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Abstract

We calculate the mass and residue of the newly observed Ωc(3000) and Ωc(3066) states with

quantum numbers JP = 1
2
−
and 3

2
−
within QCD sum rules. The calculation is carried out by using

the general form for interpolating curent for J = 1
2 baryon. Our predictions on masses are in good

agreement with the experimental results.
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I. INTRODUCTION

LHCb Collaboration observed five very narrow excited Ωc baryons decaying into Ξ+K̄ [1].

The masses and decay widths of these new states are:

Γ1 = 4.5± 0.6± 0.3 (MeV), m1 = 3000.4± 0.2± 0.1 MeV,

Γ2 = 0.8± 0.2± 0.1 (MeV), m2 = 3050.2± 0.1± 0.1 MeV,

Γ3 = 3.5± 0.4± 0.2 (MeV), m3 = 3065.6± 0.1± 0.3 MeV,

Γ4 = 8.7± 1.0± 0.8 (MeV), m4 = 3090.2± 0.3± 0.5 MeV,

Γ5 = 1.1± 0.8± 0.4 (MeV), m5 = 31191.1± 0.3± 0.9 MeV.

(1)

These states except Ωc(3119) have also been confirmed by BELLE Collaboration [2] and

masses as well as the relative branching ratios of the hadronic decays of them are mea-

sured [3]. However, quantum numbers (JP ) of these new states have not been established

in the experiments yet. Hence, in recent studies, various scenarios have been employed con-

cerning the nature of these states. The spectra of the newly discovered Ωc baryons within

different approaches such as QCD sum rules [4–6], chiral perturbation theory [7], chiral

quark soliton model [8], and heavy quark + light diquark framework [9] have been widely

discussed in the literature. For instance, in Ref. [6], the two states with masses m3 and m5

are assumed to have the JP = 1
2

+
and 3

2

+
quantum numbers which are radial excitations

of ground state Ωc and Ω∗
c baryons, and within QCD sum rules their masses are estimated.

In [10], the authors try to answer the following questions: Why are the five states discovered?

Why are they narrow? What are their spin-parity quantum numbers? Do similar states of

other heavy baryons, as well as Ωc, exist for beauty baryons within the quark model? The

authors of [10] assumed these states as bound states of a c-quark and a P wave ss-diquark.

This picture predicts the existence of five states with negative parity.1 Additionally, the

ground and excited state spectra of Ω0
c baryons are analyzed from lattice QCD in [11] and

the result strongly indicated that the states Ω0
c(3000), Ω

0
c(3050) and Ω0

c(3066), Ω
0
c(3090) and

Ω0
c(3119) have parity spin JP = 1

2

−
, 3

2

−
and 5

2

−
respectively.

Moreover, the strong and radiative decays of Ωc baryons are very promising to establish

the quantum numbers of these states. In this regard, several decay modes of these hadrons

1 In this work, the authors also present an alternative possibility that the two heavy states are 2S excitations

with JP = 1

2

+
and JP = 3

2

+
, while the three light states are interpreted as JP = 3

2

−
, 3

2

−
and 5

2

−
states.
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are analyzed within different methods such as the constituent quark model [12], quark pair

creation model (3P0-model [13, 14]), chiral quark model [9, 15], and light-cone QCD sum

rules [16, 17]. Newly observed Ωc baryon as pentaquarks within the chiral quark model

is discussed in [18] and it is shown that the Ξ−D̄, ΞcK̄, and Ξ∗
cK̄ are the possible decay

candidates of these new particles.

Following the work [10], we assume that the newly observed Ωc baryons are negative

parity baryons and in present letter within QCD sum rules method, we estimate the mass

and residues of the JP = 1
2

−
, JP = 3

2

−
states respectively. The paper is organized as follows.

In section II, we derive the mass sum rules for negative parity Ω0
c(3000) and Ω0

c(3066) with

JP = 1
2

−
and JP = 3

2

−
. Section III is devoted to the numerical analysis of the obtained sum

rules. The last section contains discussions and conclusion.

