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CHAPTER 1. INTRODUCTION 

1.1. Introduction 

Self-assembly is a powerful tool in forming structures with nanoscale dimensions. Self-

assembly of macromolecules provides an efficient and rapid pathway for the formation of 

structures from the nanometer to micrometer range that are difficult, if not impossible to 

obtain by conventional lithographic techniques [1]. Depending on the morphologies obtained 

(size, shape, periodicity, etc.) these self-assembled systems have already been applied or 

shown to be useful for a number of applications in nanotechnology [2], biomineralization [3, 

4], drug delivery [5, 6] and gene therapy [7]. In this respect, amphiphilic block copolymers 

that self-organize in solution have been found to be very versatile [1]. In recent years, 

polymer-micellar systems have been designed that are adaptable to their environment and 

able to respond in a controlled manner to external stimuli. In short, synthesis of ‘nanoscale 

objects’ that exhibit ‘stimulus-responsive’ properties is a topic gathering momentum, because 

their behavior is reminiscent of that exhibited by proteins [8]. By integrating environmentally 

sensitive homopolymers into amphiphilic block copolymers, smart block copolymers with 

self assembled supramolecular structures that exhibit stimuli or environmentally responsive 

properties can be obtained [1].  

 Several synthetic polymers are known to have environmentally responsive properties. 

Changes in the physical, chemical or biochemical environment of these polymers results in 

modulation of the solubility or chain conformation of the polymer [9]. There are many 

common schemes of engineering stimuli responsive properties into materials [8, 9]. Polymers 

exhibiting lower critical solution temperature (LCST) are soluble in solvent  below a specific 

temperature and phase separate from solvent above that temperature while polymers 
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exhibiting upper critical solution temperatures (UCST) phase separate below a certain 

temperature.  The solubility of polymers with ionizable moieties depends on the pH of the 

solution. Polymers with polyzwitterions, anions and cations have been shown to exhibit pH 

responsive self assembly. Other stimuli responsive polymers include glucose sensitive 

polymers, calcium ion-sensitive polymers and so on. Progress in living radical 

polymerization (LRP) methods [10] has made it possible for the facile synthesis of these 

block copolymer systems with controlled molecular weights and well defined architectures.  

           The overall theme of this work is to develop novel smart block copolymers for 

biomineralization and biomedical applications. Synthesis and characterization of self-

assembling thermoreversible ionic block copolymers as templates in biomimetic 

nanocomposite synthesis using a bottom-up approach is a novel contribution in this respect. 

Further, we have extended these families of copolymers to include block copolymer-peptide 

conjugates to enhance biological specificity. Future directions on this work will focus on 

enhancing the polymer templating properties for biomineralization by expanding the family 

of block copolymers with organic polypeptides and biological polypeptide scaffolds as well 

as a detailed understanding of the polymer-inorganic nanocomposites at the molecular level 

using small angle scattering analysis. Glucose responsive polymer hydrogels for drug 

delivery, polymer-ligand conjugates for non-viral therapy and thermoresponsive injectable 

photocrosslinkable hydrogels for posttraumatic arthritis cartilage healing are other 

applications of these novel copolymers synthesized in our work. 

1.2. Thesis  organization 
 
           The thesis is organized into nine chapters. Chapter 2 is general background of smart 

block copolymers, their applications in several fields with an emphasis on biomineralization, 
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as well as approaches taken in this study to characterize these materials. Potential 

applications of these smart block copolymers also include in situ photocrosslinkable gels for 

tissue engineering, cationic vectors for gene therapy and injectable drug depots. The 

background provides a context for the inspiration and the goals of this work as described in 

the research objectives in chapter 3. Chapters 4, 5, and 6 deal with the development of block 

copolymer templates and the applications of these smart polymers in biomineralization. 

Chapter 4 is a modified version of a paper published in the Journal of Materials Chemistry 

that addresses self-assembled polymer calcium phosphate nanocomposite synthesis using 

block copolymer templates. Chapter 5 is a paper accepted to the Chemistry of Materials on 

the synthesis and characterization of ionic block copolymer templated calcium phosphate 

nanocomposites synthesis, while chapter 6 is the expansion of this work to polymer-peptide 

conjugates (submitted to the Journal of Materials Research). The development of novel block 

copolymers and applications of these copolymers in the biomedical field is the focus of 

chapters 7-9. Chapter 7 describes the synthesis and characterization of thermosensitive 

boronic acid pentablock copolymers for glucose responsive applications, and the work is 

submitted to the Journal of Biomedical Materials Research. Chapter 8 is a paper in 

preparation, on thermoreversible photocrosslinkable hydrogels for posttraumatic arthritis 

cartilage healing. Chapter 9 provides general conclusions of the work and future directions 

for the development and applications of such families of block copolymers.  

1.3. References 
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CHAPTER 2. BACKGROUND 
 

2.1. Smart block copolymers  

Environmentally sensitive bioinspired smart block copolymers represent a new class 

of functional materials with tremendous applications in biomineralization and biomedically 

related fields. By integrating environmentally sensitive homopolymers into amphiphilic 

block copolymers, self-assembled supramolecular structures that exhibit stimuli or 

environmentally responsive properties can be obtained [1, 2]. Hence, the interest in the 

synthesis and characterization of these families of novel block copolymers has increased 

enormously in the recent years.   

Amphiphilic block copolymers consist of at least two or more covalently linked 

hydrophilic and hydrophobic macromolecular segments [3]. The hydrophobic blocks of 

amphiphilic copolymers self-associate in aqueous solutions to form supra molecular 

aggregates consisting of hydrophobic domains surrounded by swollen hydrophilic blocks. 

Hydrophobic interactions are a fundamental driving force in the assembly of amphiphilic 

systems [4].  A unified theory of hydrophobic interactions of small and large apolar species 

in water have been proposed by Lum and Chandler[5]. Unlike small hydrophobic groups, 

when larger hydrophobes, such as macromolecules, are introduced the hydrogen bond 

network has no way of reorganizing to accept the large excluded volume of the apolar 

species.  This results in ‘drying out’ at the interfaces of the hydrophobic objects where the 

density of water molecules is highly rarified.  These density fluctuations are highly unstable 

and result in strong attractions between the large hydrophobic objects.  This leads to 

macromolecular self-association and the formation of nanoscale ordered structures.  
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Depending on the length of the hydrophilic block, the morphology which originates on the 

nanoscale can vary from spherical micelles, rods, and vesicles to large compound micelles 

[1]. In some cases macroscopic gel structures are formed from these nanoscale building 

blocks. Figure 2.1 shows the structures of some self-organized amphiphilic block 

copolymers. 

          The enormous theoretical and technological potential of amphiphilic block 

copolymers, mainly related to the energetic and structural control of materials interfaces has 

been well recognized [2, 3]. By tuning the chemical structure of amphiphilic copolymers, the 

interfaces with very different chemical nature, polarity, and cohesion energy can be 

controlled to a broader extent. This is the physical basis for the construction of 

thermodynamically stable materials hybrids with nanoscale structure. Potential applications 

of these polymers include, templates for biomineralization [6, 7],drug carriers [6], biosensors 

[3], molecularly thin membranes [3], and growth of mesoporous inorganic materials [3, 6]. 

                                   
                 
 
 
Figure 2.1. Self-assembled polymeric structures of amphiphilic block copolymers (From  
[3]) 
 
2.2. Self-assembly- micellization and gelation of block copolymers 
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          Block copolymers self-assemble both in solution and in bulk and are capable of 

generating a variety of microdomain morphologies due to the covalently bonded blocks with 

different physical and chemical properties [2]. Amphiphilic block copolymers are the most 

common block copolymer systems that self-assemble into different morphologies due to their 

different affinities to certain environments [3]. The two blocks are incompatible and interact 

differently with their environment due to the chemical nature and also behave distinctively in 

solution which results in micro phase separation not only in aqueous media but also in 

organic solvents.  

           The two basic processes that block copolymers can undergo in solvents are 

micellization and gelation. Micellization takes place when the block copolymer is dissolved 

in excess amount of selective solvent for one of the blocks [7]. This in turn leads the polymer 

chains to organize themselves into variety of structures from spherical micelles or vesicles to 

cylinders. The hydrophilic blocks will be oriented towards the aqueous solvent medium, and 

be the corona of the micelle formed while the hydrophobic block will be shielded from the 

solvent and will be the core part of the structure. On the other hand, in contrast to 

micellization, gelation occurs from the semi-dilute to the high concentration regime of block 

copolymer solutions, resulting in an arrangement of ordered micelles [7].  
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Figure 2.2. llustration of (a) micellization at the CMC and (b) gelation at high concentration 
from diblock copolymers (From [2]) 
 
2.2.1. Theoretical aspects 

          The micellization process is mainly governed by two parameters, critical micellization 

temperature (CMT) and critical micellization concentration (CMC) [8]. Self assembly will 

not occur if either of these is not reached, and the block copolymer will remain as unimers in 

solution. On the other hand, if micelle formation is triggered, a thermodynamic equilibrium 

will be reached between micelles and unimers.  

          Several parameters have to be considered to characterize a micellar system, such as the 

equilibrium constant, the quality of the solvent, CMT, CMC, the overall mass molecular 

weight of the micelle, its aggregation number Z and its morphology [8]. These variables 

affect the hydrodynamic radius RH, the radius of gyration Rg, the core radius Rc, and the 

thickness L of the corona. The shape and size of the aggregates are controlled by a variety of 

parameters that affect the balance between three major forces acting over the system. The 

major forces reflect the extent of constraints between the blocks forming the core, the 

interaction between the chains forming the corona and the surface energy between the 

solvent and the core of the micelle. A complete description of the aggregate structure 

requires that the thermodynamic parameters of self-assembly be considered, along with the 

forces generated between the macromolecules inside the aggregates [2]. The thermodynamics 

and intra-aggregate forces combined with the inter-aggregate forces between different 

aggregates determine the self-assembled structure formed at equilibrium. Hence, it is 

important to understand the fundamentals that govern the interdependence between 

morphology and size of the aggregates obtained by self-assembly, including essential factors 
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such as concentration, temperature, composition, block length, copolymer architecture and 

the solvents used.  

          Various theories have been developed to describe the behavior of block copolymers in 

solution and its dependence on parameters mentioned above [9]. The theories are classified 

into two main groups, scaling theories and self-consistent mean field theories. Scaling theory 

is mainly based on the prediction of aggregation number or the radius for crew-cut micelles 

from the block length and interfacial tension data. The self-consistent mean theory on the 

other hand is able to predict the size of the spherical micelles at equilibrium, and the 

variation of the aggregation number as a function of the degree of polymerization. It is 

mainly based on the molecular characteristics of the polymer, its concentration in solution 

and an estimation of the core/corona interfacial tension [10], which in good agreement with 

X-ray and neutron scattering data. The model was expanded to block copolymer systems 

where it has been found that the size of the micelles, the aggregation number and the fraction 

of copolymer chains forming the micelles could be calculated. Further development of this 

theory resulted in its use for other aspects such as evolution of the CMC with block 

copolymer structure [11], or the temperature dependence of the hydrodynamic radius and 

aggregation number [12], the transition between spherical and cylindrical micellar systems 

[12], etc. Recently, the Pederson-core micelle system has been the most useful compendium 

of form factors and structure factors for spherical micelles [13]. The Pederson micellar model 

was a powerful free-form fitting method to determine intra-micellar structure.  

2.2.2. Examples of micellar systems 

          Micelles can be classified into several types with morphologies varying from spherical 

to vesicular or other less common structures, such as inverse micelles, bilayers, or cylinders 
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(Figure 2.3). According to Riess [7], the structure of amphiphilic block copolymers in 

aqueous media can be divided into three classes depending on the nature of the hydrophilic 

block. Uncharged blocks such as poly(ethylene oxide) (PEO)—also referred to as 

poly(ethylene glycol) (PEG), positively charged blocks such as quaternized poly(2- or 4-

vinylpyridine), poly(diethyl-aminomethyl-methacrylate) (PDEAEM), polypeptides such as 

poly(L-lysine), or negatively charged ones such as poly(acrylic acid) (PAA), poly(styrene 

sulfonate) (PSS), or poly(L-glutamic acid) (PGA). Recently, Liu et al. report an extensive 

study on zwitterionic polymer micelles such as poly(sulfobetaines) and 

poly(phosphobetaines) [14]. The characteristics of these systems make them suitable for 

applications in biomineralization and biomedical related fields.  

 

Figure 2.3. Different types of micellar morphologies of block copolymers: (i) direct micelles 
(ii) vesicles (iii a) inverse micelles (iii b) lamellar structures, and (iiic) cylindrical of tubular 
structures (From [2]) 

Spherical micelles with the so-called ‘core-shell’ structure have been extensively 

researched. Spherical micelle formation via self-assembly of diblock copolymers is directed 

by an entropically driven association mechanism. PEO is a hydrophilic, biocompatible, 

nontoxic, thermoresponsive polymer, which has been widely used as the solubilizing block to 
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form the shell in spherical micelles. Hydrophobic blocks include PS, poly(lactic acid) and 

polyethers like polypropylene oxide (PPO) or poly(butylene oxide) (PBO). PEO-b-PPO or 

PEO-b-PBO are commercially available as diblock- (and triblock/ pluronic) have been 

extensively investigated and Chou and Zhou [15], and the characteristic micellization 

features of these block copolymers has been reviewed in detail.  

Recently Kataoka’s group demonstrated that micelles can be excellent vehicles for 

drug delivery because the drug can be protected from degradation and its deposition site can 

be better targeted (Figure 2.4). Further by selectivity, the amount of drug administrated can 

be precisely controlled and thus reduced [6].  

 

Figure 2.4. Kataoka's approach to the conjugation of amino acids on the micellar surface 
using PEG-b-PLLA block copolymers. (From [19]) 
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 The system was based on poly(ethylene oxide)-b-poly(β-benzylaspartate) (PEO-

PBLA) block copolymers with PEO as corona. Its small micellar size (diameter 10–

100 nm) and its long-term stability, which is required for a prolonged circulation time makes 

it promising as a drug carrier. Further it possesses -OH functional groups in the PBLA block 

that can be used to easily attach a desired moiety. Other studies exploited the idea of using α-

acetoxy-poly(ethylene oxide)-b-poly(D,L-lactide) block copolymers [19]. The α-acetal group 

in PEO was transformed into an aldehyde group and conjugated with a peptide segment of 

phenylalanine (Phe) or tyrosil-glutamic acid (Tyr-Glu).  

In addition to common spherical micelles and vesicles, other more complex 

structures/morphologies based on amphiphilic block copolymers have also been observed. 

Eisenberg and coworkers reported the formation of cylindrical structures by self-assembly of 

PS-b-PEO diblock copolymers in aqueous solution [16] or of triblocks in a selective solvent 

[17]. Similarly Liu et al. were able to prepare aggregates with different morphologies in 

solution, varying from nanofibers to hollow or ‘shaved’ nanospheres [18]. Cylindrical 

structures [19] were obtained by the synthesis of a specifically designed block copolymer 

with a definite composition. For the preparation of cylinders they used a poly(isoprene-b-(2-

cinnamomethyl methacrylate)-b-(ter-butyl acrylate)) triblock copolymer with the 

polyisoprene part forming the core, the poly(2-cinnamoylmethyl methacrylate) (PCMMA) 

block forming the shell, and poly(tert-butyl acrylate) (PtBA) the corona. Such cylinders 

generated by self-assembly in methanol exhibited a diameter of 22 nm, as confirmed by 

TEM images.  

It is well known that secondary structures in synthetic peptides are subject to change 

from α-helix, to coil or to β-sheet morphology by slight modifications of environmental 



 13

parameters like pH, ionic strength, or temperature. Nolte et al. [20] investigated amphiphilic 

diblock copolymers based on low molar mass PS and a polypeptidic sequence, the latter 

being actually a charged helical polyisocyanide block derived from isocyano and alanine or 

histidine groups. This diblock self-assembles in solution to give micelles, vesicles or 

bilayers, depending upon the length of the polyisocyanide block, the pH and the interactions 

of the anionic head group.  

Morphologies other than vesicles involving polyion complexes have been described 

in the recent literature. For example, Yamamoto et al. [21] made PIC complexes of cationic 

chitosan and anionic gellan gum, showing that interaction between these charged 

polysaccharides gives rise either to PIC capsules or to fibers depending on the preparation 

method (Figure 2.5).  

 

Figure 2.5.  Polyion complexes (PIC): interaction between cationic chitosan and anionic 
gellan for fiber and capsule formation, (From ref [21]).  

Interactions of oppositely charged polyelectrolytes have been used for layer-by-layer 

(LbL) self-assembly to produce interesting hollow spheres or nanocapsules [22],[23]] 

suitable for applications such as tunable color filters, pH-sensitive coatings, biolabeling, and 

drug delivery. [24, 25] Möhwald et al. [25] reported a method to prepare capsules from 
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colloidal particles using LbL techniques and to remove the colloidal core. The hollow 

polyelectrolyte capsules obtained were dependent on the physical and chemical conditions of 

the environment. Zhang et al. [26] fabricated hollow capsules using H-bond interactions 

instead of strong polyelectrolyte forces. These interactions showed high stability, and the 

cores of the intermediate capsules could be removed by treatment with HF while the 

multilayer shell remained intact. 

2.3. Stimuli-responsive block copolymers 

          Stimuli-responsive polymers exhibit large, sharp changes to physical stimuli (such as 

temperature, solvents, or light) or to chemical stimuli such as reactants, pH, ions in solution, 

or chemical recognition. The response depends on the stimulus applied and may include 

changes in shape, volume, mechanical properties, or permeation rates. Several synthetic 

polymers are known to have environmental responsive properties.  Changes in the physical, 

chemical or biochemical environment of these polymers results in modulation of the 

solubility or chain conformation of the polymer [27]. There are many common schemes of 

engineering stimuli responsive properties into materials [28, 29]. Polymers with lower 

critical solution temperature (LCST) are soluble in water below a specific temperature and 

phase separate from water above that temperature while polymers with upper critical solution 

temperature (UCST) phase separate below a certain temperature.  The solubility of polymers 

with ionizable moieties depends on pH of the solution. Polymers with polyzwitterions, 

polycations and polyanioins are capable of imparting pH sensitive properties. Polymers that 

are responsive to external stimuli such as glucose or calcium ion sensitivity are capable of 

stimulant reactive responsiveness.  

2.3.1. pH responsive block copolymers 
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          Several block copolymers that undergo changes with pH variation have been 

investigated. Ionizable polymers with a pKa value between 2-11 are candidates for pH 

responsive systems [30]. Classical monomers are acrylic acid (AA), methacrylic acid 

(MAA), maleic anhydride (MA) and N, N-dimethylaminoethyl methacrylate (DMAEMA).  

           Block copolymers that contain weak basic or acidic blocks with different pKa values 

form pH induced micellization. Here, the copolymer exists as unimers at certain critical pH 

but forms micelles when the pH is changed. Armes and coworkers [32, 33] first reported 

such systems of zwitterionic diblock copolymers that exhibit dual pH responsive self 

assembly. Figure 2.6 illustrates some of the zwitterionic homopolymer structures.  

 

Figure 2.6. Examples of zwitterionic homopolymers (a) sulfobetaine (b) carboxybetaine, and 
(c) phosphobetaine (adapted from [14] ). 
           Liu and Armes prepared a poly(4-vinyl benzoic acid-b-2-(diethylamino)ethyl 

methacrylate (VBA-DEA) copolymer by ATRP using protecting group chemistry[31] 

Subsequently the ATRP synthesis of zwitterionic diblock copolymers without the use of 

protecting group chemistry has been reported [32]. The polybasic DEA and the polyacidic 

VBA have pKa values of 7.3 and 7.1 respectively. At low pH, the uncharged VBA block is 

hydrophobic.  Because the DEA block is highly charged and hydrophilic at this pH the 

copolymer forms well defined micelles with VBA cores and DEA coronas.  Because both 



 16

blocks are uncharged and hydrophobic in a pH range around the isoelectric point of the 

copolymer, between pH 6.8 and 8.3, the copolymer precipitates.  This is observed by an 

increase in turbidity of the solution, and can be attributed to the formation of large non-

micellar aggregates [32]  Above pH 8.3 the VBA groups become charged and hydrophilic, 

resulting in formation of DEA-core, VBA-corona micelles. Figure 2.7 illustrates some of the 

homopolymers that impart pH sensitivity at high pH. 

 

Figure 2.7. Examples of anionic polymer structures (a) poly(acrylic acid) (b) poly 
(methacrylic acid) (c) poly(2-ethyl acrylic acid) (d) poly(2-propyl acrylic acid) (adapted from 
[30]). 
 
           The same authors recently reported a similar pH responsive system of PEO-DEA 

copolymer co-dissolved with PMMA homopolymer [33].  Four distinct, pH dependent 

micellar and polyionic complexes were identified; PEO/PMAA-core, PDE corona micelles at 

low pH, a DEA-PMAA complex stabilized in solution by the hydrophilic PEO block with 

increasing pH, micelles formed with neutral DEA-PMMA complex cores and PEO coronas, 

and at high pH PDEA-core, PEO-corona micelles formed, excluding the hydrophilic PMMA 

homopolymer to the solution phase [33]. 

          The pH dependent, reversible micelle formation of polyelectrolyte block copolymer  

poly(N,N’ diethyleaminoethyl methacrylate)-b-poly(N,N’-dimethylaminoethyl methacrylate) 

(PDEA-b-PDMA) were characterized with light and small angle neutron scattering[34].  
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Because both PDEA and PDMA blocks are polybasic the copolymer is a highly charged 

polyelectrolyte at low pH. Increasing the pH of the copolymer solution results in 

deprotonation of the tertiary amine pendents of both blocks. Onset of micelle formation 

occurred when just over half of each block was deprotonated. The more hydrophobic PDEA 

blocks aggregated to form a core domain surrounded by hydrophilic PDMA. The pH-

dependent micelle formation was designed to be capable of encapsulating drugs during the 

micellization process, followed by drug release when the micelle dissolved in a low pH 

environment. The triblock copolymer polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene 

oxide), which forms three layered micelles, showed pH sensitivity below pH 5 due to the 

ionization dependency of poly(2-vinylpyridine). The P2VP block swells at low pH due to 

protonation, which makes the system useful for encapsulation. Figure 2.8 illustrates some of 

the widely used pH responsive cationic homopolymers in biotechnological applications. 

 

Figure 2.8. Examples of cationic polymer structures (a) poly(N,N’-dimethyl aminoethyl 
methacrylate) (PDMAEMA) (b) poly(N,N’-diethyl aminoethyl methacrylate) (PDEAEMA) 
(c) poly(4 or 2-vinylpyridine) (PVP) (d) poly(vinyl imidazole) (adapted from [30]) 
 

2.3.2. Temperature responsive block copolymers 
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Poly(N-isopropylacrylamide) (PNIPAAm) undergoes a reversible volume phase 

transition caused by the coil to globule transition at the LCST[35].  The LCST of PNIPAAm 

can be increased by copolymerizing with a hydrophilic monomer, such as acryl amide; and 

decreased by copolymerization with a hydrophobic monomer, such as N-butyl-acrylamide.  

The LCST behavior of poly(ethylene oxide) and poly(propylene oxide) originates from 

temperature dependent intermolecular interactions in water.  The number of hydrogen bonds 

a PEO or PPO monomer unit is capable of supporting decreases with increasing temperature.  

Above the LCST, PPO is significantly more hydrophobic than PEO due to the extra methyl 

group in the repeating unit.  The LCST of PPO occurs between 2-8oC and decreases with 

increasing molecular weight.  PPO with molecular weight greater than 4000 daltons does not 

exhibit a LCST [36]. The LCST of PEO increases with increasing molecular weight between 

70 and 91oC.  In addition PEO has been found to have an in vivo “stealth” property- it is does 

not react negatively with immune system.  Recent reviews by Gil and Hoffman contain 

detailed discussions of these families of polymers with LCST in aqueous environment. [30, 

31]. 

A temperature sensitive diblock copolymer, combining blocks exhibiting LCST and 

UCST was recently reported.  A copolymer of PNIPAM and a zwitterionic monomer 3-[N-

(3-methacrylamidopropyl)-N,N-dimethyl]ammoniopropane sulfonate (SSP) was synthesized 

by sequential RAFT polymerization [40]  PNIPAM has a well characterized LCST and 

P(SSP) exhibits a UCST due to strong mutual intermolecular attraction of zwitterionic 

groups.  This results in a dual thermoresponsive hydrophilic copolymer.  Below the UCST of 

the P(SSP) the copolymer forms micelles with P(SSP) cores surrounded by PNIPAM 

coronas.  At intermediate temperatures both blocks are hydrophilic and the copolymer is 
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molecularly dissolved.  Above the LCST of PNIPAM, micelles form with collapsed 

PNIPAM cores and swollen P(SSP) coronas.  Unlike the native homopolymers, the 

copolymer remains in solution between 0 and 100oC.  

Copolymers that undergo temperature and pH responsive self assembly are formed by 

combining a polyelectrolyte block and a nonionic block exhibiting a LCST. A diblock 

copolymer of PPO and DEA was synthesized by ATRP[31].  The LCST of the PPO block 

(Mn = 2000) was 20oC.  At low pH, where the DEA block is hydrophilic, the copolymer 

could be dissolved as unimers below 20oC, or form PPO core micelles above 20oC. DEA 

core micelles could be formed at high pH and temperatures below 20oC. A copolymer of 2-

(dimethylamino)ethyl methacrylate–b-2(N-morpholino)ethyl methacrylate (PDMA-b-

PMEMA) was synthesized via group transfer polymerization[37]. The DMA block was 

converted to a sulfobetaine methacrylate by selectively quaternizing with 1,3-propane 

sultone.  The zwitterionic poly(sulfobetaine methacrylate) (PSBMA) is soluble above 25oC, 

whereas the PMEMA has a LCST between 34 and 49oC.  This copolymer formed micelles 

with PSBMA cores at low temperature, dissolved molecularly at intermediate temperatures 

(between 25 and 50oC as determined by light scattering), and formed ‘reverse’ micelles with 

PMEMA cores.  Static light scattering revealed that near monodisperse micelles formed were 

42 and 50 nm in diameter at low and high temperatures respectively. Figure 2.9 shows some 

of the thermo-reversible polymer structures. 
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Figure 2.9.Examples of thermoreversible homopolymers used in various biomedical 
applications (From [30]). 

2.3.3. Glucose responsive block copolymers 

Recently, boronic acid based glucose-responsive copolymers have shown lots of 

promise [38, 39]. A block copolymer containing poly(3-acrylamidophenylboronic acid), poly 

(AAPBA)-b-poly(DMAEMA) showed glucose sensitve reponsiveness due to the protonation 

of AAPBA in the presence of glucose. AAPBA, which is a phenyl boronic acid compound, is 

known to form covalent complexes with glucose. Since in aqueous medium these AAPBA 

compounds are in equilibrium as charged and uncharged forms (Figure 2.10), the 

complexation of glucose is able to shift the equilibrium towards the direction of increased 

charge of phenylborates, since only charged borates can form complexes with glucose in 

aqueous media.   

 

Figure 2.10. Representation of complexation of AAPBA and glucose in aqueous solution 
(From [39]) 
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2.3.4. Other stimuli responsive and multi-responsive block copolymers 

          Several examples of self-assembled structures with multi-stimuli responsive aptitude 

have been described in the literature. For instance, Armes et al. described ‘schizophrenic’ 

diblock copolymers that form direct and inverse micelles in the same solvent. They prepared 

different systems exhibiting such behavior. One was based on a diblock copolymer weak 

polybases: poly[2-(N-morpholino) ethyl methacrylate-b-2-(diethylamino)ethylmethacrylate] 

(MEMA-b-DEAEMA). DEAEMA cores were formed by adjusting the pH of the solution 

[40]. In addition to the response to pH variation, such a system is also sensitive to 

polyelectrolytes, which can reverse the micelle, i.e. with the MEMA block forming the core. 

The second example concerns PPO-b-DEA block copolymers [31]. PPO is a 

thermoresponsive block and DEA a pH responsive block. Micelles with a DEA core were 

obtained in solution at low temperature and alkaline pH. After raising the temperature to 40–

70 °C and decreasing the pH to 6.5, the reverse situation was observed with PPO forming the 

core. Recently, Armes et al. [40] described a more complex zwitterionic diblock of poly[4-

(vinylbenzoic acid)-b-2-(N-morpholino)ethyl methacrylate] (VBA-b-MEMA) that can 

respond to pH, ionic strength, and temperature, and form normal as well as inverse micelles. 

At low pH they obtained micelles with a VBA core and at high pH and in the presence of 

salt, or at high temperatures, micelles with a MEMA core. P2VP has been used by several 

groups as a pH responsive block. Another example is the formation of ‘schizophrenic’ 

vesicles obtained from the self assembly of diblock copolypeptides poly(glutamic acid)-b-

poly(l-lysine) PGA-b-PLys [41]. This system is able to reversibly form vesicles, free chains 

in solution and reversed vesicles upon pH variations. Gohy et al. [46] also reported stimulus-

responsive micelles from an ABC triblock copolymer based on PS-b-P2VP-b-PEO. The PS-
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b-P2VP and the PEO blocks were connected by a stable metal-complex of bis(2,2′:6′,2″-

terpyridine) ruthenium (II) that retained its integrity under extreme conditions of pH, 

temperature, and salt concentration. The use of such a complex imparted new properties such 

as the reversibility of the complex formed under certain conditions, and additional 

photophysical and electrochemical properties. Micelles of these triblocks were obtained at 

low pH upon deprotonation of the P2VP block. At neutral pH the P2VP block shrank, 

entailing shrinkage of the aggregates around 60-80 nm. In addition, variations in temperature 

from 20 to 70 °C provoked a decrease of RH as well. Unfortunately, neither the pH nor the 

temperature responses were reversible.  

