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Abstract

The B → K∗ℓ−ℓ+ (ℓ = µ, τ) is analyzed in a minimally extended Stan-

dard Model in which the Wilson coefficients have new CP–odd phases. The

sensitivity of the CP asymmetry and lepton polarization asymmetries to

the new phases is discussed. It is found that the CP asymmetry is sensitive

to the new phase in the Wilson coefficient C7 whereas the normal lepton

polarization asymmetry is sensitive to the phase in the Wilson coefficient

C10. Additionally, the correlation between the CP and normal lepton po-

larization asymmetries is studied. A simultaneous measurement of these

two asymmetries can be useful in search for the existence of the new sources

of CP violation beyond the Standard Model.
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I. INTRODUCTION

Violation of the CP symmetry has now become a well–established fact in Kaon system

[1]. Once the era of B–factories start with the operation of KEK-B, B-TeV, LHC-B and

SLAC’s Asymmetric B factory, it will be possible to test the standard model (SM) at one–

loop accuracy. In general, possible incompatibility of the experimental data with the SM

predictions will mark the existence of ‘new physics’ contributions. Among all, an exper-

imental determination of the CP–violating quantities and their comparison with the SM

predictions will be particularly useful in search for the new physics effects.

From the experimental perspective the exclusive decay modes (such as B → K∗γ [2],

B → K∗ℓ+ℓ−, B → Kℓ+ℓ−) are easy to measure. From the theoretical view point, however,

the corresponding inclusive modes (b→ sγ and b→ sℓ+ℓ−) can be cleanly estimated as the

only machinery needed are the Wilson coefficients describing the short–distance physics. A

proper description of the exclusive decay modes, on the other hand, depends on both Wilson

coefficients (short–distance physics) and the hadronic form factors (long–distance physics).

This causes a relative increase of the uncertainties due to hadronization effects.

For the purpose of studying the sources of CP violation, it is convenient to concentrate on

those observables which are sensitive to the possible CP phases. Among these, for example,

CP asymmetries and lepton polarization asymmetries are such ones [3]– [5]. Recently, a

detailed study of the lepton polarization asymmetries in B → Xsℓ
+ℓ− decay has been

performed in a rather general model by including nine additional Wilson coefficients not

found in the SM [6]. Keeping this kind of short–distance generality it is convenient to

discuss the exclusive decay modes such as B → K∗ℓ+ℓ− [7,8]. Such an analysis will be

useful for a first–hand comparison with the experiment as the inclusive modes are generally

hard to measure.

In Sec. II we start with a general non–standard description of the short–distance physics

as in [6]. Then we parametrize the long–distance quantities by appropriate form factors and

obtain the hadronic transition amplitude. In Sec. III we derive general analytic expressions

for asymmetries will be give. In doing this all sources of CP violation will be ascribed

to short–distance physics. In Sec. IV the asymmetries and their relation to the Wilson

coefficients will be analyzed numerically. In Sec. V results are discussed and the conclusion

is stated.
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II. THE DECAY AMPLITUDE

The exclusive B decays B → K∗ℓ+ℓ− are conveniently described by the partonic decay

b → sℓ+ℓ− at distances O(M−1
W ). The effective Hamiltonian describing this rare b decay at

the scale µ ∼ MW should, however, be evolved down to mesonic mass scale µ ∼ mb using

the QCD evolution equations. Then the decay amplitude describing b → sℓ+ℓ− takes the

form [6,7]

M(b→ sℓ+ℓ−) =
Gα√
2π
VtbV

∗

ts

{

CSL s̄iσµν
qν

q2
(msL)b ℓ̄γµℓ+ CBR s̄iσµν

qν

q2
(mbR)b ℓ̄γµℓ

+ CLL s̄LγµbL ℓ̄Lγ
µℓL + CLR s̄LγµbL ℓ̄Rγ

µℓR + CRL s̄RγµbR ℓ̄Lγ
µℓL

+ CRR s̄RγµbR ℓ̄Rγ
µℓR + CLRLR s̄LbR ℓ̄LℓR + CRLLR s̄RbL ℓ̄LℓR

+ CLRRL s̄LbR ℓ̄RℓL + CRLRL s̄RbL ℓ̄RℓL + CT s̄σµνb ℓ̄σ
µνℓ

+ iCTE ǫ
µναβ s̄σµνb ℓ̄σαβℓ

}

, (1)

where each of the Wilson coefficients CSL, · · · , CTE is evaluated at the B-meson mass scale,

µ ∼ mb. In this expression, L(R) = (1−(+)γ5)/2 are the left (right) projection operators, Vij

are the elements of the CKM matrix, and q = pB−pK∗ = p++p− is the momentum transfer

to the dilepton channel. This decay amplitude has a rather general form as it includes

nine additional operators not found in the minimal standard model. The only simplifying

assumption about this decay amplitude will be twofold: (1) Neglect of the strange quark

mass everywhere in the analysis, (2) Neglect of the tensor operators having the coefficients

CT and CTE . The former is justified by the smallness of the ratio ms/mb and the latter

is justified by the previous analyzes which show that their contributions are much smaller

than other operators (for details, see [9]).

The quark level decay amplitude (1) controls the semileptonic decays B → (K,K∗) ℓ+ℓ−.

The amplitudes for these exclusive decays can be obtained after evaluating the ma-

trix elements of the quark operators in (1) between the |B(pB)〉 and 〈K∗(pK∗)| states.

