mQ

√
−x2)√

−x2
− i

m2
Q 6x

4π2x2
K2(mQ

√
−x2),

(9)

where Ki are the Bessel functions.

In order to calculate the contributions of the pion emission, the matrix

elements 〈π(q) | q̄Γiq | 0〉 are needed. Here, Γi is any member of the complete

set of Dirac matrices {1, γ5, γα, iγ5γα, σαβ/
√
2}. These matrix elements are

determined in terms of the pion distribution amplitudes (DA’s) as follows

[29, 30].

〈π(p)|q̄(x)γµγ5q(0)|0〉 = −ifπpµ
∫ 1

0

dueiūpx
(

ϕπ(u) +
1

16
m2

πx
2
A(u)

)

− i

2
fπm

2
π

xµ
px

∫ 1

0

dueiūpxB(u),

〈π(p)|q̄(x)iγ5q(0)|0〉 = µπ

∫ 1

0

dueiūpxϕP (u),

〈π(p)|q̄(x)σαβγ5q(0)|0〉 =
i

6
µπ

(

1− µ̃2
π

)

(pαxβ − pβxα)

∫ 1

0

dueiūpxϕσ(u),

〈π(p)|q̄(x)σµνγ5gsGαβ(vx)q(0)|0〉 = iµπ

[

pαpµ

(

gνβ −
1

px
(pνxβ + pβxν)

)

− pαpν

(

gµβ −
1

px
(pµxβ + pβxµ)

)

− pβpµ

(

gνα − 1

px
(pνxα + pαxν)

)

+ pβpν

(

gµα − 1

px
(pµxα + pαxµ)

)]

×
∫

Dαei(αq̄+vαg)pxT (αi),

〈π(p)|q̄(x)γµγ5gsGαβ(vx)q(0)|0〉 = pµ(pαxβ − pβxα)
1

px
fπm

2
π

∫

Dαei(αq̄+vαg)pxA‖(αi)

+

[

pβ

(

gµα − 1

px
(pµxα + pαxµ)

)
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− pα

(

gµβ −
1

px
(pµxβ + pβxµ)

)]

fπm
2
π

×
∫

Dαei(αq̄+vαg)pxA⊥(αi),

〈π(p)|q̄(x)γµigsGαβ(vx)q(0)|0〉 = pµ(pαxβ − pβxα)
1

px
fπm

2
π

∫

Dαei(αq̄+vαg)pxV‖(αi)

+

[

pβ

(

gµα − 1

px
(pµxα + pαxµ)

)

− pα

(

gµβ −
1

px
(pµxβ + pβxµ)

)]

fπm
2
π

×
∫

Dαei(αq̄+vαg)pxV⊥(αi), (10)

where µπ = fπ
m2

π

mu+md
, µ̃π = mu+md

mπ
and the functions ϕπ(u), A(u), B(u),

ϕP (u), ϕσ(u), T (αi), A⊥(αi), A‖(αi), V⊥(αi) and V‖(αi) are functions of

definite twist and their expressions will be given in the numerical analysis

section. The measure Dα is defined as
∫

Dα =

∫ 1

0

dαq̄

∫ 1

0

dαq

∫ 1

0

dαgδ(1− αq̄ − αq − αg). (11)

Note that, in the approximation of this work where we neglect the light quark

masses, m2
π = 0, µ̃π = 0, µπ = −〈ūu〉/fπ = −〈d̄d〉/fπ.

Using the expressions of the light and heavy full propagators and the pion

DA’s, the correlation function Eq. (1) can be calculated in terms of QCD

parameters. Separating the coefficient of the structure 6p 6 qγ5 in both repre-

sentations, and equating them, sum rules for the coupling constant gΣQΛQπ

is obtained. The contribution of the higher states is subtracted using quark

hadron duality, and in order to further suppress their contribution, Borel

transformation with respect to the variables p22 = p2 and p21 = (p + q)2 is

applied. Here, we should mention that we have also studied the other struc-

ture in Eq. (5), i.e., 6qγ5 but its result for coupling constant is not stable and

only the 6p 6qγ5 structure leads to reliable prediction on the coupling constant
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gΣQΛQπ.