Finally, a versatile system was proposed by Nowakowska and coworkers [42], who 

synthesized a series of amphiphilic terpolymers based on sodium 2-acrylamido-2-methyl-1-

propanesulfonate (AMPS), N-isopropylacrylamide (NIPAM) and cinnamooyl-

oxyethylmethacrylate (CEMA). The terpolymers were soluble in water, prone to self-

assemble into micelles and sensitive to three stimuli: (a) temperature, due to the NIPAM 

block that imposed a lower critical solution temperature (LCST), (b) UV-light, due to the 

presence of the cinnamoyl block, and finally (c) ionic strength, that at elevated concentration 

provoked loss of the temperature-sensitivity. The size of the micelles formed, as indicated by 

dynamic light scattering (DLS), was found to vary with temperature and UV irradiation.  

2.4. Hydrogels 

2.4.1. Stimuli responsive hydrogels 

Hydrophilic polymers, and especially their crosslinked forms, known as hydrogels, 

are a class of biomaterials that have demonstrated great potential for biological and medical 

applications [43]. Recently, hybrid materials have been developed to preserve the bulk 
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properties of traditional polymers while making their molecular chains look more like 

proteins [44]. The advantage of using synthetic polymeric materials based solely on proteins 

or peptides is that it offers a high degree of control over properties. Peptides and proteins can 

be coded for specific properties using a basic knowledge of inter-and intra chain interactions. 

Both the traditional and protein based hydrogels have been generated with a variable degree 

of efficiency and complexity [43]. These hydrophilic polymer networks have a high affinity 

for water but are prevented from dissolving due to their chemically or physically crosslinked 

network. Water can penetrate in between the polymer chains of the polymer network, 

subsequently causing swelling and the dissolution of the hydrogel. Because of their high 

water content and biocompatibility hydrogels have attracted a great deal of attention, and 

many progresses have been made in using these materials for many biological and 

biomedical applications.  

The hydrogel networks are characterized using parameters such as polymer volume 

fraction in the swollen state (t2, s), the molecular weight of the polymer chain between two 

neighboring crosslinking points (Mc), and the corresponding mesh size (n) [43]. The amount 

of fluid imbibed and retained by the hydrogel in the swollen state is measured by polymer 

volume. The molecular weight between two consecutive cross-links, which can be either 

chemical or physical in nature, is a measure of the degree of crosslinking of the polymer. Due 

to the random nature of most polymerization processes, typically only average values of Mc 

can be calculated. The correlation length or distance between two adjacent crosslinks, n, 

provides a measure of the space available between the macromolecular chains (e.g., for drug 

diffusion). These parameters, which are related to one another, can be determined 
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theoretically or through the use of a variety of experimental techniques such as equilibrium-

swelling and rubber-elasticity theory [43]. 

By tailoring their molecular structure, polymer networks can be created that have 

stimuli responsive properties. Recently extensive research focused on the development and 

application of new environmentally sensitive hydrogels, especially those sensitive to 

temperature, pH, and specific analytes [45-47]. The response mechanism is based on the 

chemical structure of the polymer network such as the functionality of chain side groups, 

branches, and crosslinks. In networks that contain weakly acidic or basic pendent groups, 

waters of sorption can result in ionization of these pendent groups depending on the solution 

pH and ionic composition. The gels in turn act as semi permeable membranes for the counter 

ions, hence influencing the osmotic balance between the hydrogel and the external solution 

through ion exchange, depending on the ion–ion interactions. For ionic gels containing 

weakly basic pendent groups, the equilibrium degree of swelling increases as the pH of the 

external solution decreases, while the degree of swelling increases as the pH increases for 

gels containing weakly acidic pendent groups.  

Some of the commonly studied ionic polymers include poly(acrylic acid), 

poly(methacrylic acid), polyacrylamide(PAAm), poly(diethylaminoethylmethacrylate), and 

poly(di-methylaminoethylmethacrylate). Polyacidic hydrogels have been developed for oral 

administration of insulin.  The hydrogel is collapsed at low pH values and entraps the insulin 

hence protecting it protein from the harsh environment of the upper gastro-intestinal track.  

The hydrogel swells and the release of the insulin is triggered by the increase in the 

environmental pH of the small intestine [55, 56] Another example is the diffusion transport 

of streptokinase from crosslinked hydrogels of poly(hydroxyethyl methacrylate)-co-
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poly(diethyl aminoethyl methacrylate) (PHEMA-co-PDEAEM) [48].  Around neutral pH, the 

tertiary amine pendents are unionized and the hydrogel is collapsed, inhibiting diffusion of 

drug out of the hydrogel network. When the pH is lowered the PDEAEM gets protonated, 

swelling the hydrogel network and increasing the effective rate of drug diffusion out of the 

gel.   

Temperature- responsive hydrogels are one of the versatile responsive hydrogel 

systems. Networks showing a lower critical miscibility temperature tend to shrink or collapse 

as the temperature is increased above the LCST, and the gels swell up on lowering the 

temperature below the LCST. The system behaves in an opposite fashion for upper critical 

solution systems (UCST). Aqueous solutions of amphiphilic triblock copolymers of 

poly(oxyethylene)-block-poly(oxypropylene)-block-poly(oxyethylene) PEO-b-PPO-b-PEO, 

known by trade names of Pluronic® and Poloxemer®, exhibit thermo reversible phase 

behavior [36]. The LCST behavior of PPO, guides the triblock copolymer to thermo 

reversible gelation transition under environmental conditions. Another system which are 

mostly based on poly(N-isopropylacrylamide) (PNIPAAm) and its derivatives, undergo a 

reversible volume-phase transition with a change in the temperature of the environmental 

conditions [35]. PNIPAAm exhibits a LCST around 33°C. Solutions of poly(ethylene oxide-

b-(DL-lactic acid-co-glycolic acid)-b-ethylene oxide) (PEG-PLGA-PEG) copolymers form 

micelles and soft solid gel phase upon warming [58]. The biodegradable PLGA block is four 

times as hydrophobic as the PPO block of Pluronic® copolymers.  Drug formulations 

including this material have been shown to be highly biocompatible [49]. 

Theromosensitive photopolymerizable hydrogels with crosslinked network is of 

interest in applications that require injectable formulations with in situ macroscopic gelation, 



 26

high moduli gels and prevent dissolution of the gel in an aqueous environment. Several 

crosslinking methods to design hydrogels have been developed over the years [50-52]. 

Recently polymers with vinylmonomers were used to design crosslinked polymer gel 

networks [52-54]. The vinyl macromers mainly contain methacrylate or acrylate groups, 

which are capable of forming crosslinking networks within minutes in the presence of UV 

light [55]. This photopolymerization has advantage over other methods, especially in tissue 

engineering related applications, where in situ polymerization can be realized as well as less 

toxic compared to other crosslinking methods[51, 52].  

2.4.2. Artificial polypeptide hydrogels 

Designing artificial hydrogels assembly through naturally occurring protein motifs as 

well as synthetic polypeptides have opened new pathways in creating hydrogel structures 

with unique properties [44, 56, 57]. Nature has given a diverse repertoire of protein 

sequences that could be used in designing various macromolecules with intrinsic properties. 

This biomimic hydrogel scaffolds have the advantage over the naturally occurring 

biopolymers, due to the flexibility in designing the structure depending on the end needs, 

hence limiting the complex nature of the biopolymer structural features.  

Protein polymer scaffolds has the advantage over synthetic peptide scaffolds, where 

the sequence control and molecular weight distribution are hard to control in the latter. 

Recently, Tirrell and coworkers reported that, artificial protein hydrogels containing leucine 

zippers are capable of forming self-assembled networks through inter-chain crosslinking and 

are stimuli responsive to pH and temperature [56]. Further an elastin-mimetic domain 

containing a pentapeptide sequence VPGVG, forms a homogenous film upon crosslinking 

and exhibits mechanical properties similar to arterial wall [58]. More recently, the protein 
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polymer structures are further engineered to produce structures with novel chemical, physical 

and biological properties by the incorporation of noncanonical aminoacids [59, 60]. Some 

examples include the incorporation of fluorinated aminoacid anologs to increase the melting 

temperature of coiled-coild domains and collagen-like triple helices, reactive azide groups to 

post-translationally modify newly synthesized protein containg azedophenylalanine and in 

photocrosslinking modifications [61-63]. The main disadvantage of protein polymer design is 

that the choice of monomers is limited to the 20 aminoacids as well as the toxicity.  

Organic polypeptides on the other hand have more flexibility in chosing the 

monomers for the synthetic polymer scaffold design. Initial work on synthetic polypeptide 

scaffolds focused on poly(L-lysine) and poly(L-aspartic acid) water-soluble 

homopolypeptides [44, 64]. Recently Deming and coworkers have introduced facile synthesis 

of polypeptide hydrogels scaffolds using NCA polymerization. The hydrogel formation was 

discovered in diblock copolypetides with water solubilizing (poly(L-lysine), K) or (poly (L-

glutamate), E) domain and a α-helical hydrophobic domain of (poly(L-leucine), L) 

representing KmLn or EmLn where m and n represents the blocks of each aminoacids [44]. 

These polypeptides self-assemble through the interchain repulsions of the polyelectrolyte 

chains and the packing of hydrophobic helical segments into fibrillar tapes to minimize 

overall energy [44]. The polypeptides were capable of forming gels at concentrations low as 

0.1 wt% with the moduli values in the range of 100-500 Pa. Stronger gel structures were 

produced when the hydrophobic blocks were increased [64]. These polypeptides have various 

medical applications such as polypeptide membranes in drug delivery and polypeptide 

adhesives to form moisture-resistant adhesive bonds as well as antimicrobial and 

immunomodulating applications [57].  
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2.5. Polymer synthesis methods 

2.5.1. Living radical polymerization (LRP) 

Free radical polymerization has gained much attention in the field of industrial 

polymer synthesis due to its simplicity, compatibility and convenience [65]. The major 

limitation of conventional radical polymerization is its characteristically broad molecular 

weight distribution of the resulting polymers. This limitation is mainly due to the termination 

process between 2 propagating radicals. Until recently, ionic polymerization was the only 

practical route towards block copolymers with controlled molecular weight and architecture 

[66].  Since ionic synthesis techniques can not be applied to many functional monomers and 

require rigorous exclusion of water and oxygen, LRP techniques have been utilized 

synthesize many stimuli responsive copolymers with various controlled architectures [67]. 

The general feature of these techniques is the use of reagents which convert chain 

propagating radicals into a "dormant" form in equilibrium with the "active" form.  

Among the LRP techniques have been developed, atom transfer radical 

polymerization (ATRP), reversible addition fragmentation transfer (RAFT) polymerization, 

and nitroxide mediated polymerization (NMP) are the most common [68].  In these 

techniques, the main feature is the dynamic equilibrium between actively propagating 

radicals and dormant polymer chains. Further, the reaction conditions must be selected such 

that the dormant species is favored in the equilibrium which results in persistent, low 

concentrations, of propagating radicals.  The normal radical termination reactions are 

effectively suppressed by the low concentration of propagating radical species. Each 

technique differs primarily in the chemistry of the cap on the dormant polymer chain.  The 
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ATPR, NMP and RAFT techniques utilize ω-halide, ω-alkoxamine and ω-dithioester caps 

respectively and ATRP seems to be the most important of the LRP techniques. 

2.5.2. Atom Transfer Radical Polymerization (ATRP) 

Atom transfer radical polymerization is a controlled/“living” polymerization based on 

the use of radical polymerization to convert monomer to polymer. Matyjaszewski’s research 

group was the first to develop a controlled/“living” polymerization that used a simple, 

inexpensive polymerization system [59-61]. ATRP is capable of polymerizing a wide variety 

of monomers, is tolerant of trace impurities (water, oxygen, inhibitor), and is readily 

applicable to industrial processes. Due to its robustness, ATRP technique has generated much 

interest among polymer chemists both in industry and academia. The control of the 

polymerization afforded by ATRP is a result of the formation of radicals that can grow, but 

are reversibly deactivated to form dormant species (Figure 2.11). Reactivation of the dormant 

species allows for the polymer chains to grow again, only to be deactivated later. Such a 

process results in a polymer chain that slowly, but steadily, grows and has a well-defined end 

group (for ATRP that end group is usually an alkyl halide). 

Cu(I) X X2Cu(II) R*
R'

+
K1

K-1

K2

++ RX

 

Figure 2.11.  ATRP reaction mechanism (adapted from [69]) 

The initiator is generally a simple alkyl halide. The catalyst is a transition metal that 

is complexed by one or more ligands and can be used with the initiator in smaller amounts. 
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The deactivator can be formed in situ, or for better control, a small amount (relative to the 

catalyst) can be added. Further, the catalyst is tolerant of water and trace amounts of oxygen 

and simple transition metals (iron, copper) are used as the catalysts. Compared to other 

polymerization systems, ATRP requires very small amount of catalyst. 

Although other controlled radical polymerization systems have been reported by 

various groups [65-69], ATRP remains the most powerful, versatile, simple, and inexpensive 

method. Further, only ATRP has been able to polymerize a wide range of monomers 

including various styrenes, acrylates and methacrylates as well as other monomers such as 

acrylonitrile, vinyl pyridine, and dienes [69].  

2.5.3. Reversible Addition-Fragmentation chain Transfer (RAFT) 

Reversible addition-fragmentation chain transfer (RAFT) polymerization allows the 

synthetic tailoring of macromolecules with complex architectures including block, graft, 

comb, and star structures with predetermined molecular weight, terminal functionality, and 

narrow molecular weight distribution [70].  

RAFT polymerization is the most recent living radical polymerization technique after 

nitroxide-mediated polymerization and atom transfer radical polymerization (ATRP) [71]. 

The free radical polymerization shows living characteristics in the presence of RAFT agent 

by reversible addition and fragmentation chain transfer process. Using RAFT polymerization, 

homopolymers, block copolymers, branched and gradient polymers with narrow 

polydispersities can easily be prepared [72]. Further, it is totally compatible with 

conventional free radical polymerization. The main advantage of RAFT compared to ATRP 

and NMP polymerization is the wide range of monomers that could be easily polymerized by 

this method, mainly carboxyl monomers [60-62]. 
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2.5.4.  N-Carboxy Anhydride (NCA) polymerization 

The polymerization of α-aminoacid-N-carboxyanhydrides (NCAs) are the most 

efficient synthesis of long polypeptide chains [73, 74]. Figure 2.5.4.1 illustrates the basic ring 

opening mechanism of the NCA polymerization [74]. NCA polymerization utilizes simplest 

reagents and facilitates high molecular weight polymers in high yield with high purity with 

minimal racemization at the chiral centers [75]. This polymerization techniques is a good 

alternative for large molecular weight polypeptide compared to the conventional solid-phase 

peptide synthesis techniques where large polypeptides (> 100 residues) preparation is not 

possible due to the deletions and truncations during the deprotection and coupling steps [75].  

 

Figure 2.5.4.1. Simple NCA ring opening polymerization mechanism (From [75]) 

2.6. Characterization of smart copolymer supramolecular self assembly 

Since the length scale of supramolecular self assembly of block copolymers (from 

unimers to micelles and gels) spans several order of magnitudes a wide variety of techniques 

are needed to characterize them [27]. Nuclear Magnetic Resonance (NMR) is used to find the 

degree of polymerization by using end group analysis. Gel Permeation Chromatography 

(GPC) can be used to find the molecular weight and polydispersity of the polymer. 

Cryogenic transmission electron microscopy can be employed to directly visualize the 

micellar structures of copolymers by preserving the self assembled structures present in the 

ambient conditions in the near future if needed. Laser light scattering can be applied to 
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characterize weight average molecular weights and radius of gyration of the polymer 

macromolecules; further they also can be used to determine the size and weight of the 

polymer micellar solutions. Small angle scattering, both X-ray and neutron (SAXS and 

SANS) can be used to investigate polymers in solutions and in periodic gel and solid 

networks by utilizing the inhomogenities of the scattering length density of the polymer 

sample. Further, to understand the mechanical, thermal and rheological properties of smart 

copolymer gels, solids and micellar morphologies, techniques such as dynamic mechanical 

analysis (DMA), rheological studies and differential scanning calorimetry (DSC) can be 

used. 

2.6.1. Spectroscopic techniques 

NMR technique is used to find the compositions of the synthesized polymer. 

Regarding the fluidity of the polymer core micelles, NMR provides information on the 

mobility of the polymer chains in their micelle form. Numerous studies have utilized NMR to 

study the phase separation induced by changes in either pH or temperature [63, 64]. FTIR, 

which is a powerful tool for characterizing and identifying organic molecules, can be used to 

track the changes in hydrogen bonding and the hydration of particular bonds of a polymeric 

material. Other spectroscopic techniques such as UV-vis, fluorescence spectroscopy could be 

used to probe molecules that are selectively solvated into microdomains formed by 

amphiphilic block copolymers, to investigate self assembly [70, 71] 

2.6.2. Separation techniques 

Gel permeation chromatography (GPC), also called size exclusion chromatography 

and gel filtration, affords a rapid method for the separation of oligomeric and polymeric 

species. The technique is based on the separation of differences in molecular size in solution. 
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It is the method of choice for determining molecular weight distribution of synthetic 

polymers. In order to determine the amount of sample emerging, a concentration detector is 

located at the end of the column [76]. Additionally, detectors may be used to continuously 

determine the molecular weight of species eluting from the column. The volume of solvent 

flow is also monitored to provide a means of characterizing the molecular size of the eluting 

species. Other separation techniques such as high performance liquid chromatography 

(HPLC) can be used if needed [76].  

2.6.3. Scattering techniques 

2.6.3.1. Laser light scattering 

Laser light scattering technique is a versatile characterization method for weight 

average molecular weights and radius of gyration of macromolecules [73, 74]  It can also be 

applied to determine size and molecular weights of micelles in solutions. The Rayleigh ratio 

(Rθ), the angular variation of the excess absolute scattering intensity, is a function of the 

particle size and concentration and the wavelength of the incident radiation. Block copolymer 

micelles behave as colloidal particles, with dimensions 10-100 nm, where intra-particle 

interference becomes important, when the particles are no longer small compared to the 

wavelength of light, (d < λ/20), in light scattering experiments.  Further, classical light 

scattering is used to study the self-assembly structures of amphiphilic block copolymers due 

to its sensitivity to intermolecular interactions. Typically the relative scattered intensity 

versus scattering vector relationship, Rθ vs q, is fit via regression techniques to extrapolate 

dimensions of the particles. Common variations of these techniques include Zimm (Rθ
-1vs q2) 

and Debye (Rθ vs q2) and Berry (Rθ -1/2 vs q2) analyses [77]. 
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Quasi-elastic light scattering (QELS) or photon correlation spectroscopy relies on the 

phenomenon that the rapid fluctuations in the re-radiated light are related to the diffusion rate 

of the scattering particles [78]. In dynamic light scattering, the time dependence of the light 

scattered from a very small region of solution, over a time range from tenths of a 

microsecond to milliseconds is measured. Then, these fluctuations in the intensity of the 

scattered light are related to the rate of diffusion of molecules in and out of the region being 

studied (Brownian motion), and the data can be analyzed to directly give the diffusion 

coefficients of the particles doing the scattering. When multiple species are present, a 

distribution of diffusion coefficients is seen. The diffusion rate is used to directly calculate 

the effective, geometry independent, hydrodynamic radius of the particles[79].  QELS or 

dynamic light scattering can characterize size distributions of dispersed particles in dilute 

solutions in the size range of 4-2500 nm. 

2.6.3.2. Small angle X-ray and Neutron scattering 

Small-angle scattering (SAS) is a powerful technique for investigating structures of 

length scale with nanometer length scale (1-300 nm) [80]. The most important feature of the 

SAS method is its potential for analyzing the inner structure of disordered systems, and 

frequently the application of this method is a unique way to obtain direct structural 

information on systems with random arrangement of density inhomogeneities on such large 

scales. It is commonly used to investigate systems of particles in solution (micelles or 

colloids) and periodic systems (micelle networks or lamella).  Small angle scattering data is 

the result of inhomogeneities in the scattering length density of a material and there in no 

need for crystallinity of the material [81]. 
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In small angle X-ray scattering (SAXS), the scattering length density is a function of 

electron density. The x-rays interact with the electrons in the sample and the technique is 

therefore sensitive to electron density differences [82]. There exist both laboratory 

instruments based on more conventional sources and synchrotron based instrumentation for 

these x-ray measurements. In small angle neutron scattering (SANS), the neutrons interact 

with the nuclei in the sample and the interaction depends on the actual isotope [83]. 

Hydrogen and deuterium have very different scattering lengths and this can be exploited in 

contrast variation measurements in which it is usual that part of the molecule in solution is 

deuterated. It is also usual to change the scattering length density of the solvent by mixing 

deuterated and protonated solvents. The technique requires a neutron source, i.e. a nuclear 

reactor or an accelerator based spallation source and therefore the experiments are performed 

at large scale facilities. 

The development and construction of third generation synchrotron radiation and high 

flux spallation neutron sources, have increased the potency of the technique for structural 

analysis of materials [81, 82] As far as data analysis is concerned, many methods have been 

developed for block copolymer micelle systems [83, 84]. Guinier and Fournet first collected 

the fundamental principles of small angle scattering in a classic monograph [82].  The 

methods mainly consist of non-linear least square fitting of analytical models to the small 

angle scattering data to describe intra-micellar scattering (the form factor) and the inter-

micellar scattering (the structure factor).  

The implementation of these models requires careful treatment of the data and use of 

complementary techniques, such as cryo-TEM and NMR to extract physically meaningful 

data [16].  X-ray and neutron scattering techniques are complementary to each other, even 
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though the basic theory is the same [85]. They offer a number of practical differences that 

can be exploited experimentally.  For example, there is very little contrast in electron 

scattering length density between organic polymers and water matrix, while the nuclear 

scattering length density contrast can be varied by adjusting the D2O/H2O ratio in SANS 

experiments. 

2.6.4. Cryogenic transmission electron microscopy (TEM)  

 Cryogenic transmission electron microscopy (Cryo-TEM) has become an 

indispensable tool to obtain high-resolution direct images of complex liquids, namely liquids 

with structure on the order of nanometers to micrometers. The methodology that has been 

developed over the years helps us to capture the nanostructure in its native state of fixed 

concentration and temperature. A wide range of systems of low- and high-molecular weight 

solutes, synthetic and biological has been studied already by the technique. One of the widely 

studied system is the direct visualization of micellar structures formed by numerous block 

copolymers [86].  

 The samples can be prepared from rapidly vitrifying thin films of aqueous copolymer 

solutions to preserve the self assembled structures present at ambient temperature [87]. 

Different morphologies such as spherical, cylindrical and bilayer or vesical micelle structures 

have been visualized with cryo-TEM.  Jain and Bates utilized cryo-TEM to observe ‘Y-

junctions’ of cylindrical micelles formed from diblock copolymers.  The ‘Y-junction’ 

structure had been predicted theoretically but had not previously been observed 

experimentally [88]. 

Several block copolymer micelles have been observed by cryo-TEM. Zheng and co-

workers used cryo-TEM image analysis to determine the corona and core dimensions of 
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poly(ethylene oxide)-b-poly(butadiene) micelles[10]. Lam and co-workers used imaging 

analysis techniques to average the dimensions from large numbers of spherical micelles 

formed from dilute solutions of Pluronic® F127 [89]. PEO-based block copolymers were 

studied by cryo-TEM imaging by Won et al [90]. The series of diblock copolymers 

investigated existed in a number of micellar morphologies including vesicle bilayers, 

cylinders and spheres.  

2.6.5.Polymer phase properties 

Differential scanning calorimeter (DSC), tube inversion technique and simple 

potentiometric titrations have been utilized to study the phase properties of copolymers. 

Calorimetric techniques have been utilized to investigate the origins of micelle and gel 

formation of amphiphilic copolymers.  The simplest of measurements, and probably the most 

widely used, is the tube inversion test to find the gelation temperature. Most researchers use 

similar criteria for the differences between solution and gel. Upon inversion, the contents of a 

gel must remain set for a few minutes to be considered a gel. 

 The onset of micelle formation in water is usually accompanied by an endothermic 

first order transition, corresponding to the energy of dehydration of the hydrophobic block 

[80].  This is in agreement with the evidence that micellization is driven by entropic gains of 

segregating the hydrophobic block segments to a core domain. Previous studies on 

copolymers such as Pluronic® copolymer micelle self-assembly established an empirical 

relationship between copolymer concentration, hydrophilic/hydrophobic composition and the 

critical micellization temperature (CMT) [91, 92]. While the formation of Pluronic® micelles 

results in an easily distinguished transition, the onset of macroscopic gelation appears to have 

only a minor energy of transition. Hence a simple tube inversion technique is employed to 
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study the macroscopic gelation as a function of temperature. Potentiometric titrations will be 

utilized to find the pKa, pI values of the polymers in aqueous solutions, thereby to predicting 

its ionization behavior with pH change [93].  

2.6.6. Mechanical properties 

The mechanical properties of physical hydrogels formed from block copolymers have 

been investigated with a number a techniques.  Additionally, rheology and mechanical 

studies offer an excellent means of investigating the sol-gel transition temperature of 

thermoreversible hydrogels [94] The viscoelastic properties of hydrogels are highly 

dependent on temperature, concentration and chemical environment. The drug delivery 

applications of hydrogels are determined largely by the viscoelastic properties of the gel in 

vivo. The value of the shear modulus of a hydrogel is indicative of the structuring in the 

system. Investigations of the rheological properties of Pluronic® copolymers [95, 96] PLLA-

PEG-PLLA/PDLA-PEG-PDLA polymers [97], Pluronic®-g-PAA [98] and PEG-g-PLGA 

[68, 97] have been conducted.   

Rheological instrumentation is used for various reasons, for example, to determine 

yield stress (stress that must be exceeded for flow to occur) to help predict shelf-life and 

strain sweeps to determine the critical strain (minimum energy needed to disrupt structure, 

where the higher the critical strain the better the systems is dispersed). Wang and co-workers 

used rheology to determine the CMT and the gelation point of Pluronic® solutions [95]. The 

gelation point was marked by a 103 fold increase in the shear modulus within a small 

temperature range. Upon gelation the shear modulus did not significantly increase with 

temperature. Wang and Johnston employed a pulse shear meter to measure the shear modulus 

of solutions of Pluronic® formed hydrogels [99]. This method is especially useful for 
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hydrogels because it is very non-invasive, thus minimizing disruptions to the gel formation 

process. The heat transfer through the polymer solutions dominated the kinetics of the 

gelation process. This result has significant implications for the potential injection of 

Pluronic® based drug delivery devices. A slow-forming gel, once injected, could result in a 

‘burst effect,’ as a low viscosity gel network does not posses the zero order release properties 

that make Pluronic® hydrogels an attractive delivery device [100]. 

2.7. Applications of block copolymers in biomineralization  

2.7.1. Naturally occurring hierarchical structures 

Scientists and engineers have long been inspired by the intractably complicated 

structures and functional properties of the materials formed in nature. Intriguing self-

assembled hierarchically ordered self-assembled biominerals are commonly observed in 

nature. Biominerals are complex in structure and function, and are difficult to mimic through 

synthetic processes [101, 102]. The minerals are typically biocomposites as they are typically 

close in association with organic polymeric phase. Biominerals include, hard tissues of 

organisms, for example, ivory, coral, oyster shells, sea urchin spines, cuttlefish bone, skeletal 

units of single-celled organisms, magnetic crystals in magnetotactic bacteria, limpet teeth and 

human bones[1, 103] and highly ordered inorganic-organic soft tissue nanocomposites, such 

as membranes, skin, spider’s silk, muscles and cuticles [104].. Biominerals are formed at 

physiological aqueous environments, under mild conditions using biomacromolecules as 

templates, and normally exhibit structures and shapes that are very different from the crystals 

produced inorganically [103, 105]. Unlike synthetic inorganic crystals, these biomineral 

crystals may not have defined crystal properties but may be molded into elaborate structures 

which have non-faceted crystal surfaces. The ability to grow and stabilize such energetically 
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unfavorable crystalline structures within the physiological environment has intrigued the 

scientific world. Nature has taught that the control over biomineral properties can be 

accomplished at different hierarchical levels, including the regulation of particle size, shape, 

crystal orientation, polymorphic structure, defect texture, and particle assembly which results 

in structures with hierarchical organization optimized in different length scales [106, 107]..  

Further it is believed that the biological molecules in such a way that hierarchical composite 

structures can be built with numerous functionalities with excellent physical and chemical 

properties.[108-111]. The low temperature nanomaterials synthesis using a biomimetic 

bottom-up approach is versatile in future biomaterials design and applications at 

physiological temperatures.  

2.7.2. Natural mineral formation process– Bone as an example 

Human compact bone is a natural nanocomposite which exhibits a rich hierarchical 

structure [70, 112, 113] with excellent mechanical properties and biocompatibility. On the 

microstructural level are the osteons [104, 112], which are large (200 micron dia.) hollow 

fibers composed of concentric lamellae and of pores. 

 

 

 

 

 

 

Figure 2.12. Microscopic and molecular level structures of bone and illustration  
(adapted from [113]) 
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The lamellae are built of fibers, and the fibers contain fibrils. At the ultrastructural 

level (nanoscale) the fibers are a composite of the mineral hydroxyapatite and the protein 

collagen. The natural bone is a composite of collagen, which is a protein based-hydrogel 

template with carbonated apatite crystals with different compositions and microstructures 

[104]. The growth of the calcium phosphate is facilitated by the structural frame work of 

collagen matrix. The unique mechanical properties of such a low stiffness, resistance to 

tensile and compressive forces and high fracture toughness of the bone is believed to be due 

to the unusual combination of a hard inorganic material and an underlying elastic protein 

hydrogel [114].  

