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We establish a correspondence between a class of Kummer extensions of the
rational function "eld and con"gurations of hyperplanes in an a$ne space. Using this
correspondence, we obtain explicit curves over "nite "elds with many rational points.
Some of our examples almost attain the OesterleH bound. ( 1999 Academic Press
0. INTRODUCTION

Let K be a "nite "eld and let C be an absolutely irreducible nonsingular
projective curve de"ned over K. By the Hasse}Weil theorem, the number
N of K-rational points of C is bounded by

N4dK#1#2g(C) )JdK, (0.1)
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CURVES WITH MANY POINTS 437
where g(C) denotes the genus of C. If g (C) is large with respect to the
cardinality of K, this upper bound can be improved substantially by using
explicit formulas (Serre [Se 1], OesterleH [Se 2] ). In this paper our goal is to
construct curves over K with &&many'' points , i.e., their number of rational
points should be close to the OesterleH bound.

Curves with many rational points have been studied, among others, by
Serre [Se 1, Se 2], van der Geer and van der Vlugt [G}V 2, G}V 3],
Niederreiter and Xing [N}X 1, N}X 2, N}X 3, N}X 4], and Auer [A]. Many
applications to coding theory, cryptology, and quasi-random points have
been established.

Stepanov [Ste 1, Ste 2] considered curves over the "eld F
qÈ

(in odd
characteristic) of the form

y2
i
"xq#x#b

i
for i"1, 2, s (0.2)

with pairwise distinct elements b
i
3F

q
. These curves are "bre products of

s cyclic coverings of degree 2 over the rational curve. On the other hand, "bre
products of Artin}Schreier coverings of the rational curve were extensively
studied by van der Geer and van der Vlugt [G}V 1] who found by this
method many examples of curves with many points. Our approach is a gener-
alization and re"nement of Stepanov's method. We obtain several curves
whose number of rational points is fairly close to the OesterleH bound.

We "x some notations. K"F
qr

is the "nite "eld of cardinality qr, with
r'1, and KM .K is an algebraic closure of K. The trace mapping Tr: KPF

q
is de"ned by Tr(a)"a#aq#2#aqr~1, for a3K. We extend it to a map
Tr: K[x]PK[x] by setting Tr( f (x))"f (x)#f (x)q#2#f (x)qr~1.

Our curves are the non-singular projective models of a$ne curves de"ned
by s equations

ym
i
"f

i
(x)3K[x], with (m, q)"1. (0.3)

We will show that these curves are*under appropriate conditions on the
polynomials f

i
(x)*absolutely irreducible, and we will determine their genus

and number of K-rational points.

1. THE GENUS

Instead of curves, we study the corresponding function "elds. So we
consider an algebraic function "eld E"K (x, y

1
,2, y

s
), where

ym
i
"f

i
(x)3K[x] for i"1,2, s (1.1)
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and (m, q)"(m, deg f
i
(x))"1 for all i. We assume that the polynomials f

i
(x)

have only simple roots in KM and set

S
i
:"Ma3KM D f

i
(a)"0N, S :"

s
Z
i/1

S
i
. (1.2)

EM :"E )KM "KM (x, y
1
,2, y

s
) denotes the constant "eld extension of E/K with

KM . For a3K (resp. a3KM ), Pa is the zero of x!a in K (x) (resp. in KM (x)), and
P
=

is the pole of x in K (x) (resp. in KM (x)). The genus of a function "eld F/K is
denoted by g (F/K).

THEOREM 1.1. Notations as above. Assume moreover that

[EM :KM (x)]"ms. (*)

¹hen K is algebraically closed in E, and the genus of E/K is

g(E/K)"1#
ms~1

2
(!m!1#(m!1) )dS).

