Learning to Grasp with Parental Scaffolding
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Abstract—Parental scaffolding is an important mechanism
utilized by infants during their development. Infants, for example,
pay stronger attention to the features of objects highlighted by
parents and learn the way of manipulating an object while being
supported by parents. In this paper, a robot with the basic ability
of reaching for an object, closing ngers and lifting its hand
lacks knowledge of which parts of the object affords grasping,
and in which hand orientation should the object be grasped.
During reach and grasp attempts, the movement of the robot
hand is modi ed by the human caregiver's physical interaction
to enable successful grasping. The object regions that the robo
ngers contact rst are detected and stored as potential grapable
object regions along with the trajectory of the hand. In the
experiments, we showed that although the human caregiver did
not directly show the graspable regions, the robot was able to
nd regions such as handles of the mugs after its action execution
was partially guided by the human. Later, this experience was
used to nd graspable regions of never seen objects. At the end,

infants use more and more of these communicative signals [4]
These interactions have a purpose. Infants can exhibiioert
skills in game-contexts together with their mothers farobef
they can perform them in isolated cognitive tests [5].

The idea of parental scaffolding seems especially ingpirin
from a robotics point of view. The idea has been exploited
in various studies with different viewpoints, such as for
better communication between humans and robots [6], or as
a grounding principle for lifelong developing of robots “at
home” [7]. It has been shown that caregivers tend to modify
their motions when teaching a task to a child. Analogous to
“motherese”, [8] call these motions of higher interactiess,
enthusiasm, proximity, range of motion, repetitiveness an
simplicity, as “motionese”. In a similar line, [9] reveals a
signi cant amount of bottom-up saliency features in infant

the robot was able to grasp objects based on the position of the directed interaction versus adult-directed interactiMoti-

graspable part and stored action execution trajectories.

I. INTRODUCTION

vated by these ndings, [10] develops a bottom-up architert
for robot-infants, who, like human-children, are equipped
with minimal a-priori information, and therefore in need of

Scaffolding in developmental psychology refers to the supepending mainly on bottom-up signals as much as possible.
port from an (adult) caregiver in order to speed up a childisiterestingly, such infant-robots are also found to maéva

skill and knowledge acquisition [1]. This support can takBumans to use motionese as if they were dealt like human chil-
various forms, including the attraction and maintenance dfen. Due to the robots' limited attention mechanisms, hwsna
the child's attention on relevant items, the shaping of they to carefully teach a task for example by approaching to
environment in order to ease the task (such as positionitige robots and introducing the object closely to their aiben
and orienting the child so as to limit its degree of freedom$ometimes shaking it, amplifying their movements and ngkin
signalling the important features or subgoals of the task, pauses. Evidently, these are also widely used tactics enpar
providing feedback and reinforcement [2]. When the taskfant communication.

gets out of hand, puzzling the child, the caregivers step inAnother issue in robot imitation is the inability of the
as the “trouble-shooter” [3]. They interfere at differeméss robot to understand “what” to imitate. In particular, there
of the task, initially demonstrating the goal and drawingre goal-oriented tasks, where any means to achieve the goal
attention to task-relevant features, then “embodying’dhiédd are acceptable, versus means-oriented tasks, where ti@mot
to co-achieve the goal. Throughout the process, they let titgelf is equally important. This is also a problem faced by
child have proprioceptive, force, tactile, visual, and itarg human infants. Here parents again come to rescue by sigmalli
feedback, until the goal is achieved. Moreover, it is notyonkhe important features [11]. In a goal-oriented task, they
the adults who are interested in this kind of interaction. Bgmphasize initial and nal states, as well as important sub-
acquiring the ability for joint attention, the children lmeoe goals, by taking long pauses. Conversely, in a means-edent
aware of the caregiver as a “helper”, and begin “askindg&sk, they emphasize the movement itself by adding addition
for help when faced a dif cult task by displaying signi cantmovements to the object, for instance by shaking it.
communicative gestures. From the age of 9-months, when the&caffolding has also been used as a means of “correcting”
joint attention mechanisms begin to emerge, to 18-monthbg robot's experiences and letting it learn the “right” wgg]



demonstrates the scaffolding of the environment itself rzes o
way of reducing complexity. The robot is expected to perform
pre-taught behaviors, such as wall-following, by matchiisg
current sensory values to previously memorized instances.
The most “similar” previous instance is decided, howevegr, b
giving more weight to features with higher information gain
for the speci c task. Here comes in the human teacher, who
modi es the environment in the learning phase, by reducing
variations in irrelevant features. These features, hagingys
constant values, will not affect the robot's behavior later

[12] takes a more direct approach, by correcting the very
movement of the robot. The robot is allowed to learn a
behavior from demonstrations by a teacher. Once it derives a
policy, the human will help it correct its movement by online
tactile feedback from sensors attached to its wrist.