The pore structure of bone is essential in maintaining its viability and consequently its 

ability to adapt to mechanical stress. A two level hierarchical analytical model [104, 112, 

114] has been used to predict anisotropic elasticity of bone; it successfully modeled how 

bone stiffness depends on the orientation of applied stress with respect to the osteon axis. The 

triple helical collagen macromolecule is formed as a result of the amino acid glycine 

occupying every third unit. The strongest intermolecular attractions occur when neighboring 

molecules are shifted by 67 nm, the 'stagger' which is responsible for the banded appearance 

of collagen observed via electron microscopy. Assembly of subfibrils into fibrils is thought to 

be controlled at least in part by the primary structure of collagen. The larger scale 

organization is attributed to interaction with non-collagenous components such as 

proteoglycan matrix. The fibers are not perfectly aligned; they form a wavy or crimp 

structure which confers upon the tendon an initial compliance as the fibers straighten under 

load. Moreover, the damage processes which govern the strength and toughness of tendon 

involve structural elements over the full hierarchical range of sizes. 
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2.7.3. Biomimetic mineralization for hierarchically ordered materials design 

The spontaneous organization of simple molecules into well defined nanostructures is 

of fundamental importance and has many applications in biotechnology and materials 

sciences [115]. The traditional top-down lithographic techniques limit the synthesis of 

complex architectures, where nanomaterials <100 nm are not easily attainable at present by 

lithographic techniques, but can be realized with biological self-assemblies such as the 

tobacco mosaic virus, collagen, capsid [116], tubulin[117], or actin[118, 119]. 

 

Figure 2.13. Complex functional structures can be obtained by combining bottom-up and 
top-down approaches (From [1]) 

 

These biomolecules spontaneously organize into well-defined nanostructures with 

nanometer size dimensions. This inspiration from natural fibers is difficult to implement 

when the building blocks themselves are complex, as in the case of proteins and of their high 

fabrication costs. Several alternative routes have emerged based on molecules that self-

organize in a programmed way [120-125]. The design of such biomimetic systems requires 

the understanding of the relationship between the molecular structure and the self-assembly 

process of the nanostructures.  
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In a fundamental or classical crystallization process, the process starts from 

nucleation clusters, usually consisting of ions involved in the formation of inorganic 

minerals, from which the primary nanoparticles are nucleated leading to the formation of the 

smallest crystalline units capable of further growth [102]. These crystalline units grow 

further by ion attachment and unit cell replication, resulting in a final macroscopic single 

crystal. However, the complex crystal structures formed in nature are often called as non-

classical crystallization, where they are developed through more complicated mesoscale 

transformations [71] involving organic templates. In these processes, nanocrystals are also 

formed, but due to face-specific information of the template surfaces they self-assemble in a 

controlled way. In the simplest case, oriented attachment could occur leading to single 

crystal, due to the different surface energies of the surfaces and consequent decrease of high 

energy surfaces by crystallographic fusion. However, nature made it even complex by 

encoding the surfaces with a variety of protein molecules [111, 112]. Face specific 

interactions between nanocrystalline building units is believed to lead to directed self-

assembly, resulting in a so called mesocrystal. These developing new concepts are essential 

to understanding the biomineralization process in detail and hence to self-assemble materials 

from crystalline nanoparticles through a bottom-up approach.  

2.7.4. Hierarchical organization of block copolymers 

By integrating environmentally sensitive polymer blocks into amphiphilic block 

copolymers, self assembled supramolecular structures that exhibit stimuli or environmentally 

responsive properties can be obtained [1, 2]. Self-assembly is a powerful tool in assembling 

and forming structures with nanoscale dimensions. It refers to reversible processes which can 

be controlled by proper design and conditions of initially ordered components [3].  Figure 
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2.14 illustrates the dimensional evolution of self assembled functional materials. 

Supramolecular structures containing environmentally sensitive bioinspired smart 

copolymers are formed by this process.   

Polymer chemistry has made tremendous progress in controlling the primary structure 

of homo- and heteropolymers as well as the recurring order in the bulk by phase separation 

[126]. Block copolymer are ideal candidates for developing novel nano architectures due to 

their great synthetic accessibility over large dimensions and tunable aspect ratios which 

cannot be achieved by hetero polymers.  

 

Figure 2.14. Potential scenarios to construct hierarchically self-assembled polymeric-
structures. Construction units of different sizes allow a natural selection of different self-
assembled length scales (From [3] ).  
 

The block copolymer self-assembly into different structures can be divided into dilute 

solutions (micelles, cylindrical micelles, and vesicles), lyotropic phases of higher 

concentration, and bulk phases, where each of them contributes for the preparation of various 

interesting materials [127]. Micelle formation is a simple and well-known example of the 
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self-assembly of polymers. The block copolymers self-assemble to a micelle with defined 

size and shape. The size of the micelle depends on the length of the polymer blocks [128]. 

Block copolymers with large soluble blocks form spherical micelles preferentially. Figure 

2.15a [129], shows the spherical micelles of PS-PI system, whereas cylindrical micelles or 

vesicles result from smaller soluble blocks. Cylindrical micelles, for example, of 

poly(butadiene-b-ethyleneoxide (PB-PEO); Figure 2.15b [130] may have lengths of several 

micrometers.
 
Block copolymer vesicles can be formed over several length scales with 

diameters from 100 nm up to several micrometers. Further, polymersomes are mechanically 

and thermodynamically much more stable
 
than the well investigated lipid vesicles, and hence 

good for the encapsulation and the release of substances. Vesicles of poly(2-vinylpyridine-b-

ethylene oxide) (P2VPPEO) of length scales around 10 mm (giant vesicles) form, (Figure 

2.15 c) [131] into which, for example, fluorescent dyes can be encapsulated.  

 

Figure 2.15. Electron micrographs of (a) spherical micelles (PS-PI/DMF), [129] (b) 
cylindrical micelles (PB-PEO/water), [130] (c) vesicles (P2VP-PEO/water) [131] 
 

Lyotropic liquid crystalline phases are formed with higher concentrations of the block 

copolymers [132]. The stability of these structures can strongly depend on temperature. In 

aqueous solutions poly-(ethylene oxide) (PEO) is usually the soluble block, but increase in 

temperature reduces the solubility of the PEO block, resulting in phase transitions. The 



 46

lyotropic phase behavior of block copolymers of poly(ethylene oxide-b-propylene oxide-b-

ethylene oxide) (PEO-PPO-PEO),  Pluronic® was well studied [132].
 
Lyotropic phases can be 

applied to the preparation of porous materials while cubic micellar phases are also used in gel 

electrophoresis to separate proteins and oligonucleotides. In a similar study with pluronic 

based pentablock copolymers studied by Determan et al., it has been shown that the 

pentablocks self assemble and form various morphologies [120, 121]. 

                     

Figure 2.16. a) Self-assembly of PDEAEM pentablock copolymer [133] b) phase diagram of 
the pentablock copolymer self-assembly from molecular simulation [134]. 
 

Block copolymers in a micro-phase-separated state are also present in bulk. A variety 

of copolymer morphologies such as lamellae (LAM), hexagonally ordered cylinders (HEX), 

arrays of spherical microdomains (BCC, FCC), modulated (MLAM) and perforated layers 

(PLAM), ordered bicontinuous structures such as the gyroid, as well as the related inverse 

structures can be obtained [1]. Morphology mainly depends on the relative block length. For 

example, both blocks are of identical length, lamellar structures are formed. The stability 

ranges of the different structures can be represented in a phase diagram as shown in Figure 

2.17 for the system poly-(styrene-b-isoprene) (PS-PI) [135]. The periodic length scale of the 

super lattice can be adjusted over the whole mesoscopic range (from a few up to several 

Self-assembled 
solid

Bulk polymer a b
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hundred nanometers) by varying the degree of polymerization. Particulate structures such as 

spherical and cylindrical micelles as well as vesicles form in dilute solution. Spherical 

micelles with cubic packing (FCC, BCC), hexagonally packed cylindrical micelles (HEX), 

and lamellar phases (LAM) form can result in the formation of complicated super lattices.  

 

Figure 2.17. Experimentally determined phase diagram of PS-PI [135] 

From natural structures, it has been seen that several hierarchies of self-organization 

are often needed  to realize a functional system [136, 137]. Collagen, a connective tissue 

protein, which consists of helices which form triple helix structures with excellent 

mechanical properties is an example. As mentioned earlier shown in Figure 1, several 

hierarchy levels can also be distinguished for block copolymers, their characteristic lengths 

ranging from 1 nm up to 10 µm [3]. The different self-organizing structures of surfactants 

and block copolymers are shown in Figure 2.18 [1].  

Molecular self-assembly is a powerful tool in synthesizing architectures with 

complementary regions that recognize each other, interlock, and automatically or by means 

of external assistance, organize into larger entities held together by non-covalent interactions. 
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Although nature has many biologically complex structures, the biological evolution is limited 

by specific environmental situations, and the structural advances are selected in the need of 

an immediate evolutionary benefit. On the other hand, synthetic organic and supramolecular 

chemistry can rely on a much wider pool of organic interactions, program lock-and key 

situations, and thus could potentially design structures  with novel properties. High degree of 

structure control can be achieved by block copolymers by proper design of the block 

copolymer [138]. The block lengths can be successfully controlled by living polymerization 

and hence the aggregation number and thus the size of the micelle or the long range order can 

be controlled [139, 140]. Further depending on the volume fraction of the block copolymer 

there is formation of well-defined superlattices in lyotropic phases or in the solid phase.  

 

Figure 2.18. Various structure hierarchies in block copolymer systems [1] 

2.7.5. Biomimetic mineralization using polymers as templates 

Many explorations are underway to find novel bio-inspired strategies to create 

organized nanostructures spanning several length scales with the same kind of specialization 

and complexity that exists in nature [1, 141]. Biominerals in nature are usually produced in 
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the presence of an organic template that controls the inorganic crystallization, growth and 

self assembly. By utilizing a suitable nanoparticle self-assembly process these materials can 

be recreated successfully resulting in organic-inorganic hybrid structures with complex form 

and hierarchical structural order. Various techniques are currently been researched on 

biomimentic synthesis such as face-selective coding of nanoparticle surfaces by additives for 

controlled self-assembly, producing single crystals and nanoparticle arrays by mesoscale 

self-assembly, balancing aggregation and crystallization and transforming and reorganizing 

of pre-formed nanoparticle building blocks [142]. Recent advances in the field show the 

feasibility of designed artificial organic templates for mimicking natural mineralization 

processes [143]. Figure 2.19 shows the natural templating process of bone formation. 

 

 

Figure 2.19. Recreate natural bone synthesis with synthetic polymers functionalized to 
mimic the mineral-nucleating protein in bone [143] 
 

Here a functional polymer template can be directly used for the mineralization 

synthesis of novel inorganic nano architectures. Further water-soluble polymers are used as 

crystal modifiers for controlled crystallization in designing inorganic materials [144]. The 

use of a soluble polymer matrix is intriguing since they are responsible for the crystal 

morphogenesis and modification in different unexplored ways whereas the insoluble 
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inorganic matrix defines the crystallization compartment. Although several attempts are 

currently underway in recreating natural structures, the perfection of mimicking the natural 

synthesis is still not possible to attain.  

Most of the self-assembling processes known in biomineralization concern organic 

molecules which are often biopolymers that form the structural or insoluble matrix. The role 

of the organic scaffold is either to act as a scaffold or template for the mineralization process 

as collagen does in bones, amelogenin in tooth enamel, and surface layer proteins in bacterial 

cell walls or confines the mineralization space such as in vesicles like cocoliths, diatoms and 

magnetotactic bacteria. Apart from the insoluble organic matrix, there is also soluble organic 

matrix. The task of this soluble organic matrix is to control nucleation, growth, orientation, 

and polymorphs of the inorganic compounds. This is further proven by the example, where 

extraction of soluble protein from the aragonite layer of nacre and then applying them for 

subsequent CaCO3 crystallization resulted in aragonite precipitation rather than the calcite 

precipitation [107, 145]. The function of the insoluble organic matrix is difficult to 

understand, as it usually consists of many biopolymers in small quantities. Thus an artificial 

organic matrix consisting both soluble and insoluble molecules could be an efficient way to 

understand the function of the scaffold as well to replicate the process.  

2.7.5.1. Block copolymers and other polymeric materials in biomineralization 

Several block copolymers were used in biomineralization for nanoparticle synthesis. 

Double hydrophilic block copolymers (DHBC) were used in biomimetic materials design.  

The polymers are mostly bioinspired polymers where one polymer interacts with the 

inorganic and the other help to promote solubilization, similar to protein interaction with 

mineral (acidic and basic units of amino acids) [146]. Solvating block is mostly PEO block 
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and the binding block contains various chemical pattererns showing affinity to mineral. 

Several nanocrystals Pd, Pt [147-149], Au [147-150], Ag [151], lanthanum hydroxide [152] 

and several inorganic particles, CaCO3 [144, 153-158], BaCO3, PbCO3, MnCO3 [143], 

chiral organic crystals [159] were synthesized for DHBC polymeric templates. Recently 

Drew and coworkers have demonstrated the ability of Pluronic based pentablock copolymer 

self-assembling nanostructures as potential templates for inorganic nanocomposites synthesis 

[160]. 

Synthesis of mesocrystals is also followed by a biomimetic approach. Hexaganol 

prismatic seed crystal of fluoroapatite is a most investigated mesocrystal formed in a gelatin 

gel and further grows to spherical particles through dumbbell intermediates [161, 162]. The 

internal structure of the hexagonal seeds revealed a radical pattern with a superstructure 

periodicity of 10 nm. Although it has been suggested that the dipole moment be perfect for 

their perfect alignment, the process of self-assembly from the nanoparticle building units is 

still under study. Other studies of biopolymeric matrix crystal growth include agar, gelatin 

and pectin gels where triclinic crystals (H3BO3 and K2Cr2O7) were formed in curved and 

helical branch shapes [163, 164], Calcite structure with high quality and periodic order was 

synthesized using poly(acrylic acid) and a substrate of cholesterol bearing pullulans [165]. 

Copper oxalates are another example of mesocrystals where the nanoparticles were arranged 

in terms of morphology of hydroxyl-methylpropylcellulose (HPMC) polymer [166]. The 

nucleation, nanocrystal growth and aggregation by face selective interaction are influenced 

by the polymer.  

By using surfactant-mediated nanoparticle self-assembly BaCrO4 and BaSO4 

nanoparticles were synthesized in reversed micelles, where a surfactant coated self-
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assembling structures were obtained [167]. Both nanoparticle crystallization and surfactant 

interactions led to self-assembly of one or two dimensional structures. Inverse micelles for 

water induced mesoscale transformation of amorphous calcium carbonate nanoparticles.  In 

another approach, a polymer controlled crystallization method was used where the structure 

is formed in synergistic effect of polymer and inorganic interaction, and a subsequent 

formation of the crystal structure is obtained. Unusual superstructures of helical CaCO3, 

complex spherical BaCO3, hollow octacalcium phosphate and BaCrO4 fiber bundles were 

formed by using polyelectrolyes such as polyacrylic acid or polyaspartic acid as crystal 

growth modifiers [159, 168, 169]. Other polyelectrolytes used in biomimetic synthesis 

include, polyacrylamid and carboxyl-functionalized polyacrylamides in producing hexoganal 

ringlike ZnO structures [170] and a poly(allylamine hydrochloride)-poly(sodium 4-

styrenesulfonate) for the hydroxyapatite composite shells formation [171]. 

Dendrimers, foldamers, graft polymers and supramolecular functional polymers are 

other polymeric materials that are widely used in biomimetic mineral synthesis. Dendrimers 

were widely used in the synthesis of CaCO3 crystals [172, 173]. It has been shown that 

vaterite particles with particles sizes in the range of 2.3-5.5 nm were obtained using 

dentrimeric templates [173]. Foldamers were used in the synthesis of calcite crystals, where 

elongated calcite crystals with newly expressed crystal faces were formed [174]. Recently 

poly(ethylene oxide) modified graft polymers were used in the crystals synthesis of ZnO and 

CaCO3 [175, 176]. 

2.7.5.2. Biopolymers in biomineralization 

Template-controlled crystallization is a recent method in biomineralization. The aim 

of this templating is to develop a synthetic approach to mimic a specific part of a 
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biomineralization process, starting from the molecular level. In this respect, self-assembled 

peptide amphiphiles combined with hydroxyapatite crystallization to mimic bone, 

copolypeptides to mimic properties of silicatein in SiO2 mineralization are important 

examples, where block copolypeptides of poly(L-cystine30-L-lysine200) were used [177]. 

Recently Deming and coworkers have reported the synthesis of hexagonal silical platelets 

using poly(lysine) polypeptide templates [44]. Biotemplates with well-defined chemical and 

structural properties have been recently used in synthesizing precise controlled size and 

shape material nanostructures. Nanostructures of Ag, Ni and Co nanowires, CdS, PbS and 

ZnS nanostructures are some of the structures that has been synthesized using these 

biomimetic approach [178, 179]. Biopolymer directed mineralization were also used in the 

synthesis of Au and ZnS, where organized nanostructures with different morphologies and 

dimensionalities were obtained with DNA [180-183], virus [184] and peptides [179]. Several 

mineral specific binding peptides were identified by phage display and other methods for 

biomineralization [101, 185, 186]. A collagen binding peptide, identified from osteopontin 

shown to induce bone mineralization [187]. Recently Cheng et al showed that an aspartic 

acid rich 14 aminoacid peptide sequence has the affinity to nucleate and enhance 

hydroxyapatite invitro [186]. Self-assembled bacterial superstructures can be used to 

template superstructures of magnetite, calcium sulfide or preformed silica particles by 

swelling in the colloidal sols. Similarly, sponge-like gels were used to infiltrate precursors of 

magnetite or titanium dioxide by rapidly loading the gel to perform mineralization [188, 

189]. The structural replication was limited due to the limited loading of precursors. 

Colloidal crystals were also used as templates where gold or ceramic nanoparticles were 

infiltrated into colloidal crystals and replicas were obtained [190, 191]. These examples show 
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that soft organic templates could be used for templating inorganic structures and could be a 

potential method for future materials design. 

2.8. Biomedical applications of stimuli responsive polymers 

2.8.1. Drug depot 

A successful drug carrier system needs to demonstrate optimal drug loading and 

release properties, long shelf-life and low toxicity. Colloidal systems, such as micellar 

solutions, vesicle and liquid crystal dispersions, as well as nanoparticle dispersions consisting 

of small particles of 10 - 400 nm diameter show great promise as carriers for drug delivery 

systems [192, 193]. Development of efficient drug delivery systems with synthetic polymeric 

materials is currently the focus of intense academic and industrial research [192-194]. In 

particular, polymeric controlled drug release in response to environmental stimuli is an 

essential step towards the development of a self regulated drug delivery formulation [194, 

195]. Smart block copolymers with amphiphilic character capable of forming micro- or nano- 

sized micelles, have been shown to be effective for controlled drug delivery applications, due 

to the high loading capacity of the micelle structure [195].  

Recently, thermo responsive hydrogels that are not chemically crosslinked, but are 

formed by entanglement of polymer micelles, have attracted much attention, as they are 

biodegradable, precluding invasive removal procedures of the polymeric material unlike 

chemically crosslinked hydrogels [153-156]. Thermoreversible polymers such as PPO and 

NiPAAm are widely used in these systems [196]. The unique nature of these materials are 

they are low viscosity liquids at low temperatures and can form a physically crosslinked gel 

phase around physiological temperatures. This will allow the drug loaded in liquid form 

followed by in situ hydrogel formation. In vivo, the ingress of water into the hydrogel results 
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in dissolution or degradation of the hydrogel matrix, resulting in sustained release of drug. 

Hydrogels as drug delivery systems are very promising if combined with the technique of 

molecular imprinting [196]. They are used to regulate drug release in reservoir-based systems 

or as carriers in swelling-controlled release devices. On the forefront of controlled drug 

delivery, hydrogels, as environ-intelligent and stimuli-sensitive gel systems, can modulate 

drug release in response to pH, temperature, ionic strength, electric field, or specific analyte 

concentration differences. Release can be designed to occur within specific areas of the body. 

Among the stimuli, pH is the most important one due to different physiological pH has been 

seen around the body [197].  Depending on the pKa values suitable polymer hydrogel could 

be chosen for pH-stimulated release. 

Several stimuli-responsive hydrogels are used as drug carriers. Hydrogels made with 

poly anions crosslinked with azoaromatric cross linkers are used in colon specific drug 

delivery (Figure 2.20) [198]. Other examples include boronic acid hydrogels to impart 

glucose sensitive insulin release, poly(amidoamine) based polymer hydrogels for endosomal 

drug delivery and poly (acrylic acid) based hydrogels for oral insulin delivery [198].  
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Figure 2.20. Schematic illustration of oral colon-specific drug delivery using biodegradable 
and pH-sensitive hydrogels [198] 
 

Other hydrogels including a glucose sensitive hydrogel based on novel phenyl 

boronic acid monomers has been developed.  The LCST of N-Isoporopylacrylamide 

hydrogels incorporating 5-20% of the phenyl boronic acid monomer could be varied between 

22 and 34oC by increasing the concentration of glucose in solution.  This material has great 

potential as a self regulated, glucose-sensitive device that may aid in the treatment of 

diabetes [35, 199, 200]. Recently, biohybrid hydrogels that show environmentally responsive 

properties have been designed.  Glucose sensitive gels have been prepared which function by 

entrapping glucose oxidase, an enzyme that reacts with glucose to form gluconic acid, within 

a polycationic hydrogel. When glucose concentrations increase in the presence of the 

hydrogel, the gluconic acid produced lowers the pH in the microenvironment of the hydrogel 

[201].  This in turn causes swelling of the hydrogel network and entrapped insulin is 

released.  Another attractive example of a biohybrid hydrogel is a hydrogel with calcium 

binding protein that undergoes large conformational change upon binding to calcium ions 

thereby showing calcium ion stimuli responsiveness [202]. The detailed mechanism of this 

hydrogel swelling is shown in Figure 2.21. The potential application of this hydrogel could 

be as microactuators in responsive drug delivery systems [202].  

The drug release is accomplished only when the polymer swells. One of the most 

remarkable, and useful, features of a polymer's swelling ability manifests itself when that 

swelling can be triggered by a change in the environment surrounding the delivery system. 

Depending upon the polymer, the environmental change can involve pH, temperature, or 

ionic strength, and the system can either shrink or swell upon a change in any of these 
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environmental factors. For most of these polymers, the structural changes are reversible and 

repeatable upon additional changes in the external environment.  

 

 

Figure 2.21. Genetically engineered biohybrid hydrogel and swelling of stimuli-responsive 
hydrogel. Calmodulin (CaM) can have three different conformations a) dumbbell (spheres represent 
four bound Ca2+ ions and are larger for emphasis) b) CaM with bound phenothiazinebound (Ca2+ and 
ball-and-stick structure for phenothiazine shown) c) native confirmation in the absence of Ca2+ d) 
Hydrogel swelling mechanism in response to ethylene glycol tetraacetic acid (EGTA) [202]. 
 

2.8.2. Injectable photocrosslinkable hydrogels for post traumatic arthritis cartilage 

tissue healing 

Post traumatic arthritis develop after a fracture of torn ligament, due to the ligaments 

or supporting materials become unstable at the joint of injury [203, 204]. As a result 

increased stress at the joint cartilage leads to traumatic arthritis or osteoarthritis. Hence its 

important to have a supporting material during the fracture healing process. The supporting 

material should be structurally resemble the cartilage tissue, should be biocompatible, 
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integrate into the surrounding tissues and the ability to adopt according to physiological 

requirements.  

Injectable hydrogels have attracted scientists due to their minimally invasive nature in 

various biomedical applications [51, 205]. Among which tissue engineering applications with 

photocross linkable gels are currently under investigation. In situ thermoresponsive 

hydrogels with additional covalent crosslinking through photopolymerization will have 

improved mechanical properties and are ideal for tissue engineering applications. Hubbell 

and coworkers introduced in situ photopolymerizable hydrogel networks, in which 

poly(ethylene glycol) (PEG) was used as central block, with side blocks with either acrylates 

or oligo (α-hydroxy acids) [50], Figure 2.8.2.1 represents some of the in situ 

photocrosslinkable polymer structures.  

Several photocrosslinking hydrogel structures are under investigation for tissue 

engineering applications. The crosslinking hydrogel networks are created by insitu 

polymerization using UV light and photoinitiator to create free radical to initiate 

polymerization and hence the crosslinked structures [206]. Recently, the advances in 

photopolymerizable hydrogels for tissue engineering applications were summarized by 

Nguyen and West [55]. More recently, photopolymerizable hydrogels including hyper-

branched methacrylated polyglycerol [207], phosphoester-based polymers [208, 209] and 

lactic and caproic acid segments containing copolymer  [210] were reported for the use in 

tissue engineering applications.  PFF (phenol-furfural) which is known to its biocompatibility 

and biodegradability could be photocrosslinked with different photoinitiator systems [211, 

212].  
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The major design considerations in photocrosslinking are the UV wavelength, 

intensity, photoinitiator, and amount of crosslinking groups. UV lights of various 

wavelengths have been tested for biocompatibility and for its potential in polymerizing and 

crosslinking chemical structures. Further, the concentration of photoinitiator, the light 

intensity and the reactive double bonds in the formulations were optimized to have effective  
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Figure 2.8.21 (A) PEG with oligo (α-hydroxy acids) and acrylate side groups, (B) acrylated 
4-arm PEG, (C) star-shaped PEG-thioacetate, (D) dex-HEMA-MAA, (E) dex-HEMA-
DMAEMA, (F) dex-lactate, (G) dex-MA (dextran-maleic acid), (H) eight-arm PEG-PLA12-
MA start block copolymers, (I) PEG-MA/PLAn star block copolymers (From [205] )  
polymerization rate and good cytocompatibility [213]. The mechanical properties could be 

further increased by multimacromer polymerization, where interdigitating crosslinking 

networks could be created. This high crosslinking network will increase the mechanical 

properties of the gels, which will closely comparable to that of cartilage [213, 214].  

2.8.3. Non-viral vectors for gene delivery 

Conjugating a cell specific ligand to a drug loaded polyplex or micelle can enhance 

the targeted delivery of genes [29, 215]. The polymer-ligand complex has extraordinary 

potential as non-viral drug delivery vectors. Cationic polymers and polyelectrolytes have 

recently attracted as promising candidates for non-viral delivery vehicles due to their ability 

to self assemble and form complexes with plasmid DNA [216]. They are suitable for gene 

delivery systems when they are attached to ligands to mediate cell specific recognition and 

internalization and also due to their biocompatibility. Cancer treatment will be ideal with 

gene therapy once a safe, efficient synthetic gene delivery vector system is developed [216].  

Suicide gene therapy for cancer employs a gene delivery vector to deliver DNA to cancer 

cells.   

Successful gene therapy largely depends on the vector type that allows selective and 

efficient gene delivery to target cells with minimal toxicity. Nonviral vectors are much safer 

and cheaper, can be produced easily in large quantities, and have higher genetic material 

carrying capacity [216]. However, they are generally less efficient in delivering DNA and 

initiating gene expression as compared to viral vectors, particularly when used in vivo. As 

nonviral vectors, polycations may work well for efficient cell uptake and endosomal escape, 
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because they do form compact and smaller complexes with plasmid DNA and carry amine 

groups, which give positive charge and buffering ability that allows safe escape from 

endosome/lysosome. Figure 2.22 [216] illustrates some of the potential candidates for 

polymer non-viral vectors.  

 

Figure 2.22. Polymer structures of some canditates for non-viral gene therapy. [216] 

However, this is a disadvantage in the following step, which is releasing the plasmid 

DNA within the cytosol. In order to initiate transcription and enhance gene expression, the 

polymer/plasmid complex should dissociate after releasing from endosome safely and 

effectively. There are also other limitations with some of the polycationic carriers, for 

example, aggregation, toxicity, etc. Intelligent polymers, also called as 'stimuli responsive 

polymers', have a great potential as nonviral vectors to obtain site-, timing-, and duration 

period-specific gene expression, which is already exhibited in recent studies that are 

illustrated in Figure 22 [216]. In addition the ability of cationic peptide sequences to complex 

DNA and oligonucleotides offers prospects for the development of non-viral vectors for gene 

delivery, based on synthetic polymeric hybrid materials. Figure 2.23 is a simplified view of 

cellular uptake of polycation vectors complexed with DNA.  
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The use of targeting ligands attached to the cationic polymers can allow for targeted 

uptake by selective cells through receptor-mediated endocytosis. These targeting ligands for 

tumors include epithelial growth factor (EGF), folate, transferrin etc. [216]. Since it has been 

found that epithelial growth factor (EGF) receptor is over expressed in many human tumors 

[215, 216], as an initial approach we can functionalize cationic stimuli responsive 

copolymers with natural EGF ligand for targeting tumor. 

