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The usefulness of genetic/metabolic engineering for further improvement of industrial strains is subject
of discussion because of the general lack of knowledge on genetic alterations introduced by iterative
cycles of random mutagenesis in such strains. An industrial clavulanic acid (CA)-overproducer Strepto-
myces clavuligerus DEPA was assessed to understand proteome-wide changes that have occurred in a
local industrial CA overproducer developed through succesive mutagenesis programs. The proteins that
could be identified corresponded to 33 distinct ORFs for underrepresented ones and 60 ORFs for over-
represented ones. Three CA biosynthetic enzymes were overrepresented in S. clavuligerus DEPA; car-
boxyethylarginine synthase (Ceas2), clavaldehyde dehydrogenase (Car) and carboxyethyl-arginine beta-
lactam-synthase (Bls2) whereas the enzymes of two other secondary metabolites were underrepre-
sented along with two important global regulators [two-component system (TCS) response regulator
(SCLAV_2102) and TetR-family transcriptional regulator (SCLAV_3146)] that might be related with CA
production and/or differentiation. y-butyrolactone biosynthetic protein AvaA2 was 2.6 fold underrep-
resented in S. clavuligerus DEPA. The levels of two glycolytic enzymes, 2,3-bisphosphoglycerate-depen-
dent phosphoglycerate mutase and phosophoglycerate kinase were found decreased while those of
dihydrolipoyl dehydrogenase (E3) and isocitrate dehydrogenase, with two isoforms were found as
significantly increased. A decrease of amino acid metabolism, methionine biosynthesis in particular, as
well as S-adenosylmethionine synthetase appeared as one of the prominent mechanisms of success of
S. clavuligerus DEPA strain as a prolific producer of CA. The levels of two enzymes of shikimate pathway
that leads to the production of aromatic amino acids and aromatic secondary metabolites were also
underrepresented. Some of the overrepresented stress proteins in S. clavuligerus DEPA included poly-
nucleotide phosphorylase/polyadenylase (PNPase), ATP-dependent DNA helicase, two isoforms of an
anti-sigma factor and thioredoxin reductase. Downregulation of important proteins of cell wall synthesis
and division was recorded and a protein with B-lactamase domain (SCLAV_p1007) appeared in 12 iso-
forms, 5 of which were drastically overrepresented in DEPA strain. These results described herein provide
useful information for rational engineering to improve CA production in Streptomyces clavuligerus.

© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

penicillin- and cephalosporin-resistant bacteria exerting its func-
tion by irreversibly binding to serine hydroxyl group in active sites

Clavulanic acid (CA) is a bicyclic compound with a -lactam and
an oxazolidine ring [1]. It has a weak antibacterial activity but is a
very powerful class of B-lactamase inhibitor naturally produced by
Streptomyces clavuligerus. CA is active against a wide spectrum of
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of B-lactamases. Due to synergistic effect, it is co-formulated with
conventional PB-lactam antibiotics and prescribed clinically in
combination with amoxycillin as Augmentin™ and with ticarcillin
as Timentin™ [2]. S. clavuligerus fermentations are used for CA
production in bioindustry as its large scale chemical synthesis is
still not feasible [3].

Draft genome sequence of S. clavuligerus has revealed loci of
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three distinct gene clusters involved in biosynthesis of CA and 5S
clavams (Fig. 1). Cephamycin and CA supercluster and clavam gene
cluster are located on the chromosome, whereas paralog gene
cluster lies on a large linear plasmid, pSCL4. The megaplasmid
pSCL4 of S. clavuligerus is packed with at least 25 secondary
metabolite biosynthetic gene clusters that are identical or resem-
bling to those from other Streptomyces spp, supporting the hy-
pothesis that many secondary metabolism biosynthetic gene
clusters in bacteria are acquired by horizontal gene transfer.
Together with the clusters on the chromosome, the total number of
putative secondary metabolite gene clusters reaches to 48. These
include 10 putative nonribosomal peptide synthetase (NRPS) gene
clusters, eight putative PKS gene clusters, and six gene clusters
putatively encoding NRPSs and PKSs or NRPS-PKS hybrids as well as
12 clusters putatively encoding one or more terpene synthases or
cyclases [4].

Although whole characterization of ORFs in CA gene cluster has
not yet been completed, essential biosynthetic genes were clearly
identified [5—8]. Pathway leading to the biosynthesis of CA in
S. clavuligerus is shown in Fig. 2. Among biosynthetic genes of CA
cluster, cas2 encodes for a rate-limiting enzyme, clavaminic acid
synthase [9]. CA biosynthesis is controlled by pleiotropic regulators
like BIdG and BIdA [10] and AdpA [11], and pathway-specific reg-
ulators (cluster situated regulators) CcaR, a transcriptional activator
encoded by ccaR located in cephamycin C gene cluster and CA
pathway-specific ClaR activator encoded by claR [12,13]. The roles
of CcaR stimulating both cephamycin C and CA clusters and ClaR as
the positive regulator of CA biosynthetic cluster have been well
documented. In ccaR-deleted mutant, both “early” and “late” genes
of CA biosynthesis pathway were downregulated while claR dele-
tion led to low level of expression in “late” genes in CA cluster when
compared to the parental strain [12—15]. Deletion of bldA led to
underrepresentation of Cas2, OppAl and GcaS proteins while
deletion of bldG additionally resulted in the low formation of Bls2
[10]. Stringent response protein RelA positively affects CcaR
expression indirectly while another response regulator, Orf-23
exerts its direct effect on CA biosynthesis by positively regulating
ClaR expression [8]. y-butyrolactones are also involved in regula-
tion of CA biosynthesis in S. clavuligerus at different levels. Although
no butyrolactone of A-factor type of S. griseus has been reported in
S. clavuligerus [16,17], Brp is a butyrolactone receptor protein in this
organism which is homologous to S. griseus ArpA and involved in
negative regulation of antibiotic biosynthesis. It exerts its effect by
binding to ARE boxes found in the ccaR and adpA promoters as well