In [13], social aspects of scaffolding has been explored.
The robot tries to increase its own skills through its irgin
drives of novelty and mastery, but a human can also draw its
attention, guide it by suggesting actions, point out pdssikFig. 1. 7 DoF robot arm, 16 DoF robot hand, table, and a samplecbbj
goal states and structure the environment so that cert@ﬁho""”- The range camera is placed on the top-right and stifled The

. . uman teacher can change the default trajectory of the rolestable grasping
components become more salient. These signals act as@xt@fanks to the force/torque sensor that is placed betweest ssin and hand.
cues triggering the robot's reinforcement learning system

In this paper, we propose and implement a robotic frame-
work where a human caregiver speeds up robot's affordarieg incorporating the force applied to the robot hand by the
[14] acquisition through parental scaffolding. In partamuthe human during the course of the action. The points on the
robot learns how to detect graspable object regions and howject where ngers make rst contact are stored as poténtia
to act upon these detected affordances in order to achieve dfpasp affording parts. After hand closure is completed, the
goal of grasping and lifting. In our previous studies [136], robot lifts its hand and checks whether the object is lifted
a similar anthropomorphic robot self-discovered simplgab or not by searching table surface with its perceptual system
affordances by learning the relations between objectectff again and through force sensor measurements. This online,
and behavior parameters. However, the behavior paraméieman modi edreach-grasp-liftaction is repeated many times
space is very large in grasping with a dexterous robot harmwith different object con gurations and graspable parts of
and many different parts of complex objects can providée objects are discovered by the robot. Below, the tools and
graspability. In the current study, a human caregiver spe@d methods to realize this framework will be detailed.
robot learning by physically modifying robot's built-ireach-
grasp-liftbehavior execution trajectory. While being guided bf}- Robot platform
the human, the robot rst detects the " rst-contact' poirts An anthropomorphic robotic system equipped with a range
nger made with the objects, and stores the collection oséhecamera is used as the experimental platform. This system use
points as graspable regions if the object is lifted succdlgsf a 7 DoF Motoman robot arm, that is placed on a vertical bar
Later, it builds up simple classi ers using these experéhc similar to human arm as shown in Figure 1. A ve ngered
contact regions and use these classi ers to detect graspab$ DoF Gifu robot hand is mounted on the arm to enable
regions on novel objects. At the end, the robot hand was shomianipulation. The maximum length of Motoman arm and Gifu
to lift an object in different orientations by selecting ook hand is 123 cm and 23 cm, respectively. For environment
the experienced trajectories. perception, an infrared range camera (SwissRanger SR}4000
with 176x144 pixel arrayD:23 angular resolution and cm
distance accuracy is used. The range camera is calibrated in

In our parental scaffolding framework, the robot has #he coordinate space of the robot hand by computing the-trans
default reach-grasp-lift action where the object is detectedormation matrix between positions extracted kinemaljcal
by robot's perceptual system, a reach trajectory is contbutand perceived from range camera. Then, the environment is
based on robot's arm kinematics and object center, and ttepresented as point cloud in this space. To control robot ar
robot ngers are closed they are nearby to the object. Tlze6 DoF Nitta force/moment sensor is mounted between the
robot has no initial knowledge about graspability of th@and and the wrist of the robot arm.
objects. Different objects can be grasped from differemtspa ) _
with different hand orientations, steach to object center B- Force-based human-robot interaction
execution should be modi ed by the human teacher during We wanted to be able to guide the robot similar to a
trajectory execution. Thus, the initial trajectory is medi caregiver guiding an infant's movement. It is natural for a

Il. SCAFFOLDING FRAMEWORK



human parent to hold the infant's hand, and position it in the 2) Gravity CompensationAs the force sensor is connected
space to help with a grasp. A similar intuitive effect can b the robot hand which has a non-negligible weight, the@ens
obtained by attaching a force sensor to right below the handports non-negligible force and moment measurements even
at the wrist position. The desired effect is holding the twis there is no external force acting on the robot hand. Morgover
the robot, and moving the 7-DoF arm in the 6-DoF Cartesidhese values depend on the joint position and velocitieb®f t
space freely. This requires the force sensed by the robat torbbot. If one assumes low velocities, only the orientatibthe
converted into joint displacements. hand in space can be considered. In principal, this sholda/al

