
  

  

Linköping University Post Print 

  

  

Robust Tracking in Cellular Networks Using 

HMM Filters and Cell-ID Measurements 

  

  

Mussa Bshara, Umut Orguner, Fredrik Gustafsson and Leo Van Biesen 

  

  

  

  

N.B.: When citing this work, cite the original article. 

  

  

  

©2011 IEEE. Personal use of this material is permitted. However, permission to 

reprint/republish this material for advertising or promotional purposes or for creating new 

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted 

component of this work in other works must be obtained from the IEEE.  

Mussa Bshara, Umut Orguner, Fredrik Gustafsson and Leo Van Biesen, Robust Tracking in 

Cellular Networks Using HMM Filters and Cell-ID Measurements, 2011, IEEE 

TRANSACTIONS ON VEHICULAR TECHNOLOGY, (60), 3, 1016-1024. 

http://dx.doi.org/10.1109/TVT.2011.2107926 

Postprint available at: Linköping University Electronic Press 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-67307 
 

http://dx.doi.org/10.1109/TVT.2011.2107926
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-67307


IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. X, NO. X, MONTH YEAR 1

Robust Tracking in Cellular Networks Using HMM
Filters and Cell-ID Measurements

Mussa Bshara, Member, IEEE, Umut Orguner, Member, IEEE, Fredrik Gustafsson, Senior Member, IEEE,
and Leo Van Biesen, Senior Member, IEEE

Abstract—A localization algorithm based on cell identification
(Cell-ID) information is proposed. Instead of building the lo-
calization decisions only on the serving base station (BS), all
detected Cell-IDs (serving or non-serving) by the mobile station
(MS) are utilized. The statistical modeling of user motion and the
measurements is done via a Hidden Markov Model (HMM) and
the localization decisions are made with Maximum A Posteriori
(MAP) estimation criterion using the posterior probabilities from
an HMM filter. The results are observed and compared to
standard alternatives on an example whose data were collected
from a WiMAX network in a challenging urban area in the
Brussels capitol city.

Index Terms—Cell-ID, hidden Markov model, HMM, GPS,
GSM, mobile WiMAX, navigation, LBS, positioning, positioning
accuracy, WiMAX networks.

I. INTRODUCTION

LOCALIZATION in wireless networks has attracted a lot
of interest as a supporting means to services that require

sufficient localization accuracy (see [1] and the references
therein). This includes location based services (LBSs), nav-
igation, tracking, security applications etc.. Historically, the
need of locating users with mobile devices arises to respond
to security applications such as tracking users with emergency
calls made by cellular phones [U.S. Enhanced 911 (E-911)].
Indeed the regulations adopted by the U.S. federal Commu-
nications Commission (FCC) require that all the emergency
calls made by cellular phones have to be localized within an
accuracy of 125 m in 67% of the cases [2]. Localization can
be done by measuring physical quantities related to the radio
signal traveling between a mobile terminal or a subscriber
station (SS) and a set of base stations (BSs), such as received
signal strength (RSS), time of arrival (TOA), time difference
of arrival (TDOA), angle of arrival (AOA), and Cell-ID.
A broad spectrum of solutions can be found in literature
including those based on RSS [3–6], TOA [7], TDOA [8]
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and AOA [9, 10]. More recently, a localization approach that
uses a combination of the mentioned measurements has been
proposed in [11]. Such hybrid techniques guarantee a higher
localization accuracy. Most of the conventional localization
methods have been developed to operate under line-of-sight
(LOS) propagation conditions. However, due to the electro-
magnetic propagation properties especially in urban areas, the
non-line-of-sight (NLOS) errors are very likely to corrupt
the original signal. A number of methods have been used
to mitigate the NLOS errors [12]. Some techniques exploit
the multipath characteristics of the environment, such as the
Fingerprinting [13–16] (See [17] for a very recent example).
All the mentioned techniques above require some adjustment
or modification (adding some hardware or software) to be
implemented in the SS or BS. It is apparent that the accuracy
and the required adjustments are tightly related. The higher the
required accuracy is, the more adjustments that are required,
which means additional cost and more computational burden.
From this point of view, despite its low accuracy [18, 19],
Cell-ID positioning is the first positioning method that has
been used by GSM operators to provide LBSs. Its simplicity
and low cost made it the most preferable way to position
a network user when the obtained accuracy is enough for
the required application. The Cell-IDs are transmitted over
the control channel and easy to obtain with no extra cost.
It is enough to associate the Cell-ID of the serving base
station with its location (which is known to the system) to
have a positioning system. This explains why this method
is cheap, fast and suitable for applications requiring high
capacity. The “low accuracy” has always been a characteristic
of the Cell-ID positioning due to the relatively large cell size
in GSM networks, especially in rural areas. Some publications
proposed using enhanced Cell-ID positioning, which uses the
timing advance (TA) value to reduce the cell size, and hence,
improving the accuracy [20].