In particular, explicit expressions for 〈K∗ |s̄γµ(1± γ5)b|B〉, 〈K∗ |s̄iσµνqν(1 + γ5)b|B〉 and

〈K∗ |s̄(1± γ5)b|B〉 are needed. Computation of such hadronic matrix elements is bound to

parametrizations of the form factors depending only on the momentum transfer square, or

equivalently, the dilepton invariant mass m2
ℓℓ = (pB − pK∗)2 = (p+ + p−)

2 ≡ q2. Introducing

appropriate from factors one obtains

〈K∗(pK∗, ε) |s̄γµ(1± γ5)b|B(pB)〉 =

−ǫµνρσε∗νpρK∗qσ
2V (q2)

mB +mK∗

± iε∗µ(mB +mK∗)A1(q
2)∓ i(pB + pK∗)µ(ε

∗q)
A2(q

2)

mB +mK∗

3



∓iqµ
2mK∗

q2
(ε∗q)

[

A3(q
2)− A0(q

2)
]

,

(2)

〈K∗(pK∗, ε) |s̄iσµνqν(1 + γ5)b|B(pB)〉 =
4ǫµνρσε

∗νpρK∗qσT1(q
2) + 2i

[

ε∗µ(m
2
B −m2

K∗)− (pB + pK∗)µ(ε
∗q)
]

T2(q
2)

+2i(ε∗q)

[

qµ − (pB + pK∗)µ
q2

m2
B −m2

K∗

]

T3(q
2) , (3)

where the explicit expressions for V (q2), A0,1,2,3(q
2) and T1,2,3(q

2) will be given below.

To ensure the finiteness of (2) as q2 → 0, it is usually assumed that A3(q
2 = 0) = A0(q

2 =

0). Besides, to calculate the matrix elements of the scalar operators, 〈K∗ |s̄(1± γ5)b|B〉, it
is necessary to contract (2) with qµ and use the equation of motion, giving

〈K∗(pK∗ , ε) |s̄(1± γ5)b|B(pB)〉 =
1

mb

{

∓ i(ε∗q)(mB +mK∗)A1(q
2)

± i(mB −mK∗)(ε∗q)A2(q
2)± 2imK∗(ε∗q)

[

A3(q
2)−A0(q

2)
] }

. (4)

Additionally, again using the equation of motion, the form factor A3 can be expressed as a

linear combination of the form factors A1 and A2 (see [10])

A3(q
2) =

mB +mK∗

2mK∗

A1(q
2)− mB −mK∗

2mK∗

A2(q
2) . (5)

Having this relation at hand, one finally obtains

〈K∗(pK∗, ε) |s̄(1± γ5)b|B(pB)〉 =
1

mb

{

∓ 2imK∗(ε∗q)A0(q
2)
}

. (6)

This completes the evaluation of the necessary transition matrix elements.

As mentioned before the form factors entering (2)-(6) represent the hadronization process

which lacks a Lagrangian description. They are thus generally computed in framework of

certain nonperturbative approaches such as chiral theory [11], three point QCD sum rules

method [10], relativistic quark model by the light–front formalism [12], effective heavy quark

theory [13] and light cone QCD sum rules [14–16]. In what follows we will use the results

of the work [15] in which the form factors are described by a three–parameter fit where the

radiative corrections up to leading twist contribution and SU(3)–breaking effects are taken

into account. Letting F (q2) ∈ {V (q2), A0(q
2), A1(q

2), A2(q
2), A3(q

2), T1(q
2), T2(q

2), T3(q
2)},

the q2–dependence of any of these form factors could be parametrized as

F (s) =
F (0)

1− aF s+ bF s2
,
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F (0) aF bF

AB→K∗

0 0.47 1.64 0.94

AB→K∗

1 0.34± 0.05 0.60 −0.023

AB→K∗

2 0.28± 0.04 1.18 0.281

V B→K∗

0.46± 0.07 1.55 0.575

TB→K∗

1 0.19± 0.03 1.59 0.615

TB→K∗

2 0.19± 0.03 0.49 −0.241

TB→K∗

3 0.13± 0.02 1.20 0.098

TABLE I. The form factors for B → K∗ℓ+ℓ− in a three–parameter fit.

where the parameters F (0), aF and bF are listed in Table 1 for each form factor. Here

s = q2/m2
B is the dilepton invariant mass in units of B–meson mass (See, [15,16]).

Making use of the hadronic matrix elements (2)-(6) of the basic quark current structures

in (1), it is straightforward to determine the decay amplitude for B → K∗ℓ+ℓ− decay:

M(B → K∗ℓ+ℓ−) =
Gα

4
√
2π
VtbV

∗

ts

×
{

ℓ̄γµ(1− γ5)ℓ
[

− 2VL1
ǫµνρσε

∗νpρK∗qσ − iVL2
ε∗µ + iVL3

(ε∗q)(pB + pK∗)µ + iVL4
(ε∗q)qµ

]

+ℓ̄γµ(1 + γ5)ℓ
[

− 2VR1
ǫµνρσε

∗νpρK∗qσ − iVR2
ε∗µ + iVR3

(ε∗q)(pB + pK∗)µ + iVR4
(ε∗q)qµ

]

+ℓ̄(1− γ5)ℓ
[

iSL(ε∗q)
]

+ ℓ̄(1 + γ5)ℓ
[

iSR(ε∗q)
]

}

, (7)

where VLi
and VRi

are the coefficients of left– and right–handed leptonic currents with

vector structure, respectively. Clearly, SL,R are the weights of scalar leptonic currents with

respective chirality. These new coefficients are functions of the Wilson coefficients in the

partonic decay amplitude (1) and the form factors introduced in defining the hadronic matrix

elements above. Their explicit expressions are given by

VL1
= (CLL + CRL)