1) Mapping force and moments to joint displacemefitse one to obtain equations for the force and moments that will be
force sensor continuously outputs two vectbgs, andmap, ,  exerted on the sensor depending on the orientation of thet han
the current applied force and moment vectors, respectiveljowever, due to un-modeled dynamical effects such as the
These vectors are rst converted to desired position aneieri movement of the heavy cables connected to hand we decided
tation changes, which are, in turn converted to desiredgémnto apply a learning approach. We rst collected data by hgvin
in the joint angles of the robot using inverse kinematics. the robot systematically scan a range of orientationsand

Initially, fapp is in robot's end-effector frame, since forcerecord the measured fordg,and momenm; from the sensor.
values are read from a sensor xed to the robot's wrisQrientations are represented as rotation matrices; tice famd
The end-effector frame moves continuously (together withoment measurements are stored as raw values reported by
the wrist) with respect to the global frame. However, ththe force sensor (i.e. three dimensional vectors with retsjpe
human instructor would expect to see the effect of his/héfe local coordinate frame of the force sensor). The goal is t
feedback in the global frame. Therefore, the force vectpredict force and moment values given an orientation of the
should be represented in the global frame. We identify thebot hand. For this regression problem, we formed an input
robot end-effector frame with two orthogonal vectdrg, data matrixX where each row corresponds to the elements of
the palm normal and,, the middle nger direction when the rotation matrix corresponding to the orientation The
the nger is fully extended Ifx is the cross product of target matrices's andY , are formed by the forcefi) and
the two). The force vector in the global reference frame igoment (n;) vectors, respectively. Using the least squares t
given byfgon =[hx hy h;]fapy . The desired change in thewe obtain weight matrices as follow.
end-effector position is simply taken as the scaled version
of the force represented in the global reference frame i.e. Wi=X"Y:y Wp=X"Yn Q)

p/ fgon . Similarly, the desired orientation change implied . . .
by the human interaction is obtained by considering theescalVith these weight matrices, we can predict the force and

moment values as the desired rotations around the encaffedoments that will be experienced by the force sensor at agive
reference frame axes. orientation (by atting the rotation matrix into a 9 dimeosal

T vector and premultiplying it with the weight matrix). Letabe
=( xi yi z2) | Mgy predictors be denoted as

From these angles, the desired (in nitesimal) rotation nirat

is obtained WithR = Ry( x)Ry( y)R2( ) whereR, F(R)= ™ (R);P(R):f*(R)

, Ry and R, represent the rotation matrices arourdy, m (R) = (M* (R) ;MY (R);m? (R))
andz axis, respectively. Given the current end-effector frame -
[hy hy h], the desired end-effector frame is given by Then for quantifying the t error on test data we de ne the

hdes pdes pdes = R [h, hy h,] following relative errorsgf* andeM* with respect to mean
x Ty Tz © x Ty Tz force or moment experienced during the testileﬁy( ez,
which allows the computation of the desired change in th&"Y andeM? are also de ned similarly).
nger direction as h, = h¥s h,. : b _ . '
Having calculated the desired changes in the position and Fx = I PR - gx = Imp MR
nger direction, these values are converted to desiredtjoin Jré : Jmi]

angle changes using the Jacobian of the position and ngerThe data collection for training and testing is conducted as
direction vector. follows. The last three joint angles of the robot are used to
q/ 3" p h° obtain a range of orientations.

_ . . Starting from the initial joint angle con guration:
where ¢ is the desired joint angle change, and the the

Jacobian is obtained using the forward kinematics of thet:ob [h e b 0]’ =[90 00-90 00-80]"

.e. s and g are varied in the rangg 60 ;+60 ], and ¢ in

0

1) =[@=a &.=@] [ 180;+180 ], with 10 intervals, and independently from
Since the rotation axis of the last joint of the robot coimsd each other. Sampling with these angles enables the robot to
with h, for the desired in nitesimal rotation for this joint no cover the hand orientation space of the grasp executiors. Th
inverse kinematics is necessary as this can be obtainettldirearm is moved to each sample point, and the experienced force
from the moment reading around this axis (i.e.;). and moment values at the con guration are saved.