WiMAX networks started to be widely deployed providing
the infrastructure for LBSs. The mobile WiMAX standard,
which is expected to be finalized in the near future (the end of
2010), will be providing LBSs to WiMAX users. This means
that the need for simple, cheap and preferably network depen-
dent ways to locate mobile and fixed modems is becoming
more urgent. In this paper, the Cell-ID localization problem
is solved by an approach that is not restricted to the serving
BS Cell-ID only, but it makes use of all the detected Cell-IDs
by an MS at a certain time instant, with an HMM filter to
locate the users. The method can be implemented either as
network-centric or mobile-centric, with different requirements
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on the mobile’s activity. In the former case, the base station
can force the mobile to make and send measurement reports
as long as the phone is on, it has not to be active. In the
latter case, the mobile can always decide this. We present
our results along with remarks on WiMAX networks which
were the main motivation and the illustrative case study for
this research. However, it must be emphasized that our results
equally apply to other types of networks. The importance of
the contributions of this paper can be summarized as follows:
• The method proposed in this paper makes use of all the

available Cell-IDs to the user in the localization, which
is contrary to the current methods that utilize only that
of the serving BS.

• A simple but practical way to form an HMM model
from a database obtained by measurement campaigns is
proposed and illustrated on a real life example.

The rest of the paper is organized as follows. Section II
discusses the discretization of the area under study and the
database construction both of which are quite important when
one works with HMMs. Both the HMM model and the filter,
which form the main contribution of this paper, are detailed in
Section III. The results with localization accuracy assessment
and comparison with other techniques are provided in Section
IV which also presents some experimental studies investigating
the effects of different algorithm parameter selections. Sec-
tion V draws some conclusions which finalizes the paper.

II. AREA DISCRETIZATION AND DATABASE
CONSTRUCTION

A. Area Discretization

In classical Cell-ID based positioning, the area under study
is divided into cells according to the strongest transmission
received in this area; i.e., the cell of a particular BS is the
area where its transmission is the strongest transmission that
can be detected. The cell of a BS differs from its coverage
area by means of the transmission power level compared to
the rest of the detected BSs. In other words, the coverage area
is the area where the BS transmission is detected, but it is
not necessarily the strongest transmission. The shape of an
actual BS’s cell is usually irregular and highly depends on
the propagation environment. Sometimes it can even consist
of multiple disconnected areas. In terms of localization perfor-
mance depending on Cell-ID classical approach, the smaller
the cell sizes are, the better accuracy one can get from Cell-
ID based localization [18, 19]. Therefore, an investigation of
cell sizes would give one a rough idea about the accuracy that
can be obtained and therefore, the LBSs that can be provided.
In order to carry out such an analysis, the cell sizes of the
two main cellular networks operating in Belgium have been
studied using the provided data by Clearwire for the Pre-
WiMAX network, and by Proximus for the GSM network. The
results are depicted in Figure 1 for the Pre-WiMAX network,
where the cell size cumulative distribution function (cdf)1 has
been calculated for the regions that are covered by the Pre-
WiMAx network in Belgium, and the same analysis can be

1A cdf is the integral of a probability density function given as cdf(x) =∫ x
−∞ pdf(x′)dx′ which makes cdf(x) a unitless quantity.
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Fig. 1: Cell size analysis for the Pre-WiMAX network in
Belgium.

