
Learning to Grasp with Parental Scaffolding
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Abstract—Parental scaffolding is an important mechanism
utilized by infants during their development. Infants, for example,
pay stronger attention to the features of objects highlighted by
parents and learn the way of manipulating an object while being
supported by parents. In this paper, a robot with the basic ability
of reaching for an object, closing �ngers and lifting its hand
lacks knowledge of which parts of the object affords grasping,
and in which hand orientation should the object be grasped.
During reach and grasp attempts, the movement of the robot
hand is modi�ed by the human caregiver's physical interaction
to enable successful grasping. The object regions that the robot
�ngers contact �rst are detected and stored as potential graspable
object regions along with the trajectory of the hand. In the
experiments, we showed that although the human caregiver did
not directly show the graspable regions, the robot was able to
�nd regions such as handles of the mugs after its action execution
was partially guided by the human. Later, this experience was
used to �nd graspable regions of never seen objects. At the end,
the robot was able to grasp objects based on the position of the
graspable part and stored action execution trajectories.

I. I NTRODUCTION

Scaffolding in developmental psychology refers to the sup-
port from an (adult) caregiver in order to speed up a child's
skill and knowledge acquisition [1]. This support can take
various forms, including the attraction and maintenance of
the child's attention on relevant items, the shaping of the
environment in order to ease the task (such as positioning
and orienting the child so as to limit its degree of freedom),
signalling the important features or subgoals of the task, or
providing feedback and reinforcement [2]. When the task
gets out of hand, puzzling the child, the caregivers step in
as the “trouble-shooter” [3]. They interfere at different steps
of the task, initially demonstrating the goal and drawing
attention to task-relevant features, then “embodying” thechild
to co-achieve the goal. Throughout the process, they let the
child have proprioceptive, force, tactile, visual, and auditory
feedback, until the goal is achieved. Moreover, it is not only
the adults who are interested in this kind of interaction. By
acquiring the ability for joint attention, the children become
aware of the caregiver as a “helper”, and begin “asking”
for help when faced a dif�cult task by displaying signi�cant
communicative gestures. From the age of 9-months, when the
joint attention mechanisms begin to emerge, to 18-months,

infants use more and more of these communicative signals [4].
These interactions have a purpose. Infants can exhibit certain
skills in game-contexts together with their mothers far before
they can perform them in isolated cognitive tests [5].

The idea of parental scaffolding seems especially inspiring
from a robotics point of view. The idea has been exploited
in various studies with different viewpoints, such as for
better communication between humans and robots [6], or as
a grounding principle for lifelong developing of robots “at
home” [7]. It has been shown that caregivers tend to modify
their motions when teaching a task to a child. Analogous to
“motherese”, [8] call these motions of higher interactiveness,
enthusiasm, proximity, range of motion, repetitiveness and
simplicity, as “motionese”. In a similar line, [9] reveals a
signi�cant amount of bottom-up saliency features in infant-
directed interaction versus adult-directed interaction.Moti-
vated by these �ndings, [10] develops a bottom-up architecture
for robot-infants, who, like human-children, are equipped
with minimal a-priori information, and therefore in need of
depending mainly on bottom-up signals as much as possible.
Interestingly, such infant-robots are also found to motivate
humans to use motionese as if they were dealt like human chil-
dren. Due to the robots' limited attention mechanisms, humans
try to carefully teach a task for example by approaching to
the robots and introducing the object closely to their attention,
sometimes shaking it, amplifying their movements and making
pauses. Evidently, these are also widely used tactics in parent-
infant communication.

Another issue in robot imitation is the inability of the
robot to understand “what” to imitate. In particular, there
are goal-oriented tasks, where any means to achieve the goal
are acceptable, versus means-oriented tasks, where the motion
itself is equally important. This is also a problem faced by
human infants. Here parents again come to rescue by signalling
the important features [11]. In a goal-oriented task, they
emphasize initial and �nal states, as well as important sub-
goals, by taking long pauses. Conversely, in a means-oriented
task, they emphasize the movement itself by adding additional
movements to the object, for instance by shaking it.