CA gene cluster

d

as its own promoter [11]. Binding of Brp to ccaR ARE box sequences
has been demonstrated, and brp-deleted mutants overproduced CA
significantly. AreB might affect brp expression which is down-
regulated during the first 36 h of cultivation and this decrease of
Brp has been reported to result in a higher clavulanic acid pro-
duction [17]. In an areB-deleted mutant, ARE(.ar)Brp complex can
not be formed, leading to a general increase in CA levels [ 18] (Fig. 3).

Strain improvement strategies are commonly employed to
achieve high-titers of industrial metabolites, including B-lactams
[19,20]. For instance, an industrial S. clavuligerus strain with a 100-
fold higher CA production capacity in comparison to its wild type
counterpart was generated by random mutagenesis and screening
[21]. Indeed, the integration of the tools of “classical” and “modern”
approaches enables the researchers to stack multiple complex
phenotypes [22]. For CA overproduction, the genetic and metabolic
engineering approaches involving altering expression levels of
biosynthetic or regulatory genes, increasing precursor flow into the
pathway or eliminating competing reactions by oriented modifi-
cations have been applied mostly to the laboratory strains of
S. clavuligerus, as summarized in Table S1 [11—13,23—29]. Because
standard strains are able to produce only limited amounts of sec-
ondary metabolites, application of knowledge-based gene manip-
ulations in industrial strains derived from random mutagenesis and
selection might provide more productive strains [16,30]. Despite
the fact that classical methodology is slow and laborious, its long
history of success still fascinates researchers, especially with the
availability of high throughput screening and analytical technolo-
gies today in the post-“omics” era [22]. Regarding “omics” of f3-
lactam overproducers, a comparison among the cytosolic pro-
teomes of the wild-type Penicillium chrysogenum NRRL 1951, Wis-
consin 54- 1255 (an improved, moderate penicillin producer), and
AS-P-78 (a penicillin high producer) strains [31] has been re-
ported. Also genome-wide gene expression in an industrial clav-
ulanic acid overproducing Streptomyces clavuligerus [21] was
already described. S. clavuligerus DEPA used for CA manufacturing
process in Turkey produces at least 100-fold more CA relative to the
wild type S. clavuligerus. In the present study, with the aim of
providing insight into the modifications that this strain has un-
dergone during the iterative cycles of mutagenesis program,
S. clavuligerus NRRL3585 and DEPA strains were analyzed by
comparative proteomics based on 2DE followed by protein identi-
fication via MALDI-TOF/MS.
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Fig. 1. Three distinct clusters involved in biosynthesis of CA and 5S clavams in S. clavuligerus (adapted from Hamed et al. [85]).
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Fig. 2. Pathway leading to the biosynthesis of CA in S. clavuligerus. Clavaminic acid represents the branch point intermediate that separates CA biosynthesis from that of 5S clavams.
Cofactors as well as co-substrates are also shown. Dashed arrow indicates a yet uncharacterized step in the pathway (adapted from Arulanantham et al. [86]; Hamed et al. [85] and

Ozcengiz and Demain [20]).

2. Materials and methods
2.1. Bacterial strains and culture conditions

S. clavuligerus strains NRRL3585 [32] and DEPA (DEPA Pharma-
ceuticals Co., izmit, Turkey) were used as the wild type and in-
dustrial CA overproducer, respectively. The strains were grown at
28 °C at 220 rpm in baffled flasks in Tryptic Soya Broth (TSB) for
stock preparation.

For the preparation of seed cultures, 200—600 uL of
S. clavuligerus stock cultures were added into 50 mL of TSB medium
and incubated for 24—48 h at 28 °C at 220 rpm. Optical density of
seed cultures was measured according to the procedure by
Malmberg et al. [33]. 0.5 mL of sample from seed culture was mixed
with 3 mL of distilled water and 0.5 mL of 2.5 M HCl and then the
mixture was homogenized via sonication (Ultrasonic Processor,
Cole Parmer) for 3 x 30 s at 50% amplitude. When the ODggg of
homogenized mixture reached to 0.7—0.8, 25 mL of seed culture
was centrifuged at 4000g for 10 min at 4 °C and the pellet was
washed with fresh medium. The cells were re-suspended in 100 mL

of Starch-Asparagine (SA) medium, a defined medium favouring CA
production [34] and the cultures were grown at 28 °C at 220 rpm
for 48 h for proteome analyses.