found in [20] for the GSM network. The obtained results
show smaller cells in the Pre-WiMAX network than in the
GSM one. For example, the WiMAX cell size in Brussels
is about 0.5 km2 compared to 1 km2 in GSM for CEP67
2 (67% of the cells), and 1.8 km2 compared to 3km2 for
95% of the cells. Hence, using the Cell-ID positioning in the
Pre-WiMAX network in Belgium will provide better accuracy
than in the GSM network. Although this might not be the
case for the other parts of the world, the trend of the wireless
broadband future networks is towards having much smaller
cells than what is used today (Femto cells), and WiMAX
is one of the best candidates for the IMT-advanced next
generation mobile networks 3. Therefore, it is expected to have
much smaller cells in the future WiMAX networks (where
broadband is needed) than in GSM ones all over the world.
The accuracy improvement (by using smaller cells, in our case
the WiMAX cells), however, is expected to be limited. In order
to obtain a considerable positioning accuracy improvement
depending on Cell-IDs (or BS identification number BSID),
a novel approach has been proposed in this paper that uses
all the available BSIDs (not only the serving BSID) in the
diversity set4 of an MS [21]. This approach could be a
terminal-based or a network-based one as this information
is known by the network as well5. The MS shall transmit a
MOB SCN −REP message to report the scanning results
to its serving BS [21]. The scanning report contains the
number of active BSs in the diversity set (N current BSs)
which takes a maximum value of 7 (the serving BS and 6
neighboring ones), and also all the neighboring BSID (which
is 48 bits long) [21]. This message can be event-triggered or
periodical. When considering all the BSs in the diversity set,

2CEP67 and CEP95: Circular Error Probability for 67% and 95% of the
cases respectively.

3Source: Intel Corporation and IEEE 802.16m System Requirements Doc-
ument. Copyright Intel Corporation c©2008.

4The diversity set is a list of the active BSs to the MS.
5In this regard, we are not concerned about the complete message flow, but

the availability of this information.
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Fig. 2: The area under study is divided into equal squares
(Spots). The main BS positions are also illustrated. There is
also another main BS called as BS8, whose coordinates are
(2364m,2839m) and is not illustrated in the figure.

the distinction between the candidate points (for the location
of an MS) is much more than the classical case when only
the serving BS is considered. In the case of Cell-IDs, many
neighboring points will have the same diversity sets. Thus,
it is rather logical to consider areas instead of single points.
Therefore, the area under study has been divided into areas
such that the diversity set of an MS, in each area is distinctive
from the others as much as possible. The cells of the BSs can
be quite irregular and actually disconnected which is quite
difficult to handle in an automated localization algorithm like
ours. Hence, we, in this study, will use artificial rectangular
and equal areas that are distributed regularly over the area
under study. From now on, in order to avoid a confusion with
cells, each rectangular area will be called a “Spot”, and the
message that would flow to different applications might be
the coordinates of the center of the maximum probability Spot
obtained from the HMM filter. Figure 2 illustrates an example
about dividing the area under study to (200×200 m) Spots.

B. Spot size selection

The size of the Spots will be affected directly by the
structure of the studied network which determines the diversity
set of an MS. Selecting too small Spots will cause the diversity
sets in close Spots to be almost the same and will basically
cause a loss of computational load. In addition, the minimal
Spot size is also determined by the number of the off-line
measurements that are conducted in that Spot, and used to
compute the BSs detection probabilities as explained in sub-
section II-C. On the other hand, too large Spots will reduce the
performance by causing extreme inhomogeneity in the Spots,
and by reducing the effect of the motion model which is based
on the transition probability matrix as explained in sub-section
III-1.