V (q2)

mB +mK∗

− 2CBR
mb

q2
T1,

VL2
= (CLL − CRL)(mB +mK∗)A1 − 2CBR

mb

q2
(m2

B −m2
K∗) T2 ,

VL3
=
CLL − CRL
mB +mK∗

A2 − 2CBR
mb

q2

[

T2 +
q2

m2
B −m2

K∗

T3

]

,

VL4
= (CLL − CRL)

2mK∗

q2
(A3 −A0)− 2CBR

mb

q2
T3 ,
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VR1
= VL1

(CLL → CLR , CRL → CRR) ,

VR2
= VL2

(CLL → CLR , CRL → CRR) ,

VR3
= VL3

(CLL → CLR , CRL → CRR) ,

VR4
= VL4

(CLL → CLR , CRL → CRR) ,

SL = −(CLRRL − CRLRL)
(

2mK∗

mb

A0

)

,

SR = −(CLRLR − CRLLR)
(

2mK∗

mb

A0

)

,

where q2 dependencies are implied. It is clear that all these effective form factors are

functions of the specific form factors (2–6) and the Wilson coefficients in (1). Therefore,

they carry information about both short– and long–distance physics.

The hadronic matrix element M(B → K∗ℓ+ℓ−) is the basic machinery for the computa-

tion of all physical quantities pertaining to this decay. In particular, the computation of the

energetic distributions, total rate and various asymmetries follow from (B → K∗ℓ+ℓ−) using

the usual methods. In the next section, necessary asymmetries and other relevant quantities

will be computed.

III. ASYMMETRIES

For an analysis of the asymmetries it is necessary to compute the differential decay rate

for B → K∗ℓ+ℓ− decay. For unpolarized leptons at the final state, using the decay amplitude

in (7), the differential decay rate is found to be
(

dΓ

dq2

)

0

=
G2α2

214π5mB

|VtbV ∗

ts|2 λ1/2v

×
{

32λm4
B

[1

3
(m2

Bs−m2
ℓ)(|VL1

|2 + |VR1
|2) + 2m2

ℓ Re(VL1
V∗

R1
)
]

+ 96m2
ℓ Re(VL2

V∗

R2
)− 4

r
m2
BmℓλRe[(VL2

− VR2
)(S∗

L − S∗

R)]

+
8

r
m2
Bm

2
ℓλRe

[

V∗

L2
(VL4

+ VR3
− VR4

) + V∗

R2
(VL3

− VL4
+ VR4

)− (SLS∗

R)
]

+
4

r
m4
Bmℓ(1− r)λ

{

Re[(VL3
− VR3

)(S∗

L − S∗

R)]
}

+
8

r
m4
Bm

2
ℓ(1− r)λ

{

Re[−(VL3
− VR3

)(V∗

L4
− V∗

R4
)]
}

− 8

r
m4
Bm

2
ℓλ(2 + 2r − s) Re(VL3

V∗

R3
)− 4

r
m4
BmℓsλRe[(VL4

− VR4
)(S∗

L − S∗

R)]

− 4

r
m4
Bm

2
ℓsλ

[

|VL4
|2 + |VR4

|2 − 2Re(VL4
V∗

R4
)
]

+
2

r
m2
B(m

2
B − 2m2

ℓ)λ
[

|SL|2 + |SR|2
]

6



− 8

3rs
m2
Bλ

[

m2
ℓ(2− 2r + s) +m2

Bs(1− r − s)
][

Re(VL2
V∗

L3
) + Re(VR2

V∗

R3
)
]

+
4

rs

[

2m2
ℓ(λ− 6rs) +m2

Bs(λ+ 12rs)
][

|VL2
|2 + |VR2

|2
]

+
4

3rs
m4
Bλ

{

m2
Bsλ+m2

ℓ

[

2λ+ 3s(2 + 2r − s)
]}[

|VL3
|2 + |VR3

|2
]

}

. (8)

where the subscript ”0” is intended for the unpolarized decay rate. In this expression

s = q2/m2
B, r = m2

K∗/m2
B, v

2 = 1−(4m2
ℓ)/q

2, and finally λ(1, r, s) = 1+s2+r2−2r−2s−2rs

is the familiar triangle function.

Our next task is the calculation of the lepton polarization asymmetries. For the computa-

tion of these asymmetries the unpolarized decay rate (8) is not sufficient. The measurement

of these asymmetries require the specification of the total number of leptons of a given kind

(for example, negatively-charged) in a given direction. Therefore, it is necessary to take into

account the polarization of the lepton beam in a given direction. Considering, for example,

the negatively-charged lepton, one can introduce the following three polarization vectors in

the rest frame of ℓ−:

~eL =
~p−
|~p−|

,

~eN =
~pK∗ × ~p−
|~pK∗ × ~p−|

,

~eT =
(~pK∗ × ~p−)× ~p−
|(~pK∗ × ~p−)× ~p−|

, (9)

where ~ei ·~ej = δi,j, p− ·~ei = 0, i, j = L, T,N . Here, ~eL, ~eT and ~eN correspond, respectively, to

the ‘longitudinal’, ‘transversal’ and ‘normal’ polarization directions of ℓ− with respect to its

direction of motion, ~eL. One notices that ~eL and ~eT are co–planar, and ~eN is perpendicular

to this plane. In the rest frame of ℓ−, the temporal components of the corresponding

four–vectors vanish. However, in the dilepton rest frame (that is, ~q = 0), the four–vector

corresponding to ~eL is boosted to (~p−/mℓ, (Eℓ/mℓ)~eL) leaving ~eT and ~eN unchanged. In the

following, all results will be conveniently given in the dilepton rest frame.