Scaffolding has also been used as a means of “correcting”
the robot's experiences and letting it learn the “right” way: [7]



demonstrates the scaffolding of the environment itself as one
way of reducing complexity. The robot is expected to perform
pre-taught behaviors, such as wall-following, by matchingits
current sensory values to previously memorized instances.
The most “similar” previous instance is decided, however, by
giving more weight to features with higher information gain
for the speci�c task. Here comes in the human teacher, who
modi�es the environment in the learning phase, by reducing
variations in irrelevant features. These features, havingalways
constant values, will not affect the robot's behavior lateron.
[12] takes a more direct approach, by correcting the very
movement of the robot. The robot is allowed to learn a
behavior from demonstrations by a teacher. Once it derives a
policy, the human will help it correct its movement by online
tactile feedback from sensors attached to its wrist.

In [13], social aspects of scaffolding has been explored.
The robot tries to increase its own skills through its intrinsic
drives of novelty and mastery, but a human can also draw its
attention, guide it by suggesting actions, point out possible
goal states and structure the environment so that certain
components become more salient. These signals act as external
cues triggering the robot's reinforcement learning system.

In this paper, we propose and implement a robotic frame-
work where a human caregiver speeds up robot's affordance
[14] acquisition through parental scaffolding. In particular, the
robot learns how to detect graspable object regions and how
to act upon these detected affordances in order to achieve the
goal of grasping and lifting. In our previous studies [15], [16],
a similar anthropomorphic robot self-discovered simple object
affordances by learning the relations between objects, effects
and behavior parameters. However, the behavior parameter
space is very large in grasping with a dexterous robot hand,
and many different parts of complex objects can provide
graspability. In the current study, a human caregiver speeds up
robot learning by physically modifying robot's built-inreach-
grasp-lift behavior execution trajectory. While being guided by
the human, the robot �rst detects the `�rst-contact' pointsits
�nger made with the objects, and stores the collection of these
points as graspable regions if the object is lifted successfully.
Later, it builds up simple classi�ers using these experienced
contact regions and use these classi�ers to detect graspable
regions on novel objects. At the end, the robot hand was shown
to lift an object in different orientations by selecting oneof
the experienced trajectories.

II. SCAFFOLDING FRAMEWORK

In our parental scaffolding framework, the robot has a
default reach-grasp-lift action where the object is detected
by robot's perceptual system, a reach trajectory is computed
based on robot's arm kinematics and object center, and the
robot �ngers are closed they are nearby to the object. The
robot has no initial knowledge about graspability of the
objects. Different objects can be grasped from different parts
with different hand orientations, soreach to object center
execution should be modi�ed by the human teacher during
trajectory execution. Thus, the initial trajectory is modi�ed

Fig. 1. 7 DoF robot arm, 16 DoF robot hand, table, and a sample object
is shown. The range camera is placed on the top-right and not visible. The
human teacher can change the default trajectory of the robot to enable grasping
thanks to the force/torque sensor that is placed between robot arm and hand.

by incorporating the force applied to the robot hand by the
human during the course of the action. The points on the
object where �ngers make �rst contact are stored as potential
grasp affording parts. After hand closure is completed, the
robot lifts its hand and checks whether the object is lifted
or not by searching table surface with its perceptual system
again and through force sensor measurements. This online,
human modi�edreach-grasp-liftaction is repeated many times
with different object con�gurations and graspable parts of
the objects are discovered by the robot. Below, the tools and
methods to realize this framework will be detailed.

