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Abstract: Let k be a positive integer that is relatively prime to the order of the Weyl group of a semisimple complex
Lie algebra g . We find the cardinality of the value sets of the folding polynomials P k

g (x) ∈ Z[x] of arbitrary rank n ≥ 1 ,
over finite fields. We achieve this by using a characterization of their fixed points in terms of exponential sums.
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1. Introduction
Let p be a prime number and let Fq be a finite field of characteristic p . Given a polynomial f(x) ∈
Z[x1, . . . , xn] , we consider the induced map f : Fn

q → Fn
q . The problem of finding the cardinality of the value

set f(Fn
q ) = {f(x) : x ∈ Fn

q } has been studied in various forms over the years. However, exact formulations
for the cardinality are known only for polynomials in very specific forms. The results that apply to general
polynomials are asymptotic in nature, or provide only estimates. We refer to the work of Mullen et al. [7] for
an introduction of this problem, including several references and historical remarks. In this state of art, new
families of polynomials for which we can find the cardinality of the value sets are of great interest.

A folding polynomial is a natural generalization of the Chebyshev polynomial [9]. There is only one
semisimple complex Lie algebra of rank one, namely A1 , and the corresponding folding polynomials P k

A1
are

the Chebyshev polynomials. The value sets of Chebyshev polynomials are first computed by Chou et al. [2].
There are three semisimple complex Lie algebras of rank two, namely A2, B2 , and G2 . We have found the
cardinality of the value sets of the folding polynomials P k

A2
in [4] and extended the idea for the polynomials

P k
B2

and P k
G2

in [5]. However, this idea does not use the underlying algebraic structure in its full power and is
complicated to be extended to higher ranks n ≥ 3 .

The folding polynomials P k
g are associated with semisimple complex Lie algebras and we need some

notation to describe these polynomials. Let g be a semisimple complex Lie algebra of rank n and h its Cartan
subalgebra, h∗ its dual space, L a lattice of weights in h∗ generated by the fundamental weights ω1, . . . , ωn , and
L the dual lattice in h . We define Φg : h/L→ Cn , induced from the action of W on L , where Φg = (φ1, . . . , φn)

φj(x) =
∑
w∈W

e2πiw(ωj)(x).
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A theorem of Chevalley [1] leads to the following result which was first given by Veselov, and somewhat later
by Hofmann and Withers independently.

Theorem 1.1 ([3, 8]) With each semisimple complex Lie algebra g of rank n , there is associated an infinite
sequence of integrable polynomial mappings P k

g , k ∈ N determined from the conditions

Φg(kx) = P k
g (Φg(x)).

All coefficients of the polynomials defining P k
g are integers.

For a semisimple complex Lie algebra g of rank n with roots λi, i = 1, . . . , n , we identify h = ⊕Cλi

(respectively the lattice L = ⊕Zλi ) with Cn (respectively Zn ). For w ∈W , Tw is the n×n matrix representing
the endomorphism Tw : L→ L defined by Tw(λi) = w(λi) for each i = 1, . . . , n .

Note that Tw has integer coefficients and det(Tw) = ±1 . Let q be a power of a prime. Let In be the
identity matrix of dimensions n× n . An eigenvalue of the matrix Tw must be a root of unity. As a result, the
matrix qIn − Tw is invertible (over rational numbers) since q ≥ 2 is not a root of unity. The matrix qIn − Tw

and its inverse are the main tools to study the polynomial mappings P k
g .

Theorem 1.2 ([6]) Let g be a semisimple complex Lie algebra of rank n and let W be its Weyl group. Suppose
that p > n . The polynomial mapping P k

g : Fn
q → Fn

q is a permutation if and only if qIn − Tw is invertible
modulo k for each w ∈W .

The main idea of the proof of this theorem is to parametrize the elements of Fn
q by certain rational

n -tuples. We summarize the consequences of this theorem, with some additional details that will be used in
the current manuscript, as follows.