II. MASS SUM RULES FOR Ωc(3000) AND Ωc(3066) BARYONS

To derive the sum rules for the mass and residues of the Ωc(3000) and Ωc(3060) states

we consider the following two-point correlation functions

Π(µν)(p) =

∫

d4xeipx
{

〈0|T{ηQ(µ)
(x)η̄Q(ν)

(0)}|0〉
}

(2)

where

ηQ =
1√
2
ǫabc

{

(sa
T

CQb)γ5C
c − (QaTCsb)γ5s

c

+ β
[

(sa
T

Cγ5Q
b)sc − (QaTCγ5s

b)sc
]

} (3)

and

ηQµ
=

1√
3
ǫabc

{

(saCγµs
b)Qc + (saCγµQ

b)sc + (QaCγµs
b)sc)

}

(4)

are the interpolating currents of ΩQ baryons with JP = 1
2

+
and 3

2

+
(see for example [19]).

In the expressions of the currents, a,b,c are the color indices, C is the charge conjugation

operator, Q is the heavy c quark and β is the arbitrary parameter, where β = −1 corresponds

to so-called Ioffe current.

In order to obtain the mass sum rules, the correlation functions are calculated in terms

of hadrons and quark-gluon degrees of freedom. Then with the help of dispersion relation,

these results are equated. In this way, the mass sum rules are obtained.
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It should be noted that the interpolating currents ηQ and ηQµ
interact with both positive

and negative parity baryons. Using this fact and saturating eq. (2) with positive and negative

parity baryons we get

Π(p) =
〈0|ηQ|Ω(+)

Q 〉〈Ω+
Q|η̄Q|0〉

m2
Ω+ − p2

+
〈0|ηQ|Ω(−)

Q 〉〈Ω−
Q|η̄Q|0〉

m2
Ω−

− p2
+ ...

Πµν(p) =
〈0|ηQµ

|Ω∗(+)
Q 〉〈Ω∗+

Q |η̄ν |0〉
m2

Ω+∗

Q

− p2

+
〈0|ηQµ

|Ω∗(−)
Q 〉〈Ω∗−

Q |η̄ν |0〉
m2

Ω∗−
− p2

+ ...

(5)

Here, Ω+
Q (Ω+∗), Ω−

Q (Ω−∗) are the ground states positive and negative parity baryons

with spin-1/2 (3/2), respectively. Moreover, for briefness, we will denote the mass of the

negative parity spin 1
2
(3
2
) ΩQ baryons as m−(m

∗
−). The dots describe for higher states and

continuum contributions.

The matrix elements entering to eqs. (4) and (5) are determined as follows:

〈0|ηQ|(
1

2

+

)〉 = λ+u(p)

〈0|ηQ|(
1

2

−

)〉 = λ−γ5u(p)

〈ηQµ|3/2+〉 = λ∗
+uµ(p)

〈ηQµ|3/2−〉 = λ∗
−γ5uµ(p)

(6)

where uµ(p) is the Rarita-Schwinger spinor for spin 3/2 particle.

Using these matrix elements and performing summation over the spins of baryons, we

get the phenomenological part of the correlation functions as

Π(p) =
λ2
+(/p+m+)

m2
+ − p2

+
λ2
−(/p−m−)

m2
− − p2

+ ...

Πµν(p) =

[

λ∗2

+ (/p+m∗
+)

m∗2
+ − p2

+
λ2
−(/p−m∗

−)

m∗2
− − p2

]

gµν

(7)

Notice that, the states with masses m+
Ωc

= 2695 MeV, m∗+
Ωc

= 2766 MeV are denoted as

m+, m
∗
+ and their residues are denoted as λ+ and λ∗

+ correspondingly. In these expressions,

the second terms in RHS of eq. (7) describe contributions of Ω(3000) and Ωc(3066) states.
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Here we would like to make the following remark. First of all, the summation over spin

for Rarita-Schwinger spinors is performed by using formula

∑

s

uµ(p, s)ūν(p, s) = −(/p+m)
[

gµν −
1

3
γµγν −

2

3m2
pµpν +

1

3m
(pµγν − pνγµ)

]

. (8)

Moreover, the interpolating current ηµ couples not only to the JP = 3
2
state but also to the

1
2
state. The contribution of JP = 1

2
state is determined as

〈0|ηµ|
1

2
(p)〉 =

[

Apµ +Bγµ
]

u(p). (9)

From this expression it follows that the structures proportional to pµ and γµ contain contri-

butions from 1/2 states and it follows from eq. (8) that only ∼ gµν structure contains the

contribution of 3
2
states. For this reason in the next discussion, we choose only structures

∼ /pgµν or gµν in order to analyze the mass and residues of the spin 3
2
states.