The differential decay rate for any spin direction ~n of the ℓ−, where ~n is a unit vector in

the ℓ− rest frame satisfying ~n · ~n = 1, ~n · ~p− = 0, can be expressed in the following form

dΓ(~n)

dq2
=

1

2

(

dΓ

dq2

)

0

[

1 +
(

PL~eL + PN~eN + PT~eT
)

· ~n
]

, (10)

where the coefficients of unit vectors, PL, PN and PT , are recognized as the ‘longitudinal’,

‘normal’ and ‘transversal’ polarization asymmetries. A simple formula for extracting these

asymmetries from the polarized decay rate follows from (10) itself:
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Pi(q
2) =

dΓ

dq2
(~n = ~ei)−

dΓ

dq2
(~n = −~ei)

dΓ

dq2
(~n = ~ei) +

dΓ

dq2
(~n = −~ei)

, (11)

where i = L, T,N . One notes that the denominator in this expression is identical to the

unpolarized decay rate (8). On the other hand, the numerator depends on the spin direction

of the lepton under consideration. In essence what Pi(q
2) measures is the difference between

the rates for a particular direction and its opposite for a given dilepton invariant mass

mℓℓ =
√
q2.

Using the hadronic decay amplitude (7) in the general polarization asymmetry formulae

(11), after a lengthy calculation the polarization asymmetries PL, PN and PT are found to

have the following explicit expressions:

PL =
1

∆
v

{

4

3r
λ2m6

B

[

|VL3
|2 − |VR3

|2
]

+
4

r
λm2

BmℓRe[(VL2
− VR2

)(S∗

L + S∗

R)]

− 4

r
λm4

Bmℓ(1− r) Re[(VL3
− VR3

)(S∗

L + S∗

R)] +
32

3
λm6

Bs
[

|VL1
|2 − |VR1

|2
]

− 2

r
λm4

Bs
[

|SL|2 − |SR|2
]

+
4

r
λm4

BmℓsRe[(VL4
− VR4

)(S∗

L + S∗

R)]

− 8

3r
λm4

B(1− r − s)
[

Re(VL2
V∗

L3
)− Re(VR2

V∗

R3
)
]

+
4

3r
λm2

B(λ+ 12rs)
[

|VL2
|2 − |VR2

|2
]

}

,

PT =
1

∆

√
λπ

{

− 8m3
Bmℓ

√
sRe[(VL1

+ VR1
)(V∗

L2
+ V∗

R2
)]

+
1

r
m3
Bmℓ(1 + 3r + s)

√
s
[

Re(VL2
V∗

R3
)− Re(VL3

V∗

R2
)
]

+
1

r
√
s
mBmℓ(1− r − s)

[

|VL2
|2 − |VR2

|2
]

+
2

r
√
s
mBm

2
ℓ(1− r − s)

[

Re(VL2
S∗

R)− Re(VR2
S∗

L)
]

+
1

r
m3
Bmℓ(1− r − s)

√
sRe[(VL2

+ VR2
)(VL4

− VR4
)]

+
2

r
√
s
m3
Bm

2
ℓλ
[

− Re(VL3
S∗

R) + Re(VR3
S∗

L)
]

+
1

r
√
s
m5
Bmℓ(1− r)λ

[

|VL3
|2 − |VR3

|2
]

+
1

r
m5
Bmℓλ

√
sRe[−(VL3

+ VR3
)(V∗

L4
− V∗

R4
)]

8



+
1

r
√
s
m3
Bmℓ[(1− r − s)(1− r) + λ]

[

− Re(VL2
V∗

L3
) + Re(VR2

V∗

R3
)
]

+
1

r
√
s
mB(1− r − s)(−2m2

ℓ +m2
Bs)

[

Re(VR2
S∗

R)− Re(VL2
S∗

L)
]

+
1

r
√
s
m3
Bλ(−2m2

ℓ +m2
Bs)

[

− Re(VR3
S∗

R) + Re(VL3
S∗

L)
]

}

,

PN =
1

∆
πvm3

B

√
λ
√
s

{

8mℓ Im(V∗

L2
VR1

+ V∗

L1
VR2

)

+
1

r
mℓ(1 + 3r − s) Im

[

(VL2
+ VR2

)(V∗

L3
− V∗

R3
)
]

+
1

r
m2
BλIm

[

(mℓVL4
−mℓVR4

− SL)V∗

L3
− (mℓVR4

−mℓVL4
− SR)V∗

R3

]

+
1

r
(1− r − s)Im

[

(SL −mℓVL4
+mℓVR4

)V∗

L2
− (SR −mℓVR4

+mℓVL4
)V∗

R2

]

}

, (12)

where ∆ is the expression within the curly parenthesis in the unpolarized differential decay

rate in (8). These expressions for the polarization asymmetries are quite general except for

the neglect of strange quark mass and the tensor operators (the last two operators in (1))

as mentioned before.

Before proceeding, it is convenient to make a few useful observations on the lepton

asymmetries. Particularly interesting one is the massless (light) lepton limit: mℓ → 0. In

this case, PL depends only on the bilinears of VLi
and VRi

, that is, the effects of the scalar

operators in (1) completely decouple. On the other hand, PT and PN happen to depend only

on the interference terms between the coefficients of the vector operators (VLi
and VRi

) and

those of the scalar operators (SL,R). However, one notices that the scalar operators in (1) can

be induced by an exchange of the scalar particle (such as two Higgs doublet models [17]) in

which case the coefficients SL,R are necessarily proportional to the lepton mass. Therefore,

in the limit of massless (light) leptons only the longitudinal asymmetry PL can remain non–

vanishing. Conversely, in near future, if experiment yields non–vanishing PN and PT for

B → K∗e+e− decay this would imply the generation of scalar operators by mechanisms

beyond the Higgs model where the fermion scalar coupling is always proportional to the

fermion mass.