Proof. For a3S
i
XMRN the place Pa is totally rami"ed in the extension

KM (x, y
i
)/KM (x), all other places are unrami"ed. By Abhyankar's lemma [Sti,

p. 125] the rami"cation index e(Pa) in the compositum EM /KM (x) is then
e(Pa)"m, since rami"cation is tame. All places Pa with a3KM CS are unrami-
"ed in EM /KM (x). The Hurwitz genus formula for EM /KM (x) yields

2g(EM /KM )!2"!2ms#(dS#1) )ms~1(m!1).

Since g (E/K)"g (EM /KM ), the result follows. j

2. THE RATIONAL PLACES

We specialize the situation considered in Section 1 as follows:

m52 is adivisor of (qr!1)/(q!1), and
(2.1)

ym
i
"Tr(a

i
x)#b

i
with a

i
3KCM0N, b

i
3F

q

for i"1,2, s. Observe that the sets

S
i
"Ma3KM D Tr(a

i
a)#b

i
"0N and S"

s
Z
i/1

S
i

are contained in K.
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THEOREM 2.1. Situation as above.=e assume that

[EM :KM (x)]"ms. (*)

¹hen the number of K-rational places of E is

N(E/K)"ms(qr!dS)#ms~1 ) t,

where t is the number of elements a3SXMRN such that Pa has a K-rational
extension in E.

Proof. Let a3KCS; then Tr(a
i
a)#b

i
3F

q
CM0N for i"1,2, s. Since m is

a divisor of (qr!1)/(q!1) we conclude that the equation bm"Tr(a
i
a)#b

i
has m distinct roots b3K, and therefore the place Pa splits completely in the
extensions K (x, y

i
)/K(x), for i"1,2, s. As E is the compositum of these

extensions, Pa splits completely in E/K (x). Thus we have found ms(qr!dS)
K-rational places in E. Now let a3SXMRN. If Pa has a K-rational extension
in E then all places of E above Pa are rational because E/K(x) is galois. The
rami"cation index being e(Pa)"m (see proof of Theorem 1.1) there are
exactly ms~1 K-rational places of E above Pa . j

3. CORRESPONDENCE TO AFFINE HYPERPLANES

We maintain all previous notations. In particular we have that K"F
qr

and
E"K(x, y

1
, 2 , y

s
) with

ym
i
"Tr(a

i
x)#b

i
, a

i
3KCM0N, b

i
3F

q

for i"1,2, s. In order to describe the places of K (x) that are rami"ed in
E/K(x), we must study the sets

S
a,b

:"Ma3K DTr(aa)#b"0N (3.1)

for a3KCM0N, b3F
q
. We "x a basis (w

1
,2, w

r
) of the extension K/F

q
; then

every element a3K has a unique representation

a"
r
+
j/1

a
j
w
j

with a
j
3F

q
,

and the mapping

t : G
KPF r

q
a> (a

1
,2, a

r
)

(3.2)
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is an isomorphism of F
q
-vector spaces. Let

& :"MS
a,b

Da3KCM0N and b3F
q
N,

" :"MH-Fr
q
DH is a hyperplaneN.

THEOREM 3.1. ¹he mapping t in (3.2) induces a bijection from & onto ", and
for a, c3KCM0N and b, d3F

q
the following conditions are equivalent:

(1) ¹he hyperplanes t (S
a,b

) and t (S
c,d

) are parallel (or equal).
(2) a/c3F

q
CM0N.

Proof. First we show that t maps & into ". So we consider a set S
a,b

3&
as de"ned in (3.1). Let a"+r

j/1
a
j
w

j
3K; then

a3S
a,b

8 Tr(aa)#b"0

8

r
+
j/1

a
j
)Tr(a )w

j
)#b"0

8 t (a)"(a
1
,2, a

r
)3H

a,b
,

where H
a,b

-F r
q

is the hyperplane de"ned by the linear condition

H
a,b

"M(m
1
,2, m

r
)3Fr

q K
r
+
j/1

m
j
)Tr(a )w

j
)#b"0N.