The sum rules for the coupling constant is obtained as

λΣQ
λΛQ

e−
m2

ΛQ
+m2

ΣQ

2M2 gΣQΛQπ = Π, (12)

where the function Π is

Π =

∫ s0

m2
Q

e
−s

M2 ρ(s)ds+ e
−m2

Q

M2 Γ, (13)

with

ρ(s) = (< dd > + < uu >)
1

12
√
6
fπ(β − 1)βϕπ(u0)ψ00

− 1

96
√
6π2

[

mQ(β − 1)

{

− 6

[

− 2(ψ20 − ψ31)mQµπ[−ζ5(1 + 2β) + ζ6(1 + β)]

− ψ10mQµπ[3ζ5(1 + β)− 4ζ6]−mQµπ(3ζ5(1 + β)− 4ζ6)ln(
m2

Q

s
)

]

+ 6fπm
2
Q(1 + β)[2ψ10 − ψ20 + ψ31 + 2ln(

m2
Q

s
)ϕπ(u0)

+ 2(ψ20 − ψ31)mQµπ(1 + 2β)ϕσ(u0)

}]

, (14)

and

Γ =
m2

0

192
√
6
(< dd > + < uu >)

[

2fπ
9

[−11− 17β + (7 + β)](β − 1)ϕπ(u0)

−
8m2

Q

3M2
mQµπ(β

2 + β + 1)ϕσ(u0)

− 4mQ

9M2

{

9fπmQ(β − 1)βϕπ(u0)− µπ(3β
2 + 2β + 3)ϕσ(u0)

}]

+
1

6
√
6
(< dd > + < uu >)mQµπ(β

2 + β + 1)ϕσ(u0). (15)

The other functions entering Eqs. (14-15) are given as

ζj =

∫

Dαi

∫ 1

0

dvfj(αi)δ(αq + vαg − u0),
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ζ ′j =

∫

Dαi

∫ 1

0

dvgj(αi)δ
′(αq + vαg − u0),

ψnm =
(s−mQ

2)
n

sm(m2
Q)

n−m ,

(16)

and f1(αi) = V‖(αi), f2(αi) = vV‖(αi), f3(αi) = V⊥(αi), f4(αi) = vV⊥(αi),

g1(αi) = T (αi) and g2(αi) = vT (αi) are the pion distribution amplitudes.

Note that, in the above equations, the Borel parameter M2 is defined as

M2 =
M2

1M
2
2

M2
1+M2

2
and u0 =

M2
1

M2
1+M2

2
. Since the mass of the initial and final

baryons are close to each other, we can setM2
1 =M2

2 = 2M2 and u0 =
1
2
. The

contributions of the terms ∼< G2 > are also calculated, but their numerical

values are very small and therefore for customary in the expressions these

terms are omitted.

For calculation of the coupling constants of the considered baryons, their

residues, λΣQ(ΛQ) are needed. Their expressions are obtained as:

− λ2ΣQ(ΛQ)e
−m2

ΣQ(ΛQ)
/M2

=

∫ s0

m2
Q

e
−s

M2 ρ1(2)(s)ds+ e
−m2

Q

M2 Γ1(2), (17)

with

ρ1(s) = (< dd > + < uu >)
(β2 − 1)

64π2

{

m2
0

4mQ
(6ψ00 − 13ψ02 − 6ψ11)

+ 3mQ(2ψ10 − ψ11 − ψ12 + 2ψ21)

}

+
m4

Q

2048π4
[5 + β(2 + 5β)][12ψ10 − 6ψ20 + 2ψ30 − 4ψ41 + ψ42 − 12ln(

s

m2
Q

)],

(18)

ρ2(s) = (< dd > + < uu >)
(β − 1)

192π2

{

m2
0

4mQ
[6(1 + β)ψ00 − (7 + 11β)ψ02

− 6(1 + β)ψ11] + (1 + 5β)mQ(2ψ10 − ψ11 − ψ12 + 2ψ21)

}

9



+
m4

Q

2048π4
[5 + β(2 + 5β)][12ψ10 − 6ψ20 + 2ψ30 − 4ψ41 + ψ42 − 12ln(

s

m2
Q

)],

(19)

Γ1 =
(β − 1)2

24
< dd >< uu >

[

m2
Qm

2
0

2M4
+

m2
0

4M2
− 1

]

,

Γ2 =
(β − 1)