In general, the lepton polarization asymmetries (12) are able to probe real as well as

imaginary parts of the effective form factors VLi
, VRi

and SL,R. As the parametrization

(7) shows the hadronic form factors are inherently real, and thus the imaginary parts of

VLi
, VRi

and SL,R in (7) can come only from the Wilson coefficients in (1). Below we

will keep this picture, that is, we will be dealing only with the CP violation effects due to

9



short–distance physics parametrized by the Wilson coefficients. At this point it is useful

to distinguish between CP properties of the phases in the Wilson coefficients. In principle,

CBR, · · ·CTE all can have finite phases; however, these phases can have strong and weak

subparts. Here by strong and weak we mean even and odd phases under CP conjugation. To

be able to distinguish such distinct components of the phases it is not sufficient to analyze the

polarization asymmetries alone. One, in particular, has to consider the CP asymmetry of the

decay which is inherently sensitive to CP character of the phases of the Wilson coefficients.

Using the unpolarized decay rate (8), the CP asymmetry for B → K∗ℓ+ℓ− decay is defined

by:

ACP (q
2) =

(

dΓ

dq2

)

0

(B → K∗ℓ+ℓ−)−
(

dΓ

dq2

)

0

(B → K∗ℓ+ℓ−)

(

dΓ

dq2

)

0

(B → K∗ℓ+ℓ−) +

(

dΓ

dq2

)

0

(B → K∗ℓ+ℓ−)

, (13)

where the processes to which dΓ/dq2 refers are explicitly shown in the arguments. Making

use of the explicit expression for the unpolarized decay rate (8) one can determine the

detailed dependence of ACP (q
2) on the model parameters. For this purpose it is useful to

introduce the following parametrization for the quantities VLi
, VRi

and SL,R (7):

VLi
= |VLi

|eiφ
Li
w +iφ

Li
s , VRi

= |VRi
|eiφ

Ri
w +iφ

Ri
s , SL,R = |VL,R|eiφ

L,R
w +iφL,R

s , (14)

where i = 1, · · · , 4. In this expression subscript ”s” (”w”) stands for strong (weak) phases

mentioned above. By definition, V’s and S’s are combinations of hadronic form factors

and Wilson coefficients so that the phases φw,s defined by (14) are explicit functions of the

dilepton invariant mass. With this definition of the from factors it is possible to find a

suggestive form for the CP asymmetry:

ACP (q
2) =

1

Σ

{

− 64λm4
Bm

2
ℓ |VL1

| |VR1
| sin∆φL1,R1

s sin∆φL1,R1

w

− 96m2
ℓ |VL2

| |VR2
| sin∆φL2,R2

s sin∆φL2,R2

w +
4

r
m2
Bmℓλ

[

|VL2
| |SL| sin∆φL2,L

s sin∆φL2,L
w

+ |VR2
| |SR| sin∆φR2,R

s sin∆φR2,R
w − |VL2

| |SR| sin∆φL2,R
s sin∆φL2,R

w

− |VR2
| |SL| sin∆φR2,L

s sin∆φR2,L
w

]

− 4

r
m4
Bmℓ(1− r)λ

[

|VL3
| |SL| sin∆φL3,L

s sin∆φL3,L
w

+ |VR3
| |SR| sin∆φR3,R

s sin∆φR3,R
w − |VL3

| |SR| sin∆φL3,R
s sin∆φL3,R

w

− |VR3
| |SL| sin∆φR3,L

s sin∆φR3,L
w

]

+
4

r
m4
Bmℓsλ

[

|VL4
| |SL| sin∆φL4,L

s sin∆φL4,L
w

+ |VR4
| |SR| sin∆φR4,R

s sin∆φR4,R
w − |VL4

| |SR| sin∆φL4,R
s sin∆φL4,R

w

10



− |VR4
| |SL| sin∆φR4,L

s sin∆φR4,L
w

]

+
8

r
m4
Bm

2
ℓ(1− r)λ

[

|VL3
| |VL4

| sin∆φL3,L4

s sin∆φL3,L4

w

+ |VR3
| |VR4

| sin∆φR3,R4

s sin∆φR3,R4

w − |VL3
| |VR4

| sin∆φL3,R4

s sin∆φL3,R4

w

− |VR3
| |VL4

| sin∆φR3,L4

s sin∆φR3,L4

w

]

+
8

r
m4
Bm

2
ℓλ(2 + 2r − s) |VL3

| |VR3
| sin∆φL3,R3

s sin∆φL3,R3

w

− 8

r
m4
Bm

2
ℓsλ |VL4

| |VR4
| sin∆φL4,R4

s sin∆φL4,R4

w

+
8

3rs
m2
Bλ

[

|VL2
| |VL3

| sin∆φL2,L3

s sin∆φL2,L3

w + |VR2
| |VR3

| sin∆φR2,R3

s sin∆φR2,R3

w

]

− 8

r
m2
Bm

2
ℓλ
[

|VL2
| |VL4

| sin∆φL2,L4

s sin∆φL2,L4

w + |VL2
| |VR3

| sin∆φL2,R3

s sin∆φL2,R3

w

− |VL2
| |VR4

| sin∆φL2,R4

s sin∆φL2,R4

w + |VR2
| |VR4

| sin∆φR2,R4

s sin∆φR2,R4

w

+ |VR2
| |VL3

| sin∆φR2,L3

s sin∆φR2,L3

w − |VR2
| |VL4

| sin∆φR2,L4

s sin∆φR2,L4

w

− |SL| |SR| sin∆φL,Rs sin∆φL,Rw
]