A. Robot platform

An anthropomorphic robotic system equipped with a range
camera is used as the experimental platform. This system uses
a 7 DoF Motoman robot arm, that is placed on a vertical bar
similar to human arm as shown in Figure 1. A �ve �ngered
16 DoF Gifu robot hand is mounted on the arm to enable
manipulation. The maximum length of Motoman arm and Gifu
hand is 123 cm and 23 cm, respectively. For environment
perception, an infrared range camera (SwissRanger SR-4000),
with 176x144 pixel array,0:23� angular resolution and1 cm
distance accuracy is used. The range camera is calibrated in
the coordinate space of the robot hand by computing the trans-
formation matrix between positions extracted kinematically
and perceived from range camera. Then, the environment is
represented as point cloud in this space. To control robot arm,
a 6 DoF Nitta force/moment sensor is mounted between the
hand and the wrist of the robot arm.

B. Force-based human-robot interaction

We wanted to be able to guide the robot similar to a
caregiver guiding an infant's movement. It is natural for a



human parent to hold the infant's hand, and position it in the
space to help with a grasp. A similar intuitive effect can be
obtained by attaching a force sensor to right below the hand,
at the wrist position. The desired effect is holding the wrist of
the robot, and moving the 7-DoF arm in the 6-DoF Cartesian
space freely. This requires the force sensed by the robot to be
converted into joint displacements.

1) Mapping force and moments to joint displacements:The
force sensor continuously outputs two vectors,fapp andm app ,
the current applied force and moment vectors, respectively.
These vectors are �rst converted to desired position and orien-
tation changes, which are, in turn converted to desired changes
in the joint angles of the robot using inverse kinematics.

Initially, fapp is in robot's end-effector frame, since force
values are read from a sensor �xed to the robot's wrist.
The end-effector frame moves continuously (together with
the wrist) with respect to the global frame. However, the
human instructor would expect to see the effect of his/her
feedback in the global frame. Therefore, the force vector
should be represented in the global frame. We identify the
robot end-effector frame with two orthogonal vectorshy ,
the palm normal andhz , the middle �nger direction when
the �nger is fully extended (hx is the cross product of
the two). The force vector in the global reference frame is
given by fglob = [ hx hy hz ] fapp . The desired change in the
end-effector position is simply taken as the scaled version
of the force represented in the global reference frame i.e.
� p / fglob . Similarly, the desired orientation change implied
by the human interaction is obtained by considering the scaled
moment values as the desired rotations around the end-effector
reference frame axes.

� � = (� � x ; � � y ; � � z )T / m app

From these angles, the desired (in�nitesimal) rotation matrix
is obtained withR = R x (� � x )R y (� � y )R z (� � z ) whereR x

, R y and R z represent the rotation matrices aroundx, y,
andz axis, respectively. Given the current end-effector frame
[hx hy hz ], the desired end-effector frame is given by

�
hdes

x hdes
y hdes

z

�
= R [hx hy hz ]

which allows the computation of the desired change in the
�nger direction as� hz = hdes

z � hz .
Having calculated the desired changes in the position and

�nger direction, these values are converted to desired joint
angle changes using the Jacobian of the position and �nger
direction vector.

� q / JT [� p � hz ]0

where � q is the desired joint angle change, and the the
Jacobian is obtained using the forward kinematics of the robot;
i.e.

J (q) = [ @p=@q @hz=@q]0

Since the rotation axis of the last joint of the robot coincides
with hz , for the desired in�nitesimal rotation for this joint no
inverse kinematics is necessary as this can be obtained directly
from the moment reading around this axis (i.e.� � z ).

2) Gravity Compensation:As the force sensor is connected
to the robot hand which has a non-negligible weight, the sensor
reports non-negligible force and moment measurements even
there is no external force acting on the robot hand. Moreover,
these values depend on the joint position and velocities of the
robot. If one assumes low velocities, only the orientation of the
hand in space can be considered. In principal, this should allow
one to obtain equations for the force and moments that will be
exerted on the sensor depending on the orientation of the hand.
However, due to un-modeled dynamical effects such as the
movement of the heavy cables connected to hand we decided
to apply a learning approach. We �rst collected data by having
the robot systematically scan a range of orientations i and
record the measured force,f i and momentm i from the sensor.
Orientations are represented as rotation matrices; the force and
moment measurements are stored as raw values reported by
the force sensor (i.e. three dimensional vectors with respect to
the local coordinate frame of the force sensor). The goal is to
predict force and moment values given an orientation of the
robot hand. For this regression problem, we formed an input
data matrixX where each row corresponds to the elements of
the rotation matrix corresponding to the orientation i . The
target matricesY f and Y m are formed by the force (f i ) and
moment (m i ) vectors, respectively. Using the least squares �t
we obtain weight matrices as follow.