TABLE |
THE MEAN AND STANDARD DEVIATION OF THE RELATIVE ERRORS MADE
ON THE TEST SET FOR FORCE AND MOMENT PREDICTIONEWO-FOLD

to one or more objects. These objects are segmented by the
Connected Component Labeling algorithm which differenti-

CROSS VALIDATION, 500REPEAT3 ARE SHOWN AS PERCENTAGES ates Object regions that are Spatlally Separated by a preset

threshold value (2 cm in the current implementation). Ineord

E force foree E mom E mom to reduce the effect of camera noise, the pixels at the baynda
X | 1.88 0.015 2.92 0.025 of the object are removed, and Median and Gaussian lters
Y | 321 0.023 2.86 0.026 with 5x5 window sizes are applied. The detected objects on
Z | 187 0.013 6.07 0.055

the range image of a sample setup is shown at the top row in
Figure 3.

The robot detects the °rst-touch' points on the object
surface by checking the distance between each object point
and nger joint in each timestep during reach action exexmuti
If the number of object points close to one of the nger joints
is larger than a threshold for a certain duration, then those
points are stored as grasp points. In our setting, the mimmu
number of contact points is set as 15 pixels on the range
image, the duration is set as 300 msec and closeness thdeshol
is set as 2 cm. Figure 3, third row shows only the detected
objects as grayscale and the contact pixels in red color. The
bottom row shows the range image at the end of each grasp
and lift execution. This simple thresholding may nd incect
touch points in various situations. However, we argue that
generalization from multiple interactions and caregivewn

The prediction accuracy obtained with the collected data @Vvelopment in scaffolding would solve this problem.
assessed by randomly d|V|Q|ng the data |_nto training anti.ttﬁ A simple classi er based on distance histograms
set. Table | shows the relative errors obtained for eachasxis
percentages. To verify the performance that we could expec® Successful grasp mediated by caregiver provides very
from the prediction we also look at distribution of the esror important cues for the further development of the perceptio

For this we de ne relative errors averaged over the axes asystem of the agent. To show this, we utilized a series of
percepts when the robot touched and subsequently grasped

Force prediction relative error
0.16 0.20

Moment prediction relative error

probability
probability

0 2 4 6 8 10 12 0 5 10 15 20 25
percent error percent error

Fig. 2. The normalized histograms of the axis-averaged velatirors for
force and moment predictions (i.e. histogramsEdf andEM ).

EjF -1 e]FX + eij + e]FZ from a part an object to construct a simple (grasp) affordanc
3 detector. In this subsection, we will describe our method
EM — 1 eMx 4 My | oMz over the example of handle-grasping to ease understanding,
J 3 7 ! ] but this method can be used for any graspable part of the

and compute the error histograms. The histograms obtair@gject and is not limited to encode only handles. Instead of a
are shown in Fig. 2. pure template based search, we opt to use a feature that will
. capture the relative property of the grasped-part with néga
C. Robot perception to the totality of the object. Primate brain is endowed with
The robot uses range camera to detect the object on #everal shape and topological feature detectors, for eleamp
table. The detected object is represented as a 3D point clmaine of which are tuned for rings and hollow objects [17],
and from this point cloud various features such as locHl8]. Inspired from this, we propose a metric that captuhes t
distance histograms as detailed in the next subsection distribution of three dimensional points (i.e. voxels)ttheake
computed. Furthermore, the distance between any point @ma given object. We propose that each voxel is identi ed by
the object and hand ngers is computed by comparing thke distribution of its distances from the neighboring Jexe
3D position of that point measured by range camera and 3t make up the object. This distribution changes smoothly
position of the nger computed by forward kinematics baseds one moves smoothly on the surface of the object, and
on arm and hand angles. As a result the robot can closeigisnvariant of orientation changes. Our idea was to develop
hand when the ngers are nearby to the object or can detectclassi er based on this metric, with the intuition that the
the object points that are in contact with ngers. handle voxels would have similar distance distributiorad tre
The rst step of pre-processing is to Iter out the pixelssigni cantly different from the body voxel distributiong:or
whose con dence values reported by range camera are belive handle voxels found by interacting with the object aedus
an empirically selected threshold value. The robot's wpdce to construct a distance distributiqny . Likewise the rest of the
consists of a black table, so region of interest is de nedhas tobject points is used to construct a distribution représgrhe
volume over the table, and black pixels are lItered out as theon-handle pointgpg . At a later time when the robot faces a
range readings from black surfaces are noisy. As a reselt, thovel object it computes a distance distribution for eacimtpo
remaining pixels of the range image are assumed to belomg the object and compares it witly andpg, and decides



what points can be used as handles.