2.2. Protein extraction

Protein extraction was slightly modified from Faurobert et al.
[35]. Cell cultures harvested after 48 h were centrifuged at 6000g
for 15 min and washed with fresh medium once. Immediately after
that, the pellets were frozen in liquid nitrogen and stored at —80 °C
until use. Frozen cultures were ground in liquid nitrogen in mortar
and 1 g of ground cell culture was suspended in 3 mL of protein
extraction buffer [500 mM Tris-HCl, 50 mM EDTA, 700 mM sucrose,
100 mM KCl, pH 8.0, freshly added 2% f-mercaptoethanol and 1 mM
phenylmethylsulfonyl fluoride (PMSF)] in a 15 mL Falcon tube,
vortexed gently and then incubated by shaking for 10 min on ice. An
equal volume of Tris-buffered phenol (pH 8.0, Sigma) was added,
the solution was mixed gently and incubated by shaking at RT for
10 min. After centrifugation at 3400g for 15—20 min, the phenolic
phase was recovered and transferred to another tube. The phenolic
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phase was back extracted by adding 3 mL of protein extraction
buffer and the mixture was shaken for 3 min at RT and vortexed.
After centrifugation for 15—20 min at 3400g, the phenolic phase
was recovered. 4 volume of precipitation solution (0.1 M ammo-
nium acetate in cold acetone) was added to it, the solution was
mixed and the proteins were precipitated overnight at —20 °C. This
was followed by centrifugation for 10 min at 3400g, washing three
times with cold precipitation solution then with cold acetone.
During each washing step, samples were incubated at —20 °C for
30 min and then centrifuged for 10—15 min at 3400g. Pellet was
dried either overnight at —20 °C or under Speed-Vac.

2.3. Determination of protein concentration

Protein pellets were dissolved in rehydration buffer [36] and
protein concentration was determined by using the modified
Bradford assay as in Ramagli and Rodriguez [37] using bovine
serum albumin as standard.

2.4. 2DE, image and data analyses

After samples were dissolved in rehydration buffer, linear IPG
strips (18 cm, pH 4—7, BioRad) were rehydrated for 12—16 h by
applying 400 ul of rehydration buffer containing 350 pug protein
sample on BioRad PROTEAN IEF Cell. Isoelectric focusing (IEF) for
the first dimension was performed with Immobilised pH Gradient
(IPG) System “Ettan IPGphor3” (Amersham Biosciences, GE
Healthcare). The voltage applied was as the following: 250 V
(Gradient) for 1.5 h, 500 V (Gradient) for 1.5 h, 1000 V (Gradient) for
3 h, 5000 V (Gradient) for 4 h, 8000 V (Gradient) for 12 h, 500 V
(Steep) for 2 h. After IEF, gels were either kept at —20 °C or directly
equilibrated at RT first with 4 mL of Equilibration Buffer Solution I
(50 mM Tris-Cl pH 6.8, 6 M urea, 30% (v/v) glycerol, 1% SDS, 2% DTT)
and secondly with 4 mL of Equilibration Buffer Solution II (50 mM
Tris-Cl pH 6.8, 6 M urea, 30% (v/v) glycerol, 1% SDS, 2.5% iodoace-
tamide, 3.5 uM bromophenol blue) The isolated proteins were
separated in 12% acrylamide/bis-acrylamide gels with a 4% stacking

gel using Bio-Rad Cell system (Bio-Rad, USA), applying approxi-
mately 27 mA per gel. To visualize the separated proteins, each gel
was stained with colloidal Coomassie Blue G-250 [38]. Stained gels
were digitized by using a scanner (Epson Perfection V750). The 2D
image analysis software Delta2D version 3.4 (Decodon, Germany)
was used for spot pattern analyses. Two biological replicates were
used for each strain. Gels in each group (S. clavuligerus NRRL3585
and S. clavuligerus DEPA) were used to generate a fused (master) gel
image which contained all the spots coming from each gel. Spot
volume representing the spot abundance for each spot in the
master images was used as a measure for the quantitation of
expression differences between the spots on the S. clavuligerus
NRRL3585 and DEPA gels. Spot abundance on a gel was expressed
as volume percentage (%V). The volume of all spots on an image
amounts to 100% and hence the relative ratio of a spot to all spots
on the gel can be described as its own %V. Image analysis software
automatically normalizes %V of spots in each gel. By using the %V
ratios for each spot on S. clavuligerus NRRL3585 and S. clavuligerus
DEPA master gels, spot intensity showing 2.5-fold change in
S. clavuligerus DEPA strain with respect to S. clavuligerus NRRL3585
was selected for identification by MALDI-TOF/MS analysis. After
this, the statistical analyses for 2DE experiments were performed
by using Delta2D 4.3 statistical tools to determine the statistical
significance of the spots that showed 2.5-fold difference. For
comparison of S. clavuligerus NRRL3585 and DEPA strains, paired t-
test was used with Welch approximation and o value was equal to
0.05.