 

Figure 2.23.  Cellular uptake path of polyplexes [1] 

Several stimuli responsive smart copolymers and their potential applications in 

biomineralization and biomedical applications have been presented in this chapter. Several 

stimuli responsive block copolymers have been synthesized that have multi-responsive 

properties [2, 3]. Most of the systems are limited to diblock and triblock copolymer systems 

due to the complex self-assembly and phase behavior of these materials [3, 4]. There are few 

research studies on more complex systems such as pentablock copolymers with multi-stimuli 

responsive properties that can exhibit a rich phase behavior [133] and can serve as 
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hierarchically assembling templates for biomineralization. In this work we are mainly 

focusing on Pluronic® based pentablock polymers with pH, temperature and glucose 

responsive properties. The self-assembly and unique phase properties of these polymers 

make them potential candidates for several novel applications. Utilizing the self-assembling 

properties of these polymers for bottom-up approach for materials design similar to nature is 

a novel application in this respect. This approach of recreating nature materials from organic 

synthetic polymers also open up the future possibility of using synthetic biopolymers and 

their self-assembling properties for biomineralization as well. Furthermore, from previous 

studies it has been shown that a cationic Pluronic® based pentablock copolymer exhibit  

excellent biocompatibility [133], which provides the motivation to develop a family of self-

regulating drug delivery formulations based on these systems. Finally, by tailoring these 

materials further, they can be used to develop insitu photocrosslinking hydrogel networks 

and to specifically target cancer cells in gene delivery which are also explored in this thesis 

work.   
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CHAPTER 3.  RESEARCH OBJECTIVES 
 
3.1. Introduction  

The main goal of this thesis work is to develop novel smart block copolymers that are 

responsive to temperature as well as to pH or glucose, which can be used for 

biomineralization and biomedical applications. Self-assembling, thermo reversible ionic 

block copolymers have been developed for use as templates for bottom-up synthesis of 

materials mimicking natural processes. Bottom-up synthesis of macroscale ordered 

nanocomposites from self-assembling hierarchically ordered polymer templates is a novel 

contribution to materials design. Future directions of this work will involve the development 

of biopolymers and synthetic polypeptides as templates for this bottom-up approach to 

materials design. Temperature, pH and glucose responsive pentablock copolymers as well as 

crosslinkable hydrogel networks have also been developed with consideration towards 

injectable glucose-sensitive insulin delivery applications, polymer vectors for non-viral gene 

therapy and tissue engineering applications.  

3.2. Specific goals of the research  

3.2.1. Develop block copolymer templates for biomineralization 

• Develop novel ionic pentablock copolymers and block copolymers with mineral binding 

peptide conjugates with pH and temperature sensitive properties. Atom transfer radical 

polymerization (ATRP) is used as the synthesis method, yielding low polydispersity and 

controlled copolymer architecture.  

• Characterize the aqueous phase behavior of these polymers using NMR, DSC,             

SAXS, SANS and dynamic light scattering. 

•  Investigate the potential of this family of ionic copolymers as templates for 
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      biomineralization. A novel synthesis route for materials design by using the self-  

      assembling and thermoreversible properties of these polymers for a bottom-up  

      approach for nanocomposite synthesis is made possible.  

• Characterize the self-assembled organic-inorganic nanocomposite superstructure by small 

angle scattering, XRD, NMR, TGA, rheology and electron microscopy methods. 

This is a collaborative project and the work is presented in Chapters 4, 5 and 6. This work 

will serve as a good platform for future directions of this project, where the focus will be on 

the development of artificial polypeptide scaffolds for templated mineralization   

3.2.2. Applications of these smart block copolymers in the biomedical field 

• Develop novel glucose sensitive pentablock copolymers. Investigate the potential of these 

pentablock copolymers for future in vitro dynamic insulin release studies from these 

copolymer depot formulations. This work is presented in Chapter 7.      

• Develop thermoresponsive injectable photocrosslinking hydrogles for posttraumatic 

cartilage repair. This work is presented in Chapter 8.  

The intent of this work is to provide a basic platform for future design of novel 

nanocomposite materials, that will have excellent properties similar to that of nature, from a 

bottom-up approach using novel self-assembling synthetic polymer templates as well as 

further tailoring of these family of block copolymers to contribute to biomedical applications 

such as drug delivery, non-viral gene therapy and tissue engineering.  
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CHAPTER 4. SYNTHESIS AND CHARACTERIZATION OF SELF-

ASSEMBLED BLOCK COPOLYMER TEMPLATED CALCIUM 

PHOSPHATE NANOCOMPOSITE GELS 

(This chapter is based on collaborative work published in Journal of Materials Chemistry 

[19] and has been modified to focus mainly on my contributions to this work.) 

D. Enlowa , A. Rawalb, 
 

M. Kanapathipillaic , M. Akinca, K. Schmidt-Rohrb, C.T.Lod, P. 

Thiyagarajane, Surya K. Mallapragadac 

 
4.1. Abstract 
 

Bioinspired materials are of particular interest because of their possible implications 

in biomedical, and in the nano-manufacturing field.  The study of the mechanisms involved 

in bonelike mineral growth on organic polymer templates is an emerging field in this respect. 

Amphiphilic block copolymers which self assemble to form macroscopic gels in response to 

pH and temperature are ideal candidates as hierarchically assembling templates for 

biomimetic materials research. In this study, amphiphilic block copolymer micelles in 

aqueous solutions were used as templates for the growth of calcium phosphate nanocrystals 

and subsequently allowed to self-assemble to form thermoreversible nanocomposite gels at 

low pH conditions. Pluronic® F127 copolymers and poly(N, N-(diethylamino ethyl 

methacrylate) modified Pluronic® F127 cationic pentablock copolymers with pka ~ 7.4 were 

used as templates in this study. Small angle X-ray scattering (SAXS) measurements along 

with X-ray diffraction (XRD), Nuclear magnetic resonance (NMR), Transmission electron 

microscopy (TEM) experiments were performed to study the ordered polymer-based 

nanocomposite superstructure. SAXS measurements showed distinct peaks with Q/Q* (Q* is 
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the first order diffraction peak position of 3 : 4 : 8 : 11 : 12 corresponding to a face 

centered cubic structure (FCC) of Pluronic® F127 polymer nanocomposite gel structures. The 

pentablock copolymer templates on the other hand, showed broader scattering peaks. But the 

trends resembled the Pluronic® SAXS patterns indicating a poorly ordered FCC structure. 

Further the scattering patterns and the length scales for both block copolymer nanocomposite 

structures indicated that the calcium phosphate precipitated on and interacted with the 

polymer micelles forming an organized network of ~20 nm diameter nanospheres which is in 

agreement with solid state NMR findings. To conclude, successful mineralization of calcium 

phosphate was demonstrated by a novel polymer-inorganic self-assembly synthesis scheme 

similar to that seen in nature.  

_____________________________________________ 

aDepartment of Materials Engineering, Iowa State University and Ames Laboratory 
bDepartment of Chemistry, Iowa State University and Ames Laboratory 
cDepartment of Chemical Engineering, Iowa State University and Ames Laboratory 
dAdvanced Photon Source, Argonne National Laboratory 
eIntense Pulsed Neutron Source, Argonne National Laboratory 

 
4.2. Introduction 
 

Design of new materials synthesis for various engineering applications has recently 

been based on mimicking natural structures and processes due to their intriguing structural 

and mechanical properties. Bones, the dentine, eggshells and the shells of marine mollusks 

are some examples of highly complex organic–inorganic nanocomposite materials produced 

in nature by self-assembly. These naturally occurring materials contain different components 

in defined hierarchical structures, and over several length scales [1], where both the 

composition and the structure are responsible for the micro and macroscopic properties. 
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Novel biomimetic approaches offer the possibility not only to recreate these natural 

biomaterials, but also provide the flexibility to control the architecture (the structure) and the 

chemistry (the composition) of these materials design [2]. 

In recent years there has been considerable progress in the use of block copolymers as 

templates for the controlled synthesis of nano particles and mesoporous inorganic materials 

[3]. The template has the advantage that its size and shape can be reproducibly controlled, in 

contrast to the desired material, where such control is much more difficult. In designing new 

materials, Nature provides many exciting sources of ideas and inspiration.  The study of the 

mechanisms and factors of bonelike mineral growth on organic polymer templates has great 

potential in the fields of biomimetics and biomineralization. In nature, bones form first as self 

assembling matrices of collagen fibrils. By forming bundles of triple helix fibers and larger 

assemblies of layers or lamellae, the collagen protein  acts as the guide for hydroxyapatite 

precipitation[4]. Hydroxyapatite (stable form of calcium phosphate at physiological pH) 

forms on the collagen surfaces and gives the bone its rigidity and shape.   

Several templating methods have been developed to mimic the natural process of 

calcium phosphate nanocrystal formation. Muller et al investigated biomimetic apatite 

formation on chemically modified cellulose templates [5], where directed calcium phosphate 

precipitation on the surfaces of the cellulose fibers was observed with an initial diameter of 

about 20 µm. These coated fibers reached a final diameter of over 90 µm.   Similarly, Song et 

al developed a procedure using poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel 

scaffolds [6, 7].  In a similar study, Song et al were able to precipitate calcium phosphate 

onto the surface of hydrogel strips.  In this case, urea was used to slowly raise the solution 

pH and induce precipitation of calcium phosphate on the carboxylate-rich pHEMA surfaces.  
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The result was a poorly crystalline ~5 µm thick coating of hydroxyapatite over the surface of 

the hydrogel strip. A bimodal crystallite size distribution was observed with 15-20 nm 

primary crystallites and larger “cluster-like” domains of 200-400 nm. On a smaller scale, 

Rusu et al used chitosan as a natural biopolymer matrix for their hydroxyapatite nanoparticle 

composites [8].  By mixing calcium chloride and sodium dihydrogen phosphate with a 

solution of chitosan in water, they were able to show self-assembly and size control as the 

hydroxyapatite crystallites formed inside the chitosan matrix.  Recently Tanashi et al. 

showed, based on studies on self-assembled monolayers, that ionic templates are better for 

calcium phosphate precipitation [9]. Further Zhao et al. recently reported using F127 polymer 

templates for hydroxyapatite crystal synthesis, where rod like particles of 100- 200 nm size 

were obtained by co-precipitation of different concentration of the polymer-inorganic 

mixtures at high temperatures[10].  

While all of these studies produce biomimetic polymer-inorganic composites, the 

polymer-inorganic interaction is limited for the most part to the surface of the polymer.  By 

using concentrated gel forming polymers with similar approach, it should be possible to 

precipitate calcium phosphate throughout a network of agglomerated polymer nanospheres. 

Self assembling smart copolymers could be used as nanostructure templates to understand 

how calcium phosphate precipitates onto self-assembling synthetic polymer micelles [11]. By 

understanding how calcium phosphate precipitates onto self-assembling synthetic polymer 

micelles, we can try to mimic the natural bone like materials in a bottom-up approach. In this 

study we have used Pluronic® F127 copolymers and Poly (N, N-(diethylamino) ethyl 

methacrylate) modified Pluronic® F127 cationic pentablock copolymers with pka ~ 7.4 as our 

polymer templates.  



 83

The phase behavior of polyethylene oxide (PEO) and polypropylene oxide (PPO) 

block copolymers, commercially known as Pluronic® or Poloxamer®, have been extensively 

studied over the past decade [12]. Both PEO and PPO blocks are water soluble at low 

temperatures (<5 °C) and concentrated fluid dispersions are easily created. The PPO block 

becomes increasingly dehydrated and the polymers self-associate into micellar aggregates 

above room temperature due to their lower critical solution temperature (LCST) 

characteristics. This transition is fully reversible on repeated heating and cooling. At large 

polymer concentrations, the spherical micelles pack into micelle cubic crystals, and the 

Pluronic® F127 is known to form cubic structures of spherical micelles with a solid PPO core 

and a hydrated PEO corona [13]. We use this model system in our work due to its 

thermoreversible transition and its extensively characterized solution behavior [12], [13], and 

[14]. 

Previously in our group, an amphiphilic polycationic pentablock copolymer, poly(2-

diethylaminoethyl-methylmethacrylate)-poly(ethyleneoxide)-poly(propyleneoxide)-

poly(ethyleneoxide)-poly(2-diethylaminoethyl-methylmethacrylate)PDEAEM25-PEO100-

PPO65-PEO100-PDEAEM25) was synthesized by atom transfer radical polymerization [15]. 

This smart copolymer was mainly designed to exhibit thermoreversible gelation, slower 

dissolution compared to Pluronic® gels [23], as well as to exhibit pH dependent solubility 

around physiological pH due to its pKa value.  

While previous studies were limited to calcium phosphate-polymer interactions on the 

surface of a bulk polymer, or fractions of a micron agglomerates of nanocomposites from 

solution, these polymers make it possible to precipitate calcium phosphate in the interstitial 

spaces between and on the surface of the concentrated spherical nanoscale micelles within a 
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macro-sized polymer gel. The temperature dependent transition of these polymers makes it 

possible to combine the polymer and calcium phosphate components in solution, allowing for 

a homogeneous mixture of the micelle spheres and calcium phosphate.  The pH sensitivity of 

the pentablock copolymer at low pH further enhances the organic-inorganic ionic-interaction 

induced precipitation, facilitating high percentage of inorganic phase formation on the 

organic polymer template.  

4.3. Materials and Methods 

4.3.1. Polymer synthesis method and scheme 

Unless otherwise noted, all inorganic chemicals in this study were obtained from 

Fisher Scientific and all organic chemicals were obtained from Sigma Aldrich and are of 

laboratory grade and purity. The cationic pentablock copolymer was synthesized by ATRP as 

previously described [15]. Briefly, first the Pluronic® macroinitiator was prepared as reported 

previously [15]. Then the difunctional Pluronic® macroinitiator (8g, 0.06 mmole), copper 

bromide (0.1885g, 0.06 mmole), and toluene (50 ml), were added to a flask, and the solution 

was stirred well. Then a small amount of copper was added to the reaction to enhance the 

stability of the Cu(I)/Cu(II) equilibrium. After stirring, the flask was sealed with a septum. 

The toluene suspension was purged with Argon for 5 min. DEAEM (0.885 g, 2.1 mmole) 

was added through the septum with a syringe. After stirring the mixture, N-ppm ligand (0.37 

g, 0.12 mmole) was then added via syringe. The mixture was freeze pumped thawed thrice 

and filled with Argon. The reaction was then carried out at 70ºC in an oil bath overnight. The 

reaction mixture was then diluted in methylene chloride and passed through a short alumina 

column to remove copper catalyst and was rotary evaporated. The remaining mixture was 
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precipitated in n-heptane and dried under vacuum.  The synthesis scheme is shown in Figure 

4.1.  

Synthesis scheme: 
 

 
 
 

Figure 4.1. Synthesis scheme of DEAEM pentablock copolymer 
 

The molecular weight and the composition of the polymer is determined by 1HNMR 

and GPC. The thermo reversible gelation of the polymer is determined by simple tube 

inversion technique. After polymer characterization polymer-inorganic nanocomposite 

synthesis was carried out.  

4.3.2. Polymer-inorganic gel nanocomposite synthesis 
Polymer gel nanocomposites were prepared by utilizing the self-assembling 

properties of polymer due to pH and temperature responsiveness. The nanocomposite 
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synthesis was carried out by collaborators in the Akinc laboratory. A brief description of the 

nanocomposite synthesis method developed by Enlow et al. is provided below.  

Precipitation of calcium phosphate into the polymer gel matrix was achieved using 

aqueous solutions of ammonium dihydrogen phosphate (NH4H2PO4), phosphoric acid 

(H3PO4), calcium nitrate (Ca(NO3)2), and the PDEAEM modified pentablock polymer. 

Saturated solution of calcium phosphate with a Ca:P ratio of 1.67 as in stoichiometric 

hydroxyapatite was prepared by mixing 120 mL of a 0.5M solution of ammonium NH4H2PO4 

with 200 mL of a 0.5M Ca(NO3)2 solution.  Later, it was stirred for 30 minutes until a white 

precipitate formed.  The mixture was then centrifuged and the clear supernatant was drawn 

off as the saturated calcium phosphate solution.  This supernatant solution had a pH of 2.95. 

Similarly, a more concentrated solution was prepared by mixing 4.0M solutions of H3PO4 

and Ca(NO3)2.  Sodium hydroxide (NaOH) was added until the solution reached a pH of 1.0 

and a cloudy precipitate formed.  Like the dilute solution described above, the supernatant 

was saved as the saturated calcium phosphate solution at pH=1.0. 

Gel samples were prepared by dissolving 3 grams of the pentablock copolymer 

directly into the saturated calcium phosphate solutions. Control samples of the polymer 

dissolved in deionized water were also prepared.  These mixtures were placed in a 

refrigerator at 3oC and stirred daily until the polymer was completely dissolved.  It took 

usually about 3 to 4 days to get a homogeneous solution.  After dissolving, the samples were 

warmed to room temperature (22oC) and aged for 24 hours to enable the polymer solution to 

form a gel.  During this time, as predicted by the phase behavior of these polymers, the 

calcium phosphate-polymer solution thickened into a viscous nanocomposite gel. 

4.4. Characterization of polymer-gel nanocomposites: 
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Polymer characterization, SAXS measurements along with XRD, TGA, NMR and 

TEM experiments performed by collaborators in the Akinc and Schmidt-Rohr groups were 

used to study the ordered polymer based nanocomposite superstructure. Briefly, NMR and 

GPC measurements were performed to determine the composition and molecular weights of 

the block copolymers. Cryo TEM measurements were used to visualize the nanostructure of 

the copolymer gels and micelles without disrupting the copolymer structure. TGA 

measurements were performed to obtain the percentage of inorganic in the nanocomposite. 

SAXS measurements were used to find the structural order and length scale of polymer gel 

structure. Solid state NMR is a powerful technique that can provide useful information on 

inorganic composition and the size of the nanostructures formed. Cryo TEM, SAXS and 

solid state NMR are complementary techniques to study the structure and size of the 

composites. XRD measurements were used to identify the crystalline phase of the inorganic 

and as well as the size. XRD and solid state NMR are complementary techniques to study the 

inorganic phase.  

For polymer characterization all 1H NMR measurements were performed using a 

Varian VXR400 (400 MHz) spectrometer and the chemical shifts are given in ppm. D2O and 

Chloroform-d were the solvents used for the measurements. Molecular weight and 

polydispersity index (PDI) of the copolymers were estimated using a  PLgel 100, 500, 1x104, 

1x 105 Å at 40° C equipped with a Waters 510 pump, Waters 717 autosampler, a Wyatt 

Optilab DSP refractometer, and a Wyatt Dawn EOS light scattering detector 

Cryo-TEM measurements were performed to visualize the gel nanostructure, as it is 

necessary to retain the copolymer micelle/gel structures. Nanocomposite gel samples were 



 88

prepared as described above, placed onto bulls-eye stub, and frozen at -100°C in the chamber 

of a Reichert Ultracut S ultramicrotome with FCS cryo unit (Mager Scientific Inc., Dexter 

MI).  Using a Diatome cryo-diamond knife (35°-dry; Electron Microscopy Sciences, Ft. 

Washington, PA), sections were made at 100nm and collected onto 300 mesh copper grids 

and placed into a grid transfer unit that was stored in liquid nitrogen until transferred to the 

TEM chamber.  Later, the TEM samples were loaded into a liquid nitrogen cooled Gatan 

cold stage (Model 626DH, Gatan Inc. Pleasanton, CA) and imaged at 100kV in a Phillips 

CM 30 TEM (Phillips Corporation, Schaumburg, IL).   

Liquid copolymer solutions were prepared by placing 50µL of the aqueous sample 

onto formvar coated copper grids for 1 minute, allowing contents to settle.  After getting rid 

of the supernatant, 1% phosphotungstic acid (pH 6.2) was applied for 30 seconds as a 

negative contrast stain.  Later, the grid was wicked and allowed to dry.  Images were 

captured on a JEOL 1200EX II scanning transmission electron microscope (Japan Electron 

Optic Laboratories, Peabody, MA) using a Megaview III digital camera and SIS Pro. 

Software (Soft Imaging Systems Inc., LLC, Lakewood, CO). 

Small angle X-ray scattering (SAXS) experiments were performed on the Pluronic® 

F127 and pentablock copolymer gels with and without the inorganic phase using the 

instrument at the 12-ID beam line at the Advanced Photon Source in Argonne National 

Laboratory to elucidate the gel-nanostructure. A 15 x 15 cm detector was used to measure the 

scattered intensity and the transmitted intensity was measured using a photodiode. Samples 

were held in DSC pans for solids, 2 m from the detector. The beam energy used for the 

analysis is 12 keV (λ = 1.035 Å) and the data were collected at 1 s exposure. The collected 

2D data were corrected, azimuthally averaged, and placed on an absolute scale.  
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X-ray diffraction experiments were used to characterize the structure of the inorganic 

using a theta-theta x-ray diffractometer (Scintag, XGEN-400, and Cupertino, CA).  Wet gel 

XRD samples were prepared and analyzed immediately to minimize drying.  The Cu Kα x-

ray source was set to 45kV and 40mA, and the samples were scanned at a rate of 1o/min over 

a 2θ range of 10o – 70o.  Phase analysis was done using the ICDD database and the Scintag 

DMSNT search / match software. 

Thermal gravimetric analysis (TGA) performed with a Perkin Elmer thermo 

gravimetric analyzer (Perkin Elmer, TGA 7, and Downers Grove IL).  Approximately 40mg 

of the gel sample was placed in a platinum pan and the experiments were performed in a 

flowing air environment.  The program was set to heat up to 100oC and hold at this 

temperature for 10 min, then heat from 100oC to 150oC at a rate of 3.00oC/min, and finally, 

heat from 150oC to 800oC at rate of 10oC/min. 

All NMR experiments were carried out on a Bruker spectrometer (Bruker-Biospin 

DSX400, Rheinstetten, Germany) at 400 MHz for 1H and 162 MHz for 31P nuclei. Direct 

polarization (DP) and cross polarization (CP) 31P NMR spectra were acquired with 1H 

decoupling at 6.5 kHz MAS. All 1H NMR spectra were recorded at 6.5 kHz MAS using 

probe-head background suppression [16].  The line-width of the proton spectrum indicates 

the 1H-1H dipolar coupling, which increases with the proton density and decreases with the 

mobility of the segment.   

Supramolecular proximities and domain sizes can be probed in NMR using 1H proton 

spin diffusion, during a “mixing” time tm on the ms to 0.5-s time scale. During the evolution 

period of a two-dimensional experiment, the magnetization of protons in one phase (A) is 

modulated by its characteristic chemical-shift frequency ωA. If during tm the magnetization 
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diffuses to protons in a different phase (B), it will be detected with frequency ωB; thus, 

domain proximity on the spin diffusion length scale (0.5 – 30 nm, depending on tm) results in 

an (ωA, ωB) cross peak in the two-dimensional spectrum. For small domain sizes, the 

equilibration is a fast process, while for large domains it is relatively slow. In the present 

case, phosphate protons are only a small percentage of the protons in the sample and 

therefore difficult to detect. Hence, we detect them indirectly, with excellent selectivity, in 

terms of 31P spins to which these protons cross-polarize.  

The experiment with 1H evolution flanked by excitation and z-storage 90o pulses, spin 

diffusion time tm, read-out pulse, cross polarization to 31P, and 31P detection effectively is a 

2D WISE experiment [17].  At short tm, the slice along the 1H dimension will reflect only the 

phosphate protons near the detected 31P spins; at longer tm times, if there is spin diffusion 

contact between the phosphate protons and the protons from the surrounding polymer matrix, 

the 1H lineshape will change to that of the polymer protons.  This approach was previously 

demonstrated in polymer-clay nanocomposites using 1H-29Si WISE NMR by Hou et al [18] 

4.5. Results and Discussion 
 

The PDEAEM pentablock copolymer was synthesized by ATRP technique. The 

molecular weight of the polymer was characterized by GPC. The molecular weight of the 

copolymer was found to be 30,633 with a narrow molecular weight distribution (Mw/Mn < 

1.33). Figure 4.2 shows the  1HNMR characterization of the polymer.  
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Figure 4.2. 1HNMR of DEAEM pentablock in CDCl3 

 
The tertiary amines of the PDEAEM groups are protonated and hydrophilic below the 

pKa (7.5) of the monomer[15]. Figure 4.3 shows the phase diagram of this pentablock 

copolymer. 
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Figure 4.3. Phase diagram of the DEAEM pentablock copolymer [data obtained by 
Determan et al [15]] 
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The polymer exhibits thermoreversible properties due to the lower critical solution 

temperature (LCST) of the central poly(propylene oxide) (PPO) block. The pentablock 

copolymer micellar solutions form a lyotropic liquid crystalline phase that results in a 

transparent hydrogel above a critical gel concentration (CGC).  

 First, the inorganic fractions in the nanocomposite samples were tested with TGA, by 

burning off the polymer totally at 400°C. TGA experiments indicated that the inorganic 

percentage of pH 1.0 pentablock nanocomposite samples to be around 15 wt% while the pH 

3.0 samples only had 6.5 wt%. The mass percentage was based on the dried gel samples at 

250° C. Transmission electron microscopy of the pentablock gel prepared with the pH 1.0 

calcium phosphate solution clearly indicated aggregates of spheres.   

 

 
 
Figure 4.4.  Cryo-TEM Micrographs of a) 3 wt % Pentablock Micelle Solution [data 
obtained by Determan et al [15]] and b) 30 wt% Pentablock-pH 1.0 Calcium Phosphate Gel  
c) 3 wt% Pentablock-calcium phosphate micelles at pH 3.0 [Data obtained by Enlow] 
 

The cryo-frozen gel appeared as a concentrated matrix of ~60 nm diameter spheres 

(Figure 4.4b).  That observation is consistent with the TEM analysis done by Determan et al 

[8] who observed 60-90 nm diameter total diameter spheres in a 3 wt% pentablock micelle 

solution (Figure 4.4a– [15]). As seen in figure 4.4c, micelles guide precipitation of the 
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darker-appearing more electron dense brushite / monetite coating after 24 hours of aging. 

However, many uncoated micelles still remain in solution. The EDS analysis showed strong 

calcium and phosphate signal may be attributed to the amorphous calcium and phosphate 

ions in solution, or due to the precipitate of an inorganic calcium phosphate phase in solution.  

SAXS analysis was performed to investigate the ordered superstructure of the 

polymer-based nanocomposites. As shown in Fig (4.5), the self-assembled Pluronic® 

copolymer gel with and without calcium phosphate nanocomposites both at pH 1.0 and 3.0 

has distinct diffraction peaks with Q/Q* (Q* is the first order peak position) of  

,12:11:8:4:3  indicating that the system exhibits a face-centered cubic (FCC) 

structure. The Pluronic® with calcium phosphate at pH 1.0 has additional higher order peaks, 

which implies that the system is better ordered. In addition, the Pluronic® gel with and 

without inorganic phase at pH 3.0 showed similar inter-particle distances, D( ,3 111dD =  

where 
*

2
111 Q

d π
= ). At pH 1.0, however, D increases from 15.5 to 17.1 nm with the addition 

of calcium phosphate. This may be attributed to the different level of calcium phosphate 

precipitation over polymer micelles at different pH values. At pH 3.0, the precipitation rate 

of calcium phosphate is low, the weight fraction of the inorganic phase is 7% as compared to 

11% at pH 1.0 as seen from TGA experiments (data not shown) and only few micelles were 

coated with calcium phosphate, as seen in the TEM images. Due to the large number of 

micelles without inorganic coatings, the micelles coated with the calcium phosphate do not 

contribute to the scattering. Hence, the D value remains similar in both Pluronic® gels with 

and without the inorganic phase at pH 3.0. At pH 1.0, the higher ionic concentration 

expedites the precipitation of calcium phosphate, and more micelles are coated with the 
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inorganic phase. Thus, the micelle size increases due to the inorganic phase precipitation on 

the Pluronic®, causing an increase in D. This result is in agreement with the TEM data. 

As for the pentablock copolymer gel nanocomposites in Figure 4.6, few SAXS peaks 

are observed. Besides the peaks are broader than those for the Pluronic® gels, which means 

that the system is relatively poorly ordered. However, comparing the SAXS patterns of the 

Pluronic® and pentablock gels, the trends of the profiles are fairly consistent. Therefore, the 

morphology of pentablock gels with and without calcium phosphate may also exhibit FCC 

structure, and any broad peak has contributions from several peaks.  

 
Figure 4.5. SAXS of Pluronic® F127 gels with and without calcium phosphate. Scattering 
patterns have been shifted vertically for clarity. 
 

For the pentablock copolymer gel with calcium phosphate at pH 3.0, no distinct 

higher order peaks were observed. This is presumably due to the formation of larger calcium 

phosphate particles in the interstitial spaces that disrupt the ordered pentablock copolymer 

packing structure. Compared to the D of the pure pentablock copolymer gel, there is a 
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dramatic increase in D when the pentablock copolymer gels are coated with calcium 

phosphate at pH 1.0. This is consistent with the results seen with Pluronic® gels with calcium 

phosphate at pH 1.0.  

 
Figure 4.6. SAXS of pentablock copolymer gels with and without calcium phosphate. 
Scattering patterns have been shifted vertically for clarity. 
 

XRD measurements revealed that the precipitates formed in gels at pH 3.0 are similar 

to cave brushite, a natural form of brushite found in caves, which mimics the natural process 

well. Further, using the Sherrer equation, the brushite crystal sizes were found to be around 

30 nm or bigger, from the widths of the Bragg peaks. On the other hand, at low pH (pH ~ 

1.0), synthetic brushite was observed. This is believed to be due to the higher driving force 

due to higher concentrated solution and hence less controlled precipitation of inorganic 

phase.  

The composition of the phosphate in the inorganic precipitation was assessed by 

PNMR as well. In the case of Pluronic®, the NMR resonance indicated a monohydrogen 

phosphate (CaHPO4) as found in brushite/ monetite. In the case of pentablock templated 
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precipitation calcium dihydrogen phosphate seems to be the dominated phase. Phosphate-

polymer proximity was studied using the popular H-P WISE with H spin diffusion, which is 

used to characterize the proximity of the inorganic components to the organic matrix. From 

the WISE spectra of Pluronic®-nanocomposite (Figure 4.7), the H spin diffusion from the 

polymer to the brushite protons occurs less than 50 ms (spin diffusion time). For protonated 

species the spin diffusion coefficient is taken as < 0.5 nm^2 m-1, the domain sizes were 

found to be less than 20 nm. On the contrary, there is hardly any evidence of spin diffusion 

contact was observed for pentablock composite, indicating larger particles > 20 nm in 

diameter, in which most of the protons are far way from the polymer matrix. This is in 

agreement with XRD crystallite size of > 30 nm, estimated from FWHM of the Bragg peaks 

of the composite sample.  