72
< dd >< uu >

[

m2
Qm

2
0

2M4
(13 + 11β)

+
m2

0

4M2
(25 + 23β)− (13 + 11β)

]

. (20)

3 Numerical analysis

This section is devoted to the numerical analysis for the coupling constant

gΣQΛQπ and calculation of the total decay width for ΣQ −→ ΛQπ. The

input parameters used in the analysis of the sum rules are 〈ūu〉(1 GeV ) =

〈d̄d〉(1GeV ) = −(0.243)3 GeV 3, ß(1GeV ) = 0.8〈ūu〉(1GeV ),mb = 4.7GeV ,

mc = 1.23 GeV , mΣb
= 5.805 GeV , mΣc

= 2.439 GeV , mΛb
= 5.622 GeV ,

mΛc
= 2.297 GeV , and m2

0(1 GeV ) = (0.8 ± 0.2) GeV 2 [31]. From the sum

rules for coupling constant, it is clear that the π-meson wave functions are

needed. These wave functions are given as [29, 30]

φπ(u) = 6uū
(

1 + aπ1C1(2u− 1) + aπ2C
3
2
2 (2u− 1)

)

,

T (αi) = 360η3αq̄αqα
2
g

(

1 + w3
1

2
(7αg − 3)

)

,

φP (u) = 1 +

(

30η3 −
5

2

1

µ2
π

)

C
1
2
2 (2u− 1)

+

(

−3η3w3 −
27

20

1

µ2
π

− 81

10

1

µ2
π

aπ2

)

C
1
2
4 (2u− 1),

φσ(u) = 6uū

[

1 +

(

5η3 −
1

2
η3w3 −

7

20
µ2
π −

3

5
µ2
πa

π
2

)

C
3
2
2 (2u− 1)

]

,

V‖(αi) = 120αqαq̄αg (v00 + v10(3αg − 1)) ,

10



A‖(αi) = 120αqαq̄αg (0 + a10(αq − αq̄)) ,

V⊥(αi) = −30α2
g

[

h00(1− αg) + h01(αg(1− αg)− 6αqαq̄) + h10(αg(1− αg)−
3

2
(α2

q̄ + α2
q))

]

,

A⊥(αi) = 30α2
g(αq̄ − αq)

[

h00 + h01αg +
1

2
h10(5αg − 3)

]

,

B(u) = gπ(u)− φπ(u),

gπ(u) = g0C
1
2
0 (2u− 1) + g2C

1
2
2 (2u− 1) + g4C

1
2
4 (2u− 1),

A(u) = 6uū

[

16

15
+

24

35
aπ2 + 20η3 +

20

9
η4 +

(

− 1

15
+

1

16
− 7

27
η3w3 −

10

27
η4

)

C
3
2
2 (2u− 1)

+

(

− 11

210
aπ2 −

4

135
η3w3

)

C
3
2
4 (2u− 1)

]

+

(

−18

5
aπ2 + 21η4w4

)

[

2u3(10− 15u+ 6u2) lnu

+ 2ū3(10− 15ū+ 6ū2) ln ū+ uū(2 + 13uū)
]

, (21)

where Ck
n(x) are the Gegenbauer polynomials,

h00 = v00 = −1

3
η4,

a10 =
21

8
η4w4 −

9

20
aπ2 ,

v10 =
21

8
η4w4,

h01 =
7

4
η4w4 −

3

20
aπ2 ,

h10 =
7

4
η4w4 +

3

20
aπ2 ,

g0 = 1,

g2 = 1 +
18

7
aπ2 + 60η3 +

20

3
η4,

g4 = − 9

28
aπ2 − 6η3w3. (22)

The constants appearing in the wave functions are calculated at the renor-

malization scale µ = 1 GeV 2 and they are given as aπ1 = 0, aπ2 = 0.44,

η3 = 0.015, η4 = 10, w3 = −3 and w4 = 0.2.
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The sum rules for the coupling constant also contains three auxiliary

parameters: Borel mass parameter M2, continuum threshold s0 and general

parameter β enters the expressions of the interpolating currents. In principal,

M2 and β are completely arbitrary and hence the coupling constant, which

is a physical observable, should be independent of their exact values. In

practice, though, due to the approximations made in the calculations, there

is a residual dependence of the predictions on these unphysical parameters.