C. Database construction

In order to obtain a reliable HMM model to be used in the
localization, a database of Cell-IDs in the area under study

is essential. The database can be constructed using different
ways. One way is to conduct real measurements using WiMAX
modems. Another way is to use radio planning tools to predict
the required Cell-IDs [1], or to use the principle of wardriving
[22], where the users with positioning capabilities (for instance
GPS) report their position and observations to a database
[23, 24]. In this study, the first method was used and mea-
surements were collected along the streets in the area under
study using a standard WiMAX modem. Each measurement
contains all the available Cell-IDs at that time instance and
location. During the measurement campaigns, the true position
of each measurement was also obtained using a GPS sensor.
We show these known positions and the corresponding Cell-ID
measurements in the database as p(i)

db and Y (i)
db respectively for

i = 1, . . . , Ndb where Ndb is the number of measurements in
the database. In the case of Spot size of (200×200 m), about
50 measurements were obtained in each of the Ns = 38 Spots
mentioned in Figure 2, and hence Ndb ≈ 38 × 50 = 1900.
The main Cell-IDs (BSs) are shown in Figure 2. There is
also another main BS called as BS8, whose coordinates are
(2364m,2839m) and is not illustrated in the figure. Those BSs
illustrated have the strongest transmission in the area under
study and can be received in the majority of the Spots. In order
to differentiate the Spots, i.e., to raise their diversity, weak
transmissions generated by far BSs (not shown on the figure)
are also used. Different weak transmissions can be received in
different Spots, which has a big impact on raising the diversity
of the Spots. The measurement campaigns showed that there
are NID = 14 different Cell-IDs that can be detected in the
area under study. Each position p(i)

db in the database is simply
composed of the x and y coordinates of the measurement
when the corresponding Cell-ID measurement vector Y (i)

db is
obtained. The corresponding Cell-ID measurement vector Y (i)

db

is a NID-vector. The elements of Y (i)
db can be either one or zero

depending on whether the corresponding Cell-ID was detected
or not at p(i)

db , i.e.,[
Y

(i)
db

]
j

=

{
1, if the jth Cell-ID is detected at p(i)

db

0, otherwise
(1)

where the notation [·]j denotes the jth element of a vector.
On average, each measurement Y (i)

db in the database (modem’s
diversity list) contains about 4 non-zero elements, i.e., Cell-
IDs (minimum 1 and maximum 7). Each measurement was
triggered by a correct GPS reading. The average time between
two consecutive measurements was about 2-3 seconds. This
time depends on the GPS fix availability, and the time needed
for the software to retrieve the information from the modem.

III. HMM MODELING AND FILTER

Hidden Markov models (HMMs) have become the
workhorse of discrete estimation since their introduction (see
the tutorial [25] and the references therein). In this section,
we are going to model the Cell-ID estimation problem as an
inference problem with an underlying HMM structure. For this
purpose, we use mostly the terminology that was presented in
[26]. We define the state vector X ∈ XNs , {e1, . . . , eNs}
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where ei are unit vectors in RNs which has all zero elements
except the ith element which is unity. The integer Ns repre-
sents the number of Spots present. Notice that, with this state
vector, the event Xk = ei represents the case where the target
is in the ith Spot at time k. We assume that the sequence {Xk}
is Markov and we have the equality

E[Xk+1|Xk] = ΠTXk (2)

where Π , [πij ] is the so-called probability transition matrix
of size Ns ×Ns with

πij , P (Xk+1 = ej |Xk = ei). (3)

We define the measurement vector Y ∈ RNID similarly to
database measurement vectors Y

(i)
db defined in the previous

section. Notice that the classical HMM framework allows only
one element of Y to be unity and the others should be all zero.
However, in our work, since we can collect multiple Cell-
IDs at the same time, we allow multiple nonzero elements.
We assume that the elements of the measurement Yk are
independent given the state Xk, where k represents the time
instant that the measurement Yk is collected and we have the
equality

E[Yk|Xk] = HXk (4)

where the matrix H , [hij ] of size NID × Ns has the
probabilities hij defined as

hij = P ([Yk]i = 1|Xk = ej). (5)

At this point, we have another distinction from the classical
HMM framework which is, the probabilities hij do not have
to satisfy

∑NID

i=1 hij = 1 (more on this in the modeling sub-
section III-2).