Let e be the exponent of the Weyl group and let ζ be a primitive root of unity of order pe − 1 . Let p

be a prime ideal p of the cyclotomic extension Q(ζ) lying over p . There is a one-to-one correspondence

Fix(P q
g )←→ Fn

q

obtained by reducing the elements in Fix(P q
g ) modulo p . This correspondence is compatible under the action

of P k
g on both sets. Given a matrix M with rational entries, we denote the free abelian group generated by its

columns by Col(M) . Consider Col((qIn − Tw)
−1) which is a subgroup of Qn . This free subgroup is of rank n

since the matrix qIn − Tw is invertible. Moreover it contains Zn . We define

X(w) := Col
(
(qIn − Tw)

−1
)
/Zn

as a subgroup of Qn/Zn . We set

X =
∪

w∈W

X(w).

One can show that the set X is never a group. However, it is closed under the multiplication by integers. The
set X parametrizes all the elements in Fix(P q

g ) , and therefore all the elements in Fn
q , with an n -tuple from

Qn/Zn . More precisely, we have a surjective function

Φg : X → Fix(P q
g ).
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Unfortunately, this map is not one-to-one. We define an equivalence relation on X to overcome this problem.
For all x,y ∈ X , we set x ∼ y⇐⇒ Φg(x) = Φg(y) . This definition allows us to extend the original one-to-one
correspondence as follows:

X/∼ ←→ Fix(P q
g )←→ Fn

q .

After this brief summary of [6], we are now ready to study the value set P k
g (Fn

q ) by using (kX )/∼ .

2. Main results
The quotient set (kX)/∼ and its order is closely related with the structures of the finite abelian groups X(w) .
We claim that

X(w) ∼= Zn/Col(qIn − Tw).

To justify this, we denote the columns of qIn − Tw by yw
i = (y1i, . . . , yni) . Using the elementary column

vectors e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) , we can write yw
i = y1ie1 + . . . + ynien . On the other hand,

using the fact that (qIn − Tw)(qIn − Tw)
−1 = In , we obtain that ei = y1ixw

1 + . . . + ynixw
n where xw

i are the
columns of the matrix (qIn − Tw)

−1 . Thus there is an isomorphism induced by the map xw
i (mod Zn) 7→ ei

(mod Col(qIn − Tw)) .
We immediately see from the above isomorphism that |X(w)| = det |qIn − Tw| . However, it is relatively

harder to obtain the cardinality of the set kX(w) for k > 1 because this quantity is related with the structure
of X(w) . The structure of X(w) ∼= Zn/Col(qIn−Tw) can be obtained by the Smith normal form of the matrix
qIn − Tw . Since Z is a principal ideal domain, the Smith normal form exists and it is a diagonal matrix with
entries (1, . . . , 1, a1, . . . , am) for some unique positive integers a1|a2| · · · |am . We have X(w) ∼= Ca1

× · · · ×Cam

for cyclic groups Cai
of order ai . We define the quantity

d(k,w) =

m∏
i=1

ai
gcd(k, ai)

.

Obviously |kX(w)| = d(k,w) for each positive integer k . For example, d(1, w) = |X(w)| for each w ∈W . On
the other hand, d(am, w) = 1 for each w ∈W .

Lemma 2.1 If w1 and w2 are in the same conjugacy class in W , then the Smith normal forms of matrices
qIn − Tw1

and qIn − Tw2
over Z are the same.

Proof Suppose that U(qIn − Tw1)V is the Smith normal form of qIn − Tw1 over Z for some unimodular
matrices U and V with integer components. Suppose also that w−1w1w = w2 for some w ∈W . Then

UTw1V = T−1
w (UTw1V )Tw

= T−1
w U(TwT

−1
w )Tw1

(TwT
−1
w )V Tw

= ŨTw2
Ṽ .

The matrices Ũ and Ṽ are unimodular matrices with integer components. This finishes the proof since

U(qIn − Tw1
)V = UqInV − ŨTw2

Ṽ = Ũ(qIn − Tw2
)Ṽ .

2
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The Weyl group W naturally acts on X . The action of w on x is given by the left-multiplication map,
i.e. by Twx . In order to prove our main result, we will use the orbit-stabilizer formula. For this purpose, we
shall consider the following lemma and its generalization.

Lemma 2.2 If x ∈ X(w1) and Tw2
x ≡ x , then x ∈ X(w1w2) .

Proof Recall that X(w1) is defined to be the subgroup of Qn/Zn generated by the columns of the matrix
(qIn−Tw1

)−1 . Thus, we have x ∈ X(w1) if and only if Tw1
x = qx modulo Zn . If Tw2

x = x modulo Zn , then

Tw1Tw2x = Tw1x = qx.