2.5. MALDI-TOF/MS analyses

Protein spots selected for identification were excised from 2DE
gels with Proteome Works Spot Cutter System (Bio-Rad). In-gel
trypsin digestion and extraction of the peptides were conducted
by Ettan Spot Handling Workstation (GE Healthcare) as described
in manufacturer's protocol and by Kierul et al. [39]. To summarize
the process, gels pieces were washed twice with 50 mM of
NH4HCO3 containing 50% CH3CN for 30 min and then washed once
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with 75% CH3CN for 10 min. Washed gel pieces were dried at 37 °C
for 17 min. With the addition of 10 pl of trypsin solution (20 ng/ul
trypsin) (Promega, Madison, WI, USA), gel pieces were incubated at
37 °C for 120 min. Extraction of the peptides was performed by
covering them with 0.1% trifluoroacetic acid in 50% CH3CN and then
incubating at 40 °C for 30 min. Supernatants were transferred into
another microtiter plate and extraction process was repeated. Su-
pernatants were completely dried at 40 °C for 220 min. The pep-
tides were dissolved in 2.0 pl matrix solution consisting of a-cyano-
4-hydroxy cinnamic acid in 50% CH3CN/0.5% trifluoroacetic acid.
0.7 ul of this mixture was spotted on the MALDI target. 4800
MALDI- TOF/TOF Proteomics Analyser (Applied Biosystems) was
used for the peptide mass determination. Spectra were recorded in
a mass range from 900 to 3700 Da with a focus mass of 2000 Da.
4000 Series Explorer software was used for spectrum calibration
and analysis. TOF/TOF measurements were performed for the two
highest peaks in a spectrum when possible.

2.6. Protein identification

For the database search, the Mascot search engine version 2.1
(Matrix Science) was used with S. clavuligerus sequence database
retrieved from UniProt (http://www.uniprot.org/). The peak lists of
each protein spot (peptide mass fingerprint and MS/MS data) ob-
tained from MALDI TOF/MS measurement were analyzed with the
aid of “Peptide Mass Fingerprint” and “MS/MS lon Search” engines
of MASCOT software (Matrix Science Inc., Boston, MA, USA) against
the data retrieved from UniProt for S. clavuligerus. The results
showing a probability score higher than 53 were assumed to be
meaningful and used for protein identification.

2.7. Databases for protein categorization, function and associations

Functional categories of the proteins were mostly determined
by using COG database provided by NCBI (ftp://ftp.ncbi.nih.gov/
pub/COG/COG2014/static/lists/listStrbin.html). Cellular localiza-
tions of the proteins were determined using PSORTb version 3.0.2
(http://www.psort.org/psortb/), Gpos-mPloc (http://www.csbio.
sjtu.edu.cn/bioinf/Gpos-multi/#) and ngLoc (http://genome.unmc.
edu/ngLOC/index.html) databases. Theoretical pl and Mw values
of the proteins were calculated by using Expasy pl/Mw tool [40].
Protein pathways and associations were predicted using STRING
10.0 (http://string-db.org/) which is a global source of genes from
which protein associations can be inferred and predicted [41].

3. Results and discussion

The protein spots on 2DE gels of S. clavuligerus DEPA with at
least 2.5 fold up- and down-regulation are shown in Figs. 4 and 5,
respectively. Dual channel 2DE imaging (pl 4—7) of S. clavuligerus
strains NRRL3585 and DEPA provides a picture of differential
expression (Fig. S1). The proteins that could be identified corre-
sponded to 33 distinct ORFs for overrepresented ones and 60 ORFs
for underrepresented ones (supplementary Table S2 and Table S3,
respectively). Six of the overrepresented and 10 of the underrep-
resented proteins appeared in two or more spots, differing in either
their charge and/or mass, suggesting posttranslational modifica-
tions like phosphorylation, glycosylation and more delicate cova-
lent modifications as well as intended proteolytic cleavage. On the
other hand, the presence of multiple spots of the same protein on 2-
D gels resulting from unintended protein degradation can not be
ruled out, either.

The identified proteins were then functionally classified with
respect to their biological functions. The relative functional distri-
butions of up- and down-regulated proteins are presented in

v —————
\ o
-’
acnder. PR/ M oy 4 SCLAV_1398
serapion *_leid_io o' ¢
oz o1 oGt
\ou.ma- 57 ‘um NG
LAV p) 42! N e
s ,um\ Sadr e, A naoG1 ’
st Mm\ -vm,,_, B scLav. e
T p1
. scL 'um / )
ScLAlpl :
ssctagh
scLavsis - - .". -
- s q-’o’
’ - SSCLAV. 3 -
- . “ gl —- SCLAV 4765
- . e - i
- . 4 - ASCLAVp079s
- st T 2
L1y por
LSO 523
- . S scLav_oft ol
Ve 4760 .
z '“ e, 4 -
. 2
ASCLAV 0843 SCLAV_0615
Ssco - 0254 - “ <
- - ' -
) 4 - ASCLAV. 0130 -
. h 8 - -
scLar .
-l - o - - - —proC
- v - r Y
- - <
-
» e
ASCLAV 2541 | SCLAV_ 0035
BSCLAV. p0800 SCLAV 2541
- SCLAV. 3612
-
- -
- L g -

Fig. 4. Cytosolic proteome of S. clavuligerus DEPA and protein spots that showed more
than 2.5 fold increase in intensity compared to those in S. clavuligerus NRLL3585 (pl
4—7, from left to right).