 
 
Figure 4.7. 1H{31P} 2D WISE at 6.5 kHz MAS of the Pluronic® F127–phosphate composite. 
(a) and (b) are 2D contour plots of spectra recorded after 0.05 and 50 ms of spin diffusion, 
respectively. Figures (c) and (d) are slices along the 1H dimension extracted at 1.6 ppm in the 
31P dimension from the spectra in (a) and (b), respectively [Data obtained by Rawal et al] 
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4.6. Conclusions 
 

The formation of macroscale polymer-inorganic nanocomposites with ordered micro- 

and nanostructures completely by self assembly was demonstrated.With a careful copolymer 

design and synthesis and the use of gel-forming self-assembling copolymers, it is possible to 

synthesize macro-sized ordered networks of nanocomposites. This bottom-up approach to 

materials design compared to previous works on mineralizing the
 
surface of bulk polymers[4-

6]
 
or forming sub-micron aggregates of organic–inorganic nanocomposites[7] is a novel 

approach in this respect. It has been demonstrated that a nanocrystalline calcium phosphate 

phase can be formed from aqueous solutions onto self-assembling copolymer micelles and 

gels similar to the mineralization of collagen in bone formation.  

 Since the inorganic fractions in the samples that can be achieved are very low (10%) 

compared to nature (70%), currently we are investigating on improving the inorganic 

precipitation by enhancing the inorganic-organic interaction. Polymer templates with ionic 

groups may be a good approach in this respect and  the polymer-inorganic interactions can 

potentially be varied by changing the ionic character of the polymer templates for better 

inorganic precipitation on the organic templates. The following chapters describe the ongoing 

work on biomineralization using ionic polymer templates to increase the inorganic fraction of 

the nanocomposite while maintaining the polymer order and ensuring templated inorganic 

nanocrystal formation. Further insight into the nucleation and growth of calcium phosphate 

on polymer surfaces will lead to a better understanding of this biomimetic approach leading 

to future recreation of similar materials.  
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CHAPTER 5. SYNTHESIS AND CHARACTERIZATION OF IONIC 

BLOCK COPOLYMER TEMPLATED CALCIUM PHOSPHATE 

NANOCOMPOSITES 

(This chapter is based on collaborative work accepted by Chemistry of Materials and has 

been modified to focus mainly on my contributions to this work) 

M. Kanapathipillaia,1, Y.Yusufogluc,1, A. Rawalb, Y.-Y. Hub, C.-T. Lod, P. Thiyagarajane, 

Y.E. Kalayc, M. Akincc, S. Mallapragadaa, K. Schmidt-Rohrb,* 

5.1. Abstract 
 

Thermo reversible anionic and zwitterionic pentablock copolymers were used as 

three-dimensional templates for efficient precipitation, and for controlling the size and the 

ordered structural arrangement of calcium phosphate nanocrystals. Calcium and phosphate 

ions were dispersed in the block-copolymer micellar liquid phase at low temperatures and 

inorganic nanocrystals were believed to be formed by the ionic interactions at the polymer-

inorganic interface as they were driven into the interstitial cavities of the polymer micelle 

structures by aging at room temperature. Small Angle X-ray and Neutron Scattering (SAXS 

and SANS) along with X-ray Diffraction (XRD), Nuclear Magnetic Resonance (NMR), 

Theromogravimetric Analysis (TGA) and Transmission Electron Microscope (TEM) were 

used to characterize the self-assembled polymer-inorganic nanocomposites. SANS data 

indicate that the addition of the inorganic phase enhances the polymer structural order, 

making it more compact. This is in good agreement with rheological measurements where 

the polymer-inorganic nanocomposite gels exhibited higher moduli values compared to the 

polymer gels alone. Solid state NMR studies show that the average inorganic particles 
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formed are of nanometer length scale and they are in good contact with the polymer phase, 

which is also observed from TEM analysis. SAXS data revealed that the polymer template 

significant fraction of the calcium phosphate. Further, according to TGA measurements, the 

inorganic percentage in the dried nanocomposite gel appears to be around 30%. Nanoscale 

calcium phosphate crystals with significant inorganic fractions were achieved using self-

assembling ionic block copolymer templates through a bottom-up approach.  

_____________________________________________ 
aAmes Laboratory and Department of Chemical Engineering, Iowa State University  
b Ames Laboratory and Department of Chemistry, Iowa State University  
c Ames Laboratory and Department of Materials Engineering, Iowa State University  
dAdvanced Photon Source, Argonne National Laboratory 
eIntense Pulsed Neutron Source, Argonne National Laboratory 
1 Both authors contributed equally to this research 
* Corresponding author:  Klaus Schmidt-Rohr, Dept. of Chemistry, Iowa State University, 
Ames, IA 50011.  srohr@iastate.edu 515-294-6105 
 
5.2. Introduction 

In most examples of successful templating of polymer-ceramic composites, the 

polymer-inorganic phase interaction is limited to the surface of the polymer and restricts the 

systematic study of the effects that variables such as ionic interaction, relative size and 

concentration of polymer have on templating and nanocrystal formation 1-4. One method to 

create nanocomposites and also to expand its applicability to the creation of three-

dimensional macro-scale structures is the dispersion of already synthesized particles or ionic 

solutions into the structured matrix 4,5.  But nanoparticle aggregation, high viscosity of the 

nanostructured materials and incompatibility of the particle surface and ionic solutions with 

the polymers limit the use of these types of templating methods 5.  We have demonstrated 

that these problems can be circumvented by the use of self-assembling thermo-reversible 



 102

block copolymer gels that can facilitate a bottom-up approach for inorganic nanocomposite 

synthesis 6.  Although successful templating was achieved by this approach, the percentage 

of inorganic precipitate in the final nanocomposite was low (~15 wt%), compared to about 

70 wt% seen in nature.7  

In the bone formation process, collagen fibrils are formed by self-assembly of 

collagen triple helices and hydroxyapatite (HAp) crystals grow within these fibrils 8. During 

the HAp crystal growth, the acidic macromolecules such as glycoproteins that are attached to 

the collagen scaffold play important templating roles. Glycoproteins are covalently linked to 

polysaccharide side chains that often contain sulfate and carboxylate residues, and these 

functional groups serve as binding sites for Ca2+ ions 9. To mimic natural nanocomposites 

better, the ionic interactions between the organic-inorganic interfaces need to be enhanced.  

Tanahashi et al. 10 have shown using self-assembled monolayers that anionic polymers 

template better compared to cationic or non-ionic polar polymers and further, ionic blocks 

such as carboxylate groups or phosphobetaines are ideal for calcium phosphate precipitation. 

Other studies have also indicated that carboxyl groups not only provide a site for 

heterogeneous nucleation of apatite, but also contribute to a tight adhesion of the apatite layer 

to polymer films. 11  Moreover, Spanos and coworkers 12 synthesized a novel composite with 

9% HAp and 91% polymer by weight made of a biocompatible synthetic polymer 

(sulphonated polysulfone) and HAp by the precipitation of calcium phosphate phase in 

aqueous suspensions of the polymer particles.  

Theoretical results using molecular dynamics simulations 13 have established general 

conditions for successful nanotemplating methods.  It has been shown, for instance, that 

polymers with end-group functionalized blocks with a specific affinity for the inorganic 
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components provide a successful templating strategy 14.  In this respect, block copolymers 

containing blocks of sulfobetaines, which are analogues to phosphobetaines, and blocks of 

acrylic acids, which contain carboxylate groups, are good choices for polymer templates in 

biomimetic mineralization. Further, it is believed that the interactions of acrylic-acid 

carboxylate groups with Ca2+ ions mimic those of the carboxylate groups in bone 15. Hence, 

many mineralization studies have focused on poly(acrylic acid) based templates for surface 

mineralization studies 15-17. However, to enable hierarchical self-assembly of 

nanocomposites, copolymers that can self-assemble in three dimensions at multiple length 

scales in the presence of the inorganic phase need to be synthesized and investigated.  

As hierarchically assembling copolymer templates, we have synthesized pentablock 

copolymers consisting of central triblock PEO100-PPO65-PEO100 Pluronic® F127 copolymers 

modified with zwitterionic or anionic terminal blocks. The zwitterionic pentablock 

copolymers contain polysulfobetaine side chains, with an isoelectric point (iep) value of 

about 6.3. This polymer is zwitterionic over a wide range of pH ≈ 2 – 11. The anionic 

pentablock copolymer, on the other hand, contains acrylic acid blocks and imparts pH 

sensitivity above pH ~ 6. In addition to the ionic nature, the thermo-reversible ordering 

behavior of these polymers and their water solubility make them ideal templating materials 

for formation of nanocomposites. Here we study the influence of ionic moieties of the 

polymer template on the formation of inorganic nanocomposites by self-assembly of thermo-

reversible ionic block-copolymer gel structures, a bottom-up approach that has been reported 

by us with cationic and Pluronic® block-copolymer gels previously 6. Further, along with 

other characterization methods, we present nuclear magnetic resonance (NMR), scattering, 

and electron microscopy results that support the structural picture of the polymer-inorganic 
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nanocomposite superstructure.  

5.3. Materials and Methods 

All materials used were obtained from either Sigma Aldrich or Fisher Scientific and 

were of laboratory grade and purity.  

Pentablock copolymer synthesis.  Ionic pentablock copolymers were synthesized by atom 

transfer radical polymerization (ATRP). First, a cationic pentablock copolymer with 

poly(diethylaminoethylmethacrylate) (PDEAEM) side chains was synthesized by ATRP as 

described earlier. 18 This was followed by betanization of the tertiary amine groups of the 

side chains with propanesultone, to form the zwitterionic pentablock copolymer (PentaPZ).  

The synthesis procedure is shown in scheme 1. In a typical reaction, pentablock polymer (6 

g, 0.03 mmol), and 1, 3-propanesultone (30 g, 0.3 mmol) were dissolved in dry THF. The 

mixture was then reacted at 40oC under argon for 2 days with continuous stirring. The 

reaction mixture was then precipitated with diethyl ether and vacuum dried.  

The synthesis scheme of the anionic pentablock copolymer (PentaPAA) is shown in 

Scheme 2. For its synthesis, first the Pluronic® macroinitiator was prepared as reported 

previously 18. Difunctional Pluronic® macroinitiator (8 g, 0.06 mmol), copper bromide 

(0.1885 g, 0.06 mmol), and toluene (50 mL), were added to a flask, and the solution was 

mixed well by stirring for 15 minutes. A small amount of copper was added to the reaction to 

enhance the stability of the Cu(I)/Cu(II) equilibrium. The flask was purged with Argon for 5 

min. Tert-butyl acrylate (2.8 g, 2.1 mmol) and  N-ppm ligand (0.37 g, 0.12 mmol) were 

added using a  syringe. The mixture was freeze-pumped/thawed thrice. The reaction was then 

carried out at 65ºC in an oil bath overnight. The reaction mixture was then diluted in 

methylene chloride and passed through a short alumina column to remove the copper catalyst 
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and was rotary evaporated. The remaining mixture was re-precipitated in n-heptane and dried 

under vacuum. Finally, the synthesized acrylate polymer was hydrolyzed with THF and 

trifluoro acetic acid (TFA) (20% v/v) mixture by stirring overnight. The mixture was 

precipitated in n-heptane and the acrylic acid polymer was isolated after vacuum drying.  

SCHEMES 
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Scheme 1.  Synthesis of the zwitterionic pentablock copolymer (‘PentaPZ’). 
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Scheme 2.  Synthesis of the anionic pentablock copolymer (‘PentaPAA’). 

Pentablock copolymer characterization. Solution NMR measurements were performed on 

a Varian VXR400 spectrometer, GPC measurements using PLgel columns from Polymer 

Laboratories, to determine the composition and molecular weights, respectively, of the block 

copolymers.  Simple tube inversion was used to find the gelation temperature. Titration 

measurements were carried out using a Corning 313 pH/temperature meter at room 

temperature to find the pKa and iep values, and differential scanning calorimetry (DSC) in a 

Thermal Analysis DSC instrument Q 20 was used to find the critical micellization 

temperatures of the copolymer solutions. The micelle formation in water is an endothermic 

first-order transition due to the enthalpy of dehydration of the hydrophobic block 19. 
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Measurements were carried out using a Thermal Analysis DSC instrument Q 20 equipped 

with an auto sampler. Samples with masses ranging from 5 to 20 mg were heated from -5 to 

50°C at a rate of 5°C/min. The data were corrected by sample weight normalization and 

subtraction of the linear baseline.  

Titration measurements were carried out to obtain the degree of ionization. 

Potentiometric titrations were carried out using a Corning 313 pH/temperature meter at room 

temperature.  Samples were prepared by dissolving 500 mg of polymer in 50 mL nanopure 

water. In the case of Penta-PZ copolymers, after the complete dissolution of the polymer in 

water, the solution was titrated using 1.0 M NaOH. A pH vs [OH-] concentration plot was 

obtained and the iep value was obtained from the inflection point. For the anionic pentablock 

copolymer, the solution pH was first raised to pH 12 by adding 1.0 M NaOH and then back 

titrated using 1.0 M HCl. The degree of ionization, α, was calculated from the ratio of the net 

concentration of H+ ions (CH-COH) and COOH groups (CA) in solution, 
A

OHH

C
CC )( −

=α . 20 

Pentablock-calcium phosphate nanocomposite synthesis.  The calcium phosphate-polymer 

nanocomposite gel was synthesized as reported [Kanapthipillai et al., Chemistry of 

Materials]. Briefly, 2.9 g PentaPAA copolymer was mixed with 5.0 mL 4.0 M Ca(NO3)2 in 

25 mM tris-HCl solution and was kept refrigerated overnight (at ~1 oC). Then, 3.0 mL 4.0 M 

(NH4)2HPO4 in 25 mM tris-HCl solution was added. The mixture was allowed to equilibrate 

for 1.5 days in the refrigerator. Then the sample was aged at room temperature for two days 

resulting in a hydrogel sample. The polymer content is around 27% by weight and the pH ≈ 5 

(this sample is referred to as PentaPAA27-5). A similar procedure was followed to obtain 

PentaPAA36-5, where the numbers 36 and 5 again refer to wt% of the polymer and pH of the 
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gel, respectively. In the case of the zwitterionic PentaPZ copolymer, an organic-inorganic 

hydrogel with a polymer concentration of approximately 46 wt% (PentaPZ46-5) was 

produced in a similar fashion.  

Characterization Methods. Various experiments were performed to study the 

structural features of the polymer-based nanocomposite. SAXS and SANS can determine the 

ordering in the gels; due to the large electron-density contrast between the organic and 

inorganic components, SAXS has a higher sensitivity on the structure of the inorganic phase 

while SANS probes mainly the structure of the polymer phase by utilizing the large contrast 

between 1H and 2H in the polymer and D2O, respectively 5. SAXS measurements were 

performed at the 12-ID beam line at the Advanced Photon Source in Argonne National 

Laboratory, while SANS measurements were carried out using the time-of-flight small-angle 

neutron diffractometer (SAND) at IPNS at Argonne National Laboratory. Solid-state NMR 

can prove nanocomposite formation and provide information regarding the size of inorganic 

nanoparticles as well as their composition. Solid-state NMR experiments were run using a 

Bruker DSX400 spectrometer (Bruker-Biospin, Rheinstetten, Germany) at 400 MHz for 1H 

and 162 MHz for 31P. Rheological experiments were carried out using an ARES rheometer 

(TA Instruments, New Castle, Delaware). TEM analysis illustrates the size of the precipitated 

nanosize calcium phosphate particles and helps characterize them.  XRD was used to identify 

the crystalline phases of the inorganic component. TGA measurements yielded the 

percentage of inorganic material in the nanocomposite.  

SAXS measurements were performed with 1 mm thick gel samples. The gels were 

sandwiched between 25 micron thick Kapton tapes. X-rays with an energy of 12 keV (λ = 

1.035 Å) and a 15 x 15 cm2 mosaic Mar CCD at a sample to detector distance of 2 m were 
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used to measure the scattered intensity and a pin diode on the beam stop to measure the 

transmitted beam intensity. For each sample we collected five 1 s exposures and the collected 

2D data were corrected and azimuthally averaged to obtain I(Q) data, where Q = 4π sin θ/λ 

with the scattering angle 2θ and the wavelength λ of the X-rays. 

The SAND instrument provides data in the Q range of 0.004-0.5 Å-1 in a single 

measurement by using a 40x40 cm2 position-sensitive 3He detector and neutrons with 

wavelengths in the range of 1.5-14 Å. The neat polymer gel samples of PentaPZ46-5, 

PentaPAA27-5, PentaPAA36-5 and the corresponding nanocomposite gel samples were 

prepared in 1m M Tris-HCl at pH 5.5, in D2O solution. The gel samples were sealed in 

Suprasil cylindrical cells with 1 mm path length for the SANS measurements. The scattering 

data were corrected for empty cell scattering, detector sensitivity, and sample transmission. 

The differential scattering cross section I(Q) was placed on an absolute scale in the units of 

cm-1.   

Details of the other experimental parameters and the sample preparation for the 

corresponding techniques can be found in Kanapthipillai et al., Chemistry of Materials, 

Supporting Information. 

5.4. Results and Discussion 

Polymer characterization. The molecular weight of the cationic PDEAEM5-Pluronic®F127-

PDEAEM5 pentablock copolymer, synthesized by ATRP, was 14,570 by GPC with a narrow 

molecular weight distribution (PDI < 1.2). The cationic pentablock copolymer was 

subsequently betanized with 1,3-propane sultone in dry THF to give the PentaPZ zwitterionic 

polymer and the composition verified by solution NMR. The molecular weight of the 

PentaPAA polymer was 17,538 with a narrow molecular weight distribution (PDI < 1.2).  
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These PentaPZ and PentaPAA copolymers exhibit micellization, which is observed 

from the DSC thermograph (Figure 5.1) and thermo-reversible gelation due to the PPO block 

(Figures 5.2), and impart pH dependent solubility due to their ionic blocks.  
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Figure 5.1. Endothermic micellization peaks of (a) PentaPZ (Mn, 15000) (b) PentaPAA (Mn 
17538, PDI- 1.196) pentablock copolymers obtained from DSC thermographs. 
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The zwitterionic pentablock copolymer exhibits pH sensitivity over a wide pH range 

from pH ≈ 2-11 due to the sulfobetaine blocks, with an isoelectric point around pH 6.3, 

where the concentrations of positive and negative charges are equal. The anionic pentablock 

copolymer on the other hand, is hydrophilic above its pKa (6.3) due to the acrylic acid side 

chains. 

Formation of organic-inorganic nanocomposites. The thermogravimetric analysis of the 

CaP/hydrogel samples (Kanapathipillai et al.,Chemistry of Materials) showed approximately 

30 wt% inorganic for the dried hydrogels, which is significantly larger than in our previous 

studies of calcium phosphate formation on cationic and polar templates, 6 which yielded 6 or 

15 wt% of inorganic component. The proof of nanocomposite formation was obtained by a 

combination of NMR, SAXS/SANS and TEM measurements. The NMR characterizations 

were performed using direct polarization studies of the polymer-nanocomposites for 

characterization of the inorganic phase21, two-dimensional 1H-31P heteronuclear correlation 

NMR experiments with 1H spin diffusion22,23,24 for the proof of nanocomposite formation and 

31P{1H} HARDSHIP NMR25,26 measurements to quantify the thickness of the inorganic 

domain.  

An example NMR spectra from the WISE experiments shown in Figure 5.3, shows 

that the polymer and inorganic phases are in close contact and the inorganic domains are in 

the nanometer size range (Courtesy Yanyan Hu). In a nanocomposite, the polymer proton 

peaks appear within tens to hundreds of milliseconds of spin diffusion. The detailed NMR 

analysis can be found in Kanapathipillai et al.,Chemistry of Materials.  
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Figure 5.3.  a) 2D “WISE” NMR spectra of PentaPAA36-5 with spin diffusion mixing time 
(tsd) of 0.05 ms, 5 ms, and 50 ms. b)  Cross-sections from the 2D spectra in a) at 2.5 ppm 31P.  
c, d): Cross-sections from 2D “WISE” spectra of PentaPAA27-5 with spin diffusion mixing 
times of 0.05 ms, 50 ms and 500 ms, taken c) at 1.4 ppm 31P;  spinning sidebands are marked 
by asterisks in the bottom trace; and d) at 2.8 ppm 31P. (Adapted from Kanapathipillai et al., 
Chemistry of Materials) 

SAXS and SANS: Evidence of templating.   SAXS and SANS provide direct information 

on the morphology and ordering of structures in the gels and nanocomposites. In SANS, the 

contrast is due to the nuclear scattering length difference between the D2O and the 

polymer/inorganic phase. As shown in Figure 5.4a, the self-assembled zwitterionic 

PentaPZ46-5 copolymer gels both with and without calcium phosphate display distinct first 

order diffraction peaks in SANS data. The second order peak position in relation to the first 

order peak (Q*) in the neat polymer gel clearly indicates hexagonal close packing of 

cylinders in the ordering of micelles. However, in the case of the nanocomposite gel, the first 

order diffraction peak broadens, making the second order peak less visible, presumably due 

to disorder introduced by the templating of calcium phosphate on the polymer phase.  
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The SAXS data in Figure 5.4b show similar diffraction peaks both without and with 

calcium phosphate. The peak intensity is greatly increased in the composite, which proves 

that a significant fraction of the high-electron density inorganic phase is templated by the 

block copolymer micelles and thus enhances their structure factor.  The diffraction peaks are 

observed at Q/Q* = 12:7:3:1 , indicating hexagonal close packing of rod-like polymer 

micelles consistent with the SANS data. Using the Q* value for the gels with cylinder phase 

the lattice spacing d = (4/3)½ (2π/Q*) can be determined. Furthermore, in the low Q region of 

the SAXS data the scattering intensity I(Q) varies as Q-1.5 suggesting that both the neat and 

the nanocomposite gels have rod-like structures, in agreement with the TEM data below.  

The lattice spacings (the characteristic distance between the centers of the cylinders) 

from the SANS data of the neat and the calcium phosphate templated PentaPZ46-5 polymer 

gels were around 18.5 nm, indicating little effect of the inorganic component on the 

superstructure. This may be due to the relatively small inorganic volume fraction in the 

nanocomposite. Similar trends were observed in the SANS data for PentaPAA27-5 (Figures 

5.4 c,d) and PentaPAA36-5 (Figure 5.4 e,f) polymer-gel nanocomposites. However, in 

contrast to the PentaPZ46-5 gels, the PentaPAA gels exhibit sharper peaks in the SANS 

patterns, indicating a higher level of ordering. Further the PentaPAA36-5 neat polymer show 

diffraction peaks at Q/Q* = 8:2:3 , indicating FCC packing of spherical polymer 

micelles consistent with the SAXS and TEM data. Using the Q* value for the gels with FCC 

phase the lattice spacing d = 2π/Q* can be determined. The d-spacings in the gel structures of 

PentaPAA27-5 and PentaPAA36-5 are around 16 nm, but there was a slight reduction in the 

d-spacing in the presence of calcium phosphate when compared to the neat polymers. In the 

case of PentaPAA27-5 the polymer phase has ionic character and the broadening of the peak 

in the SANS pattern for the neat polymer gel might be due to electrostatic repulsion between 

the micelles leading to a looser packing of particles. The sharper peaks in the presence of 
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calcium phosphate might be due to charge neutralization in the PentaPAA gels leading to 

more ordered dense packing.  
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Figure 5.4.  SANS and SAXS data of the three nanocomposites.  a): SANS and b) SAXS of 
PentaPZ46-5 polymer inorganic nanocomposites gels at pH 5.0 
c) SANS and d)) SAXS of PentaPAA27-5 polymer nanocomposite gels.  
e) SANS and f) SAXS of PentaPAA36-5 polymer inorganic nanocomposites gels. 

The SAXS data show relatively low intensity for the neat PentaPAA polymer gels 

due to low X-ray contrast between polymer and water. In the presence of the inorganic 

component, higher scattering intensity was again observed for PentaPAA36-5 with a 

scattering peak corresponding to a d-spacing of ~15 nm, proving templating of calcium 

phosphate on the polymer micelles. Furthermore, the SAXS curves of both PentaPAA 

nanocomposites show power-law scattering with a higher exponent (~4) in the low Q region. 

This suggests the presence of larger inorganic aggregates with 3-dimensional morphology. 

The higher power-law exponent in the case of PentaPAA27-5 when compared to 

PentaPAA36-5 suggests the presence of larger calcium phosphate aggregates in the former, 

in agreement with the NMR data.  It is interesting to note that the small-angle upturn in the 

SAXS curves could be attributed not only to larger inorganic particles, but alternatively to a 

superstructure of the mineralized micelles, such as 0.2-µm diameter aggregates.  The TEM 

data show that larger inorganic particles are indeed present.  The dried nanocomposite gel 

sample exhibits SAXS patterns similar to those of the gel samples. However, a small shift in 

the scattering patterns towards larger Q-values (smaller spacings) was observed, which is 

expected due to the removal of water. 

Nanocomposite morphology by TEM. Figures 5.5a and 5.6a show the transmission electron 

micrographs of 5 wt% PentaPAA and PentaPZ polymers (TEM, and XRD studies conducted 

by collaborator Yusuf Yusufoglu). The samples were prepared by diluting the neat gels in 

deionized water. The images revealed approximately 15-nm diameter spheroidal micelles, in 

agreement with the SAXS and SANS results and our previous studies6.  TEM image of 

PentaPAA36-5 nanocomposite gel diluted to 5 wt% polymer are shown in Figure 5.5b. 
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STEM-EDX measurements indicate that both calcium and phosphate (dark regions in Figure 

5.5b) are present around the micelles.  The atomic ratio of calcium to phosphorus for 

PentaPAA27-5 was found to be about 1, quite close to that of brushite (Ca/P=1), while for 

PentaPAA36-5, in addition to regions with Ca/P=1, some areas with a Ca/P ratio of 1.9 were 

also observed, indicating there is another calcium phosphate phase other than brushite, 

consistent with NMR. Further, Figure 5.5c shows a TEM micrograph of plate-like calcium 

phosphate crystallites collected from the bottom of the redissolved polymer in PentaPAA36-

5, which was also observed from spin-diffusion NMR (Kanapathipillai et al., Chemistry of 

Materials). Figure 5.5d, shows a high-angle annular dark field (HAADF) image of 

PentaPAA27-5, where the calcium phosphate coating of some of the micelles can be seen 

more clearly. 
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Figure 5.5. Transmission electron micrographs of stained a) 5 wt% PentaPAA polymer 
prepared in deionized water, b) PentaPAA36-5 nanocomposite deposited from a suspension 
diluted to 5 wt% polymer, c) crystallites collected from the bottom of the vial containing the 
diluted PentaPAA36-5 material, and d) high-angle annular dark field (HAADF) image of 
PentaPAA27-5 sample.  Dark spots: polymer.(Adapted from Kanapathipillai et al., Chemistry 
of Materials) 
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Figure 5.6.  Transmission electron micrographs of stained a) 5 wt% PentaPZ polymer 
prepared in deionized water, b) PentaPZ46-5 nanocomposite deposited from a suspension 
diluted to 5 wt% polymer, and (c, d) HAADF images of the same sample. (Adapted from 
Kanapathipillai et al., Chemistry of Materials) 
 

 
TEM micrographs of PentaPZ46-5 are shown in Figure 5.6. The neat polymer (5 wt% 

in deionized water) revealed the typical ~15-nm diameter spherical micelles (Figure 5.6a) 

while the PentaPZ46-5 nanocomposite , exhibited rod-like calcium phosphate nanoparticles 

(Figures 5.6 b-d).   

Identification of the calcium phosphate phase 

X-ray diffraction pattern of PentaPAA27-5 revealed the typical reflections for 

crystalline synthetic brushite (CaHPO4.2H2O) (ICDD card #09-0077). XRD results for 

PentaPAA36-5 showed only broad reflections indicating that the calcium phosphate phase 

might be amorphous, nanocrystalline, or a minor volume fraction compared to the polymer. 

Moreover, the characteristic peaks of natural brushite (ICDD card #11-0293), a mineral 

normally only found in caves27 were observed for PentaPZ46-5, and this is similar to our 
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previous results with PDEAEM modified Pluronic® F127 pentablock gel composite as 

templates.6  

After vacuum drying of the hydrogel samples, the natural brushite peaks disappeared 

for PentaPZ46-5, while weak HAp peaks appeared in addition to synthetic brushite peaks for 

PentaPAA27-5 in agreement with NMR. Sharp peaks of brushite and sodium calcium 

hydrogen phosphate were observed for PentaPAA36-5 after drying. Using the Scherrer 

equation, brushite crystal sizes of  > 40 nm and  > 45 nm were estimated from the widths of 

the Bragg peaks for the vacuum dried PentaPAA36-5 and PentaPAA27-5, respectively, 

which is also confirmed from NMR analysis.  The different inorganic phases formed by the 

different pentablock copolymer templates suggest the ionic nature of the polymer influences 

the calcium phosphate crystal formation. The detailed XRD, NMR and STEM-EDX phase 

analysis of the nanocomposite samples is described in (Kanapathipillai et al., Chemistry of 

Materials). 