Since Tw1
Tw2

= Tw1w2
, we have x ∈ X(w1w2) . 2

The Weyl group W also acts on kX because the scalar matrices kIn commute with each Tw . The
following generalization of the previous lemma is the key argument to prove the equality part of our main
result.

Lemma 2.3 Let k be a positive integer such that gcd(k, |W |) = 1 . If x ∈ kX(w1) and Tw2
x ≡ x , then

x ∈ kX(w1w2) .

Proof Let x be an element of kX(w1) , then there exists y ∈ X(w1) such that x = ky . Moreover, Tw1
y ≡ qy

modulo Zn . Our purpose is to construct y′ ∈ X(w1w2) such that x = ky′

We start with writing X(w1) = H1 ⊕ H2 as a direct sum of groups H1 and H2 so that the prime
divisors of |H1| are divisors of |W | and gcd(|H2|, |W |) = 1 . This decomposition enables us to use the condition
gcd(k, |W |) = 1 . We write y = y1 + y2 with unique yi ∈ Hi .

Let s be the order of w2 in W . Suppose that ss̃ ≡ 1 (mod |H2|) for some integer s̃ . Now we consider

y′ = y1 + s̃(T s−1
w2

+ . . .+ Tw2
+ In)y2.

Suppose that Tw2x ≡ x . Clearly, Tw2kyi = kyi for each i . The multiplication by k restricted to H1 is
injective. It follows that Tw2y1 = y1 . It is now obvious that Tw2y′ = y′ and y′ ∈ X(w1) . Lemma 2.2 implies
that y′ ∈ X(w1w2) . Moreover,

ky′ = ky1 + s̃(T s−1
w2

+ . . .+ Tw2
+ In)ky2

= ky1 + s̃sky2

= ky1 + ky2

= x.

This finishes the proof. 2

The stabilizer subgroup of W with respect to x ∈ kX is defined by

Wx = {w ∈W : Twx = x}.

The number of elements in the orbit Wx is found by the orbit-stabilizer formula. More precisely, we have

|Wx| = |W |
|Wx|

.
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Let {w1Wx, . . . , wmWx} be representatives for the cosets in W/Wx . Suppose that x ∈ X(w) . For each coset
wiWx , we associate the element xi = Twix ∈ X(w) . In this fashion we obtain a subset {x1, . . . ,xm} ⊆ X(w)

with precisely m elements. Moreover, Φg(xi) = Φg(xj) for all 1 ≤ i, j ≤ m .
We are now ready to prove our main result.

Theorem 2.4 Let q be a power of a prime p and suppose that p > n . Let g be a semisimple complex Lie algebra
of rank n and let W be its Weyl group. Let {c1, . . . , cm} be the conjugacy classes in W with representatives
wi ∈ ci for each i . For any positive integer k , we have

∣∣P k
g (Fn

q )
∣∣ ≥ 1

|W |

m∑
i=1

|ci|d(k,wi).

The equality holds if gcd(k, |W |) = 1 .

Proof Recall that we have the following one-to-one correspondences

X/∼ ←→ Fix(P q
g )←→ Fn

q .

In order to count the number of elements in P k
g (Fn

q ) , it is enough to count the elements in the quotient set
(kX )/∼ . We have

kX = k

( ∪
w∈W

X(w)

)
=
∪

w∈W

kX(w).

Recall that kX(w) has order d(k,w) . We consider the sum
∑

w∈W d(k,w) and focus on the equivalence
classes [x] ∈ (kX )/∼ . We claim that each equivalence class is counted at most |W | times within this sum.

Let [x] be an equivalence class in (kX )/∼ with x ∈ kX(w) for some w ∈W . Suppose that the stabilizer
subgroup Wx has order ℓ and suppose that W/Wx has order m . By the orbit-stabilizer formula, |W | = ℓ ·m .
We have x ∈ kX(w) . If x ∈ kX(ww̃) for some w̃ ∈W , then we claim that Tw̃x = x . To see this, we note

Tw(Tw̃x− x) = TwTw̃x− Twx = qx− qx = 0

In such a case, we have w̃ ∈ Wx . From this, we obtain that x ∈ kX(w) holds for at most ℓ different w ∈ W .
Moreover, there are m distinct representatives of the equivalence class [x] in each kX(ww̃) . This proves the
claim that each equivalence class [x] ∈ (kX )/∼ is counted at most |W | times within the sum

∑
w∈W d(k,w) .