v - ——
\ see o
"‘
’ red
o —
. ic SCLAV_S650-
LS i
e o .
inu. SCLAI 2609~ = v
s - [ scuasis
sl i oy g O L s g
. ata
SCLAY, sar s - LoV S567 A
LS .. seuar s P

iV seLAi 242
ScLav_puas?
A
ScLai’ 5559

amet “\
3 ot iy s W

2 Ssc e = Ssero s
- fisZ 'SCLAV. p) ‘ .mﬂ Sgu"uts sCl(/l 3702 v umv 0984, avad2
- C = woped CSCLAY_S668 \ ——_moe:

A Ammg scLiv_ s
SCLAV_5667 L SCLAV. 2698

SO |

<
SCLAV 4185 \ SCLAV_ 5668

sceffi -
SCLAV 2696 WSCLAVAI8S <] =
. WAl ~~SCLa 5557
- - paha—~ SCLAV. SGA&ML‘( P A
. 2 - .
d . ge . - -
s .
SCLAV 2325, SCEAV p0&93— -
w  asCLAV 1152
¢ .. -
Pa SCLAV. 314 .. » -
- - - seLav,_ 1028
. his apmat, SCLAV. 1290~ S
- . - - . -
. apro
. - scLiv.2102
SCLAV.p1319=
- - % -
cLav. - SCLAV 2881 ¥
SaAy9%6 - SCLAV p1319
. -
-
aac2, SCLAV_1005 -
- -

el = = = i

Fig. 5. Cytosolic proteome of S. clavuligerus DEPA and protein spots that showed more
than 2.5 fold decrease in intensity compared to those in S. clavuligerus NRLL3585 (pl
4-7, from left to right).

Fig. 6A and B, respectively. Accordingly, the “general function”
(34%), “hypothetical/unknown” (18%) and “secondary metabolism”
(9%) proteins constituted about 60% of the identified over-
represented ones while “amino acid metabolism” (20%), “hypo-
thetical/unknown” (18%) and “secondary metabolism” (9%) were
the most prominent classes regarding the underrepresented
proteins.

3.1. CA biosynthesis

Three CA biosynthetic enzymes were overrepresented in
S. clavuligerus DEPA; carboxyethylarginine synthase (Ceas2),
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Fig. 6. Pie charts depicting the functional classification of overrepresented(A) and underrepresented(B) proteins in S. clavuligerus DEPA strain.

clavaldehyde dehydrogenase (Car) and carboxyethyl-arginine beta-
lactam-synthase (Bls2) with 11, 8.2 and 20.6 fold increase, respec-
tively. Both Ceas2 and Bls2 are early biosynthetic enzymes that are
required for both the CA and clavam biosynthesis. On the other
hand, Car which catalyzes the last step of CA production is not
involved in clavam biosynthesis. Interestingly, proclavaminate
amidinohydrolase (Pah2) which is involved in early steps of CA
biosynthesis as well as in clavam biosynthesis was 4.8 fold down-
regulated. It is known that Pah is encoded by two paralogous genes:
pahl and pah2. pah2 and pah1 mutants do not show considerable
differences in the levels of CA compared to the parental strain [42].
It can then be speculated that the industrial strain might prefer
Pah1 over Pah2 for CA production. Alternatively Pah may not be
crucial, or yet unknown proteins might perform the same role in
the pathway as Pah1/Pah2. As pathway specific activators, both
CcaR and ClaR were expected to appear in the overrepresented
protein list of S. clavuligerus DEPA; however, our proteome study
did not identify these as differentially expressed proteins.

3.2. Other secondary metabolites

Underrepresented proteins of secondary metabolism other than
CA biosynthesis included deacetoxycephalosporin C hydroxylase
(7.6 fold) involved in cephamycin biosynthesis, MoeA5 protein (4.7
fold) involved in moenomycin biosynthesis, and a putative ami-
noglycoside 2-N-acetyltransferase Aac2 (22.7 fold). Aminoglycoside
2-N-acetyltransferases of AAC(2’) family are generally engaged in
the acetylation of aminoglycosides dibekacin, gentamicin, kana-
mycin, netilmicin, and tobramycin [43,44]. As the genes for self-
resistance are generally known to be located in antibiotic biosyn-
thetic gene clusters, the presence of a strongly downregulated
aminoglycoside 2-N-acetyltransferase could be indicative of sup-
pression of aminoglycoside biosynthesis in CA overproducer, yet no
clusters encoding enzymes related to aminoglycoside biosynthesis
were reported in the genome of S. clavuligerus [4]. It would be quite
reasonable to postulate that the elimination of the production of
other secondary metabolites is one of the mechanisms that
S. clavuligerus DEPA exploits to increase CA biosynthesis, but the
levels of these metabolites remain to be determined and compared
with those in wild type strain.

3.3. Regulators of secondary metabolism

v-butyrolactones are small extracellular autoregulators

interpreted as “microbial hormones” in streptomycetes having
crucial roles in the secondary metabolism and morphological dif-
ferentiation [45,46]. (SCLAV_0471) was 2.6 fold underrepresented
in S. clavuligerus DEPA. avaA2 codes for an Afs-like autoregulator
synthase in S. clavuligerus. It has 31% amino acid identity to AfsA
which is responsible for synthesis of classical autoregulatory vy-
butyrolactone (A-factor) in S. griseus [47]. When A-factor is absent
in cells, A-factor receptor protein, ArpA binds to adpA promoter and
represses its transcription. However, when A-factor level exceeds a
threshold value, it binds to ArpA and causes its dissociation from
adpA promoter. As a result, AdpA can function as transcriptional
activator of antibiotic biosynthesis [48]. No butyrolactones of A-
factor type of S. griseus have been described in S. clavuligerus yet,
and their role, or the role of AvaA2, remains to be studied.