Dynamic-mechanical measurements.  Dynamic strain controlled rheological measurements 

were performed on polymer nanocomposite gels to test the stiffness of the formed materials 

(Figure 5.7). Measurements indicated an increase in modulus with the inorganic nanocrystals 

compared to polymer gels alone. The polymer gels alone were not stiff enough due to charge 

repulsions by the ionic side chains, where the moduli ranged from 0.01-10 Pa. With the 

formation of the inorganic nanocrystals, the nanocomposites show an increase of modulus by 

several orders of magnitude depending on the shear rate.  Such a large increase may be 

attributed to neutralization of surface charges on the micelle surface by calcium phosphate 

phase leading to aggregation of the nanoparticles, or coating of soft polymeric micelles by 

rigid inorganic particles, or both.  
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Figure 5.7. a) Dynamic strain controlled frequency sweep of PentaPZ46-5 and b) 
PentaPAA27-5 pentablock copolymers with and without calcium phosphate nanocrystals. 
 
5.5. Conclusion 

Scattering measurements and NMR revealed the formation of nanosized ordered 

inorganic nanocrystals. Rheological measurements indicated an increase in modulus due to 

the presence of inorganic crystals in the polymer template. The inorganic fraction in the 

template was found to be around 30% for all the templates. This is a significant increase 

compared to our earlier polymer cationic and polar templates, which only accommodated 

around 15% inorganic under extremely low pH conditions. These results suggest that for 

inorganic precipitation, ionic interactions are important. Further carboxylic groups and 

zwitterionic groups are better for the inorganic templated precipitation compared to cationic 

and polar groups. The self-assembling ionic block copolymer templates exhibited ideal 

properties for the bottom-up approach to nanocomposite design. We have reported the 

influence of key design and experimental parameters on the templating of nanoparticles by 
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ionic polymeric gel superstructures. The initial ionic polymer templates will be a good 

guideline for our final goal of mimicking hierarchical natural structures.  
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CHAPTER 6. BIOINSPIRED SYNTHESIS OF SELF-ASSEMBLED 

CALCIUM PHOSPHATE NANOCOMPOSITES USING BLOCK 

COPOLYMER-PEPTIDE CONJUGATES 

(This is a collaborative work submitted to Journal of Materials Research and has been 

modified to focus on my contribution to the work) 

Yusuf Yusufoglua,+, Yanyan Hua,+, Mathumai Kanapathipillaia, YaQiao Wua, Matthew 

Kramera, Yunus Kalaya, P. Thiyagarajanb, Mufit Akinca, Klaus Schmidt-Rohra and Surya 

Mallapragadaa,* 

6.1. Abstract 

Thermoreversibly gelling block copolymers conjugated to hydroxyapatite nucleating 

peptides (DSKSDSSKSESDSS) were used to template the growth of inorganic calcium 

phosphate in aqueous solutions. The effect of growth and nucleation of  calcium phosphate 

mineral by these peptide conjugated polymers was studied using NMR, FTIR, transmission 

electron microscopy, X-ray diffraction and small-angle scattering techniques. Three different 

polymer templates were used with varying charges on the polymer chains (non-ionic, anionic 

and zwitterionic), to investigate the role of charge on mineralization. All the polymer-

inorganic solutions exhibited thermoreversible gelation above room temperature. 

Nanocomposite formation was confirmed by solid-state NMR, and other complementary  

methods identified the inorganic component as hydroxyapatite. The morphology of the 

hydroxyapatite was identified as thin, elongated crystals from small angle X-ray scattering 

and electron microscopy methods. The inorganic content was found to be of 30-45 wt% 

(based on the mass of the dried gel at ~ 200oC) in the various samples from 
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thermogravimetric measurements. Our work offers routes for bioinspired bottom-up 

approaches for the development of novel self-assembling injectable nanocomposite 

biomaterials for potential orthopedic applications. 

_____________________________________________ 
aAmes Laboratory, 144 Spedding Hall, Ames, IA 50011 
bAdvanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 
60439 
+Both authors contributed equally to the work 
6.2. Introduction 

Recently many investigations been carried out to explore ways to mimic 

biomineralization1-4 and to understand the mechanism(s) involved in it with biological 

macromolecules (e.g., proteins, enzymatic biocatalysts, and other biopolymers).5-9 Numerous 

studies have appeared on the in vitro synthesis and characterization of biominerals including 

calcium phosphate, calcium carbonate and silica.10-15 All these studies have focused on 

templating at the nanoscale or at the macroscale, but mostly to the surface of the template.  

Controlling the structure at the molecular level as well as impressing hierarchical 

order over multiple length scales as seen commonly in Nature is a formidable challenge that 

has not been achieved yet, but significant progress is being made in these directions. Polymer 

templating has the advantage of molecular level control and a promise to extend to the macro 

scale by hierarchical ordering. Our recent work has shown that synthetic block copolymers 

that undergo self assembly at multiple length scales can serve as effective templates for 

precipitation of calcium phosphates on nanoscale micelles, which can self-assemble further 

into macroscale gels and solids.16 This is one of the first approaches for bottom-up design of 

macroscale composites with hierarchical order down to the nanoscale completely by self-

assembly. However, the use of polymer templates alone does not provide biological 
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specificity for controlled growth of the inorganic phase.  

In Nature it is believed that, that the hydroxyapatite formation is greatly influenced by 

the matrix proteins, and it is believed that aminoacids such as serine, glutamic acid and 

aspartic acid play a major role in calcium phosphate minieralization.17 Further, it was 

reported that a 14 aminoacid peptide with a sequence of (DSKSDSSKSESDSS) enhances 

nucleation and growth of hydroxyapatite.17   

Hence, here we report the synthesis of thermoreversibly self-assembling polymer 

templates with attached hydroxyapatite-nucleating peptides17 which were used to control the 

biomineralization process and to form polymer-hydroxyapatite nanocomposites completely 

by self-assembly. These novel systems that transition from liquid to solid at physiological 

temperatures could form the basis for injectable nanocomposites for orthopedic repair, such 

as in bone defects, where it could conform to the shape of the defect easily. A variety of 

complementary techniques including solid-state NMR, small angle scattering and 

transmission electron microscopy are used in this study to elucidate the structure and 

composition of these bioinspired nanocomposites.  

6.3. Materials and Methods 

The hydroxyapatite nucleating peptide (DSKSDSSKSESDSS), with a molecular 

weight of 1445 Da and theoretical pI of 4.23, was synthesized by Genscript Corporation, NJ, 

with a purity of ~ 95% and used as obtained. All other materials used were obtained from 

either Sigma Aldrich or Fisher scientific and of high purity.  

Synthesis and Characterization of Block Copolymers and Their Conjugates  

Polymer synthesis method and scheme. Pluronic F127 (poly(ethyelene oxide)-b-

poly(propylene oxide)-b-poly(ethylene oxide)) with a molecular weight of 12,600 was used 
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to synthesize Pluronic-based anionic (PentaPAA) (Mn =17,458, PDI 1.14) and zwitterionic 

(PentaPZ) (Mn = 15,100, PDI 1.17) pentablock copolymers using an atom transfer radical 

polymerization (ATRP) technique as previously reported.18,19 These polymers are shown in 

Scheme 1. The Pluronic and PentaPZ end groups were modified to obtain carboxyl end 

groups as described below. The Pluronic and the two pentablock copolymers were then 

conjugated with the hydroxyapatite binding peptide using N-hydroxyl succinimide (NHS) 

chemistry.20,21 The peptide copolymer conjugation schemes used are shown below.  

Scheme 1. Block copolymer structures 

Pluronic F127 

 

C
H2

C
H2

OC
H

CH3

C
H2 65

100

O OC
H2

C
H2

100

OH
C
H2

C
H2

OH

 

PentaPZ 

C
H2

N
+CH2

CH2

O
O

CH3
Br C

H25
C
H2

C
H2

OC
H

CH3
C
H2

65

100

O OC
H2 100

C
H2

N
+

CH2

CH2
O

O

CH3
Br

5

CH2CH2CH2
(CH2)3

SO3-

CH2CH3
(CH2)3

SO3-

CH3CH3
CH3

 

PentaPAA 

C
H2

C
H2

OC
H

CH3

C
H2 65 100

O OC
H2

H2C
100

C
H2

C
H

O

OH

Br35C
HBr 35

C
H2

O

OH

 



 127

Scheme 2. Pluronic end group modification  
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Scheme 3. PentaPZ end group modification 
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Scheme 4. Pluronic and Pentablock copolymers peptide conjugation  

a. NHS chemistry on carboxyl endgroups of Pluronic and PentaPZ 
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Pluronic end group modification (Scheme 2). The hydroxyl end groups of Pluronic were 

converted to carboxyl groups by treating with succinic anhydride in pyridine as reported in 

the literature.22 In short, Pluronic (32 g, 2.5 mmol) and succinic anhydride (1g, 10 mmol) 

were dissolved in pyridine (100 ml) and the reaction was carried out at 40°C for 24 hours. 

The mixture was then precipitated in diethyl ether, dissolved in toluene and reprecipitated in 

diethyl ether. The product was then dried under vacuum.  

PentaPZ end group modification (Scheme 3). The transformation of bromine end 

functional PentaPZ into azide end-functional PentaPZ was adopted from literature.23 In short, 

the bromine end functionalized pentablock (15,100 g. mol -1, 5.4 g, 0.36 mmol), sodium 

azide (234 mg, 3.6 mmol) and dimethyl formamide (15 ml) were added in a flask and stirred 

well. The mixture was reacted for 24 hours at 50°C. After that, the azide functionalized 

pentablock was precipitated in n-hexane, filtered and dried under reduced pressure. Click 

coupling was used to convert the azide end-functionalized PentaPZ to carboxyl 

functionalized end group as reported previously in literature.20,23 In a round bottom flask, 

azide functionalized PentaPZ (1.65g, 0.11 mmol), copper bromide (47 mg, 0.33 mmol) and 

Nppm-ligand (99 mg, 0.66mmol) were added. After capping the flask with septum, the 

mixture was purged with argon for a couple of minutes. Degassed THF (4 ml) was then 

added into the mixture. Pentynoic acid (64.8 mg, 0.66 mmol) was added through a micro 

syringe. The mixture was then stirred overnight at room temperature. The carboxyl 

functionalized PentaPZ was precipitated in n-hexane and filtered and dried under vacuum.  

Polymer-peptide conjugate synthesis (Scheme 4). The carboxyl terminated Pluronic or 

PentaPZ, or the acrylic groups of PentaPAA polymers were esterified with NHS as reported 

in literature.21 To a round bottom flask connected with an argon line and bubbler, 
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Pluronic/PentaPZ/PentaPAA (0.128 mmol), 0.0792 g of N,N’-dicyclohexylcarbodiimide (3 X 

excess, 0.384 mol), 0.0442 g of N-hydroxysuccinimide (3 X excess, 0.384 mol), and 8 ml of 

dichloromethane were added. The reaction was carried out at room temperature for 24 hours. 

The reaction mixture was then filtered, and precipitated in cold diethyl ether. The NHS 

attachment was verified by 1HNMR with ester peak around ~ 2.7 ppm.  

The NHS functionalized polymer was then conjugated with the hydroxyapatite 

binding peptide as described in the literature.21 1.5 g of NHS-polymer was added to a 

solution of 12 mg of peptide in 50 ml of PBS (pH 7.4) with stirring at room temperature. 

After 4 hours, additional 1.5 g of NHS-polymer was added to the mixture. The reaction was 

maintained at room temperature for 24 hours. A small amount of the reacted mixture was 

then lyophilized and the conjugation efficiency was determined using reverse phase high 

pressure liquid chromatography (RP-HPLC). The rest of the reaction mixture was dialyzed 

against water using a cellulose ester membrane with a molecular weight cut-off of 3500 

(Spectrum Labs) for 48 h in order to remove the uncoupled peptide. The polymer-peptide 

solution was then lyophilized and a pure white powder was obtained and the peptide 

attachment was then qualitatively characterized with 1HNMR.  

The thermoreversible gelation behavior of the polymers was studied by simple gel 

inversion. A gradient Reverse Phase HPLC (RP-HPLC) method was used to measure the 

conjugation efficiency of the peptide to the polymer.  A (Schimadzu) C-18 analytical column 

(5 µm, 4.6x 250 mm) was used. A flow rate of 1 ml/min was used for the gradient elution 

with the mobile phases of 0.05% TFA in acetonitrile (solution A) and 0.065% TFA in 100 % 

water (solution B). The mobile phase was run as follows: (1) 5% A for the first 0.01 min, (2) 

25% for the next 24.99 min, (3) 100% A for the last 5 min (total run 30 min). The polymer-
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peptide conjugate was injected to the system and the unreacted peptide was detected using 

the UV detector at 220 nm. The concentrations of the unreacted peptide were then calculated 

using the calibration curve obtained for the pure peptide using the same method. Amount of 

conjugated peptide was then found by subtracting the unreacted peptide from the initial 

added peptide to the polymer-peptide conjugation reaction.  

Block copolymer - calcium phosphate nanocomposite synthesis. Calcium phosphate 

(CaP)-block copolymer nanocomposite hydrogel samples were prepared by collaborator 

Yusuf Yusufoglu using the following procedure.. First, 1.2g copolymer-peptide conjugate 

obtained by attaching peptide blocks to Pluronic F127 (designated as Pluronic-Pep) and 1.2 g 

of pure Pluronic F127 were mixed with 5.0 mL 4.0 M Ca(Cl)2 solution after which the 

solution was kept in a refrigerator (at T≈1 oC) for 2 days. Then, 3.0 mL 4.0 M (NH4)2HPO4 

solution was added and kept in refrigerator for another 2 days. Later it was aged at room 

temperature for two days to form a hydrogel nanocomposite containing approximately 22 

wt% polymer-peptide. The pH of the hydrogel sample was maintained at ~ 8 by adding 6 M 

NaOH solution. The sample is referred to as Pluronic-Pep22-8, where the numbers 22 and 8 

refer to wt% of the polymer-peptide conjugate and pH of the gel, respectively. Similar 

procedures were used to prepare other  CaP/hydrogel samples, with polymer templates of 

triblock Pluronic F127, PentaPAA and PentaPZ with peptide groups attached (designated as 

Pluronic, PentaPAA-Pep and PentaPZ-Pep respectively). The nanocomposite gels were 

named as, Pluronic30-8, PentaPAA-Pep30-8 and PentaPZ-Pep45-8 hydrogel samples were 

prepared, where the first (30, 30, 45) and second numbers (8) refer to polymer content and 

pH of the gel respectively.  

Characterization. Calcium phosphate nanocomposite samples were analyzed by various 
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characterization methods. Scattering measurements along with XRD, NMR, bright field (BF) 

transmission electron microscopy (TEM), scanning transmission electron microscopy 

(STEM) using a high angle annular dark field (HAADF) detector, high resolution 

transmission electron microscopy (HRTEM), selected-area electron-diffraction (SAED), 

FTIR and TGA experiments were used to study the ordered polymer based nanocomposite 

superstructure.  These studies were conducted by collaborators Yusuf Yusufoglu and Yanyan 

Hu. Experimental details of NMR, TEM, FTIR and XRD studies can be found in [Yusuf et 

al. Journal of Materials Research].  

  Small angle X-ray scattering (SAXS) experiments were performed at the 12-ID beam 

line at the Advanced Photon Source in Argonne National Laboratory to elucidate the 

structure of the polymer-peptide gel nanocomposites. By using 12 keV X-rays (λ = 1.035 Å) 

the data were collected at 1 s exposure with a 15 x 15 cm2 CCD detector at a sample-to-

detector distance of 2m to measure the scattered intensity and the transmitted intensity was 

measured using a photodiode buried in the beam stop. The measured 2D data for the gel 

samples sandwiched between kapton tapes were corrected, azimuthally averaged and the 

scattering data was expressed as a function of Q (4π sin θ/λ), where 2θ is the scattering 

angle.  To complement the SAXS data that has higher sensitivity for the inorganic phase, 

small angle neutron scattering (SANS) was used to highlight the structural features of the 

copolymer phase in the nanocomposite gels as the neutron scattering contrast for the polymer 

phase, when in a deuterated solvent, is much higher than the inorganic phase. To increase the 

scattering contrast of the copolymer the gel samples were prepared in D2O, and the pH was 

adjusted to 8 by using DCl and NaOD. The samples were sealed in quartz cylindrical cells 

with a 2 mm path length and the experiments were performed using the time-of-flight SAND 
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instrument at the IPNS at the Argonne National laboratory that yielded data in a Q range of 

0.008 to 1 Å-1 in a single measurement. The scattering data were corrected following the 

routine procedures and the I(Q) was placed on an absolute scale in the units of cm-1. 

6.4. Results and Discussion 

Polymer characterization. The polymer-peptide attachment was qualitatively characterized 

using 1H solution NMR. Compared to the spectra of the polymer alone, the additional peaks 

between 1-2.5 ppm corresponding to the peptide protons compared to the polymer alone 1H 

NMR spectra confirmed the conjugation of the peptide to the polymer. The conjugation 

efficiency was determined by subtracting the amount of unreacted peptide measured by RP-

HPLC and UV detection from that of the initial amount of peptide used for the conjugation. 

In the case of Pluronic, the conjugation efficiency was found to be around 19.8% while it was 

found to be around 26.6% and 22.9% for PentaPAA and PentaPZ respectively.  

Structure and Composition of the Inorganic Phase. X-ray diffraction and FTIR 

measurements were performed to elucidate the inorganic phase and composition of the 

nanocomposite gels. XRD analysis was done under three different conditions, as prepared 

nanocomposites, dried nanocomposites, and washed samples where the polymer is removed. 

All samples mainly exhibit HAp reflections, although some HAp peaks were absent in the 

vacuum dried samples, may be due to the preferential orientation of HAp crystallites in the 

polymer matrix. The formation of HAp in the nanocomposites was further confirmed by 

FTIR analysis from the presence of major phosphate peaks. The details of the XRD and FTIR 

analysis could be found in [Yusuf et al. Journal of Materials Research]. The evidence of 

hydroxyapatite phase is further confirmed by direct polarization (DP) and cross-polarization 

(CP) 31P NMR analysis. These assignments are confirmed by the proton peak positions in 2D 
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1H-31P correlation spectra without spin diffusion [Yusuf et al. Journal of Materials Research]. 

The hydroxyapatite fraction in the nanocomposite was determined by thermogravimetric 

analysis. The analysis showed significant inorganic fractions, approximately 45 wt% for 

Pluronic-Pep22-8, 40 wt% for PentaPAA-Pep30-8, 35 wt% for Pluronic30-8 and 30 wt% for 

PentaPZ-Pep45-8. In general, the inorganic content in the present study is significantly larger 

than the 6 -15 wt% observed in our previous studies of calcium phosphate formation on 

cationic and polar templates16 without hydroxyapatite-binding peptides. 

NMR evidence of the nanocomposite formation.  Two-dimensional 1H-31P heteronuclear 

correlation NMR experiments with 1H spin diffusion,conducted by Yanyan Hu were used to 

prove the formation of nanocomposites. All the nanocomposites, PentaPAA-Pep30-8, 

PentaPZ-Pep45-8 and Pluronic30-8, Pluronic-Pep22-8 showed the presence of cross peaks 

between polymer protons and inorganic phosphate within a few tens of milliseconds 

confirming the close contact between organic and inorganic phases and nanocomposite 

formation [Yusuf et al. Journal of Materials Research].  

Nanostructures of organic and inorganic phases from SAXS/SANS. By virtue of 

drastically different interaction of neutrons and X-rays with matter SANS and SAXS serve as 

excellent complementary tools to investigate the nanostructural features in multicomponent 

hybrid polymer/inorganic nanocomposites. The complementarity can be clearly seen in 

Figure 6.1 wherein the SANS and SAXS profiles of the neat and corresponding 

nanocomposite gels are quite different. While the SANS data of both the polymer and the 

nanocomposite gel samples look similar and exhibit peaks, the SAXS data show peaks only 

for the neat polymer, but power-law scattering for the nanocomposites due to the major 

contribution of the inorganic phase in the latter. The reason for this is that the SAXS signals 
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of nanocomposites are over 3 orders of magnitude higher than the neat polymers. In the 

SAXS data we observe signatures for the average size of the inorganic nanocrystals in the 

high Q region and power law scattering in the low Q region representing their connectivity 

and correlations in the polymer matrix. In general, the power-law exponent in the low Q 

region suggests the connectivity between the fundamental particles whose size can be derived 

from the scattering intensity in the high Q region. The absolute value of the power-law 

exponent in the low Q region will assume values in the vicinity of 1, 2 and 3 for the 1D (rod), 

2D (sheet) and 3D morphologies at Qℓ >> 1, where ℓ is the length scale of the whole particle. 

In the case of mass fractal objects the absolute value of the power-law exponent becomes a 

non-integer in the range of 1 to 3, the larger the exponent value the denser the distribution of 

the fundamental particles in the matrix.  Although real space images would aid the proper 

interpretation of the small angle scattering data, modified Guinier analyses for the cross-

sectional dimensions help to resolve between a mass fractal object versus a rod when the 

power-law exponent has a value in the vicinity of 1 and a sheet when it has a value around 2. 

We will use these ideas in the interpretation of the SAXS data below.   

For the neat Pluronic gel both the SANS (Fig. 6.1a) and the SAXS (Fig. 6.1b) data 

show diffraction peaks at Q/Q* = 8:2:3  corresponding to the FCC packing of spherical 

micelles. The presence of peaks in the SANS data at similar repeat distances for the gels of 

the neat copolymers and the corresponding nanocomposites indicate that the growth of the 

inorganic phase has little effect on the long range order and morphologies of the polymer 

phase. This is consistent with the fact that crystals that nucleate in the interstitial regions will 

grow around the polymer phase and get connected.  The SANS data of the Pluronic30-8 and 

Pluronic-Pep22-8 nanocomposites clearly show power-law scattering in the low Q regions 
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due to the presence of inorganic structures in addition to the peaks associated with the 

polymer morphology. For the PentaPAA system both the neat polymer and the 

nanocomposite gels (Figure 6.1c) the SANS data show the BCC ordering with a d-spacing 

around 16 nm and the nanocomposite exhibits a power-law scattering in a small low Q 

region.  The SANS data for the PentaPZ-Pep samples indicate a HCPC structure 

corresponding to the diffraction peaks at Q/Q* = 12:7:3:1  for the neat polymer as well 

as the nanocomposite samples, with the d-spacing of 20 nm. In this case, the upturn in the 

low Q region was less pronounced when compared to the other composites.  

Based on its high sensitivity for the inorganic phase we use SAXS data to evaluate its 

nanostructural features in the nanocomposites. In the case of Pluronic30-8 (Fig. 6.1b) the 

length scale ( ℓ ) of the inorganic phase is ~ 4.86 nm and a Q-2.183 power-law scattering in the 

low Q region. On the other hand, for the Pluronic-Pep22-8 gel the length scale of the 

inorganic phase is ~3.26 nm that is much smaller and a Q-1.926 power-law scattering in the 

low Q region. The power-law scattering in the vicinity of 2 implies that the whole particle 

has a sheet-like morphology that is consistent with the TEM of the nanocomposites presented 

later. Although we cannot determine the largest dimension of the sheet-like objects with the 

limited Q range of the small angle scattering data we can use the modified Guinier analysis 

for a sheet-like morphology by plotting ln(Q2.I) vs. Q2 and fitting a straight line in a Q region 

where Qmax.T < 0.28, where T is the average thickness of the sheet-like particles. The 

thickness of the sheet-like objects in Pluronic30-8 and Pluronic-Pep22-8 gels falls in the 

range of 4 to 5 nm. 

 For a given block copolymer, we also observe that the nanocomposite with the 

peptides exhibit higher scattering intensity than that without the peptide, suggesting that the 
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peptide may have some influence in significantly enhancing the growth and nucleation of the 

inorganic during the nanocomposite formation. These results are consistent with the higher 

inorganic content measured for the peptide containing nanocomposites.  

Figure 6.1d shows the SAXS data for the neat PentaPAA-peptide and the 

corresponding nanocomposite. Consistent to the SANS data, the neat polymer shows several 

peaks for a highly ordered BCC phase with diffraction peaks at Q/Q* = 2:3:2:1 , while 

the nanocomposite exhibits the presence of nanocrystals with an average ℓ ~ 3 nm and a Q-

2.565 power law scattering. 

 In contrast to the observations for the Pluronic and PentaPAA systems, the neat 

PentaPZ gel (Fig. 6.1f) shows only weak peaks in the SAXS data. This discrepancy could be 

due to the potential for the samples on kapton tape to dry during the SAXS measurement 

while the samples for the SANS measurement were contained in sealed quartz cells. 

The PentaPZ-Pep45-8 nanocomposite shows the presence of nanocrystals with an average ℓ 

~ 3.6 nm and a Q-2.165 power-law scattering in the low Q region. Modified Guinier analysis of 

these nanocomposites revealed a thickness in the range of 4 nm. 

In summary, SANS and SAXS data clearly show that both the polymer and the 

nanocomposite structures have long-range order with nanometer-size morphology. This is in 

good agreement with the NMR data, where it was found that the polymer and inorganic are 

in close contact and in the nanometer size range. Furthermore, the conjugated peptide with 

the polymer does significantly enhance the growth and nucleation of the inorganic compared 

to the polymer templates without the peptide. 
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Figure 6.1. a) SANS and b) SAXS of gels of neat Pluronic, Pluronic-Pep and corresponding 
nanocomposites at pH 8.0; c) SANS and d)) SAXS of gels of neat PentaPAA-Pep and 
corresponding nanocomposite; e) SANS and f) SAXS of the gels of PentaPZ-Pep and 
corresponding inorganic nanocomposite. The high Q regions of the SAXS data were fitted 
using a combined equation consisting of an exponential and a power-law and the low Q data 
were fitted using a power-law.  

Figure 6.2 illustrates the Scanning transmission electron micrographs (STEM) of 5 

wt% Pluronic, Pluronic-Pep, PentaPAA-Pep and PentaPZ-Pep prepared in deionized water. 

 
Figure 6.2. STEM/HAADF micrographs of 5 wt% of polymer solutions prepared in 
deionized water and stained; a) Pluronic, b) Pluronic-Pep, c) PentaPAA-Pep and d) PentaPZ-
Pep. [Adapted from Yusuf et al., Journal of Materials Research].  
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The PentaPZ-Pep polymer solution revealed rod-like structures while all other 

polymers showed spherical micelles, in agreement with the SAXS and SANS results. The 

electron beam damage of the polymer precludes the size determination of the spherical 

micelles by STEM. However, earlier SAXS and SANS revealed that the micelles were 

approximately 15 nm in diameter, which is also consistent with our previous studies.16 

Extensive TEM studies were performed by Yusuf Yusuofglu on the HAp 

nanocomposite samples to identify the phase and morphology of the calcium phosphate. 

Pluronic30-8 nanocomposite is constituted of thin elongated plate-like crystals with a mean 

length and width of about 110 and 20 nm. The morphology of Pluronic-Pep22-8 

nanocomposite is quite similar to that observed for the Pluronic30-8. The variable 

morphology of the nanocrystals is difficult to describe and they vary from ~ 30 – 80 nm in 

length and ~ 10 – 25 nm in width. HAp nanocrystals of PentaPAA-Pep30-8 are also of plate-

like shape but with shorter mean length and irregular edges. Morphology of HAp 

nanocrystals in PentaPZ-Pep45-8, is also observed to be similar to other HAp nanocomposite 

samples. In general, the morphology of HAp nanocomposites observed in the present study is 

quite similar to those of various other HAp nanocomposites seen in the literature.24,25 

However, the morphology of the HAp crystals synthesized without any polymer looked 

significantly different than the one observed for HAp/hydrogel nanocomposite samples. HAp 

nanocrystals in polymer-free sample resulted in bulk precipitation of plate-like crystals. It 

appears that in the presence of the polymers, the morphology of HAp nanocrystals is more 

elongated plate-like than the one without any polymer. Detailed analysis of the 

nanocomposite morphology is described in Yusuf el al., Journal of Materials Research.  

6.5. Conclusions 
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The summary of the results of this study is tabulated below (Table 6.1). The structural 

properties of the apatite crystals obtained from this synthesis strategy were quite similar to 

the apatite present in the bone, with the main mineral phase being nano-sized carbonated 

HAp which is the main component of bone mineral.26,27 Electron micrographs showed that 

the apatite in bone and in the synthetic nanocomposites appears as plate-like crystals with 

average dimensions of ~50 nm in length, ~25 nm in width, and 2-5 nm in thickness, and with 

strong preferred orientation in their c-crystallographic (002) axis. SAXS confirmed the 

formation of thin, elongated crystallites. Solid-state NMR proved the formation of 

nanocomposites of this synthesized materials. TGA measurements show that the inorganic 

content in the nanocomposites was much higher than in those synthesized without the 

hydroxyapatite nucleating peptides,19 although it is still lower compared to the natural bone.. 

 
Table 6.1. Summary of characterization studies of the biomimetic hydrogel/CaP 
nanocomposites. 

 
XRD 

 
XRD, 
FTIR 

 
NMR 

STEM, 
HRTEM, 
SAED 

 
SAXS, 
SANS 

 
TGA 

 
 
 
Samples  

 
Gel 

 
Vacuum 
dried

 
Vacuum 
dried

Gel diluted 
to 5 wt% 
Polymer

 
Gel 
morphology 

 
 
Dried

 
Pluronic30-8 

 
HAp 

 
HAp

 
HAp

Elongated 
plate-like 
HAp

 
FCC  

 
35 wt% CaP 
 

Pluronic-
Pep22-8 

 
HAp 
 

 
HAp

 
HAp 

Elongated 
plate-like 
HAp

 
FCC  

 
45 wt% CaP 
 

PentaPAA-
Pep30-8 

 
HAp 

 
HAp

 
HAp

Elongated 
plate-like 
HAp

 
BCC  

 
40 wt% CaP 
 

PentaPZ-
Pep45-8 

HAp/ 
Brushite 

 
HAp

HAp/ 
Brushite

Elongated 
plate-like 
HAp

 
HCPC  

 
30 wt% CaP 
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In summary, we have successfully developed biomimetic polymer-hydroxyapatite 

nanocomposites using hydroxyapatite nucleating peptides conjugated to self-assembling 

block copolymers from a bottom-up approach. The thermoreversible gelation properties of 

these nanocomposites synthesized by a biomineralization approach, could potentially enable 

them to serve as injectable biomaterials for bone/cartilage tissue repair. 