The Cell-ID estimation problem related to this framework
can be stated as finding the state estimate

X̂k|k = E[Xk|Y0:k] (6)

where Y0:k denotes all the measurement obtained between time
0 and k, i.e., Y0:k , {Y0, Y1, . . . , Yk}. Notice here that the
solution X̂k|k might not be in the original (discrete) state
space XNs but it satisfies

∑Ns

i=1 [X̂k|k]
i

= 1 and hence the
elements [X̂k|k]

i
of the estimate can be interpreted as the

posterior probabilities P (Xk = ei|Y0:k) i.e., the probability
that the target is in the ith Spot given all the measurements.

The recursive solution of the problem (6) is given by the
so called HMM-filter [25, 26]. This algorithm is summarized
below.

Algorithm 1 (HMM Filter):

1) Initialization: Select an initial estimate X̂0|0 = X̄ . Set
k = 1.

2) Prediction update: Predict the state estimate using the
model (2) as

X̂k|k−1 = ΠTX̂k−1|k−1 (7)

3) Measurement update: Calculate the measurement up-
dated estimate X̂k|k from the predicted estimate X̂k|k−1

using the model (4) and the measurement Yk as

X̂k|k =
LYk
� X̂k|k−1∑Ns

i=1

[
LYk
� X̂k|k−1

]
i

(8)

where the likelihood vector LYk
∈ RNs is defined with

the elements

[LYk
]i , P (Yk|Xk = ei) (9)

and the sign � denotes the Hadamard product (element-
wise multiplication) of the vectors.

4) If a location (Spot) estimate ĉk is to be found, one
selects the Spot corresponding to the maximum element
of X̂k|k, i.e.,

ĉk = arg max
i

[X̂k|k]
i
. (10)

5) If there is a measurement Yk+1, set k = k + 1 and go
to step 2. Otherwise, stop.

Having defined the HMM filtering, in the following parts of
this section, we are going to concentrate on the modeling part
and examine how the model parameter matrices Π, H and the
likelihood vector LYk

are to be formed.
1) Transition Probability Matrix Π: The transition proba-

bility matrix used in the prediction step of the HMM filter
is constructed using the road network properties. Once the
target is in a specific Spot, it is much more probable that it
is going to stay in the same Spot rather than moving into
another one. This property results in a diagonally dominant
transition probability matrix. The probabilities of Spot-to-Spot
transitions can be arranged using the road network information
or Spot proximities when one lacks the road information. It
is generally a reasonable idea to reduce the transition prob-
abilities when the corresponding Spots get farther. Very far
Spots could be assigned zero transition probabilities. However,
this would make the algorithm not be able to recover from
wrong estimates due to highly noisy measurements. Hence it
is reasonable that the lower bound of the probabilities can
be selected to be slightly larger than zero so that every Spot
transition is possible (although with a very low probability)
and the HMM filter can make quick corrections to its estimated
Spot via measurements. Overall we use the following simple
algorithm for this purpose.

Algorithm 2 (Transition Probability Selection): For each
Spot i,

1) Determine the set of neighbor Spots Λi =
{λ1, λ2, . . . , λ|Λi|} using the road network and/or
Spot proximity. Here the integer |Λi| denotes the
cardinality of the set Λi i.e., the number of neighbors
of Spot i.

2) Select two probabilities 0 < p1, p2 < 1 such that

p1 > |Λi|p2 and p1 + |Λi|p2 < 1. (11)
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3) Assign the probabilities {πij}Ns
j=1 as

πij =


p1 j = i

p2 j ∈ Λi
1−p1−|Λi|p2

Ns−|Λi|−1 otherwise
. (12)

Notice that in the above algorithm, the probabilities cor-
responding to the neighbor Spots were selected all equal
(as p2) for the sake of simplicity but each neighbor can
actually have a different probability based on the road network
information if available6. In such a case the terms |Λi|p2 in
(11) and (12), which stand for the total probability mass of
the neighbor Spots should be replaced with the summation∑

j∈Λi
pj2 where pj2 denotes the specific probability assigned

to the jth neighbor Spot. Figure 3 depicts graphically the
transition matrix which serves as a discrete motion model. In
the figure, the probabilities with the arrows show the selected
Spot transition probabilities for the corresponding transitions
from the center Spot. Note that the highest probability (0.9)
at the central Spot stands for the probability of staying at the
central Spot (i.e., self transition). The very small lower bound
mentioned above is not illustrated in the figure for the sake of
simplicity.