From the 72 distinct putative TCS located in S. clavuligerus
genome, only SCLAV_2102 was identified as 4.5 fold down-
represented in the DEPA strain, it might negatively regulate the
formation of CA or CA precursors; however, the TCS orf22/23
described as positive regulator of CA formation [49] was not
affected in the industrial strain. TCSs, as AbrA1/A2 or AbrC1/C2/C3
have been described to control antibiotic biosynthesis in
S. coelicolor [50] and TCS inactivation has been shown to stimulate
the biosynthesis of gougerotin in S. graminearus [51], avermectin in
S. avermitilis [52] and erythromycin in Saccharopolyspora erythraea
[53], which supports a role for SCLAV_2102 in CA regulation.

3.4. Carbohydrate metabolism

In a previous study in which genome-wide gene expression
changes in an industrial clavulanic acid overproduction strain of
S. clavuligerus were investigated [21], the levels of glycolytic en-
zymes (2,3-bisphosphoglycerate-dependent phosphoglycerate
mutase and phosophoglycerate kinase) in between glyceraldehyde-
3-phosphate and phosphoenolpyruvate were found unchanged in
their industrial strain. However, as found in our proteomics study,
both enzymes were downregulated by 4.7 and 4.9 folds, respec-
tively. Also found in our study was upregulation of aconitate
hydratase by 4.6 fold in S. clavuligerus DEPA strain. This finding was
not consistent with that of the microarray analysis [21]. In that
study, the levels of two consecutive enzymes of TCA cycle, namely
citrate synthase and aconitase, decreased over two fold in the in-
dustrial mutant by a possible reduction in carbon flux from G3P in
this direction since the flux is partly redirected to clavulanic acid
biosynthesis, as explained by the authors. On the other hand, there
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was an incomplete downregulation of the flux with upregulated
transcripts of pyruvate kinase, citrate synthase and cis-aconitate,
and thus a considerable pool of acetyl-CoA is maintained, e.g. for
the biosynthesis of ornithine from glutamate. We found dihy-
drolipoyl dehydrogenase (E3), one of the three components of the
bacterial pyruvate dehydrogenase multienzyme complex, and iso-
citrate dehydrogenase, with two isoforms, as significantly over-
represented proteins; however, the former was over two fold
underrepresented and the level of the latter was unchanged in
microarrays [21]. Notably, an additional protein spot possibly rep-
resenting a different isoform of isocitrate dehydrogenase was 3 fold
downregulated. Since these enzymes are related to the formation of
metabolites which are used for a large variety of biosynthetic
processes and include a-ketoglutarate family of amino acids with
arginine as a precursor of CA, their elevated levels in a CA over-
producer were as expected. Indeed, the differences between tran-
scriptome and proteome data described herein are not all that
surprising and systems-level analysis of metabolic pathways by the
integration of genome, transcriptome, proteome, metabolome and
fluxome data with in silico modelling and simulation will provide
in-depth understanding of the whole cellular physiology in relation
to CA production.

3.5. Amino acid metabolism

Another prominent mechanism of success of S. clavuligerus
DEPA strain as a prolific producer of CA was demonstrated as
downregulation of amino acid metabolism, methionine biosyn-
thesis in particular. In this way, more aspartate would be directed
towards L-arginine (CA precursor) biosynthesis instead of being
also shared by methionine biosynthesis route. Cystathionine
gamma-synthase (SCLAV_5668), as represented by 5 different spots
on the S. clavuligerus DEPA gel forming a pearl-like pattern sug-
gested an extensive posttranslational modification and these spots
were at 3.5—83 fold decreased levels and most probably, along with
other downregulated enzymes of methionine biosynthesis, served
for lowering the metabolic flux to methionine. O-acetylhomoserine
aminocarboxypropyltransferases which are historically known as
O-acetylhomoserine thiolases (MetY) can accept methanethiol as
the attacking nucleophile, resulting in the direct synthesis of
methionine instead of a homocysteine intermediate [54]. Over 6
fold underrepresented levels of O-acetylhomoserine amino-
carboxypropyltransferase (SCLAV_5559) identified in this study
also provided evidence that streptomycetes utilize this single step
conversion in addition to two step trans-sulfuration. The S-
methylation of homocysteine is the final step in methionine
biosynthesis. Either one of two non-homologous enzymes, namely
cobalamin-dependent methionine synthase (MetH); or cobalamin-
independent methionine synthase, also known as 5-
methyltetrahydropteroyltriglutamate ~ homocysteine  methyl-
transferase (MetE) is theoretically employed for this reaction in
E. coli. However since this organism has lost cobalamin biosynthetic
pathway, it uses MetH only in the presence of exogenous cobal-
amin; moreover, it represses MetE in such conditions [54]. MetE
catalyses direct transfer of a methyl group from the triglutamate
derivative of 5- methyl-tetrahydrofolate to homocysteine [55]. In
our study, MetE was represented by two isoforms, at up to 3 fold
downregulated levels. Another cobalamin-independent enzyme
also known as methionine synthase II (SCLAV_p1324) was also
downregulated by 4 fold. While the primary function of S-adeno-
sylmethionine synthetase (SAM; MetK) is to donate methyl groups
to diverse metabolites coming from primary or secondary meta-
bolism as well as proteins, nucleic acids and polysaccharides [56], it
has also been shown to affect the secondary metabolism and