Hence, a range for these parameter should be found where the predictions

are practically insensitive to variations of these parameters. To find the

working region for M2, we proceed as follows. The upper bound is obtained

requiring that the contribution of the higher states and continuum should be

less than that of the ground state. The lower bound of M2 is determined

from condition that the highest power of 1/M2 be less than say 300/0 of

the highest power of M2. These two conditions are both satisfied in the

region 15 GeV 2 ≤M2 ≤ 30 GeV 2 and 4 GeV 2 ≤ M2 ≤ 10 GeV 2 for baryons

containing b and c-quark, respectively. The third parameter, s0 has a physical

meaning, and it should have a value near the first excited state. The value

of the continuum threshold is calculated from the two-point sum rules. We

choose the interval s0 = (6.02− 6.22) GeV 2 and s0 = (2.52− 2.72) GeV 2 for

baryons containing the b and c quark, respectively.

In Figs. 1 and 2, we present the dependence of the coupling constants

gΣbΛbπ and gΣcΛcπ, at fixed values of the continuum threshold s0 and the

general parameter β. From these figures, we see a good stability for coupling

constants gΣbΛbπ and gΣcΛcπ with respect to the Borel mass square M2 in the

working region. The next step is to determine the working region for auxiliary

parameter β. For this aim, in Figs. 3 and 4, we depict the dependence of

the coupling constants gΣbΛbπ and gΣcΛcπ on cosθ where tanθ = β, at two

12



fixed values ofM2. From these Figures, we see that the best stability for the

coupling constants gΣbΛbπ and gΣcΛcπ is in the region −0.5 ≤ cosθ ≤ 0.2.

Our final results on coupling constants gΣbΛbπ and gΣcΛcπ are:

gΣbΛbπ = 23.5± 4.9,

gΣcΛcπ = 10.8± 2.2.

(23)

The quoted errors are due to the uncertainties in the input parameters as

well as variation of the Borel parameter M2, continuum threshold s0 and

general parameter β.

Having computed the coupling constant gΣQΛQπ, the next step is to cal-

culate the total decay width for Σb −→ Λbπ and Σc −→ Λcπ decays. From

Eq. (4) the transition amplitude is M = gΣQΛQπuiγ5u and the differential

decay width is found in terms of the coupling constant as:

Γ =
|gΣQΛQπ|2
8πm2

ΣQ

(mΣQ
−mΛQ

)2|−→q |,

(24)

where |−→q | = (m2
ΣQ

−m2
ΛQ

)/2mΣQ
. The numerical values of the decay rates

are given in Table 1. In order to compare with the predictions of other

methods, in the same table, we present the predictions of the relativis-

tic three-quark model (RTQM) [24], light-front quark model (LFQM) [25]

and existing experimental data [32]. This table depicts a good consistency

among the methods and the experimental data in order of magnitudes for

charm case. Note that, due to the isospin symmetry the decays of differ-

ent charge Σ++,+
c −→ Λ+

c π
+,0,−(Σ+,0,−

b −→ Λbπ
+,0,−) have the same decay

widths. Experimentally, only the widths for Σ++,0
c −→ Λ+

c π
+,− are measured

and the value in the table is their average. Only the upper bound for the

13



Σ+
c −→ Λ+

c π
0 is known and it is consistent with other decay modes. Our

prediction for the decay rate of the bottom case can be tested in the future

experiments.

Γ(Σc −→ Λcπ) Γ(Σb −→ Λbπ)
Present work 2.16± 0.85 3.93± 1.5
RTQM [24] 3.63± 0.27 -
LFQM [25] 1.555± 0.165 -
Exp. [32] 2.21± 0.40 -

Table 1: Results for the decay rates of ΣQ −→ ΛQπ in different approaches
in MeV.

In summary, we calculated the gΣbΛbπ and gΣcΛcπ coupling constants in

the light cone QCD sum rules approach. Using these coupling constants, we

also evaluated the total decay width for the strong Σb −→ Λbπ and Σc −→
Λcπ decays and compared with the predictions of the other approaches and

existing experimental data.

4 Acknowledgment

The authors thank T. M. Aliev for his useful discussions and also TUBITAK,

Turkish Scientific and Research Council, for their partial financial support

through the project number 106T333, and K. A. and A. O. would like to

thank TUBA for their partial financial support through GEBIP.