Fig. 3: The motion model presented by the transition proba-
bility matrix. The sum of all probabilities has to be equal to
one.

2) Measurement Matrix H: The measurement matrix H
which contains the probabilities defined in equation (5) is
obtained from the database {p(i)

db , Y
(i)
db }

Ndb
i=1 described in Sec-

tion II. Denoting the areas of the Spots by {Si}Ns
i=1, the

columns of the matrix H , shown as [H]:,j , are calculated as

[H]:,j =
1

|{i|p(i)
db ∈ Sj}|

∑
{i|p(i)

db ∈Sj}

Y
(i)
db . (13)

Notice that this calculation is the result of a frequentist
interpretation for the probabilities hij . It also requires the
implicit assumption that the behavior of the Cell-IDs are

6For example, the road directions can be used to assign higher probabilities
to some Spots and lower probabilities to others.

Fig. 4: The sensor model presented by the measurement
matrix. Each arrow indicates the probability of detecting a
certain CELL-ID (BS) in the studied (dark) Spot. The arrow
starts from the site where the BS is located and ends in the
studied Spot. Note that the sum of all probabilities doesn’t
necessarily equal to one.

homogeneous inside the Spots. For the ith Cell-ID, we simply
set hij as the ratio of the number of times it has been detected
at the positions p(·)

db inside the jth Spot to the total number of
positions p(·)

db (measurements) inside the jth Spot. It is also
important to emphasize that, since more than one Cell-IDs
can be collected at a single position p(·)

db , it is not necessarily
correct that the elements of [H]:,j sum up to unity. Figure 4
depicts graphically the elements of the H matrix which serves
as the sensor model. The probabilities with the arrows in the
figure represent [H]i,j , i.e., the probability of measuring the ith
Cell-ID at the jth Spot shown as the central Spot. A probability
1 means that in the central Spot, the corresponding BSs Cell-
ID is expected to be measured all the time.

3) Likelihood Vector LYk
: The likelihood vector is defined

as in (9). Assuming independence over the detections from
different BSs given the current Spot, we can write

[LYk
]j =

NID∏
i=1

P ([Yk]i|Xk = ej)︸ ︷︷ ︸
,h̃ij(Yk)

(14)

By the definition of hij given by (5) we can calculate h̃ij(Yk)
as

h̃ij(Yk) =

{
hij [Yk]i = 1

1− hij [Yk]i = 0
= |1− hij − [Yk]i| . (15)

Hence, the standard way to calculate the likelihood vector
LYk
∈ RNs is given by

[LYk
]j =

NID∏
i=1

h̃ij(Yk). (16)

However, what has been observed in preliminary experiments,
is that this likelihood calculation mechanism is very sensitive
to the non-homogeneous behavior of the probabilities hij
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Fig. 5: The measurement vector as a function of time. Each
black dot at a time value represents the existence of a measured
ID from the corresponding BS at that time.

inside the Spots. Hence another likelihood calculation mech-
anism, which has been seen to be more robust, is suggested
here as

[LYk
]j = ‖Yk − [H]:,j‖

−1

2
=

1√∑NID

i=1 ([Yk]i − hij)2

. (17)

This likelihood function has been observed to behave better
than (16) in the vicinity of noisy measurements and erroneous
database information. The center of the Spot with the highest
posterior probability is assumed to be the estimated position.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed HMM based Cell-ID localization method was
run on a test scenario whose trajectory covers almost all the
roads in the area under study. The measured Cell-IDs on
the test trajectory have been plotted as a function of time in
Figure 5 to provide an overview of the data (Cell-IDs). For
each time instant in Figure 5, the existence of a black dot at the
ID number represents the measured ID of the corresponding
BS. The time instance itself is not important, but the important
is the simultaneous CELL-IDs. i.e., the CELL-IDs that can be
detected simultaneously. Figure 6 depicts the relation between
the obtained positioning accuracy and the number of available
BSs (the length of the measurement vector). On average, the
trajectory points (locations) with low positioning error have
relatively long measurement vectors (length≥4) as shown in
Figure 6. Therefore, the positioning accuracy is expected to
be high in dense networks where the measurement vectors are
long because long vectors can differentiate the Spots better
than short vectors.
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Fig. 6: The relation between the length of the measurement
vector (the number of the detected BSs) and the positioning
accuracy.