LetH andB the set voxels from the handle and the body
the object at a given interaction. We de neneighbor distance
function to operate on a voxgl(three dimensional vector) and
a set of voxelsyY with

kx;Yk =fkx yk:y2Y~*kx yk< g

With this we can compactly de ne these two distance s
for the handle set and the body set as:

fkhi;Bk :hj 2 Hg
fkbi;HKk :bj 2 Bg

H

B

Taking hist () as an operator to return a normalized hlstograJ ]
of a given set we obtain these two probability density edtima n

for handle and body voxels, respectively:
pu hist( w, [ wHyoHY)
ps hist( s, [ B, By)

To determine whether a given voxa,belongs to handle or Fig. 3. Guided grasp experience. The gures show the ranggésimeasured
not we compute the distance distributipn,g hiSt( fvg) by the range camera where the depth of the points are encodgdyiscale.

: : : Ty The top row shows the snapshots of 5 different environmentsravithe
and compare it tpy andpg using the cumulative distribution. detected objects are shown in red. The second row shows Hhoet hand

The voxelv is deemed a handle voxel if was controlled to grasp the objects. The third row focusetherobject and
shows the " rst-contact' points. The bottom row gives theagshots after
zs zs each behavior execution. The robot can understand the ssiofegrasping
by checking the table surface and the force sensor readimglseowrist.
max < max N . -
PH Prvg Pe Prvg Movie is available at http://emreugur.net/movies/humargids
0 0
otherwise it is deemed a body voxel, where the max runs over
s< 1. both action planning and recognition. For example, a bottom

up attention system can be transformed into a system where
top-down biases can be also considered (e.g. searching for
In this section, we rst described the experimental setup handle). In the current implementation, we show that this
where the robot arm is guided by the human caregiver duriimformation can be used to develop 'handle detectors' sb tha
reach-grasp-liftexecution, and we showed the detected " rstthe robot can perform general handle-grasps without human
touch' points indeed corresponded to graspable parts of theidance. Fig. 3 shows the percept of the robot before action
objects. Then, the classi er (Section 1I-D) that differieés execution (the top panel). The successful grasping oldaine
whether a voxel is graspable or not was trained using thig human guidance is detected by the robot and the positions
rst-touch points. This classi er was later used to deteloe t of the ngers on the object are computed as illustrated in
graspable regions of novel objects. At the end, a simpkeg. 3. Repeated application of this process, allows robust
lookup-table procedure were used to lift the objects placeliscrimination of object points that afford the currentiact
in different orientations. (i.e. handle grasping).

IIl. EXPERIMENTS

A. Touch region detection results B. Grasp region detection on novel objects

The robot initially has a rough grasping skill; it reaches fo We tested this classi er using grasp executions mediated
the center of the object and encloses its ngers upon contactby the caregiver for a mug type object that is placed at ve
human caregiver interferes with the execution of this bskilt ~ different orientation as shown in Figure 4 (a). The histagga
in attempt to achieve successful grasping. The human pesvidor each of these executions are given in Figure 4 (b) and (c)
only partial guidance, making this a true collaborationthis corresponding to handle and body histograms, respectiely
setup, learning of caregiver learning is also critical, s tthe human eye it is evident that the distributions are diffier
ability of the robot control system and the properties of thEhe nal representative distributions for handf®;() and body
robot hand for grasping must be learned by the caregivereOr{ps ) obtained by combining these individual histograms as
the human-robot collaborative system manages grasping, ibglicated in Equation 2 are shown in Figure 5.
using camera and proprioceptive information the robot canWe rst, tested whether this simple classi er can identify
discern parts of the object that it grasps. This providegalale the handle parts of the original object accurately or not. In
information for the robot to develop its perceptual system f particular, during an interaction not all parts of the hanaite
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c)

Fig. 4. “First-touch' regions. (a) shows the objects andrthst contact ) ) ) .
voxels obtained during training (see Figure 3). (b) and (apgthe corre- Fi9: 6. (@) gives the resuilts obtained from grasp classioraof each voxel
sponding averaged distance histograms for graspable andningiaoxels, ©n training objects. See Fig. 4 for real touch regions ofdhalsiects. On the
respectively. For (a) we generated a surface mesh to covevakeis and Other hand, (c) gives the grasp classi cation results forehmbjects whose
apply smoothing for better presentation of the results. pictures were shown in (b). For (a)_and (c), we generated facumesh to
cover the voxels and apply smoothing for better presentatfche results.