}

, (15)

where ∆φa,bx ≡ φax − φbx. The quantity Σ in the denominator is even under all these phases,

and has the expression

Σ = Numerator of ACP
(

sin∆φa,bs sin∆φa,bw −→ − cos∆φa,bs cos∆φa,bw
)

+

{

32

3
λm4

B(m
2
Bs−m2

ℓ)
[

|VL1
|2 + |VR1

|2
]

− 4

r
m4
Bm

2
ℓsλ

[

|VL4
|2 + |VR4

|2
]

+
2

r
m2
B(m

2
B − 2m2

ℓ)λ
[

|SL|2 + |SR|2
]

+
4

rs

[

2m2
ℓ(λ− 6rs) +m2

Bs(λ+ 12rs)
][

|VL2
|2 + |VR2

|2
]

+
4

3rs
m4
Bλ

{

m2
Bsλ+m2

ℓ

[

2λ+ 3s(2 + 2r − s)
]}[

|VL3
|2 + |VR3

|2
]

}

. (16)

Until now the decay rate (8), the lepton polarization asymmetries (12) and CP asym-

metry (13) have been computed by adopting a rather general quark level amplitude (1) for

B → K∗ℓ+ℓ− decay. Presently this exclusive decay has a direct bound coming from recent

CDF measurement [18]: BR(B → K∗µ+µ−) < 4.0× 10−6. In addition to this direct bound,

existing CLEO result [2] for BR(B → K∗γ) imposes another important, albeit partial, con-

straint on the parameter space. Indeed, using the notation of (1) and appropriate form

factors derived in (2)-(6) the total decay rate for B → K∗γ can be written as

Γ(B → K∗γ) =
G2αm3

Bm
2
b

128π4
|VtsV ∗

tb|2
(

1− m2
K

m2
B

)3

|CBRT1(0)|2 , (17)
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which constrains directly |CBR T1(0)|. Therefore, the norm of the Wilson coefficient for the

dipole operator is fixed by BR(B → K∗γ). This constraint, however, does not say anything

about the CP violation potential of CBR.

IV. LARGE CP–PHASES WITHIN AN SM–LIKE MODEL

As as been emphasized before, the underlying model for the partonic decay amplitude

(1) is rather general one. In principle, all the Wilson coefficients can be non-zero and may

have arbitrary phases. However, a realistic model should meet the requirements of the SM

to leading order, and especially, should not cause unacceptable deviations from the existing

experimental data confirmed already by the SM. For this reason it is convenient to establish

the discussion on a general model with close reference to the SM predictions.

Therefore, here we follow a minimal prescription such that the general Wilson coefficients

in (1) are

• endowed with new phases beyond the SM,

• identical to SM ones when these phases vanish.

Such an approach obviously neglects the new physics contributions to the norms of the

Wilson coefficients; however, at the aim of determining the information content of the po-

larization and CP asymmetries on the sources of CP violation, it suffices. This is kind of a

minimal approach for parametrizing the new physics CP violation for asymmetry measure-

ments in B → K∗ℓ+ℓ− decay.

Adopting this approach, one can make the following assignments for the general Wilson

coefficients in (1). First, the coefficients describing the scalar–scalar type interactions vanish

identically

CLRRL = CRLLR = CLRLR = CRLRL = 0. (18)

It is known that such coefficients exist, for example, in the two Higgs doublet models (2HDM)

which have an extended Higgs sector compared to the SM. In such models these scalar–scalar

interactions are induced by the Higgs exchange, and the resulting Wilson coefficients are

proportional to mbmℓ/m
2
h which is maximal for ℓ = τ . However, to the extent one neglects

ms/mb, mbmℓ/m
2
h is, too, negligible in the light of recent LEP limit on the Higgs boson

mass mh [19] is taken into account.

The Wilson coefficient for the dipole operator CBR obeys

12



CBR = −2Ceff
7 (mb) e

iφ7 ≡ −2
(

C7(mb)−
1

3
C5(mb)− C6(mb)

)

eiφ7 (19)

where φ7 is an arbitrary phase, and it is not constrained by BR(B → K∗γ) at all.

Finally the coefficients of the vector–vector interactions in (1) are given by

CLL(LR) = Ceff
9 (mb) e

iφ9 − (+)C10(mb) e
iφ10 , CRL = CRR = 0 (20)

where the coefficient C10 is known to be scale independent: C10(mb) = C10(MW ).

In the SM the Wilson coefficients Ceff
7 (mb) and C10(mb) are strictly real as can be read

off from Table II. Moreover, the SM prediction for Ceff
7 (mb) is already consistent with the

CLEO determination of BR(B → K∗γ) in (17). Therefore, through the choice of CBR

in (19) the experimental constraint is already taken into account. Although individual

Wilson coefficients at µ ∼ mb level are all real (see Table II) the effective Wilson coefficient

Ceff
9 (mb, q

2) has a finite phase, and is an explicit function of the dilepton invariant mass,

q2. To see its phase content it is useful to reproduce its explicit expression here:

Ceff
9 (mb) = C9(mb)

{

1 +
αs (µ)

π
ω (ŝ)

}

+ YSD (mb, ŝ) + YLD (mb, ŝ) (21)

where C9(mb) is read off from Table II. Here ω (ŝ) represents the O(αs) corrections coming

from one–gluon exchange in the matrix element of the corresponding operator O9 [20]:

ω (ŝ) = −2

9
π2 − 4

3
Li2 (ŝ)−

2

3
ln (ŝ) ln (1− ŝ)− 5 + 4ŝ

3 (1 + 2ŝ)
ln (1− ŝ)

− 2ŝ (1 + ŝ) (1− 2ŝ)

3 (1− ŝ)2 (1 + 2ŝ)
ln (ŝ) +

5 + 9ŝ− 6ŝ2

3 (1− ŝ) (1 + 2ŝ)
. (22)