Now let us turn our attention to the calculation of the correlator function from QCD

side by using the operator product expansion (OPE). For performing calculation, we need

the expression of light (strange quark) and heavy quark propagators. Up to dimension eight

operators, the expression of the light quark propagator in x representation is given in [20, 21]

Sab
s (x) =

i/xδab

2π2x4
−ms

δab

4π2x2
− δab

12
〈s̄s〉(1− i

4
i/x)

− x2

192
m2

0〈s̄s〉(1−
i

6
/xms)−

x4δab

2933
〈s̄s〉〈g2sG2〉

+
i

25π2x2
(gsG

n
αβ)(/xσ

αβ + σαβ/x)
(λn)ab

2

+
1

25π2
ms

(

ln (−x2Λ2

4
) + 2γE

)

(gsG
n
αβ)

(λn)ab

2
σαβ

(10)

The vacuum expectation values of the quark and gluon field product also give contribution

to the quark propogator. This matrix element is determined in following way [21].

〈0|T{qai q̄bkGn
αβ}|0〉 =

1

263
m2

0〈q̄q〉(σαβ)ik(
λn

2
)ab

− i

283
mqm

2
0〈q̄q〉

[

/xσαβ + σαβ/x
]

ik
(
λn

2
)ab

+
x2

21032
〈g2sG2〉〈q̄q〉(σαβ)ik(

λn

2
)ab

(11)
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For the heavy quark propogator we employ following expression [22]

Sab
Q (x) =

m3
Qδ

ab

2π2

{

mQi/x

m2
Q(
√
−x2)2

K2(mQ

√
−x2) +

1

mQ

√
−x2

K1(mQ

√
−x2)

}

−
mQgsG

ab
µν

8(2π)2

{

i(σµν/x+ /xσµν)
1

mQ

√
−x2

K1(mQ

√
−x2) + 2σµνK0(mQ

√
−x2)

}

− δab〈g2sG2〉
576(2π)2mQ

{

(imQ/x− 6)mQ

√
−x2K1(mQ

√
−x2) + (mQ

√
−x2)2K2(mQ

√
−x2)

}

,

(12)

where Kn(mQ

√
−x2) is the modified Bessel function of the second kind.

Using these expressions for the propagators of the heavy and light quarks, the correlation

function can be calculated. Separating the coefficients of /p and I operator structures in spin

1/2 baryons and /pgµν , gµν Lorentz structures for spin 3/2 baryons and performing Borel

transformations over p2 we get the following sum rules:

λ2
+e

−m2
+/M2

+ λ2
−e

−m2
−
/M2

= ΠB
1

m+λ
2
+e

−m2
+/M2 −m−λ

2
−e

−m2
−
/M2

= ΠB
2

(13)

and

λ∗2

+ e−m∗
2

+ /M2

+ λ∗2

− e−m∗
2

−
/M2

= Π∗B
1

m∗
+λ

∗2

+ e−m∗
2

+ /M2 −m∗
−λ

∗2

− e−m∗
2

−
/M2

= Π∗B
2

(14)

The expressions of the invariant functions ΠB
1 , Π

B
2 , Π

∗B
1 and Π∗B

2 are presented in Ap-

pendix A.

Solving eq.(13) for the mass and residue of the spin 1/2 state we obtain:

m2
− =

d( −1
M2 )[m+Π

B
1 − ΠB

2 ]

m+ΠB
1 − ΠB

2

,

λ2
− =

em
2
−
/M2

m+ +m−

[m+Π
B
1 −ΠB

2 ].