References

[1] M. A. Shifman, A.I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B147

(1979) 385.

14



[2] I. I. Balitsky, V. M. Braun, A. V. Kolesnichenko, Nucl. Phys. B312

(1989) 509.

[3] V. L. Chernyak, I. R. Zhitnitsky, Nucl. Phys. B345 (1990) 137.

[4] H. Sciomi and T. Hatsuda, Nucl. Phys. A594 (1998) 294.

[5] M. C. Birse and B. Krippa, Phys. Lett. B373 (1996) 9.

[6] T. Doi, H. Kim and M. Oka, Phys. Rev. C62 (2002) 055202.

[7] T. M. Aliev, A. Ozpineci, M. Savci, Phys. Rev. D64 (2001) 034001; T.

M. Aliev, M. Savci, Phys. Rev. D61 (2000) 016008.

[8] H. Kim, S. H. Lee and M. Oka, Phys. Rev. D60 (1999) 034007.

[9] H. Kim, Eur. Phys. J. A7 (2000) 121.

[10] H. Kim, T. Doi, M. Oka and S.H. Lee, Nucl. Phys. A662 (2000) 371.

[11] H. Kim, T. Doi, M. Oka and S.H. Lee, Nucl. Phys. A678 (2000) 295.

[12] V. M. Braun, I. E. Filyanov, Z. fur Fizik C44 (1989) 157.

[13] S. Choe, M. K. Cheoun and S.H. Lee, Phys. Rev. C53 (1996) 1363.

[14] S. Choe, Phys. Rev. C57 (1998) 2061.

[15] B. Krippa, Phys. Lett B420 (1998) 13.

[16] M. E. Bracco, F. S. Navarra, M. Nielsen, Phys. Lett. B454 (1999) 346.

[17] T. M. Aliev, M. Savci, Phys. Rev. C61 (2000) 045201.

[18] T. M. Aliev, A. Ozpineci, S. B. Yakovlev, V. Zamiralov, Phys. Rev. D74

(2006) 116001.

15



[19] J. R. Zhang and M. Q. Huang, Phys. Rev. D78 (2008) 094015.

[20] I. L. Grach, I. M. Narodetskii, M. A. Trusov and A. I. Veselov,

arXiv:0811.2184.

[21] F. Buisseret, C. Semay, F. Stancu and N. Matagne, arXiv:0810.2905.

[22] A. Valcarce, H. Garcilazo and J. Vijande, Eur. Phys. J. A37 (2008) 217.

[23] J. Franklin, arXiv:0811.2143

[24] M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij, A. G. Rusetky, Phys.

Rev. D66 (2002) 016002.

[25] S. Tawfig, P. J. O’Donnell, J. G. Körner, Phys. Rev. D60 (1999) 094002.

[26] Y. Chung, H. G. Dosch, M. Kremer, D. Schall, Nucl. Phys. B197 (1982)

55.

[27] I. I. Balitsky, V. M. Braun, Nucl. Phys. B311 (1989) 541.

[28] V. M. Braun, I. E. Filyanov, Z. Phys. C48 (1990) 239.

[29] P. Ball, JHEP 01 (1999) 010.

[30] P. Ball, R. Zwicky, Phys. Rev. D71 (2005) 014015.

[31] V. M. Belyaev, B. L. Ioffe, JETP 56 (1982) 493.

[32] C. Amsler, et. al. (PDG), Phys. Lett. B667 (2008) 1.

16

http://arxiv.org/abs/0811.2184
http://arxiv.org/abs/0810.2905
http://arxiv.org/abs/0811.2143


15 20 25 30
M

2
(GeV

2
)

0

10

20

30

40

g Σ bΛ
bπ

β=−5
β=−1
β=+5

Figure 1: The dependence of the gΣbΛbπ on the Borel parameter M2 at fixed
value of the continuum threshold s0 = 6.02.
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Figure 2: The same as Fig. 1, but for gΣcΛcπ and fixed value of the continuum
threshold s0 = 2.52.
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Figure 3: The dependence of |gΣbΛbπ| on cosθ at fixed value of the continuum
threshold s0 = 6.02.
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Figure 4: The same as Fig. 3, but for |gΣcΛcπ| and fixed value of the contin-
uum threshold s0 = 2.52.
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