In (21) YSD and YLD represent, respectively, the short– and long–distance contributions

of the four–quark operators Oi=1,···,6 [20,21]. Here YSD can be obtained by a perturbative

calculation

YSD (mb, ŝ) = g (m̂c, ŝ) [3C1 + C2 + 3C3 + C4 + 3C5 + C6]

− 1

2
g (1, ŝ) [4C3 + 4C4 + 3C5 + C6]

− 1

2
g (0, ŝ) [C3 + 3C4] +

2

9
[3C3 + C4 + 3C5 + C6]

− V ∗

usVub
V ∗

tsVtb
[3C1 + C2] [g (0, ŝ)− g (m̂c, ŝ)] , (23)

where the loop function g (mq, s) stands for the loops of quarks with mass mq at the dilepton

invariant mass s. This function develops absorbtive parts for dilepton energies s = 4m2
q :
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g (m̂q, ŝ) = −8

9
lnm̂q +

8

27
+

4

9
yq −

2

9
(2 + yq)

√

|1− yq|

×
{

Θ(1− yq)

(

ln
1 +

√
1− yq

1−√
1− yq

− iπ

)

+Θ(yq − 1)2 arctan
1√
yq − 1

}

, (24)

where m̂q = mq/mb and yq = 4m̂2
q/ŝ. Hence, due to the absorbtive parts of g (m̂q, ŝ), there

are strong phases coming from YSD. One, in particular, notices the terms proportional to

g (0, ŝ) which have a non–vanishing imaginary parts independent of the dilepton invariant

mass.

In addition to these perturbative contributions, the c̄c loops can excite low–lying char-

monium states ψ(1s), · · · , ψ(6s) whose contributions are represented by YLD [22]:

YLD (mb, ŝ) =
3

α2

{

− V ∗

csVcb
V ∗

tsVtb
C(0) − V ∗

usVub
V ∗

tsVtb
[3C3 + C4 + 3C5 + C6]

}

×
∑

Vi=ψ(1s),···,ψ(6s)

πκiΓ (Vi → ℓ+ℓ−)MVi
(

M2
Vi
− ŝm2

b − iMViΓVi
) , (25)

where κi are the Fudge factors for B → K∗Vi → K∗ℓ+ℓ− transition, and C(0) ≡ 3C1 +C2 +

3C3 +C4 +3C5 +C6. Here the sum runs over all all charmonium resonances with mass mVi

and total decay rate ΓVi. Contrary to YSD, the long–distance contribution YLD has both

weak and strong phases. The weak phases follow from the CKM elements whereas the strong

phases come from the ŝ values for which i-th charmonium state is on shell. Therefore, the

Wilson coefficient Ceff
9 (mb) has both weak and strong phases already in the SM.

C1(mb) C2(mb) C3(mb) C4(mb) C5(mb) C6(mb) Ceff
7 (mb) C9(mb) C10(mb)

−0.248 1.107 0.011 −0.026 0.007 −0.031 −0.313 4.344 −4.669

TABLE II. The numerical values of the Wilson coefficients at µ ∼ mb scale within the SM. The

corresponding numerical value of C0 is 0.362.

In this sense, the Wilson coefficients Ceff
7 (mb) and C10(mb) cannot develop any strong

phase, and thus, φ7 and φ10 should necessarily originate from physics beyond the SM. A

few observations on the asymmetries help much in simplifying the analysis: (i) Due to the

dependencies of the asymmetries on the Wilson coefficients, it is clear that one can re–phase

one of the Wilson coefficients. For instance, one can choose φ9 ≡ 0 leaving Ceff
9 (mb) with

its SM phases only. (ii) As mentioned above, the Wilson coefficients Ceff
7 (mb) and C10(mb)

cannot develop strong phases from light quark loops so that φ7 and φ10 can be chosen to

have purely weak character.
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In the light of analytic derivations as well as particular observations mentioned above,

one can investigate the dependence of the asymmetries on these new weak phases φ7 and

φ10 to have an estimate of their information content. It is conceivable that such an analysis

will provide a tool to mark possible sources of CP violation beyond the CKM matrix.

V. NUMERICAL ESTIMATES

In this section we present our numerical estimates for the asymmetries ACP , PL, PT and

PN for B → K∗µ+µ− and B → K∗τ+τ− decays separately. We take hadronic form factors

from Table I and the Wilson coefficients from Table II. For the remaining parameters we

take mb = 4.8 GeV, mc = 1.35 GeV, mB = 5.28 GeV, mK∗ = 0.892 GeV .

The dilepton invariant mass has the kinematical interval 4m2
ℓ ≤ q2 ≤ (mB − mK∗)2 in

which the charmonium resonances can be excited. The dominant contribution comes from

the three low–lying resonances J/ψ, ψ
′

, ψ
′′

in the interval 8 GeV 2 <
∼ q2 <

∼ 14.5 GeV 2. In

order to minimize the hadronic uncertainties we will discard this subinterval in the analysis

below by dividing the q2 region to low and high dilepton mass intervals

Region I : 4m2
ℓ ≤ q2 ≤ 8 GeV 2,

Region II : 14.5 GeV 2 ≤ q2 ≤ (mB −mK∗)2, (26)

where the contribution of the higher resonances do still exists in the second region.

Due to 1/q2 factor in front of CBR, in Region I the contribution of the dipole type

operator dominates. Therefore, asymmetries which involve the differences of the decay rates

are suppressed in Region I compared to ones in Region II. This property will be illustrated

in Figs. 1 – 2 and the remaining analysis for the asymmetries will be performed only for

Region II where the asymmetries are larger.