W f = X + Y f W m = X + Y m (1)

With these weight matrices, we can predict the force and
moments that will be experienced by the force sensor at a given
orientation (by �atting the rotation matrix into a 9 dimensional
vector and premultiplying it with the weight matrix). Let these
predictors be denoted as

f̂ (R ) =
�

f̂ x (R ) ; f̂ y (R ) ; f̂ z (R )
�

m̂ (R ) = ( m̂x (R ) ; m̂y (R ) ; m̂z (R ))

Then for quantifying the �t error on test data we de�ne the
following relative errors,eF x

j and eMx
j with respect to mean

force or moment experienced during the testing (eF y
j , eF z

j ,
eMy

j andeMz
j are also de�ned similarly).

eF x
j = jf x

j � f̂ x (R j ) j
� j f x

k j
; eMx

j = jm x
j � m̂ x (R j ) j

� jm x
k j

The data collection for training and testing is conducted as
follows. The last three joint angles of the robot are used to
obtain a range of orientations.

Starting from the initial joint angle con�guration:

[q1 q2 q3 q4 q5 q6 q7]T = [90 � 0 0 -90� 0 0 -80� ]T

q5 and q6 are varied in the range[� 60� ; +60 � ], and q7 in
[� 180� ; +180� ], with 10� intervals, and independently from
each other. Sampling with these angles enables the robot to
cover the hand orientation space of the grasp executions. The
arm is moved to each sample point, and the experienced force
and moment values at the con�guration are saved.



TABLE I
THE MEAN AND STANDARD DEVIATION OF THE RELATIVE ERRORS MADE

ON THE TEST SET FOR FORCE AND MOMENT PREDICTIONS(TWO-FOLD
CROSS VALIDATION, 500REPEATS) ARE SHOWN AS PERCENTAGES.

� E force �
E force

j
� E mom � E mom

X 1.88 0.015 2.92 0.025
Y 3.21 0.023 2.86 0.026
Z 1.87 0.013 6.07 0.055
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Fig. 2. The normalized histograms of the axis-averaged relative errors for
force and moment predictions (i.e. histograms ofE F andE M ).

The prediction accuracy obtained with the collected data is
assessed by randomly dividing the data into training and test
set. Table I shows the relative errors obtained for each axisas
percentages. To verify the performance that we could expect
from the prediction we also look at distribution of the errors.
For this we de�ne relative errors averaged over the axes as

E F
j =

1
3

�
eF x

j + eF y
j + eF z

j

�

E M
j =

1
3

�
eMx

j + eMy
j + eMz

j

�

and compute the error histograms. The histograms obtained
are shown in Fig. 2.

C. Robot perception

The robot uses range camera to detect the object on the
table. The detected object is represented as a 3D point cloud
and from this point cloud various features such as local
distance histograms as detailed in the next subsection are
computed. Furthermore, the distance between any point on
the object and hand �ngers is computed by comparing the
3D position of that point measured by range camera and 3D
position of the �nger computed by forward kinematics based
on arm and hand angles. As a result the robot can close its
hand when the �ngers are nearby to the object or can detect
the object points that are in contact with �ngers.

