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Oxygen-doped c-BN(110) surface: DFT calculations

Hatice Kökten and Şakir Erkoç
Department of Physics, Middle East Technical University, 06531 Ankara, Turkey

E-mail: kokten@metu.edu.tr

Abstract. Density functional theory calculations have been performed to investigate the
structural and electronic properties for both unrelaxed and relaxed cases of oxygen-doped c-
BN(110) surface. Oxygen atom has been substituted in a neutral charge state on both the B
site (OB) and the N site (ON ). Defect formation energies, [unrelaxed (Eo

f ) and relaxed (Ef )],
and relaxation energies, Er, have been calculated. It has been found that substitution ON is
more probable, moreover the ON causes an inward relaxation of the first neighbor surface B
atom.

1. Introduction
In recent years, the physical and chemical property of boron nitride (BN), as one of the III-
V nitride compounds, have been studied both theoretically and experimentally [1-14]. This is
mainly because of its attracting properties, such as its extreme hardness, high melting point,
low dielectric constant. In general, wide-band-gap semiconductors can be doped either n-type
or p-type, but not both. However, as one of the widest band-gap III-V compound, c-BN can be
easily doped to obtain both n-type and p-type conductivities [15-16]. The cubic phase of BN
(c-BN) is similar to diamond with outstanding physical and chemical properties. It can be used
for metalworking tools and other wear applications due to its inertness. In addition, its high
thermal conductivity and the possibility of appropriate doping make it a potential material for
applications. Silva et al. have shown that an isolated Mn substitutional impurity in a c-BN
matrix may be used as a memory storage media [17].

A real semiconductor invariably has either some defects due to heat treatment or impurities
during the crystal growth process. The electronic quality of a semiconductor is largely
determined by the nature and number of its native defects and impurities. In the last decade a
significant amount of carbon and oxygen impurities have been detected in c-BN thin films by X-
ray photoelectron spectroscopy [18] showing that the two impurities are common contaminants.
The theoretical modeling of oxygen in semiconductor materials has remained a challenge for
the computational field because of its chemical character. The oxygen atom (O) is a common
substitutional impurity in both AlN and GaN crystals [19]. Ab initio study of oxygen point
defects in GaAs, GaN and AlN is reported that the calculations demonstrate a qualitatively
different behavior of oxygen impurities in these materials [20]. Silva et al. [21] have investigated
the electronic and structural properties of oxygen-doped BN nanotubes. The energetics of carbon
and oxygen impurities and their interaction with vacancies in c-BN were studied by Orellana et
al. [22]. Using DFT method, the atomic and electronic of single-walled BN nanotubes containing
N vacancies as well as C and O substituted of N atoms are studied by Zhukovskii et al. [23].
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In this paper, we report the results of theoretical studies on the influence of O impurity on
the surface structure and energetics of c-BN(110) surface by using DFT calculations.

2. Method of Calculation
The cubic boron nitride (110) surface is stoichiometric, with one B atom for every N atom.
The c-BN(110) surface is generated from a bulk-like termination. The experimental bulk lattice
parameter value (3.615 Å [24]) has been used as starting geometry. The odd number of atomic
planes in the (110) slab is considered to take advantage of the reflection symmetry about the
central plane. 9-layer thick of the 2×2 slab of the c-BN(110) surface contains 8 atoms per plane,
four B atoms and four N atoms to give 72 atoms in the working cell of the slab.

The calculations are performed by using CRYSTAL03 package program [25], in which density-
functional theory (DFT) type of calculation is implemented. CRYSTAL03 uses localized
Gaussian-type basis sets: 6-21G∗ basis set has been used for B, N atoms, 8-411d11 [26] has been
used for O atom. CRYSTAL03 computes the matrix elements of the coulomb and exchange
terms by direct summation of infinite periodic lattice. The reciprocal space integration has
been performed by sampling the Brillouin zone of the unit cell with the 4×4×1 the Monkhorst-
Pack net [27] that provides, the balanced summation in direct and reciprocal space [28]. The
calculations have been realized by using the B3LYP exchange–correlation hybrid functional and
4×8×1 grid of 25 k-points. The numerical thresholds used to ensure the numerical convergence
of the self-consistent-field procedure are set to 10−9 a.u. for one electron eigenvalues and 10−7

a.u. for the total energy.
In the present work, we investigate the energetics and structural properties of substitutional

single oxygen atom impurity in a neutral charge state on both the B site (OB) and N site
(ON ) of c-BN(110) surface by using DFT calculations. In particular, we calculate the formation
[unrelaxed (Eo

f ), and relaxed (Ef )] and the relaxation (Er) energies of a single defect X ( OB

or ON substitutes) on the (110) surface of c-BN. Cation and anion formation energies, Ef (X),
have been calculated using the equation

Ef (X) = Ed + E(B or N)−Ep −E(X) (1)

where Ed is the energy of the defective system, Ep is the energy of the perfect system and E(B)
or E(N) is the energy of the isolated boron or nitrogen atom, whereas E(X) is the total energy
for an isolated defect. The relaxation energies (Er) for OB and ON have been calculated. All
calculations in the present work have been performed on 72-atom supercells. The total energy
of the defective supercell has been optimized with respect to the position of the impurity atom
and of its first neighbors. The relaxation of farther neighbors has not been considered here.

3. Results and Discussion
The obtained structural data are compared with the available theoretical values [29-33] in Table
1. For neutral ON , it has been found an inward relaxation of the first-neighbor surface B atom
of about 2.70% with respect to the unrelaxed positions. It has been also calculated that, for
OB, the distance from the impurity to its first-neighbor (N) atom is found to be 10.86% larger
than in the unrelaxed system.

The formation energies Ef and Eo
f for both ON and OB impurities, are given in Table 2. The

formation energies are relatively higher in the OB replacement with respect to ON , indicating
a greater probability for the oxygen to replace the nitrogen atom than the boron atom. The
higher values of formation energies in the OB substitution also indicates the low probability of
finding neutral B defects on the c-BN(110) surface. The relaxation energies, Er, for ON and OB

impurities have been also calculated from the difference between the relaxed and the unrelaxed
systems, which are presented in Table 2. We hope that the present results will be useful for the
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researchers working in this field.

Table 1. Comparison of interatomic distances (in Å ) on the relaxed c-BN (110) surface. Bulk
lattice constant (a0), B-N bond length in bulk (db), B-N bond length in surface layer (ds), and
bond length between surface B atom and subsurface N atom (dBN ). Last four lines give the
bond lengths d(CX), d(OX) of subtituted CB, CN and OB, ON atoms.

Quantity Ref[29] Ref[30] Ref[31] Ref[32] Ref[33] This work
a0 3.605 3.600 3.623 3.615 — —
db 1.561 1.560 1.569 1.565 — —
ds 1.545 1.440 1.455 1.457 — —
ds/db 0.990 0.920 0.920 0.930 — —
dBN — — 1.561 1.515 — —
d(CB) — — — — 1.437 —
d(CN ) — — — — 1.510 —
d(OB) — — — — — 1.522
d(ON ) — — — — — 1.735

Table 2. Defect formation (relaxed Ef , un-relaxed Eo
f ) and relaxation (Er) energies (in eV) of

c-BN(110) surface.

Defect Ef Eo
f Er

ON 5.262 -1.670 2.386
OB 19.641 12.220 1.899
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