(15)

Moreover, equations for the determination of the negative parity spin 3/2 states formally

can be obtained from eq.(15) replacing m± → m∗
±, ΠB

i → Π∗B
i . We take the values of

mass of ground state positive parity baryons obtained from mass sum rule, namely m+ =

(2.685± 0.123) GeV, m∗
+ = (2.77± 0.20) GeV and (see for example [22, 23]).
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III. NUMERICAL ANALYSIS

In this section, we perform numerical analysis of the mass sum rules for negative parity Ωc

and Ω∗
c baryons. The sum rules involve numerous input parameters. For numerical analysis

we used the following values for the input parameters:

mc = (1.27± 0.03) GeV,

ms = (96+8
−4) MeV,

〈s̄s〉 = 0.8(−0.24± 0.01)3 GeV3,

m2
0 = (0.8± 0.2) GeV2,

〈αs

π
G2〉 = (0.012± 0.004) GeV4

(16)

Note that the MS-scheme is chosen for the charm quark mass which leads to reasonable

suppression of O(αs) radiative corrections in the perturbative part of the sum rules. In

addition to these input parameters, the sum rules contain three auxiliary parameters: Borel

mass square M2, continuum threshold s0 and arbitrary parameter β in the expression of the

interpolating current η for JP = 1
2
states. For the prediction of the mass of the negative

parity Ωc and Ω∗
c baryons we need to find the working region of these parameters in such

a way that the mass is practically independent of them. The working region of M2 is

determined as follows. The lower bound of M2 is obtained from the condition that the

higher dimension operators contributions should be less than perturbative contribution in

order to guarantee the convergence of OPE series. On the other hand, the upper bound of

M2 is determined from the condition that the contributions of the continuum and higher

states should be less than say half of the pole contributions. Our analysis shows that these

conditions are satisfied if Borel mass parameter lies in the region 2 GeV2 ≤ M2 ≤ 5 GeV2

for both baryons.

The other auxiliary parameter of the sum rules is the continuum threshold s0. This

parameter is not totally arbitrary and is related to the energy of the first excited state. The

difference ∆ =
√
s0 − mground is the energy to excite the particle to its first energy state.

Analysis of various sum rules shows that this parameter ∆ varies between 0.3 GeV and

0.8 GeV. In other words, s0 varies in the region (mground + 0.3 GeV)2 ≤ s0 ≤ (mground +

0.8 GeV)2. In performing numerical analysis, we will use values s0 from this domain. Having

the values of the parameters M2 and s0 our last attempt is to find a region of β where the

7



mass of Ωc baryons become practically independent on β. In Figs. (1) and (2), we present

the dependence of m2
− on M2 at fixed values of s0 = 11 GeV2 and 12 GeV2 at several fixed

values of β, respectively. From the figure, it follows that the mass m− shows good stability

to the variables of M2 in the working region. In Fig. (3) we present the dependence of m−

on cos θ, where β = tan θ, at s0 = 11 GeV2 and several fixed values of M2. From this figure,

we observe that m− becomes practically insensitive to the variation of cos θ if it lies in the

domain (−1; 1).

In Figs (4) and (5), we present the dependence of λ− on cos θ at two fixed values of

s0 = 11 GeV2, 12 GeV2 and three fixed values of M2 from its working region. From these

Figures, we see that the λ− exhibits very good stability to the variation of cos θ when it

changes in the domain −1 < cos θ < −0.5 . In result, we obtained that the common working

region of cos θ for mass sum rules is (−1;−0.5). With these findings, our final results for

the mass and residue of Ωc state are

m− = (3.00± 0.01) GeV,

λ− = (0.036± 0.007) GeV3.
(17)

We also perform a similar analysis for spin 3/2 states. In Fig. (6) we present the M2

dependence of m∗
− at two fixed values of s0. We observe that in the working region of M2 we

have good stability of m∗
− with respect to the variation of M2. In Fig. (7) the dependence

of the residue λ∗
− on M2 at two fixed values of s0 is depicted. From these figures we deduce

following results:

m∗
− = (3.06± 0.02)GeV,

λ∗
− = (0.027± 0.001) GeV3.

(18)

From comparison of our results on mass m− and m∗
− are compared with the experimental

data, we observed impressive agreement between them.

Finally, we would like to note that both spectroscopic analysis and decay widths studies

are crucial for the determination of the quantum states of these newly discovered baryons.

In Ref.[16], the decay widths of Ω0
c baryons within light-cone sum rules considering different

scenarios on quantum numbers of these states are investigated. The results ruled out the

possible identification of the states with JP = 1
2

−
(for Ωc(3000),Ωc(3050)) and JP = 3

2

−
(for

Ωc(3066),Ωc(3090)). In order to make a final decision about the quantum numbers of these

8



states, the contributions of all existent states should be taken into account simultaneously.