The �rst step of pre-processing is to �lter out the pixels
whose con�dence values reported by range camera are below
an empirically selected threshold value. The robot's workspace
consists of a black table, so region of interest is de�ned as the
volume over the table, and black pixels are �ltered out as the
range readings from black surfaces are noisy. As a result, the
remaining pixels of the range image are assumed to belong

to one or more objects. These objects are segmented by the
Connected Component Labeling algorithm which differenti-
ates object regions that are spatially separated by a preset
threshold value (2 cm in the current implementation). In order
to reduce the effect of camera noise, the pixels at the boundary
of the object are removed, and Median and Gaussian �lters
with 5x5 window sizes are applied. The detected objects on
the range image of a sample setup is shown at the top row in
Figure 3.

The robot detects the `�rst-touch' points on the object
surface by checking the distance between each object point
and �nger joint in each timestep during reach action execution.
If the number of object points close to one of the �nger joints
is larger than a threshold for a certain duration, then those
points are stored as grasp points. In our setting, the minimum
number of contact points is set as 15 pixels on the range
image, the duration is set as 300 msec and closeness threshold
is set as 2 cm. Figure 3, third row shows only the detected
objects as grayscale and the contact pixels in red color. The
bottom row shows the range image at the end of each grasp
and lift execution. This simple thresholding may �nd incorrect
touch points in various situations. However, we argue that
generalization from multiple interactions and caregiver's own
development in scaffolding would solve this problem.

D. A simple classi�er based on distance histograms

A successful grasp mediated by caregiver provides very
important cues for the further development of the perception
system of the agent. To show this, we utilized a series of
percepts when the robot touched and subsequently grasped
from a part an object to construct a simple (grasp) affordance
detector. In this subsection, we will describe our method
over the example of handle-grasping to ease understanding,
but this method can be used for any graspable part of the
object and is not limited to encode only handles. Instead of a
pure template based search, we opt to use a feature that will
capture the relative property of the grasped-part with regards
to the totality of the object. Primate brain is endowed with
several shape and topological feature detectors, for example
some of which are tuned for rings and hollow objects [17],
[18]. Inspired from this, we propose a metric that captures the
distribution of three dimensional points (i.e. voxels) that make
up a given object. We propose that each voxel is identi�ed by
the distribution of its distances from the neighboring voxels
that make up the object. This distribution changes smoothly
as one moves smoothly on the surface of the object, and
is invariant of orientation changes. Our idea was to develop
a classi�er based on this metric, with the intuition that the
handle voxels would have similar distance distributions that are
signi�cantly different from the body voxel distributions.For
the handle voxels found by interacting with the object are used
to construct a distance distribution,pH . Likewise the rest of the
object points is used to construct a distribution representing the
non-handle points,pB . At a later time when the robot faces a
novel object it computes a distance distribution for each point
on the object and compares it withpH and pB , and decides



what points can be used as handles.
Let H andB the set voxels from the handle and the body of

the object at a given interaction. We de�ne� neighbor distance
function to operate on a voxelx (three dimensional vector) and
a set of voxels,Y with

kx; Yk� = fk x � yk : y 2 Y ^ k x � yk < � g

With this we can compactly de�ne these two distance sets
for the handle set and the body set as:


 H = fk h i ; B k� : h i 2 H g


 B = fk b i ; H k� : b i 2 B g

Takinghist () as an operator to return a normalized histogram
of a given set we obtain these two probability density estimates
for handle and body voxels, respectively:

pH � hist (
 H 1 [ 
 H 1 :::
 H N ) (2)

pB � hist (
 B 1 [ 
 B 1 :::
 B N )

To determine whether a given voxel,v belongs to handle or
not we compute the distance distributionpf vg � hist (
 f vg)
and compare it topH andpB using the cumulative distribution.
The voxelv is deemed a handle voxel if

max

sZ

0

pH � pf vg < max

sZ

0

pB � pf vg

otherwise it is deemed a body voxel, where the max runs over
s < 1.