As mentioned previously, in the model under concern, there are two weak phases: φ7

and φ10. However, a close inspection of the CP asymmetry shows that, it is independent of

φ10. This follows from the fact that CP asymmetry can exist only when interference terms

involve strong and weak phases. In this model, similar to SM, there is no interference terms

involving Ceff
9 and C10. For this reason ACP is independent of φ10.

First, we illustrate ACP in φ7–q
2 plane for B → K∗µ+µ− decay for Region I and Region

II in Fig. 1 and Fig. 2, respectively. In both figures we take φ10 = 0, and as noted above

ACP is already independent of this phase. In Region I the CP asymmetry is practically

independent of q2, and becomes maximal for marginal CP violation, φ7 = π/2. In Region II,

however, the q2 dependence is comparatively enhanced as the dominance of dipole coefficient
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is now reduced. Besides, as figures suggest the CP asymmetry in Region II is one order of

magnitude larger than in Region I, and this confirms our expectation above.

One notes that the average asymmetries could be measured more easily in experiments.

Therefore, from now on we will discuss averaged CP and lepton polarization asymmetries

in Region II. The averaging procedure is defined by

〈Q〉 =
∫ (mB−mK∗ )2

14.5 GeV 2 Q dΓ
dq2
dq2

∫ (mB−mK∗ )2

14.5 GeV 2

dΓ
dq2
dq2

(27)

where Q = PL, PN , PT or ACP .

Depicted in Fig. 3 (Fig. 4) is the φ7 dependence of the averaged asymmetries 〈PL〉, 〈PT 〉,
〈PN〉 and 〈ACP 〉 at φ10 = 0 ( φ10 = π/2) for B → K∗µ+µ− decay. Similarly, Figs. 5 and 6

show the φ7 dependence of the same quantities for B → K∗τ+τ−. As noted before, the CP

asymmetry depends only on φ7; however, as these figures show clearly among all asymmetries

PN is very sensitive to φ10: For φ10 = 0 (φ10 = π/2) PN is purely positive (negative). In

addition to this, PN at φ10 = π/2 is one order of magnitude larger than that at φ10 = 0.

This property is valid for both µ+µ− and τ+τ− final states. Besides, since PN is proportional

to the lepton mass, the B → K∗τ+τ− decay is much more relevant for its measurement.

This sensitivity of PN on φ10 can be explained as follows: PN depends on the imaginary

part of the bilinear combinations of the Wilson coefficients, such as Im
[

Ceff
9 C∗

10

]

. When

φ10 = π/2 ( φ10 = 0) C10 is pure imaginary (real) and therefore Im[Ceff
9 C∗

10] = |C10|Re[Ceff
9 ]

(Im[Ceff
9 C∗

10] = |C10|Im[Ceff
9 ]). Since |Re[Ceff

9 ]| >> |Im[Ceff
9 ]|, PN at φ10 = π/2 is roughly

one order of magnitude larger than its value at φ10 = 0. Remaining two asymmetries, PL

and PT , are less sensitive to φ10.

In Fig.7 and 8 we present the correlation between 〈ACP 〉 and 〈PN〉 for B → K∗τ+τ−

decay by varying φ7 from 0 to 2π at φ10 = 0 and φ10 = π/2, respectively. For µ+µ− channel

PN is much smaller so we do not analyze this case. The SM predictions are given by the

intersections of 〈ACP 〉 = 0 line and the curves themselves. Due to the sign ambiguity of C7

there are two solutions. All other points on the curves are generated by the new physics

phases. If a simultaneous measurement of 〈ACP 〉 and 〈PN〉 gives a point on the curve and

if this point is distinct from the SM prediction then this will be an indication of the new

physics contribution. Moreover, such a simultaneous measurement enables us to determine

the sign of the new phases unambiguously.
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VI. CONCLUSION

In this work we have adopted a model–independent approach in studying the sensitivity

of the CP and lepton polarization asymmetries to new CP phases. In parcticular, we have

taken the Wilson coefficients being identical to the SM ones except for their phases. The

main result of the present study is that the CP asymmetry and normal lepton polarization

asymmetry are the most sensitive quantities to new sources of weak phases beyond the SM.

While ACP is sensitive to φ7 only, PN is more sensitive to φ10. Therefore, measurement

of these two asymmetries can establish the existence or absence of the new sources of CP

violation beyond the SM. Moreover, a simultaneous measurement of the averaged CP and

normal polarization asymmetries will unambiguously determine the sign of the new phases.

In a specific model such as 2HDM or supersymmetry the Wilson coefficients possess

new CP phases not found in the SM. The question of how infromative the asymmetries in

B → K∗ℓ+ℓ− decay about new sources of CP violation in 2HDM model or supersymmetry

will be discussed elsewhere.
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FIGURE CAPTIONS

Fig. 1 The dependence of the CP asymmetry ACP for B → K∗µ−µ+ on q2 and φ7 at

φ10 = 0 for Region I.

Fig. 2 The same as in Fig. 1 but for Region II.

Fig. 3 The dependence of 〈ACP 〉, 〈PL〉, 〈PT 〉 and 〈PN〉 for B → K∗µ−µ+ on φ7 at φ10 = 0

for Region II.

Fig. 4 The same as in Fig. 3 but for φ10 = π/2.

Fig. 5 The same as in Fig. 3 but for B → K∗τ−τ+ decay.

Fig. 6 The same as in Fig. 5 but for φ10 = π/2.

Fig. 7 The correlation between the averaged CP and normal lepton polarization asym-

metry at φ10 = 0 for B → K∗τ−τ+ decay.

Fig. 8 The same as Fig. 7 but for φ10 = π/2.
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