The estimated Spots of the HMM filter with respect to the
true target Spots are illustrated in Figure 7, and the average
HMM Cell-ID estimation performance is below compared with

1) A recent fingerprinting based particle filtering approach
that uses the received signal strength indices (RSSI)
[17].

2) The same method as above that uses SCORE values
instead of RSSI values. SCORE values are related di-
rectly to RSSI values and used by WiMAX modems
to evaluate the connection quality to the available BSs.
From positioning point of view, SCORE values are less
accurate than RSSI values, because of the effect of the
Viterbi decoder, which plays an opposing role in this
case, on them.

3) The mentioned classical Cell-ID positioning method
(yellow pages).
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Fig. 7: The estimated Spots of the HMM filter with respect to
the true target Spot.

The used fingerprinting based particle filtering approach in
the comparisons is a recent approach that was proposed in
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Fig. 8: Positioning accuracy assessment. A comparison be-
tween the proposed approach, Fingerprinting (using RSSI and
SCORE) and the classical Cell-ID approach.

[17]. The classical fingerprinting, which involves comparing
the online measurement vectors with a previously obtained
database to make localization, is known for a long time
[16]. The method derived in [17] gives an integration of the
fingerprinting, which is well-known to be able to model the
multi-path effects and fast fading sufficiently, with the particle
filters (PFs) [27, 28] yielding much better results than the
PFs equipped only with classical log-power model (called as
Okumura-Hata model in the literature [29, 30]).

The cumulative distribution functions (cdfs) of the position
estimation errors for all algorithms are depicted in Figure 8.
The cdf which is obtained using the novel HMM approach
(see Figure 8) shows an error of about 300 m for 67% of the
cases and an error of about 480 m for 95% of the cases7.
The fingerprinting approach, as a result of the fact that it uses
much more information (RSSI or SCORE values) in addition
to the Cell-IDs, provided the highest accuracy. Although hav-
ing lower performance than fingerprinting approaches, HMM
based approach is significantly better than the classical Cell-
ID positioning. The accuracy improvement gained by using
the HMM based approach is a factor of two compared to the
classical one.

Considering the computational power, this approach is more
efficient than fingerprinting as it requires much less storage
space. It keeps one measurement vector for each Spot which
acts as a sufficient statistics for the collected data in the Spot.
But in fingerprinting a measurement vector has to be kept
(saved in a database) for a fairly large number of points in each
Spot. Hence in terms of storage, this algorithm requires much
less space. Compared to the classical approach, this approach
requires more computational power as the classical approach
uses the information of only one Cell-ID (the serving BS).

Although the performance of our method has been shown
above to be significantly better than the classical approach,
our selection of the specific parameters, namely, Spot size,
motion model (Spot transition probabilities) and the initial

7The error here is calculated from the center of the estimated Spot.
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Fig. 9: The Spot size effect on positioning accuracy.
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Fig. 10: The effect of the motion model (Spot transition
probabilities) selection on the positioning accuracy.

estimate in the algorithm can raise robustness issues. Hence,
for investigating the effect of these parameter selections on
the position estimation performance, we present the results of
the further experiments we have conducted below.

For illustrating the effect of the Spot size, the HMM
filter was run using three different Spot sizes (100×100 m),
(200×200 m) and (400×400 m). The cdfs of the correspond-
ing position estimation errors are illustrated in Figure 9 which
shows that the size of (200×200 m) provides the best accuracy.
The existence of some kind of approximate local optimality at
this Spot size is clearly illustrated in the figure. Although the
illustrated Spot size changes caused only about 50m increase
in the average positioning error, one must, in general, take into
account that the increases might be overwhelming in the case
of extremely small or large Spot sizes. The consideration of
the trade-offs mentioned in Section II-B is hence essential in
the Spot size selection.