morphological differentiation in Streptomyces [57]. The introduc-
tion of multicopy metK genes as well as exogenous addition of SAM
to S. coelicolor cells increased the production of actinorhodin [58].
Increased levels of SAM were also shown to increase the production
of bicozamycin in Streptomyces griseoflavus, pristinamycin in
Streptomyces pristinaespiralis, granaticin in Streptomyces violaceor-
uber [56]. In addition, SAM binds mRNA molecules to regulate the
transcription in B. subtilis [57]. Kim et al. [59] showed that SAM
itself can act on a transcriptional activator to increase the antibiotic
levels in Streptomyces lividans. A decrease in the biosynthesis of
secondary metabolites apart from CA in our industrial strain would
be quite favorable for CA overproduction. Thus, it is very likely that
a 2.6 fold reduction in the level of SAM synthetase together with a
strongly downregulated levels of methionine biosynthesis
contributed to the increased CA levels in S. clavuligerus DEPA.

Two other underrepresented enzymes of amino acid meta-
bolism were 3-dehydroquinate synthase (AroB) and 3-
phosphoshikimate 1-carboxyvinyltransferase (also known as 5-
enolpyruvylshikimate-3-phosphate synthase; AroA) of shikimate
pathway leading to aromatic amino acids and other aromatics.
Streptomyces uses this pathway also to produce precursors for some
secondary metabolites such as aromatic polyketide antibiotics. For
instance, cyclohexanecarboxylic acid, a derivative of shikimic acid
is used for the biosynthesis of ansatrienin (mycotrienin) in Strep-
tomyces collinus [60], and another derivative of shikimic acid,
dihydroxycyclohexanecarboxylic acid, is used for ascomycin
(immunomycin; FK520) production in Streptomyces hygroscopicus
var ascomyceticus [61].

3.6. Lipid metabolism

Two underrepresented proteins in lipid metabolism, 3-oxoacyl-
[acyl-carrier-protein] reductase (SCLAV_1028) and enoyl-[acyl-
carrier-protein] reductase (Fabl), are the components of FAS II
fatty acid biosynthetic system found in bacteria [62]. The questions
of whether or not (i) Fas I and PKS pathways share protein com-
ponents, and (ii) Fas II system plays an indirect role in providing
building blocks for synthesis of PKs have been tried to be addressed
almost exclusively in Streptomyces spp. due to the remarkable di-
versity of type Il polyketides in these bacteria as well as the analogy
between their PKSs and Fas Il enzymes composed of discrete
monofunctional proteins [63]. There still exist some contradictory
findings. On the other hand, the possibility that downregulation of
these two Fas Il enzymes might limit PK synthesis either directly or
indirectly in industrial CA producer cannot be ruled out.

3.7. Stress response

Tolerance to environmental stress is one of the desirable traits of
industrial strains. The overrepresented relevant proteins included
polynucleotide phosphorylase/polyadenylase (PNPase), ATP-
dependent DNA helicase (SCLAV_4693), two isoforms of an anti-
sigma factor (SCLAV_2541) and thioredoxin reductase
(SCLAV_5275) with 11, 1344, 7.3, 3.3 and 3.3 fold upregulation,
respectively. Being a component of RNA degradosome [64 |, PNPase
seems to be a critical component of the cell under oxidative stress
conditions. When E. coli pnp mutants were subjected to H,05, the
cells accumulated 8-0xo0G in cellular RNA; however, when the cells
were complemented with pnp gene, the amount of oxidized RNAs
were minimized [65]. According to the UniProtKB database, ATP-
dependent DNA helicase is a RecQ type ATP-dependent DNA heli-
case family responsible for genome maintenance [66]. Anti-o fac-
tors bind to the related alternative ¢ factor, thereby preventing
them from initiating the transcription of certain genes until the
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required conditions are met [67]. Once reduced by thioredoxin
reductase, thioredoxins have quite diverse functions within the cell,
including cell division, detoxification/oxidative stress response,
energy transduction, protein folding and degradation, transcription
regulation, translation and some unknown functions [68]. COG
database classifies thioredoxin reductase under the functional
category of “Stress-Related, Protein Turnover, Chaperones”. How-
ever, thioredoxin reductase (SCLAV_5275) protein in this study has
been identified as a thioredoxin oxidoreductase-like dithiol oxi-
dase, namely HIml, from the dithiolopyrrolone antibiotic hol-
omycin producer S. clavuligerus, which constructs intramolecular
disulfide bridge from the acyclic ene-dithiol at a late stage in the
holomycin biosynthetic pathway [69]. Indeed, it was shown much
earlier that mutants of S. clavuligerus with ORF disruptions in
different genes for CA biosynthesis overproduce holomycin [70]. In
accordance with this finding, Li and Walsh [69] demonstrated that
AORF15 S. clavuligerus produced more holomycin than the wild
type and the level of holomycin produced by AhlmI and Ahlml/
AORF15 strains decreased by 102—10° folds in comparison to that of
wild type and the AORF15 mutant. Moreover, himlI deletions in wild
type and AORF15 S. clavuligerus strains rendered both strains more
susceptible toward holomycin. This suggested that holomycin may
also exist in the inactive disulfide form and become reduced in the
cellular environment yielding the active form of the antibiotic, HIml
possibly acting as a protective catalyst against holomycin in the
producer. The transcriptomic analysis of a ccaR- and claR-deleted
mutants further verified the cross-regulation of CA and holomycin
biosynthetic pathways in that all the holomycin biosynthesis genes
including himl were overexpressed in these mutants [14,15]. In
view of all these findings, the increase in Himl level in S. clavuligerus
DEPA seems to be related with its functions other than holomycin
biosynthesis.