The value d(k,w) is identical for group elements in the same conjugacy class by Lemma 2.1. That’s why
we have ∑

w∈W

d(k,w) =

m∑
i=1

|ci|d(k,wi).

This finishes the proof of the inequality part of the theorem.
Now suppose that gcd(k, |W |) = 1 . In addition to the previous picture, now we can use Lemma 2.3. For

each w̃ ∈ Wx , we have x ∈ X(ww̃) . This proves the fact that each equivalence class [x] ∈ (kX )/∼ is counted
precisely |W | times within the sum

∑
w∈W d(k,w) . 2
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Note that the main result of [5], which is valid only for n = 2 , is slightly stronger than this theorem.
For the semisimple Lie algebras, A2, B2 , and G2 , that result gives a precise value for

∣∣P k
g (Fn

q )
∣∣ without any

restriction on k .

3. An example

We finish our paper by giving an example. Let g = B2 and let {α1, α2} be a choice of simple roots. The Weyl
group W is generated by the reflections sα1 and sα2 . The action of the Weyl group over the root system is
determined by the Cartan matrix

A =

[
2 −1
−2 2

]
.

The transpose of the Cartan matrix transforms the fundamental weights to the fundamental roots, i.e. αi =∑n
j=1 Ajiωj . We have

Tw1
=

[
−1 0
2 1

]
and Tw2

=

[
1 1
0 −1

]
.

The Weyl group W is isomorphic to the dihedral group of order 8 . We use the classical representation of this
group for the convenience of the reader. Set a = Tw1

Tw2
and x = Tw1

. Note that the order of a is 4 and
xax−1 = a−1 . We have W = {aixj : 0 ≤ i ≤ 3, 0 ≤ j ≤ 1} . There are five conjugacy classes. Set

c1 c2 c3 c4 c5

id a2 x, a2x ax, a3x a, a3.

We find that

(qIn − id)−1 =

[ 1
q−1 0

0 1
q−1

]
and (qIn − a2)−1 =

[ 1
q+1 0

0 1
q+1

]
The columns of these matrices are independent from each other and they generate abelian groups of orders
(q − 1)2 and (q + 1)2 , respectively.

The elements x and a2x are in the same conjugacy class and the columns of the corresponding matrices
generate abelian groups of size q2 − 1 .

(qIn − x)−1 =

[ 1
q+1 0
2

q2−1
1

q−1

]
and (qIn − a2x)−1 =

[ 1
q−1 0
−2

q2−1
1

q+1

]
The elements ax and a3x are in the same conjugacy class and the columns of the corresponding matrices

generate abelian groups of size q2 − 1 .

(qIn − ax)−1 =

[ 1
q+1

−1
q2−1

0 1
q−1

]
and (qIn − a3x)−1 =

[ 1
q−1

1
q2−1

0 1
q+1

]
Finally, the elements a and a3 are in the same conjugacy class and the columns of the corresponding

matrices generate abelian groups of size q2 + 1 .

(qIn − a)−1 =

[
q−1
q2+1

−1
q2+1

2
q2+1

q+1
q2+1

]
and (qIn − a3)−1 =

[
q+1
q2+1

1
q2+1

−2
q2+1

q−1
q2+1

]
.
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Let us pick a representative wi ∈ ci for each conjugacy class. The Weyl group W has order eight and
there are five conjugacy classes in W . Set

N =
1

8

5∑
i=1

|ci|d(k,wi).

If we fix q = 3 , then we obtain the following table:

k d(w1, k) d(w2, k) d(w3, k) d(w4, k) d(w5, k) N

1 4 16 8 8 10 9

2 1 4 2 4 5 7/2

5 4 16 8 8 2 7

The integers k = 1 and k = 5 are relatively prime to 8 . Thus, the quantity N is precisely the cardinality of
the value set of the folding polynomial P k

B2
. On the other hand, the integer k = 2 is not relatively prime to

8 . Our main result in this paper implies that
∣∣P 2

B2
(F2

3)
∣∣ ≥ 7/2 . Indeed, we have

∣∣P 2
B2

(F2
3)
∣∣ = 5 by the slightly

stronger result in [5].
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