experienced relative grasp region position is found, are th
corresponding hand-arm trajectory is executed. Note that t
use of this distance metric for trajectory selection is fedito

s : o o » Y : = e » the object that was experienced during training, i.e. thesrim
Fig. 5. The mean histograms of graspable and remaining voxeingies, Cannot handle multiple objects with different shapes anéssi
respectively. In the experiments, the object used in training was placed in

5 different orientations. Each row in Figure 7 corresporda t
grasp execution for a different orientation. The snapsivet®
touched so they were initially marked as belonging to objegiken for initial hand posture, while hand was reaching the
body (Figure 4 (a)). With this density based classi er it &8 object, during the rst contact, during grasping and at tinel
seen that most of the handle voxels are indeed found as hangligye of lifting, respectively. The rst four executions ree
voxels (Figure 6 (a)) with little false positives. The morguccessful at the end since the object was placed in similar
challenging task was to see whether this classi er coulédet orientations with training instances. In the last exeautite
handle-like parts from unseen objects. For this, we used Veandle was behind the object, so the robot selected an awtorr
different objects as seen in Figure 6 (b). Although thereewegxecution trajectory.
false matches most of the voxels identi ed as handles were
indeed handles or could be considered handles (Figure 6 (c)) IV. CONCLUSION

In this paper, we presented a framework that applies the
parental scaffolding concept from developmental psyailo

The focus of this paper was to learn and infer the graspalitea grasping task with a anthropomorphic robot platform. In
parts of the objects in our parental scaffolding frameworlour framework, robot's defaulteach-grasp-lifttrajectory for
Although it is not the main focus, the learned knowledge casbject center with xed hand orientation is physically medi
also be utilized to autonomously control robot arm and to libnline by a human caregiver using the force/moment sensor
the objects. For this purpose, we designed a simple lookupeunted on the wrist. Utilizing human guidance, the robot
table based mechanism to selecteach-grasp-liftexecution was able to successfully grasp the objects, and detectitied in
trajectory to lift the object that had been used in training. contact points on the objects as graspable regions. Thean it

During training, the robot's guided lift experience waslassify regions of other objects based on the mean statisti
stored as a list of set of object voxels, set of touch voxeldistance properties of grasp points on the experiencednegi
and modi ed hand-arm angle trajectory. From this expergencAfter a series of guided grasping experiences, the robot was
the position of the largest touch region relative to the objeable to (1) detect graspable parts of novel objects and (2)
center was computed. Then, a lookup table was constructes this information to select grasp trajectories it exqrered
with relative position information in one column and handduring (guided) learning and execute them autonomously.
arm trajectory in the other column. When a new object is Incorporating of ine human judgment in autonomous grasp-
perceived, the robot rst nds the grasp regions using thing task has already proven to be a fruitful approach. At one
simple classi cation method, then computes the position ofbtable study, Saxena et al. [19] trains the robot on syiathet
the largest grasp region relative to the object center. TH® images marking good grasping points. After the training,
relative position is searched in the lookup table, the dbsdhe robot can identify good grasping points on a novel object

C. Autonomous grasp executions
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given only its 2D images. Once the candidate grasping points
are identi ed in 2D, several images are combined to triaatl [12]
the points and estimate their 3D positions. [20] represents
grasping affordances for a gripper as a continuous digioibu [13]
in 6D pose space where the distribution is initialized by-pre
de ned visual descriptors or sample grips executed by a muma
(not the robot), and re ned through robot's self-exploogti [14]
While these works aim to provide the robot with an initially15]
perfect or almost-perfect information, our focus has béwn t
online intervention of a human teacher to correct the rebo;g
naive movements on-the-y. A similar approach would have
been followed by a mother who watches her infant's play, med-
dling only when the infant seems in need of help. Although the;;
results demonstrate that the robot was able to ef cientiyrie
of graspable regions through parental scaffolding and was
able to detect graspable parts of novel objects, there i11og g
for improvement. First of all, the number of the objects and
their variety should be increased. Second, for more rda:alishg]
and generalized grasp executions, better learning athgosit
between grasp region features and grasp behavior execution
parameters (such as approach direction or hand posturaldshd?°!
be employed. Finally, from a social sciences perspectioe, h
human caregivers improve in teaching grasp skills to thetrob
can be studied for improving the human-robot interaction.
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