This point needs further refined analysis.

IV. CONCLUSION

In conclusion, we calculate the mass of newly observed excited Ωc baryons with JP = 1
2

−

and JP = 3
2

−
at LHCb. Our results show that the sum rules predict their mass successfully

once these new states are assigned as negative parity. For establishing the spin-parity assign-

ment after determination of mass and residue it is necessary to calculate the decay widths

and compare the result with the existing experimental data. Only after these comparisons,

one can determine the spin-parity content of these newly observed states.

Note added.— While we were completing this study, the work [4] appeared in arXiv

where new observed Ωc particles are assigned as negative parity baryons and their masses

are studied within QCD sum rules by using the different forms of interpolating currents than

the ones we have used. Our results on mass are very close to the ones presented in [4].
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FIG. 1. The dependence of the mass of the negative parity Ωc baryon on Borel mass parameter

M2 at s0 = 11 GeV2 and for several fixed values of β is depicted.
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FIG. 2. Same as in Fig. (1), but at s0 = 12 GeV2.
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Appendix A: Mass sum rules for the spin 1/2 (3/2) negative parity Ωc (Ω∗
c) baryon

In this appendix, we present the expressions of the invariant function ΠB
1 (Π∗B

1 ) and

ΠB
2 (Π∗B

2 ) appearing in the mass sum rules for the Ωc (Ω∗
c) baryon. For brevity we did

not present the terms proportional to the strange quark mass here, but in the numerical

calculations we take these terms into account.

ΠB
1 =− M6

256π4

{

3[5 + β(2 + 5β)]m4
c(I3 − 2m2

cI4 +m4
cI5)

}

− M2

3072π4

{

m2
c

(

[13 + β(10 + 13β)]〈g2sG2〉I2 − 16(1 + β + β2)〈g2sG2〉m2
cI3

+ 576(1− β2)mcπ
2〈s̄s〉(I2 −m2

cI3)
)}

− e−m2
c/M

2

73728mcM2π4

[

(1 + β)2〈g2sG2〉2mc − 768(1− β)2m2
0mcπ

4〈s̄s〉2

− 16(1− β2)〈g2sG2〉π2〈s̄s〉
(

7m2
0 − 12m2

ce
m2

c/M
2I1

) ]

− e−m2
c/M

2

18432M4π2
(1− β)m2

0mc

[

2(1 + β)〈s̄s〉〈g2sG2〉 − 384(1− β)mcπ
2〈s̄s〉2

]

+
e−m2

c/M
2

1728M6
(1− β)2〈g2sG2〉m2

c〈s̄s〉2 +
e−m2

c/M
2

1728M8
(1− β)2〈g2sG2〉m2

0m
2
c〈s̄s〉2

− e−m2
c/M

2

3456M10
(1− β)2〈g2sG2〉m2

0m
4
c〈s̄s〉2 −

e−m2
c/M

2

24
(1− β)2〈s̄s〉2

+
e−m2

c/M
2

384mcπ2
(1− β2)〈s̄s〉

[

〈g2sG2〉
(

1− 3m2
ce

m2
c/M

2I2

)

− 3m2
0m

2
ce

m2
c/M

2 (

6I1 − 13m2
cI2

)

]

(A1)
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ΠB
2 =− M6

256π4
3(1− β)2m3

c

(

I2 − 2m2
cI3 +m4

cI4

)

− M4

3072π4
(1− β)mc

{

3(1− β)〈g2sG2〉I2 − 4m2
c

[

(1− β)〈g2sG2〉 − 144(1 + β)mcπ
2〈s̄s〉

]

I3

}

+
M2e−m2

c/M
2

1024π4
(1− β)

{

56(1 + β)m2
0π

2〈s̄s〉 − 2(1− β)〈g2sG2〉mce
m2

c/M
2I1

+m2
ce

m2
c/M

2
[

3(1− β)〈g2sG2〉mc − 8(1 + β)m2
0π

2〈s̄s〉
]