6.6. Acknowledgements  

This work was supported by the U.S. Department of Energy under contract number DE-

AC02-07CH11358. This work benefited from the use of APS and the IPNS, funded by the 

U.S. DOE, Office of Science, Office of Basic Energy Science under contract no DE-AC02-

06CH11357.  

6.7. References 

1. J. Aizenberg: Crystallization in patterns: A bio-inspired approach. Adv. Mater.  16, 
1295-1302 (2004). 

2. J.L. Arias, A. Neira-Carrillo, J.I. Arias, C. Escobar, M. Bodero, M. David, and M.S. 
Fernandez: Sulfated polymers in biological mineralization: A plausible source for 
bio-inspired engineering. J. Mater. Chem.  14, 2154-2160 (2004). 

3. B.L. Smith, G.T. Paloczi, P.K. Hansma, and R.P. Levine: Discerning Nature's 
mechanism for making complex biocomposite crystals. J. Crystal Growth  211, 116-
121 (2000). 

4. Z.Y. Tang, N.A. Kotov, S. Magonov, and B. Ozturk: Nanostructured artificial nacre. 
Nat. Mater.  2, 413-U8 (2003). 

5. M. Aizawa, H. Ueno, K. Itatani, and I. Okada: Synthesis of calcium deficient apatite 
fibers by a homogeneous precipitation metho and their characterization. J. Eur. Cer. 
Soc.  26, 501-507 (2006). 

6. E.G. Bellomo and T. Deming: Monoliths of aligned silica-polypeptide hexagonal 
platelets. JACS  128, 2276-79 (2006). 

7. J.N. Cha, G.D. Stucky, D.E. Morse, and T.J. Deming: Biomimetic synthesis of 
ordered silica structures mediated by block copolypeptides. Nature  403, 289-292 
(2000). 

8. G. Falini, M. Gazzano, and A. Ripamonti: Control of architectural assembly of 
octacalcium phosphate crystals in denatured collageneous matrices. J. Mater. Chem.  
10, 535-538 (2000). 



 142

9. J.L. Sumerel, W. Yang, D. Kisailus, J.C. Weaver, J.H. Choi, and D.E. Morse: 
Biocatalytically templated synthesis of titanium dioxide. Chem. Mater.  15, 4804-09 
(2003). 

10. V. Bansal, D. Rautaray, A. Bharde, K. Ahire, A. Sanyal, A. Ahmad, and M. Sastry: 
Fungus mediated biosynthesis of silica and titania particles. J. Mater. Chem.  15, 
2583-2589 (2005). 

11. V.M. Rusu, N. C.H., M. Wilke, B. Tiersch, P. Fratzl, and M.G. Peter: Size controlled 
hydroxyapatite nanoparticles as self-organized organic-inorganic composite 
materials. Biomaterials  26, 5414-5426 (2005). 

12. J. Song, V. Malathong, and C.R. Bertozzi: A bottom-up approach for the 
development of artificial bone. JACS  127, 3366-3372 (2005). 

13. J. Song, E. Saiz, and C.R. Bertozzi: An efficient process towards 3-dimensional bone-
like composites. JACS  125, 1236-43 (2003). 

14. J. Song, E. Saiz, and C.R. Bertozzi: Preparation of PHEMA-CP composites with high 
interfacial adhesion via template driven mineralization. J. Eur. Cer. Soc. 23, 2905-
2919 (2003). 

15. G. Xu, I. Aksay, and J.T. Groves: Continuous crystalline carbonate apatite thin films. 
JACS 123, 2196-2203 (2001). 

16. D. Enlow, A. Rawal, M. Kanapathipillai, K. Schmidt-Rohr, S. Mallapragada, C.T. Lo, 
P. Thiyagarajan, and M. Akinc: Synthesis and characterization of self-assembled 
block copolymer templated calcium phosphate nanocomposite gels. J. Mater. Chem. 
17, 1570-1578 (2007). 

17. S. Chang, H. Chen, J. Liu, D. Wood, P. Bentley, and B. Clarkson: Synthesis of a 
potentially bioactive hydroxyapatite nucleating molecule. Calc. Tiss. Int.  78, (2006). 

18. M. Determan, S. Seifert, P. Thiyagarajan, and S.K. Mallapragada: Synthesis and 
characterization of temperature and ph-sensitive self assembling pentablock 
copolymers. Polymer  46, 6933-46 (2005). 

19. M. Kanapathipillai, Y. Yusufoglu, A. Rawal, Y. Hu, C.T. Lo, P. Thiyagarajan, Y. 
Kalay, M.A. Akinc, S.K. Mallapragada, and K. Schmidt-Rohr: Ionic block copolymer 
template directed calcium phosphate nanocomposites. Chem. Mater.  Submitted, 
(2008). 

20. J.-F. Lutz, H.G. Boerner, and K. Weichenhan: Combining atom transfer radical 
polymerization and click chemistry: A versatile method for the preparation of end-
functional polymers. Macromol. Rapid Comm.  26, 514-518 (2005). 

21. F. Zeng, H. Lee, and C. Allen: Epidermal growth factor-conjugated poly(ethylene 
glycol)-block- poly(d-valerolactone) copolymer micelles for targeted delivery of 
chemotherapeutics. Bioconj. Chem.  17, 399-409 (2006). 

22. D. Bali, L. King, and S. Kim: Syntheses of new gramicidin a derivatives. Austr. J. of 
Chem.  56, 293-300 (2003). 

23. V. Coessens, Y. Nakagawa, and K. Matyjaszewski: Synthesis of azido end-
functionalized polyacrylates via atom-transfer radical polymerization. Polymer Bull. 
40, 135-142 (1998). 

24. Z. Li, Y. Li, A. Yang, X. Peng, X. Wang, and Z. Xiang: Preparation and in vitro 
investigation of chitosan/nano-hydroxyapatite composite used as bone substitute 
materials. J. Mater. Sci.: Mater. in Med.  16, 213-219 (2005). 



 143

25. C. Lai, S. Tang, Y. Wang, and K. Wei: Formation of calcium phosphate nanoparticles 
in reverse microemulsions. Mater. Lett.  59, 210-214 (2004). 

26. M. Vallet-Regi and J.M. Gonzalez-Calbet: Calcium phosphates as substitution of 
bone tissues. Prog. in Solid State Chem.  32, 1-31 (2004). 

27. X. Su, K. Sun, F.Z. Cui, and W.J. Landis: Organization of apatite crystals in human 
woven bone. Bone 32, 150-162 (2003) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 144

CHAPTER 7. STIMULI RESPONSIVE BORONIC ACID BASED PENTABLOCK 

COPOLYMERS FOR GLUCOSE RESPONSIVE APPLICATIONS 

A paper submitted to Journal of Biomaterials Science Polymer Edition 

M. Kanapathipillaia, Surya. K. Mallapragada* 

7.1. Abstract 

A novel pentablock copolymer with glucose responsiveness and thermoreversible 

gelation properties was synthesized for potential biological applications. The pentablock 

copolymer consisting of Pluronic® triblock and poly(3-acryl-amidophenylboronic acid) 

(PAAPBA) side blocks was synthesized via reversible addition fragmentation transfer 

(RAFT) polymerization. The polymer is capable of forming temperature responsive 

hydrogels at physiological temperatures due to the hydrophobic polypropylene oxide (PPO) 

block in the Pluronic® triblock, and can be used as an injectable drug delivery system. The 

APBA monomer is an anionic monomer with a pKa ~ 8.3.  Glucose forms a charged complex 

with the phenyl boronic acid moiety of the APBA and results in glucose responsive solubility 

in aqueous solutions. Titration measurements showed that the pKa value of the pentablock 

copolymer was reduced in the presence of glucose. Laser light scattering experiments were 

used to demonstrate the glucose responsive micellization properties of this copolymer, where 

a significant reduction in micellar size was observed in the presence of glucose. Further, the 

polymer gels exhibited swelling in the presence of glucose, which resulted in lower moduli 

values for the gels, as observed from rheological measurements. These stimuli responsive 

pentablock copolymers can be of importance in various glucose responsive applications, such 

as drug delivery.  

_____________________________________________ 
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7.2. Introduction 

 Stimuli-responsive polymers exhibit large, sharp changes in response to physical 

stimuli (such as temperature, solvents, or light) or to chemical stimuli. Changes in the 

physical, chemical or biochemical environments of these polymers results in modulation of 

the solubility or chain conformation of the polymer [1-3]. They have been widely 

investigated for the applications in biomedical and materials research such as in biomimetic 

actuators, drug delivery systems and bioseparations [1].  

Recently, water-soluble glucose-sensitive boronic acid containing polymers have 

shown great potential in biological applications [4-7]. Phenylboronic acid is a molecular 

recognition ligand, which is widely used in affinity separation and chromatographic studies 

[8, 9]. Phenylboronic acid compounds are in equilibrium between uncharged and charged 

forms in aqueous medium. Through complexation with glucose, the equilibrium shifts in the 

direction of increasingly charged phenylborates as only charged borates can form a stable 

complex with glucose in aqueous media [9, 10]. Based on this principle, many research 

studies have investigated the use of boronic acid based block copolymers for applications 

such as glucose-sensitive insulin delivery systems, glucose sensing and molecular 

recognition separation techniques [4, 5, 9, 10].  

A block copolymer containing poly(3-acrylamidophenylboronic acid) and poly 

(dimethylaminoethyl methacrylate), poly (AAPBA)-b-poly(DMAEMA) showed glucose 

sensitive responsiveness due to the protonation of AAPBA in the presence of glucose [4]. 
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Since in aqueous medium these AAPBA compounds are in equilibrium as charged and 

uncharged forms, the complexation of glucose is able to shift the equilibrium towards the 

direction of increased charge of phenylborates, since only charged borates can form 

complexes with glucose in aqueous media.  Several studies have been done on glucose-

responsive crosslinked gels using proteins such as the enzyme glucose oxidase (GOD) [11] 

or lectin concanavalin A (Con A) [12] as well as synthetic moieties such as phenylboronic 

acid (PBA) [4, 5]. Although the synthetic moieties are less specific, they have the advantage 

of greater reliability and long-term stability and do not suffer from drawbacks associated 

with possible protein denaturation. Hence it represents the characteristics to induce gel 

swelling upon glucose complexation. From this basis, Kataoka et al., have developed gels 

with on-off regulation of insulin release, initially operating at a pH of 9 [13] and recently at 

physiological pH conditions by modifying the chemical structure of the receptor with an 

electron-drawing group in the phenyl ring [9, 10]. 

  Although the polymer gel systems reported above are capable of exhibiting glucose 

responsive properties and hence are potential drug delivery devices for insulin delivery, due 

to the crosslinked nature of these gels, it is difficult to implant and remove them from the 

body. Therefore, our work is focused on novel injectable boronic acid based gel systems that 

can form glucose-responsive physical gels in vivo at physiological temperatures thereby 

eliminating difficulties associated with implanting and removing the gels. Recently, we have 

demonstrated that a pH-sensitive Pluronic® based pentablock copolymer is capable of 

forming hydrogels and can be used as potential stimuli-responsive injectable drug depot 

system [14, 15]. In this study, we are focusing on a glucose-responsive boronic acid-based 



 147

pentablock copolymers that can undergo thermoreversible gelation and hence could be used 

in future drug delivery applications.  

 Several polymerization techniques have been employed in the synthesis of polymers 

with boronic acid moieties, in which conventional radical polymerization has proven to be 

the most efficient of all [16-18]. As far as acrylamido hydrophilic block copolymers are 

concerned, although atom transfer radical polymerization (ATRP) has been used recently, 

reversible addition fragmentation chains transfer polymerization (RAFT), showed excellent 

results [18-20]. Although several works were reported on the uncontrolled random 

copolymerization of acrylamido and boron containing monomers [13], recently Cambre et. 

al. have demonstrated the use of RAFT polymerization in the synthesis of well-defined 

water-soluble acrylamido and boron containing block copolymers [18].  

We have synthesized a novel Pluronic® (F127) based pentablock copolymer with 

PAAPBA blocks as a glucose-sensitive moiety using RAFT polymerization. The pentablock 

copolymer is capable of exhibiting thermoreversible gelation due to the Pluronic® triblock. 

The focus of this study is to develop a pentablock copolymer that can exhibit glucose- and 

thermoresponsive properties through a facile RAFT synthesis method. The RAFT 

polymerization was performed with pinacol esterified AAPBA monomer to have an efficient 

radical transfer, and the deprotection of pinacol ester was achieved by the use of borono 

polystyrene similar to previously reported methods [21, 22]. PAAPBA exhibits a pKa value 

of around 8.3 and forms charged borates above this pH. Through complexation with glucose, 

charged phenylborates attain a stable complex, rendering the polymer more hydrophilic 

which leads to the swelling of the gel, exhibiting glucose responsiveness [4, 5]. Further, we 

have investigated its solution properties such as micelle size, pKa and gel swelling behavior 
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in glucose environment and hence their future potential in glucose responsive applications 

such as in biosensors and glucose responsive drug delivery.  

7.3. Materials and methods 

 Aminophenyl boronic acid (APBA) was purchased from TCI America. [1-ethyl-3-

(dimethylamino) propoyl] carbo-diimide hydrochloride (EDC) and polystyrene supported 

boronic acid resin (~ 3 mmol/g) were purchased from Alfa Aesar and used as received. 2,2’-

Azobisisobutyronitrile (AIBN, Sigma, 98%)  was recrystallized from ethanol. All the other 

chemicals were purchased from Sigma Aldrich and Fisher Scientific and were of high purity. 

7.3.1. Glucose responsive pentablock copolymer synthesis. 

7.3.2. RAFT chain transfer agent synthesis (S-1-dodecyl-S’-(α,α’-dimethyl- α”-acetic acid) 

trithiocarbonate. 

The synthesis procedure was adopted from Lai et al.[23] method. Briefly, 1- 

dodecanethiol (40.38 g, 0.2 mole), acetone (96.2 g, 1.65 mole), and Aliquot 336 

(tricaprylylmethylammonium chloride, 3.25g, 0.008 mol) were mixed around 10°C under 

nitrogen atmosphere in a jacketed reactor. After that, 50% sodium hydroxide (16.7g, 0.21 

mol) was added slowly. After 15 minutes of additional stirring, carbon disulfide (15.21g, 0.2 

mol) in acetone (20.18g, 0.39 mol) was added over 10 minutes and the color of the solution 

turn into red at that time. Chloroform (35.6 g, 0.3 mol) was added after which 50% of NaOH 

solution (80g, 1 mol) was added dropwise. The mixture was stirred overnight and the 

following day 300 ml of water was added followed by 50 ml of concentrated HCl to acidify 

the mixture. To evaporate the acetone, nitrogen was purged through the reactor. Later, the 

solid product was filtered out then stirred in 500 ml of 2- propanol. After the stirring, the 

remaining solid was filtered out and the solution was concentrated to dryness. The resulting 
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solid was recrystallized from hexanes and a yellow crystalline solid product was obtained 

and verified with 1HNMR.  

7.3.3. F127 RAFT chain transfer agent synthesis (F127-CTA). 

Equal number of moles of Pluronic® F127 and RAFT-CTA were dissolved in 

methylene chloride with 4-dimethylaminopyridine (DMAP) (0.2 eq.) and cooled to 0°C after 

which dicyclohexylcarbodiimide (DCC) solution (1.5 eq.)  was added slowly. The reaction 

was stirred overnight. The resulting solution was then precipitated in diethyl ether, 

redissolved in THF, centrifuged and filtered and reprecipitated in ether and a pure F127-CTA 

agent was obtained. The product was then characterized with 1HNMR.  

7.3.4. Monomer (3-Acrylamideophenylboronic Acid, (AAPBA)) synthesis. 

AAPBA was synthesized as previously described by Lapeyre et al.,[5]. Briefly, 1.862 

g  (10 mmole) of  3- aminophenylboronic acid was dissolved in 15 ml water. The pH of the 

solution was adjusted to 4.8.  The solution was then immersed into an ice bath, and 2.3 g (12 

mmole) of EDC was added and the pH was again adjusted to 4.8. In a separate flask, 0.83 ml 

(12 mmole) of acrylic acid in a solution of 10 ml water was prepared and the pH was 

adjusted to 4.8. The solutions were then mixed together in an inert atmosphere and the 

reaction was maintained around 15°C and allowed to stir overnight at room temperature. The 

reacted mixture was then filtered, and extracted with ethyl ether. The ether was then rotary 

evaporated and the crude oil product was then mixed with water and the mixture was stirred 

under ice and a white solid precipitate was obtained. 1H NMR(APBA) (400 MHz, DMSO):  

5.75 (1H, CH2=CH-), 6.25 (1H, CH2=CH-), 6.3 (1H, CH2=CH-), 7.25 (1H, phenyl), 7.5 (1H, 

phenyl), 7.8 (1H, phenyl), 7.85 (1H, phenyl), 8.0 (2H, -B(OH)2), 10.1 (1H, NH).   

7.3.5. Pinacol esterification of AAPBA monomer. 
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The monomer was esterified with pinacol similar to the procedure reported previously 

[18, 21]. AAPBA (1g, 5. 3 mmol ), pinacol (700mg, 6 mmol ), were added to dry THF. The 

mixture was stirred for 18h. The product was concentrated under vacuum and then 

precipitated with n-hexane to give the esterified monomer with a yield ~ 95%. 1H-NMR (400 

MHz, CDCl3) revealed the sharp pinacol ester peak at 1.38 (s, 12H, ([CH3]2C-C-CH3]2). 

7.3.6. RAFT polymerization of Pinacol esterified AAPBA monomer with F127- CTA.  

The boronic acid pentablock copolymer was synthesized by RAFT polymerization. 

First, (200 mg, 15 µmol) of CTA RAFT initiator was mixed with (200 mg, 735 µmol) of 

pinacol esterified AAPBA in dry THF (2 ml) with AIBN catalyst (~ 2 µmol). The reaction 

was carried out overnight at 70°C under inert conditions. The product was then precipitated 

in ether and dried under vacuum.  

7.3.7. Deprotection of pinacol ester from boronic pentablock copolymer. 

Deprotection of the pinacol ester was carried out as previously reported [22]. The 

polymer (0.1g, 0.25 mmol) was mixed with an excess amount of (x5) polystyrene-supported 

boronic acid (0.55g, ~ 3.0 mmol/g), in a flask containing 10 ml acetonitrile with 10% 1M 

HCl solution. The mixture was stirred at room temperature for 18 h. The solution was then 

filtered to remove the polymer resin and the filtrate was then concentrated by rotary 

evaporation. The product was then precipitated in ether and a deprotected pentablock 

copolymer was obtained.  

7.4. Characterization 

7.4.1. Structural investigation with NMR.  
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The RAFT synthesis procedure of the boronic acid pentablock copolymer is shown in 

Figure 7.1. The chemical structures and the molecular weight of the copolymers were found 

from 1HNMR characterization and end group analysis. 
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Figure.7.1. Boronic acid pentablock synthesis scheme using RAFT polymerization 

7.4.2. Potentiometric titration.  

Titration measurements were performed to find the dependency of the pKa value of 

the polymer with and without different glucose concentrations. Potentiometric titrations were 

carried out using a corning 313 pH/temperature meter at room temperature. All solutions 

were prepared with nanopure water. Samples were prepared by dissolving 20 mg of the 

boronic acid pentablock copolymer in 20 ml water. The pentablock copolymer solution pH 

was first raised to pH 12 by adding 1.0 M NaOH and then back titrated using 1.0 M HCl. The 

decrease in ionization of the boronic group was calculated by subtracting the H+ 
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concentration in solution from the total H+ added to the boronic acid pentablock copolymer 

solution according to [24]. 

7.4.3. Effects of glucose concentration on boronic acid pentablock copolymer micelles.  

Light scattering technique was applied to determine the size of copolymer micelles in 

aqueous solutions under different glucose concentration conditions. Measurements were 

performed using a zeta particle size analyzer (Malvern instruments, U.K.) operating with a 

HeNe laser at 90°. Samples were prepared with 4 mg/ml of boronic acid pentablock 

copolymer in water at pH 8.5 with and without different amount of glucose concentrations, 

and were filtered with 0.22 µm filters immediately prior to analysis. Data collection and 

analysis was performed with Malvern instrument software.  

7.4.4. Boronic acid pentablock copolymer gelation and its glucose sensitivity. 

The gelation properties of the copolymers were investigated by simple gel inversion 

techniques. Boronic acid pentablock copolymer gels with various concentrations were 

prepared in ~ pH 8.5 aqueous solutions (closer to their pKa value). The polymer gelation 

conditions were then studied as a function of temperature. Rheological experiments were 

carried out using an ARES rheometer from TA instruments to investigate the glucose 

responsive swelling of the boronic acid copolymer gels. Copolymer gels of 40 wt% with and 

without 100 mg/ml glucose concentration was used for the study. A parallel plate with 

diameters of 50 mm and gap of 1.0 mm was used for all samples. The moduli values of 

physical hydrogels formed from the copolymers were investigated with dynamic strain 

controlled (50%) mode at room temperature. Frequency sweeps were carried out with 

angular frequency varied from 1 rad/s to 0.001 rad/s and the moduli measurements were 

recorded.  
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7.5. Results 

Boronic acid pentablock copolymers were synthesized using RAFT polymerization 

and characterized to elucidate their glucose-sensitive behavior in aqueous environments. 

1HNMR measurements were performed to find the composition and molecular weight of the 

boronic acid pentablock copolymers. Fig. 7.2 shows the 1HNMR spectra of F127-RAFT 

chain transfer agent. RAFT polymerization was performed to polymerize the AAPBA 

monomer with the F127 RAFT chain transfer agent to obtain the boronic acid pentablock 

copolymer. 

 

 

 

 

 

 

 

 

 

 

 

Figure.7.2. 1HNMR spectra of  F127-CTA 

 The pentablock copolymer obtained by the RAFT polymerization from the F127-

CTA and AAPBA monomer before and after the deprotection of the pinacol ester group was 

shown in Fig. 7.3. The degree of polymerization of the boronic acid groups to F127 triblock 

copolymer was found using the end group analysis from the NMR spectra peak area ratios of 

Pluronic® and boronic acid groups. Four different molecular weight polymers with different 

boronic acid side blocks were synthesized for the study. The detailed boronic acid side 

8 6 4 2
ppm

DMSO

w ater

PEO
PPO

C
H2

C
H2

OC
H2

H2C 65
100

O CH2-CH2-O-CO S

C12H25

S

S



 154

blocks and the respective molecular weights and the molar percent of the boronic acid in the 

copolymers are tabulated in Table 7.1. The polymer nomenclature was chosen to represent 

the triblock copolymer (F127), and the boronic acid side blocks (BA) and its corresponding 

number of  boronic acid side groups (n).  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure.7.3. An example 1HNMR spectra of a) boronic acid pentablock copolymer in DMSO 
before deprotection b) in D2O after deprotection 
Table 7.1. Composition and molecular weights of boronic acid copolymers 

Feed composition (molar ratio)  Polymer 

  Abbreviation F127-CTA AAPBA

  Total number 

of borate blocks 

in copolymer

Molecular 

weight from 
1HNMR

   F127-BA-6 1 12 12 15,404

F127-BA-15 1 30 30 18,750

F127-BA-25 1 50 50 22,620

F127-BA-50 1 100 100 31,782
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The copolymers showed thermoreversible gelation depending on the polymer molecular 

weight, concentration and temperature. A gelation diagram obtained for two different 

copolymers is shown in Fig. 7.4. When the boronic acid content was increased, the 

copolymer gels become weak and loosely packed due to the charged borate groups. The 

copolymers formed gels when the temperature increased due to the LCST behavior of the 

PPO blocks in the pentablock copolymer. Above a certain temperature, depending on the 

boronic acid groups in the copolymer, the LCST behavior of the PPO is less favored due to 

the increased mobility of the borate charged complexation groups resulting in the swelling of 

the gel. 
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Figure. 7.4. Sol-gel phase diagram of the boronic acid pentablock copolymer. Here sol-gel 
refers to the solution to gelation transition phase behavior of the polymers which is 
determined by simple tube inversion techniques at various temperatures. The phase transition 
points of F127-BA-6 and F127-BA-25 polymers are shown in the figure.   
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To further elucidate the solution behavior of the boronic acid pentablock copolymer, 

light scattering, potentiometric titration and rheological measurements were performed. The 

solution behavior was carried out at pH 8.5 in aqueous media where the boronic acid is 

partially ionized.  Light scattering measurements were performed to investigate the effect of 

glucose on the AABPA pentablock copolymer micellar structure. Light scattering 

measurements revealed that the boronic acid pentablock copolymers exhibit glucose 

sensitivity at pH 8.5 aqueous solutions. In the presence of 10 mg/ml glucose, the copolymer 

micellar size distribution showed significant decrease in particle size for the boronic acid 

copolymers F127-BA-25 and F127-BA-15. When the glucose concentration was increased 

above 10mg/ml, the ionization reached a saturation level, and further increase in glucose 

concentration had no significant effect on the micellar size. In the case of F127-BA-6 

polymer, there was not much effect on the micelle sizes observed. This may be due to the 

low content of the boronic acid blocks that were not enough to form charged complexes with 

glucose. Table 7.2 shows the size distribution obtained for the boronic acid pentablock 

copolymer with various boronic acid blocks with and without glucose.  

 
Table 7.2. Light scattering measurements of micelle sizes (nm) of 4 mg/ml polymer 
solutions at pH 8.5 with varying glucose concentrations and polymer molecular weights of  
two sample sets with ± peak width deviation values from the average particle sizes 

 Micelle seizes (nm) 

Glucose concentration F127-BA-6 F127-BA-15 F127-BA-25 

0 39.83±5.5 72.35±3.2 77.34±11.06 

1 mg/ml 38.36±5.27 70.60±2.9 66.87±9.5 

5 mg/ml 33.84±4.96 57.19±7.14 61.59±1.37 

10 mg/ml 31.94±4.28 51.36±7.4 56.84±9.45 

20 mg/ml 37.68±5.35 51.08±3.6 56.17±9.17 
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To find out the relationship between the pKa value and glucose concentrations, 

potentiometric titration measurements were carried out. The pKa value of the boronic 

pentablock copolymer in water was found to be around 8.4, while it was reduced to 8.0 and 

7.7 in the presence of 5mg/ml and 10 mg/ml glucose concentrations respectively. The 

complexation formation of the phenylborates with the glucose stabilizes the charged 

phenylborates resulting in the decrease of pKa value. Fig. 7.5 shows the titration curves of 

F127-BA-25 boronic acid pentablock copolymer in water with and without glucose.  

Rheological measurements were performed to find the effect of glucose on the 

copolymer gel structure. Pentablock copolymer gels were prepared at 40 wt% in water at pH 

8.5 with and without 100mg/ml glucose concentration. The presence of glucose made the gel 

swell, leading to lower moduli values (Fig. 7.6). In the presence of glucose, the boronic acid 

pentablock copolymer formed loosely packed gels due to the stable ionization of the boronic 

pendant side groups. This resulted in significant loss in the moduli values of the boronic acid 

pentablock copolymer gels. This property can potentially be exploited to release insulin or 

other proteins trapped in the gels in response to glucose levels in the body. 

 
Figure.7.5. Titration curves of the boronic acid pentablock copolymer F127-BA-25 



 158

 

0.01

0.1

1

10
M

od
ul

us
 (P

a)

0.1 1 10 100
Frequency (rad/s)

    G'- boronic acid polymer

    G"- boronic acid polymer

 G"- boronic acid polymer w/glucose

 G'-  boronic acid polymer w/glucose

 
Figure.7.6. Storage and loss moduli of boronic acid- pentablock (F127-BA-25) copolymer 
gels (40%) at pH 8.5 with and without glucose (100mg/ml) with 50% dynamic strain control.   

 

7.6. Conclusions 

We have demonstrated synthesis of a novel thermoresponsive glucose responsive 

pentablock copolymer that could potentially be used in glucose responsive applications. The 

novel pentablock copolymer is also capable of forming thermoreversible gels at 

physiological temperatures, overcoming disadvantages associated with implantation and 

removal of the cross-linked gels during drug delivery applications. A well-defined boronic 

acid pentablock copolymer was synthesized by RAFT polymerization technique. The 

protection of the boronic acid group with pinacol ester facilitates a well-defined RAFT 

polymerization of the boronic acid copolymer. The solution behavior of this copolymer was 

studied to find its glucose responsive properties in aqueous environments. Light scattering, 

potentiometric titration and rheological measurements showed that the polymer exhibits 
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glucose responsive properties. Based on these initial findings that are promising, further 

studies will be undertaken in the future to test glucose-responsive drug delivery using these 

novel biomaterials.  
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CHAPTER 8. THERMOREVERSIBLE PHOTO CROSSLINKABLE POLYMER 

GELS FOR POSTTRAUMATIC ARTHRITIS CARTILAGE HEALING 

 (A paper in preparation for submission to Biomaterials) 
 

Mathumai Kanapathipillaia, Colin Paulb, Mathew Goodmanc, Zhiqun Linc and Surya K. 