The positioning error depends, to some extent, also on
the motion model, i.e., Spot transition probabilities. In the
above results we considered that the target can move to all
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Fig. 11: The effect of the initial estimate on the positioning
accuracy for different initial errors.

the neighboring Spots with equal probabilities. But one can
give different probabilities to different Spots depending on
geographical, demographical or road information if the target
is known to be on road. In this case, some neighbor Spots can
be assigned higher probabilities than the rest of the Spots and
the accuracy can be improved, but this technique requires using
extra information especially in the form of a road network
database. Figure 10 shows the accuracy improvement achieved
by assigning higher probabilities to the Spots that are more
likely to be picked up by the target which were decided
manually based on the road network. The results in the figure
show that a manual tuning of the transition probabilities can
bring on average up to 50m more accuracy into the estimation
although for large databases an automatic transition probability
setting still seems more feasible.

The initial estimates in the above simulations were selected
by using the classical Cell-ID approach. The dependency of
the results on these initial estimates has been examined in
Figure 11 for different initial errors which shows that the
proposed approach is quite robust against the initial estimate
error. This is a manifestation of the fact that the Spot transition
probabilities in our algorithm were selected to be above zero
for all transitions which makes the algorithm able to forget
about and in fact correct the initial errors.

Finally, we here would like to emphasize that, in the cases
where the accuracy requirements are satisfied by both HMM
approach and the fingerprinting approaches, HMM approach
has advantages over the latter in the following ways:

• The Cell-ID off-line database can be constructed using
radio planning programs with almost the same accuracy
as using direct measurements but the RSSI (or SCORE)
off-line database obtained by radio planning programs
(which is required by the corresponding particle filtering
algorithms) is much less accurate than the one obtained
by direct measurements.

• Obtaining Cell-IDs is simple and fast. No modifications
on the handset or BS are required.

• Using Cell-IDs requires less computational power and
data storage. This fact is also evident from a simple com-
parison between the computational and storage require-
ments of HMMs in this work and those of complicated
PFs with RSSI or SCORE data as in [17].

Therefore, if the accuracy provided by the novel approach
satisfies the application requirements, this approach can be
considered as a simple and efficient alternative even over
the fingerprinting approach. The location estimates depending
only on Cell-IDs derived in this work can be used in all
location-dependent applications whose accuracy requirements
are satisfied by our method. If not, our methodology can serve
for initiating more accurate localization algorithms. In fact,
all location-based services that depend on Cell-ID positioning
can be enhanced and extended by using the novel approach,
such as: Friend Finder, finding the closest place, “where am
I?” application etc.. In addition to serving as a robust and low
complexity application that supplies initial conditions for more
complicated and computation costly trackers such as the one
mentioned in [17]. For example, the current coarse tracker can
be used as a proposal density for the particle filter explained
in [17].

V. CONCLUSIONS

This paper discussed HMM-based coarse localization de-
pending on Cell-IDs with specific emphasis on WiMAX
networks. The proposed HMM is obtained from measurement
campaigns easily and is different from conventional HMMs in
several aspects. An assessment of the achieved accuracy has
been provided with a comparison to a high accuracy approach
(fingerprinting) and to the classical Cell-ID approach. The
obtained results suggest the preference of the HMM based
Cell-ID positioning over the classical approach. It is argued
that when the accuracy requirements are satisfied with the
HMM based approach, it can be preferred even over the high
performance fingerprinting approaches, thanks to its simplicity
and low cost.

In this study, the Spot size and model were static. The Spot
size of (200×200 m) gave the best accuracy comparing to
(400×400 m and 100×100 m) because it is indeed, a fair
trade-off between having a sufficient number of measurements
in each Spot and creating too inhomogeneous Spots. Interest-
ing subjects for further research is to use clustering algorithms
applied to the measurements to design irregular Spot sizes
with similar (homogeneous) measurement vectors. Another
aspect is to make the model adaptive using the principle of
wardriving, where the users equipped with accurate localiza-
tion capabilities (GPS) contribute to the database model. First,
the Cell-ID measurements can be used to update the map hij .
Second, the shape of the Spots can be adaptively refined when
the map information is improved. Finally, the observed user
mobility can be used to adapt the transition probabilities πij .
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