A putative uncharacterized protein (SCLAV_0035) and Rhs
element Vgr protein (SCLAV_0043) upregulated 3—4 fold in
S. clavuligerus DEPA strain might provide clue for the existence of a
contact-dependent type 6 secretion (T6SS)-like system in
S. clavuligerus. Indeed, this organism is known to possess three
main types of general protein secretion systems, namely the Sec
pathway, the Esx secretion system (T7SS) and the Tat pathway
[71]. STRING search revealed phage tail region proteins and Vgr
proteins as the functional partners of SCLAV_0035. Rhs elements
are accessory repetitious sequences which are the major source for
chromosomal rearrangements in laboratory cultures. vgr (Val-Gly
dipeptide repetition) is located upstream of the core regions and
found only in RhsE and RhsG elements in E. coli [72]. Although
T6SS has been known to be confined to Proteobacteria and basi-
cally important in pathogenesis, it also functions in resisting
predation, sensing stress, regulating bacteria-bacteria interactions,
in particular helping in competition for a specific niche in different
bacteria [73,74]. Siderophore-interacting family proteins are con-
tained within the biosynthetic gene clusters for siderophores and
are responsible to reduce iron-siderophore complexes for
releasing iron, hence cellular incorporation [75]. Almost 5 fold
upregulation of SIB (SCLAV_0843) was indicative of an increased
need for siderophore function in the industrial strain especially
when non-classical biological functions of siderophores like non-
iron metal transport, toxic metal sequestration, protection from
oxidative stress and molecular signaling [76] are also considered.
Moreover, siderophores are listed among the small molecules of
primary metabolism or core physiology controlling antibiotic
production although the relevant mechanisms remain to be
elucidated [47]. Another upregulation was recorded in the Ycel
family (SCLAV_4479) which are involved in osmotic and acid
stresses [77,78].

3.8. Others

It is worth noting the significant downregulation of cell division
protein FtsZ, teichoic acid (TA) biosynthesis protein, UDP-N-
acetylmuramoyl-tripeptide-D-alanyl-D-alanine ligase and alanine
racemase domain protein in S. clavuligerus DEPA, which might
point to a general slowdown in cell wall synthesis and division
compared to the S. clavuligerus NRRL3585. Interestingly, as many as
83 times decreased levels of TA biosynthetic protein and localiza-
tion of the tagC gene encoding this protein on pSCL4 were observed
while this megaplasmid did not seem to encode any functions
essential to primary metabolism, as reported earlier [4].

One of the most striking difference between the industrial
overproducer and S. clavuligerus DEPA was recorded for pSCL4
encoded protein with a f-lactamase domain (SCLAV_p1007). The
protein appeared in 12 upregulated isoforms, five of which were
drastically overrepresented in S. clavuligerus DEPA strain. A total of
22 proteins with a predicted B-lactamase domain was detected on
the chromosome or megaplasmid of the organism [4]. Although
S. clavuligerus B-lactamases have not yet been experimentally
characterized, posttranslational modifications like lysine carbox-
ylation in Class D [79,80] as well as proteolytic modification of zinc-
based or metallo B-lactamases in Class B which are not inhibited by
clavulanic acid [81] were reported. Phylogenetically diverse p-lac-
tamases that exist in Streptomyces spp. and their relation with self-
resistance were extensively reviewed very recently [82] with no
specific information about SCLAV_p1007 identified in this study.

4. Conclusion and future prospects

Random mutagenesis is very slow and tedious for industrial
fermentation researchers and might cause unintended changes to
the entire system, but targeted approaches which do not have such
limitations can be used to further improve the current high pro-
duction strains as guided by current omics technologies and other
tools of systems biotechnology. Comparative proteomics is a
powerful tool in industrial biotechnology since the information
obtained by comparing two or more genetically different strains or
the same strain grown in different nutritional/environmental
conditions can successfully lead to design new strategies for strain
improvement even when a limited number of protein spots could
be identified. On the other hand, each x-ome alone is not sufficient
since the levels of RNAs, proteins, metabolites and fluxes vary
independently, but various regulatory circuits coordinate them in a
highly orchestrated fashion [83]. Especially for industrially impor-
tant secondary metabolites, an integrated combined omics for in-
spection of correlations among different x-omes is essential to
better link the components of the primary and secondary meta-
bolism, define novel targets at gene and pathway levels and design
strategies for metabolic engineering of organisms for increased
secondary metabolite titers [84]. With some potentially crucial
changes in the levels of certain proteins of primary and secondary
metabolism, the present work shed light at some degree on
proteome-wide changes that could contribute to increased pro-
duction of CA in industrial producer developed by succesive
mutagenesis programs. Other mechanisms of CA overproduction
could be specifically induced when the mutant is grown in a
complex industrial culture medium rather than in defined SA. Our
comparative proteomic analyses by LC-MS/MS of industrial cultures
are underway with the hope of providing more alternative targets
to design novel overproducers.
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