III. E XPERIMENTS

In this section, we �rst described the experimental setup
where the robot arm is guided by the human caregiver during
reach-grasp-liftexecution, and we showed the detected `�rst-
touch' points indeed corresponded to graspable parts of the
objects. Then, the classi�er (Section II-D) that differentiates
whether a voxel is graspable or not was trained using this
�rst-touch points. This classi�er was later used to detect the
graspable regions of novel objects. At the end, a simple
lookup-table procedure were used to lift the objects placed
in different orientations.

A. Touch region detection results

The robot initially has a rough grasping skill; it reaches for
the center of the object and encloses its �ngers upon contact. A
human caregiver interferes with the execution of this basicskill
in attempt to achieve successful grasping. The human provides
only partial guidance, making this a true collaboration. Inthis
setup, learning of caregiver learning is also critical, as the
ability of the robot control system and the properties of the
robot hand for grasping must be learned by the caregiver. Once
the human-robot collaborative system manages grasping, by
using camera and proprioceptive information the robot can
discern parts of the object that it grasps. This provides valuable
information for the robot to develop its perceptual system for

Fig. 3. Guided grasp experience. The �gures show the range images measured
by the range camera where the depth of the points are encoded ingrayscale.
The top row shows the snapshots of 5 different environments where the
detected objects are shown in red. The second row shows how robot hand
was controlled to grasp the objects. The third row focuses onthe object and
shows the `�rst-contact' points. The bottom row gives the snapshots after
each behavior execution. The robot can understand the success of grasping
by checking the table surface and the force sensor readings on the wrist.
Movie is available at http://emreugur.net/movies/humanoids2011

both action planning and recognition. For example, a bottom-
up attention system can be transformed into a system where
top-down biases can be also considered (e.g. searching for
a handle). In the current implementation, we show that this
information can be used to develop 'handle detectors' so that
the robot can perform general handle-grasps without human
guidance. Fig. 3 shows the percept of the robot before action
execution (the top panel). The successful grasping obtained
by human guidance is detected by the robot and the positions
of the �ngers on the object are computed as illustrated in
Fig. 3. Repeated application of this process, allows robust
discrimination of object points that afford the current action
(i.e. handle grasping).

B. Grasp region detection on novel objects

We tested this classi�er using grasp executions mediated
by the caregiver for a mug type object that is placed at �ve
different orientation as shown in Figure 4 (a). The histograms
for each of these executions are given in Figure 4 (b) and (c)
corresponding to handle and body histograms, respectivelyTo
the human eye it is evident that the distributions are different.
The �nal representative distributions for handle (pH ) and body
(pB ) obtained by combining these individual histograms as
indicated in Equation 2 are shown in Figure 5.

We �rst, tested whether this simple classi�er can identify
the handle parts of the original object accurately or not. In
particular, during an interaction not all parts of the handle are



Fig. 4. `First-touch' regions. (a) shows the objects and their �rst contact
voxels obtained during training (see Figure 3). (b) and (c) gives the corre-
sponding averaged distance histograms for graspable and remaining voxels,
respectively. For (a) we generated a surface mesh to cover thevoxels and
apply smoothing for better presentation of the results.

Fig. 5. The mean histograms of graspable and remaining voxel distances,
respectively.

touched so they were initially marked as belonging to object
body (Figure 4 (a)). With this density based classi�er it canbe
seen that most of the handle voxels are indeed found as handle
voxels (Figure 6 (a)) with little false positives. The more
challenging task was to see whether this classi�er could detect
handle-like parts from unseen objects. For this, we used �ve
different objects as seen in Figure 6 (b). Although there were
false matches most of the voxels identi�ed as handles were
indeed handles or could be considered handles (Figure 6 (c)).

C. Autonomous grasp executions

The focus of this paper was to learn and infer the graspable
parts of the objects in our parental scaffolding framework.
Although it is not the main focus, the learned knowledge can
also be utilized to autonomously control robot arm and to lift
the objects. For this purpose, we designed a simple lookup-
table based mechanism to select areach-grasp-liftexecution
trajectory to lift the object that had been used in training.