I2

}

− e−m2
c/M

2

73728M2π4
mc

{

(1− β)2〈g2sG2〉2 + 1536[3 + β(2 + 3β)]m2
0π

4〈s̄s〉2
}

+
e−m2

c/M
2

18432M4π2
mc

{

22(1− β2)〈s̄s〉〈g2sG2〉m2
0mc

− 32[5 + β(2 + 5β)]
(

〈g2sG2〉 − 12m2
0m

2
c

)

π2〈s̄s〉2
}

− e−m2
c/M

2

1728M6
[5 + β(2 + 5β)]〈g2sG2〉mc(3m

2
0 −m2

c)〈s̄s〉2

+
e−m2

c/M
2

576M8
[5 + β(2 + 5β)]〈g2sG2〉m2

0m
3
c〈s̄s〉2

− e−m2
c/M

2

3456M10
[5 + β(2 + 5β)]〈g2sG2〉m2

0m
5
c〈s̄s〉2

+
e−m2

c/M
2

36864mcπ4

{

(1− β)2〈g2sG2〉2 − 1536[5 + β(2 + 5β)]m2
cπ

4〈s̄s〉2

− 192(1− β2)〈g2sG2〉mcπ
2〈s̄s〉

}

(A2)

Π∗B
1 =

M6

32π4
m4

c

(

I3 − 3m4
cI5 + 2m6

cI6

)

− M2

1152π4
m2

c

[

192mcπ
2〈s̄s〉

(

I2 −m2
cI3

)

− 〈g2sG2〉(4I2 − 3m4
cI4)

]

+
e−m2

c/M
2

82944mcM2π4

[

96〈g2sG2〉m2
0π

2〈s̄s〉 − 4608m2
0mcπ

4〈s̄s〉2 + 〈g2sG2〉2
(

mc + 2m3
ce

m2
c/M

2I2

) ]

− e−m2
c/M

2

1728M4π2

[

m2
0mc〈s̄s〉

(

〈g2sG2〉+ 96mcπ
2〈s̄s〉

)

]

− e−m2
c/M

2

648M6
〈g2sG2〉m2

c〈s̄s〉2 −
e−m2

c/M
2

6488M8
〈g2sG2〉m2

0m
2
c〈s̄s〉2 +

e−m2
c/M

2

1296M10
〈g2sG2〉m2

0m
4
c〈s̄s〉2

+
e−m2

c/M
2

432mcπ2
〈s̄s〉

[

〈g2sG2〉+ 48mcπ
2〈s̄s〉 − 3m2

c

(

〈g2sG2〉 − 6m2
0m

2
c

)

em
2
c/M

2I2

]

.

(A3)
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Π∗B
2 =

M6

96π4

(

2m3
cI2 − 3m5

cI3 +m9
cI5

)

+
M4

2304π4
mc

[

3〈g2sG2〉I2 −m4
c

(

5〈g2sG2〉+ 384mcπ
2〈s̄s〉

)

I4

]

− M2e−m2
c/M

2

1152π4

[

〈g2sG2〉m3
ce

m2
c/M

2

(2I2 −m2
cI3)− 48m2

0π
2〈s̄s〉(1−m4

ce
m2

c/M
2I3)

]

+
e−m2

c/M
2

82944M2π4
〈g2sG2〉2mc −

e−m2
c/M

2

864M4π2
mc〈s̄s〉

[

〈g2sG2〉m2
0mc − 12

(

〈g2sG2〉 − 12m2
0m

2
c

)

π2〈s̄s〉
]

+
e−m2

c/M
2

216M6
〈g2sG2〉(3m2

0mc −m3
c)〈s̄s〉2 −

e−m2
c/M

2

72M8
〈g2sG2〉m2

0m
3
c〈s̄s〉2 +

e−m2
c/M

2

432M10
〈g2sG2〉m2

0m
5
c〈s̄s〉2

+
e−m2

c/M
2

82944mcπ4

[

384〈g2sG2〉mcπ
2〈s̄s〉+ 27648m2

cπ
4〈s̄s〉2 − 〈g2sG2〉2

(

1 + 3m2
ce

m2
c/M

2I2

) ]

.

(A4)

The functions In (n = 1, · · · , 6) are defined as:

In =

∫ s0

m2
c

ds
e−s/M2

sn
. (A5)

where s0 is the value of the continuum threshold.
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