Mallapragadaa 

8.1. Abstract 
 

Photocrosslinking thermoreversible gels were designed to maintain scaffold integrity 

for a few days to facilitate tissue regeneration and healing after trauma to minimize 

posttraumatic arthritis. Pluronic F127 triblock copolymers and Pluronic based pentablock 

copolymers with poly(diethylaminoethylmethacrylate) (PDEAEM) side blocks  were 

modified with acrylate end groups to form injectable physically crosslinked polymer gel 

networks conforming to the defect sites that can be chemically crosslinked in situ via UV 

photopolymerization. Hydrogels were fabricated with methacrylated Pluronic/ pentablock 

block copolymers and polyethylene glycol diacrylate (PEG-Acr) macromers, with 

concentrations ranging from 10-30% to obtain strong interpenetrating crosslinked gel 

neworks. The chemically cross-linked gels increased the shear moduli values to about 20 kPa 

compared to the physically crosslinked gel moduli values of ~10 Pa. This is further observed 

from solubility studies where the chemical crosslinking, resulted in swollen cross-linked 

polymer gels that were stable for weeks, compared to that of physical gels which dissolve 

within a day. Polymer macromer concentrations, UV exposure time and energy and photo 

initiator concentrations were optimized to obtain gels with increased crosslinking densities, 

and enhanced mechanical properties to withstand extreme physiologic compressive loads and 

support formation of new tissues. These gels could be used as injectable therapies for post-
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traumatic cartilage tissue healing due to gelation at physiological temperatures and increased 

moduli values that are closer to the mechanical properties of natural cartilage. 

_____________________________________________ 
aDepartment of Chemical Engineering, Iowa State University and Ames Laboratory 
bDepartment of Chemical Engineering, Arkansas State University  
cDepartment of Materials Engineering, Iowa State University and Ames Laboratory 
 
8.2. Introduction 
 

Traumatic arthritis results in cartilage damage due to inability to withstand pressure 

or extensive load after the injury to a joint such as fracture or sprain, which eventually leads 

to posttraumatic osteoarthritis [1-3]. The cartilage material, if  damaged and ripped away, is 

normally replaced by scar tissue. The scar tissue material is not as good for covering joint 

surfaces as the cartilage it replaces, as it is unable to support weight and is not smooth like 

true articular cartilage [1]. Hence under these conditions where normal physiologic reaction 

to fracture does not occur, surgery is a necessity, where synthetic matrices mimicking the 

characteristics of the cartilage environment play a role in the posttraumatic cartilage healing 

[4, 5]. 

Several investigations are involved in developing materials that could be used as a 

temporary wound healing material for posttraumatic arthritis cartilage repair [4-6]. Hydrogels 

seem to be a good choice as tissue engineering materials. They resemble the cell structure 

due to their water retaining capability from swelling, promoting cell proliferation and cell 

function by allowing diffusion of nutrients into the gel and cellular waste out of the gel 

structure [6, 7]. The hydrogel structure has to be fine-tuned to withstand the mechanical 

stresses from the cellular environment as well as the degradation rates. Although several 

natural minerals such as alginate and fibrin hydrogels are capable of use as transplant 
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materials, their mechanical properties and composition are difficult to control and difficult to 

mimic that of natural cartilage [8]. Synthetic hydrogels could be a better choice for the 

cartilage structures where the chemical structure and the degradation of the hydrogels could 

be easily controlled compared to the natural ones [6, 8, 9].  

Several synthetic crosslinking hydrogel networks have been used in this respect [10-

13]. Several methods of crosslinking hydrogels such as radical polymerization, chemical, 

physical, ionic and protein interactions have been currently used. Radical polymerization 

using UV has been the most widely used in cell applications due to its nontoxicity to cellular 

environments during crosslinking [7]. Vinyl monomers are used in many biomedical 

applications for forming cross- linking networks insitu in the presence of photoinitiator when 

exposed to light [6, 10, 12]. Recently several works have been focused on improving the 

polymer gel structure properties for cartilage tissue development. Anseth and coworkers, one 

of the pioneers in the development of hydrogel networks using photopolymerization of vinyl 

monomers, have reported increase in mechanical properties of hydrogels with good 

biocompatibility [7, 8].  

Here in this work, injectable materials of Pluronic/pentablock macromers and 

diacryalted PEG macromer gels were fabricated with different composition ratios of 

macromers to optimize the gel crosslinking. The thermoreversible properties of the Pluronic 

allow these polymer networks be injected at the site of bone-defect cavity allowing the 

material to conform to the shape of the defect [14, 15]. Without the chemical crosslinking, 

the physical gels themselves are not stable and dissolve in a couple of days [12, 13]. The 

chemical crosslinking is designed to improve the stability of these gels and their mechanical 

properties. The polymer gel networks have been designed so that the degradation and moduli 
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values were tuned to have the essential features needed for post traumatic bone healing. Once 

injected, the polymer gel can be crosslinked by UV radiation and hardened at the site of 

interest, which will stabilize the gels and improve its mechanical properties. These injectable 

crosslinking hydrogels could be versatile materials in future biomedical applications such as 

in posttraumatic arthritis cartilage repair.  

8.3. Materials and Methods 

 Pluronic® F127, methacrylic acid,, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 

acryloyl chloride were purchased from Sigma. Polyethylene glycol diacrylate (PEG-Acr), 

Mw 4000, 1000 were purchased from Polyscience Inc. Irgacure 2959 was kindly provided by 

Ciba-Geigy. All the other chemicals were purchased from Fisher Scientific and of high 

purity. 

Pluronic, Pentablock copolymer acrylate functunalization. 

The Pluronic initiator was synthesized by simple esterification with 2-

bromoisobutyryl bromide as reported previously [14]. The PDEAM pentablock copolymer 

was synthesized using ATRP polymerization as previously described [14]. Dimethacrylated 

pentablock copolymer were synthesized by a previously reported method for nucleophilic 

substitution of Br group into methacrylate functionality [16]. Briefly, the pentablock 

copolymer was dissolved in methylene chloride in separate flasks. Equimolar amount of 

methacrylic acid (MAA) to the bromine group was added to each flask under vigorous 

stirring after which 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) was added to each flask. The 

reaction was carried out for 24 hours at room temperature. The mixture was then precipitated 

thrice in ethyl ether and vacuum dried, and the acrylated polymers were obtained. 

Dimethacrylated Pluronic was synthesized by a method reported by [12]. Here the Pluronic 
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was directly methacrylated by reacting with acryloyl chloride and triethylamine, 12 hours at 

4°C, and then 12 hours at room temperature as reported previously. The synthesis schemes 

for methacrylation of the polymers are shown below. 

Scheme 1. Pentablock methacrylation 
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Scheme 2. Pluronic methacrylation 

 

 

 

 

 

 

 

 

 

 

Formation of crosslinking hydrogels 

Crosslinked hydrogels were formed in polypropylene wells with diameter of 16.5 mm 

and a depth of 20 mm.  Methacrylated polymer mixtures with different formulations were 

weighed into these wells, and 300 µL of a solution of Irgacure 2959 photoinitiator in 

deionized water were added.  The total polymer concentration in solution ranged from 20-

40% (w/v), and the concentration of the photoinitiator was ranged from 0.05%-0.6 (w/w). 

The solutions were dissolved at 4°C until a homogeneous liquid was obtained and then set at 

room temperature for 10-30 min to form physical gels to mimic the state at which 

crosslinking would occur in physiological applications.  The wells were placed beneath a 

UVP (Upland, CA) Blak-Ray® B-100AP UV lamp with the top of the gel 2 cm from the 

source and irradiated with 365 nm longwave UV light at an intensity of 21.7 mW/cm2  for 10 

minutes after an approximately one minute warm-up period. 
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8.4. Characterization 

Polymer molecular weights were characterized using GPC  prior to crosslinking. 

1HNMR spectra’s were obtained with Vxr300 spectrometer. The samples were dissolved in 

CDCl3, and the spectra were observed to elucidate the methacrylate substitution to the 

polymer structures. After crosslinking, simple visual gel inversion techniques were used to 

characterize the morphology of the crosslinked gels. Further characterizations of the gels 

were performed using dissolution, swelling and mechanical studies for different mixtures of 

polymer macromer formulations to optimize the crosslinking conditions to obtain properties 

similar to that of natural cartilage.  

Dissolution and swelling of crosslinked gels 

Dissolution and swelling studies were performed to investigate the degree of cross 

linking and the degradation kinetics of the hydrogel networks. The gel samples were 

dissolved in water and the dissolution was monitored over time at room temperature using a 

simple gravimetric method as previously described [12]. Six identical samples were 

prepared. One sample was dried immediately after crosslinking for 20 h in a 37°C oven and 

weighed to determine the initial dry weight (Mid) for gels of that composition.  The 

remaining crosslinked gels were placed in 20 mL scintillation vials and immersed in 2 mL 

deionized water and were used for degradation and swelling studies.  At selected time 

intervals, gels were removed from solution and were patted dry and weighed to determine 

swollen mass (Ms). Excess water was removed from the vials containing hydrated gels, and 

the swollen mass was determined by subtraction of the known vial mass. The gels were then 

dried for 20 h in a 37°C oven and weighed to determine final dry mass (Mfd).  The swelling 

ratio of each gel was calculated using the equation  , Sr = ((Ms-Mfd)/Mfd) x 100, where Ms is 
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the weight of the swollen gel and Mfd is the weight of the final dried gel. The mass loss of 

crosslinked gels was found by using the following equation Mloss=(Mid-Mfd)/Mfd. The trials 

were done in duplicate.  

Rheology and Dynamic mechanical analysis 

Rheological studies were performed to investigate the shear modulus of the 

crosslinked gel network. Frequency sweep tests were performed in strain controlled mode, at 

37º C using a TA rheometer. Dynamic mechanical analysis was performed on a Perkin Elmer 

DMA7, to test the compressive moduli values of the cross linked gels. The test was 

performed at unconfined compression at a rate from 0-50 mN/min at 37º C. The compressive 

moduli were calculated using the initial slope of the stress-strain curve. The hydrogels were 

placed in a cup and plate arrangement with dimensions of 5mm in diameter and 3 mm in 

thickness. The compressive and shear moduli values were compared to similar polymer gels 

without crosslinking. 

8.5. Results and Discussion 
 

1HNMR spectra were obtained to confirm the methacrylation of the polymer end 

groups. Figure 8.1, 8.2 shows the methacrylate signals around 5.8 -6.3 ppm, indicating the 

replacement of Br groups.  
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Figure 8.1. 1HNMR spectra of PDEAEM pentablock methacrylation 

 

 

Figure 8.2. 1HNMR spectra of Pluronic F127 methacrylation 
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The acrylated macromers were then crosslinked under different conditions and the 

gels were transferred to 20 mL scintillation vials and soaked in 2 mL deionized water. The 

morphology of the crosslinked gels were then studied as described below. The swollen gels 

were classified as either lenses or hydrated gels. Lenses formed swollen, well-defined discs. 

Hydrated gels conformed to the shape of their container and deformed easily under applied 

stress. The water was replaced daily and the gels were checked for morphological changes. 

The timeline of fragmentation, when distinguishable, separable pieces formed, was noted. A 

gel was considered completely dissolved when gel fragments could no longer be 

distinguished from the dissolution liquid. Characteristic examples of these morphologies are 

shown in Figure 2. 

 

 

 

 

 

 

 

Figure 2. Characterization of crosslinked gels.  After crosslinking, gels were swollen and 
classified as either lenses (a,b) or hydrated gels (c).  The gels were soaked in 2 mL deionized 
water, and the date of fragmentation (d,e) and dissolution (f) was noted 

The hydrogels first fragmented and then dissolved as ester linkages in the acrylate kinetic 

chains were hydrolytically broken. Hydrogels prepared for the dissolution study were 

checked daily for physical changes, and the time frame at which fragmentation and 

dissolution occurred was noted.  Table 1 summarizes the results of these experiments. 

a) b) c) 

d) e) f) 
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Table 1. Tabulated below are the gel formulations tested  

F127 (wt%) PEG 400 
(wt%) 

Initiator 
(wt%) Time (min) Intensity 

(mW/cm2) Morphology Fragment (days) Dissolution 
(days) 

25 5 0.3 30 21.7 Hydrated gel 3 9 
20 10 0.3 30 21.7 Cracked lens 2 3 

F127 (wt%) 
PEG 
1000 

(wt%) 

Initiator 
(wt%) Time (min) Intensity 

(mW/cm2) Morphology Fragment (days) Dissolution 
(days) 

25 5 0.05 10 21.7 Hydrated gel 1-2 1-2 
30 10 0.05 10 21.7 Hydrated gel 1-2 3-5 
15 15 0.05 10 21.7 Cloudy lens >11 >11 
20 20 0.05 10 21.7 Cloudy lens >11 >11 
15 20 0.05 10 21.7 Cloudy lens >8 >8 

F127 (wt%) 
PEG 
4000 

(wt%) 

Initiator 
(wt%) Time (min)

Intensity 
(mW/cm2) 

Morphology Fragment (days)   Dissolution 
     (days) 

25 5 0.05 30 21.7 Hydrated gel >11 >11 
25 5 0.3 30 21.7 Hydrated gel 24 33 
30 10 0.046 30 21.7 Lens 2 >29 
20 10 0.3 30 21.7 Hydrated gel 8 >29 
15 15 0.05 30 21.7 Lens >11 >11 
15 15 0.3 30 21.7 Lens 30 >32 
20 20 0.046 30 21.7 Lens 13 >29 
15 20 0.05 30 21.7 Lens >23 >23 

(PDEAEM)35
-Mac(wt%) 

PEG 
1000 

(wt%) 

Initiator 
(wt%) Time (min)

Intensity 
(mW/cm2) 

Morphology Fragment (days) Dissolution 
(days) 

15 15 0.05 30 21.7 Gel/lens mix 2 >8 
15 25 0.05 30 21.7 Gel/lens mix 2 >8 

(PDEAEM)15
(wt%) 

PEG 
1000 

(wt%) 

Initiator 
(wt%) Time (min)

Intensity 
(mW/cm2) 

Morphology Fragment (days) Dissolution 
(days) 

15 15 0.05 30 21.7 Gel/lens mix 1-2 >8 

(PDEAEM)35
(wt%) 

PEG 
4000 

(wt%) 

Initiator 
(wt%) Time (min)

Intensity 
(mW/cm2) 

Morphology Fragment (days) Dissolution 
(days) 

30 10 0.046 30 21.7 Hydrated gel 1 2 
20 20 0.046 30 21.7 Lens 1 >29 
15 15 0.3 30 21,7 Hydrated gel 10 >32 
20 20 0.05 10 21,7 Hydrated gel 1-2 1-2 

F127 (wt%) 
(PDEAE

M)35 
(wt%) 

Initiator 
(wt%) Time (min)

Intensity 
(mW/cm2) 

Morphology Fragment (days) Dissolution 
(days) 

30 0 0.05 10 21.7 lens >10 >10 
0 40 0.046 30 21.7 Physical gel N/A 2 
15 15 0.046 30 21.7 N/A N/A 1 
20 20 0.046 600 21.7 Physical gel N/A 2-5 
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Note. Here the polymers tabulated are all acrylated macromers. As a control, F127 and 

PDEAEM pentablock copolymers without acrylation were tested for gel dissolution, and the 

gels were observed to dissolve fully within 12 hours.  

Hydrogels with a higher mass percentage of PEG-derived acrylates took longer to 

fragment and dissolved more slowly than those with a smaller amount of PEG.  This effect is 

explained by consideration of the crosslinking density in the hydrogel.  Because PEG has a 

lower molecular weight than F127 or pentablock copolymer, the initial double bond 

concentration in the photopolymerizable solution is higher when a larger percentage of PEG 

is incorporated. Therefore, the denser crosslinking sites, help to form tighter interpenetrating 

networks, resulting in slower dissolution rate due to the difficulty for water to penetrate the 

network and to cleave the ester bonds hydrolytically. Control samples containing 

methacrylated F127 or pentablock, shown in the final section of Table 1, did not form stable 

crosslinked hydrogels under identical conditions, corroborating the importance of initial 

double bond density.  In general, hydrogels formed with nearly equal F127: PEG mass ratios 

formed more stable gels. Based on these studies, the sample conditions that took longer to 

dissolve were chosen for the dissolution, swelling and mechanical studies, and the results 

were tabulated below.  

Table 2. Swelling, dissolution and mechanical studies  

F127 (wt%) PEG 1000 
(wt%) 

PEG4000 
(wt%) 

% Mass loss 
(10 days) 

% Swelling (10 
days) 

Compresssive 
moduls (KPa) 

Shear 
Modulus 

(KPa) 
20 20 0 46.4 5.58 ~50 18-22 
15 15 0 49.3 6.46 ~50 18-22 
20 0 10 54.5 19.36 ~25 10-12 
15 0 15 47.1 13.69 ~30 18-22 
30 0 0 N/A N/A ~10 N/A 
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Swelling data provides additional insights into the relationship between gel 

composition and crosslinking density. Hydrogels with F127 to PEG 1000 ratios of 1:1 

showed swelling ratios of 5-7 over the course of the study. The values remained nearly 

constant and were noticeably less than those of gels containing PEG 4000.  This supports the 

theory that a higher initial double bond concentration produces a more densely crosslinked 

network. The swelling ratios are similar to those reported for hydrogels formed from 

crosslinking F127 with hyaluronic acid [17] or chitosan [12]. Transparent hydrogels with 

F127 to PEG 4000 ratios of 1:1 showed similar stasis in swelling ratio, which remained 

between 14-20, suggesting that these gels were also stably crosslinked.   

 For mass loss data, initially in all gel compositions, unreacted polymer washed out of 

the hydrogel during the first two days of dissolution, resulting in a mass loss of ~33%. The 

mass loss of hydrogels observed with Pluronic:PEG ratio of less than or equal to 1:1 was 

nearly constant after the first few days. From two replicates, the percentage mass loss for 

these gels over 8-10 days was observed to be about 50%.  

Hydrogels formed from pentablock copolymer appear less promising for cartilage 

engineering applications. The hydrogels fragmented quickly, typically in 1-2 days. This may 

be due to the fact that the pentablock copolymers form physical gels at lower temperature 

than Pluronic for a given mass concentration, making even distribution of polymer and 

initiator more difficult and leading to the lack of compositional homogeneity in the final 

crosslinked hydrogel. Further, the higher MW of the pentablock copolymers may have made 

them less mobile in solution during the crosslinking reaction.  

   We have successfully, designed thermoreversible injectable insitu cross-linking gel 

networks with improved mechanical properties and stability. As far as the moduli values are 
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concerned, the gel mechanical properties still need to be improved about 10 fold to reach the 

natural cartilage compressive moduli values which are in the range of 500-600 kPa. Future 

directions of this work will be to increase the gel moduli with biomineralization strategies by 

forming a nanocomposite calcium phosphate-polymer crosslinked gel network. For further 

integration of these gels into the cartilage environment, these hydrogel networks will be 

conjugated with collagen binding peptides. This will help to mimic the natural cartilage 

environment and would increase the mechanical properties of the gel due to the inorganic 

content. These networks could be used as injectable cartilage matrices for applications such 

as post traumatic arthritis healing. 
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CHAPTER 9. GENERAL CONCLUSIONS AND FUTURE DIRECTIONS 
 
9.1. General Conclusions 

We have developed a family of block copolymers with pH, temperature, and glucose 

responsive properties, and block copolymer-peptide conjugates with bio specificity to 

enhance templated nucleation and growth of inorganic minerals. These block copolymers can 

self-assemble and form hierarchical structures over multiple length scales and are potential 

candidates for biomineralization and biomedical applications. The polymer-templated 

directed synthesis of inorganic minerals completely by self-assembly, with hierarchical 

structural order on the nanometer scale is a novel contribution of this work. Chapters 4-6 of 

this thesis detail the work on the role of these block copolymers on biomimetic mineral 

synthesis. Although we have successfully designed ionic templates for materials synthesis 

from a bottom-up approach, the yield obtained for the inorganic precipitation as well as the 

mechanical properties still need to be improved compared to that seen in nature. One of the 

reasons is the high percentage of polymer template needed for the subsequent self-assembled 

polymer-inorganic gel formation. To overcome this limitation, future directions of this study 

will be focused on organic polypeptide hydrogel templates that form gels at low 

concentrations. Further, in a parallel approach, we are also developing protein-polymer 

hydrogel templates for site-specific and controlled architecture synthesis of biominerals in 

future. The bottom-up approach of the synthesis process described in this work, completely 

by self-assembly of organic-inorganic precursors, yet need to be completely understood fully 

at a molecular level. Future collaborative work with Dr. P. Thiyagarajan involving the 

detailed analysis of the data obtained from the complementary small angle neutron and X-ray 

scattering for these block copolymers and their corresponding nanocomposite micellar self-
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assembly in dilute aqueous solutions, will provide further insights into the self-assembly, 

nucleation and the subsequent growth of these mineral nanocomposites.  

9.2. Future directions  
 
9.2.1. Detailed analysis and modeling of small angle scattering data of temperature 
dependent phase behavior of ionic pentablock copolymers and polymer nanocomposites 
micelles in dilute aqueous solutions (Collaboration with Argonne National Lab) 
 

            Aqueous solutions of the ionic pentablock copolymers were observed to form 

micelles and gels in response to changes in temperature and pH due to the lower critical 

solution temperature of the PPO block and the polyelectrolyte character of the PAA and 

polysufobetaine blocks respectively. The zwitterionic pentablock copolymers show 

interesting phase behavior due to the LCST and UCST behavior of different blocks of the 

copolymer. The temperature dependent phase behaviors of the polymer and the 

nanocomposite micelles were studied using small angle scattering, NMR and rheological 

measurements. The scattering data for the nanocomposite micelles formed by the templating 

of these polymers show no thermo responsive behavior suggesting that the micelles are stable 

in the presence of inorganic. Complementary small angle neutron and X-ray scattering for 

these block copolymers and their corresponding nanocomposite micellar self-assembly in 

dilute aqueous solutions will help to elucidate the roles of organic and inorganic phases in the 

self-assembly process. Modeling of the small angle scattering data will allow for quantitative 

assessment of micellar dimensions and shapes and will provide insights on the nucleation and 

the growth of the inorganic on the polymer micelles. Recently an efficient model was 

obtained by Determan et al. for cationic pentablock copolymer micelle systems [1]. Due to 

the polyelectrolyte present in the pentablock system, the micelles were modeled as a compact 
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hydrophobic core surrounded by double corona layers.  A form factor of concentric spherical 

shell of 3 regions and the Hayter-Penfold macroion potential structure factor that accounts 

for the electrostatic interactions between charged colloidal particles, when used together, 

yielded better fits to the scattering data obtained for these micelles [1]. Similar models will 

be a good start for our pentablock system, which also consists of polylelectrolyte side blocks, 

although in the case of the nanocomposite micelles, the system may have to be considered 

differently due to the presence of the inorganic layer around the micelle corona. Initial 

approaches to model our system will be based on the modeling studies done by Determan et 

al [1].  

9.2.2. Design of artificial Polypeptide scaffolds 

9.2.2.1. Organic polypeptides as templates for biomineralization 

It was found that unnatural amphiphilic polypeptides are capable of forming self 

assembled gels from the hydrophobic α-helical domain of the peptides [2-4]. Hydrogel 

formation was discovered by Deming and co-workers [2, 5, 6] with a series of diblock 

copolypeptides containing water solubilizing charged domains of either poly(L-lysine) or 

poly(L-glutamic acid) and with an α-helical hydrophobic domain of poly(L-leucine), which 

were named as KmLn or EmLn polypeptides, where m and n represent the number of blocks of 

each aminoacid [2]. The characterization study revealed that the hydrogel assembly was 

taking place through the association of α-helices perpendicular to the long fibril axis 

dimension [2, 7]. Further they are capable of forming gels at concentrations as low as 0.1 

wt% in water with moduli values in the range of 10-500 Pa [5]. The gel formation seems to 

be affected in the presence of increased ionic strength, due to the disruption of interchain 

repulsions of the hydrophilic blocks of the peptides, although it may be overcome by the 
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chain coiling due to the charge screening of the hydrophilic domain, which will introduce 

steric repulsions which will help to maintain the hydrogel structure. The polypeptides were 

synthesized by N-carboxyanhydride (NCA) polymerizations developed by Deming and 

coworkers [3].  

These polypeptide hydrogels provide more efficient templating in biomaterials 

synthesis due to their ability to self-assemble and form gels at concentrations as low as 

0.25% [2, 5]. Hence it will facilitate a higher fraction of inorganic packing, which will 

enhance the mechanical properties of the designed material. By synthesizing polypeptides 

mimicking the natural protein templates, we can not only attain a polymer template with 

complex nucleation sites for inorganic interactions, but also accommodate a high inorganic 

content due to the smaller amount of protein polymer needed for gelation. 

 In collaboration with Dr. Deming’s lab at UCLA, we have synthesized K170L30 block 

copolypeptide and are currently conducting experiments with these polypeptide gels for our 

mineral synthesis. Our initial studies show higher inorganic content with these polypeptide 

gels with hierarchical structural order of the nanocomposite gels. Figure 9.1 shows the TGA 

data obtained for these nanocomposite gels, in which an inorganic content of 56% is 

observed, which is higher than the inorganic fractions obtained with other synthetic block 

copolymer templates. Further the XRD data (Figure 9.2) shows that the inorganic phase is 

indeed hydroxyapaptite. These results indicate promising templating abilities of these 

polypeptide gels for future biomineralization studies.  
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Figure 9.1. Thermogravimetric analysis of polymer inorganic gel nanocomposite (Samples 
were dried before the analysis to remove the water) (Data obtained by Yusufoglu) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.2. XRD of the polypeptide gel nanocomposites at different drying conditions (Data 
obtained by Yusufoglu) 
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9.2.2.2. Biopolypeptide scaffolds 

Artificial polypeptide scaffold design for Mms6 protein immobilization 
 

In addition to calcium phosphate mineralization seen in Nature, other examples of 

biomineralization include production of magnetic nanocrystals by magnetotactic bacteria. 

Mms6 protein is thought to be involved in the mineralization of magnetic crystals in bacterial 

magnetosomes [8]. Magnetic crystals have vast range of applications from ultra high density 

storage to magnetic resonance imaging in cancer detection. Hence the synthesis of magnetic 

crystals, with site-specific Mms6 protein templates has lots of potential in biomimetic 

research. Site-specific Mms6 protein network will provide a better control of the size and 

shape for the synthesis of magnetic nanocrystals using a biomimetic approach. With the 

collaboration of Dr. David Tirrell’s group at Caltech we are developing an artificial 

polypeptide scaffold that could be used to synthesize nanocrystals with controlled 

architecture and specificity.  

 The goal is to develop an artificial polypeptide scaffold for the immobilization of 

Mms6 protein to synthesize an array of nanoparticles with size and shape specificity. The 

polypeptide design consists of separate surface anchor and protein capture domains and uses 

an artificial aminoacid for surface cross-linking. The design approach is shown in Figure 9.3. 

The protein capture domain functions through the coiled-coil association of a leucine zipper 

pair [9-11] designated as ZE and ZR. Here an elastin mimetic domain with a para-

azidophenylalanine group is used for the surface anchorage as previously described [9]. 
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Figure 9.3. Proposed artificial polypeptide design for the Mms6-ZE immobilization 

 

We have investigated several parallel approaches to achieve this goal, as outlined below. 

Method 1.  Construct ZE- Mms6 plasmid system for the expression of ZE-Mms6 fusion 

protein (work carried out in Dr.Tirrell’s lab at Caltech). 

First, the ZE segment in PQE60_ (ZEHis-ZRELF) plasmid vector [9], was PCR 

copied with the BamH1 cutting sites. The Mms6 plasmid (pTrc His-mms6) [8] was cut open 

at the BamH1 site (right before the Mms6 gene). Later, the ZE insert was ligated into the 

Mms6 plasmid, and was transformed into XL1-blue cells. Colonies were grown and the 

transformed plasmid DNA’s were purified using mini-prep. The correct colonies were 

identified by DNA sequencing. Parallely, the noncanonical aminoacids protein expression of 

ZR-ELF was performed from the procedures developed by Zhang et al [9] .  

Future work on these biopolypeptide scaffold design will be performed in our 

collaborator Dr. Marit Nilsen-Hamilton’s laboratory, where the development of different 

Mms6-ZE fusion gene constructs (Method 2 and Method 3) as well as the protein expressions 

of ZE-Mms6 and ZR-ELF will be performed similar to the procedures followed for both 

natural and noncanonical aminoacid protein expression [9].  

UV radiation to  
functionalized surface 
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Method 2.  Construct ZE- Mms6 (C-terminal fragments) plasmid system for the 

expression of ZE-Mms6 (C-terminal fragments) fusion protein.  

First, the PQE60_ (ZEHis-ZRELF) plasmid vector, was incorporated with spe1 site 

after the ZE gene fragment using site-directed mutagenesis. The mms6 c-terminal fragments 

(25, 40 aminoacids) was PCR copied with spe1 cutting sites. Later they will be ligated into 

PQE60_ (ZEHis-ZRELF) plasmid vector at the spe1 site. Upon successful gene sequencing, 

protein expression will be performed similar to the natural aminoacids protein expression.  

Method 3. Direct fusion of Mms6 with ELF gene.  

The ELF portion was PCR copied from PQE60_(ZEHis-ZRELF) plasmid vector, 

with the additional BamH1 cutting sites. The Mms6 plasmid was cut open at the BamH1 site 

(right before the Mms6 gene, and the ELF segment was fused into the Mms6 vector). The 

ligation will be performed and colonies will be checked for successful gene sequence. Upon 

successful gene sequencing, protein expression will be performed similar to the non-

canonical aminoacid protein expression protocol [9].   

Upon successful polypeptide scaffold design, synthesis of magnetic crystals with 

controlled architecture and size with novel properties could be realized.  

To conclude, this thesis work has contributed and emphasized the role of polymer 

templates the novel bottom-up approach to nanocomposite materials design. This method 

will open up new paths for facile synthesis of complex materials. Further, the tailoring of 

these polymers into different functionalities has paved way for biomedical applications such 

as in cross-linking polymer gels for cartilage repair and cationic and glucose responsive 

polymer gels as gene and drug delivery materials.  
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