During training, the robot's guided lift experience was
stored as a list of set of object voxels, set of touch voxels,
and modi�ed hand-arm angle trajectory. From this experience,
the position of the largest touch region relative to the object
center was computed. Then, a lookup table was constructed
with relative position information in one column and hand-
arm trajectory in the other column. When a new object is
perceived, the robot �rst �nds the grasp regions using the
simple classi�cation method, then computes the position of
the largest grasp region relative to the object center. This
relative position is searched in the lookup table, the closest

Fig. 6. (a) gives the results obtained from grasp classi�cation of each voxel
on training objects. See Fig. 4 for real touch regions of these objects. On the
other hand, (c) gives the grasp classi�cation results for novel objects whose
pictures were shown in (b). For (a) and (c), we generated a surface mesh to
cover the voxels and apply smoothing for better presentationof the results.

experienced relative grasp region position is found, and the
corresponding hand-arm trajectory is executed. Note that the
use of this distance metric for trajectory selection is limited to
the object that was experienced during training, i.e. this metric
cannot handle multiple objects with different shapes and sizes.

In the experiments, the object used in training was placed in
5 different orientations. Each row in Figure 7 corresponds to a
grasp execution for a different orientation. The snapshotswere
taken for initial hand posture, while hand was reaching the
object, during the �rst contact, during grasping and at the �nal
stage of lifting, respectively. The �rst four executions were
successful at the end since the object was placed in similar
orientations with training instances. In the last execution, the
handle was behind the object, so the robot selected an incorrect
execution trajectory.

IV. CONCLUSION

In this paper, we presented a framework that applies the
parental scaffolding concept from developmental psychology
to a grasping task with a anthropomorphic robot platform. In
our framework, robot's defaultreach-grasp-lifttrajectory for
object center with �xed hand orientation is physically modi�ed
online by a human caregiver using the force/moment sensor
mounted on the wrist. Utilizing human guidance, the robot
was able to successfully grasp the objects, and detect the initial
contact points on the objects as graspable regions. Then, itcan
classify regions of other objects based on the mean statistical
distance properties of grasp points on the experienced regions.
After a series of guided grasping experiences, the robot was
able to (1) detect graspable parts of novel objects and (2)
use this information to select grasp trajectories it experienced
during (guided) learning and execute them autonomously.

Incorporating of�ine human judgment in autonomous grasp-
ing task has already proven to be a fruitful approach. At one
notable study, Saxena et al. [19] trains the robot on synthetic
2D images marking good grasping points. After the training,
the robot can identify good grasping points on a novel object,



Fig. 7. Robot grasps objects using the trajectories learnedduring scaffolding.
Each row corresponds to a different grasp execution.
Movie is available at http://emreugur.net/movies/humanoids2011

given only its 2D images. Once the candidate grasping points
are identi�ed in 2D, several images are combined to triangulate
the points and estimate their 3D positions. [20] represents
grasping affordances for a gripper as a continuous distribution
in 6D pose space where the distribution is initialized by pre-
de�ned visual descriptors or sample grips executed by a human
(not the robot), and re�ned through robot's self-exploration.

While these works aim to provide the robot with an initially
perfect or almost-perfect information, our focus has been the
online intervention of a human teacher to correct the robot's
naive movements on-the-�y. A similar approach would have
been followed by a mother who watches her infant's play, med-
dling only when the infant seems in need of help. Although the
results demonstrate that the robot was able to ef�ciently learn
of graspable regions through parental scaffolding and was
able to detect graspable parts of novel objects, there is room
for improvement. First of all, the number of the objects and
their variety should be increased. Second, for more realistic
and generalized grasp executions, better learning algorithms
between grasp region features and grasp behavior execution
parameters (such as approach direction or hand posture) should
be employed. Finally, from a social sciences perspective, how
human caregivers improve in teaching grasp skills to the robot
can be studied for improving the human-robot interaction.
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