Observe that H
a,b

is a hyperplane because

(Tr(a )w
1
),2, Tr(a )w

r
))O(0,2, 0).

Next we have to show that for any hyperplane H-F r
q

there are elements
a3KCM0N and b3F

q
such that H"t (S

a,b
). We can describe H by a linear

equation

H"M(m
1
,2, m

r
)3Fr

q K
r
+
j/1

m
j
) e

j
#b"0N

with (e
1
,2, e

r
)3F r

q
CM(0,2, 0)N and b3F

q
. The mapping

G
KPFr

q
c> (Tr(cw

1
),2, Tr(cw

r
))

is F
q
-linear and injective (since Tr: KPF

q
is not identically 0), hence surjec-

tive. So there is some a3KCM0N such that e
j
"Tr(a )w

j
) for j"1,2, r. It is
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now obvious that H"t (S
a,b

). The equivalence of conditions (1) and (2) is
clear. j

DEFINITION 3.2. A con,guration of hyperplanes is an s-tuple (H
1
,2, H

s
) of

hyperplanes H
i
-F r

q
. We call it an admissible con"guration if

H
j`1
JZ

i4j

H
i

for j41,2, s!1.

Note that this condition may depend on the ordering of the hyper-
planes H

j
.

THEOREM 3.3. Suppose that (H
1
,2, H

s
) is an admissible con,guration of

hyperplanes. For j"1,2, s let a
j
3KCM0N and b

j
3F

q
such that H

j
"t (S

a
j
,b
j

).
Consider a function ,eld E"K (x, y

1
,2, y

s
) with ym

j
"Tr(a

j
x)#b

j
for

j"1,2, s. ¹hen we have

[E :K(x)]"[EM : KM (x)]"ms,

i.e., condition (*) from ¹heorems 1.1 and 2.1 holds.

Proof. By induction. The case s"1 is trivial, so we assume now that
s52. For j"1,2, s let

S
j
"S

a
j
,b
j

"Ma3K DTr(a
j
a)#b

j
"0N.

Since (H
1
,2, H

s
) is admissible there is an element

c3S
sC Z

j4s~1

S
j
.

The place Pc of KM (x) is then unrami"ed in the extension KM (x, y
1
,2, y

s~1
)/

KM (x), and it is totally rami"ed in KM (x, y
s
)/KM (x). Hence

[KM (x, y
1
,2, y

s
) :KM (x, y

1
,2, y

s~1
)]"m.

j

Finally we give a criterion for whether a place Pa of K(x) which rami"es in
E/K(x) has K-rational extensions in E.

THEOREM 3.4. ¸et E"K (x, y
1
,2, y

s
) with

ym
i
"Tr(a

i
x)#b

i
, 0Oa

i
3K, b

i
3F

q
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and m a divisor of (qr!1)/(q!1). Assume that condition (*) holds, i.e.,
[E : K (x)]"ms. ¸et

S
i
"Ma3K DTr(a

i
a)#b

i
"0N and S"

s
Z
i/1

S
i
.

¹hen we have:
(i) For a3S the following conditions are equivalent:

(1) ¹he place Pa of K(x) has K-rational extensions in E.
(2) For all i, j3M1,2, sN with a3S

i
WS

j
, the element a

i
/a

j
is an mth

power of some element of K.
(ii) ¹he place P

=
has K-rational extensions in E if and only if a

i
/a

j
is an

mth power of some element of K, for all i, j3M1,2, sN.

Proof. We prove only (i); the proof of (ii) is similar. First we assume that
condition (2) holds. We can assume that

a3S
i

for i"1,2, k and a NS
i

for i'k.

For iO2,2, k we de"ne z
i
:"y

i
/y

1
; thus

E"K(x, y
1
, z

2
,2, z

k
, y

k`1
,2, y

s
).

The place Pa splits completely in the extensions K (x, y
i
) for i"k#1,2, s

(see proof of Theorem 2.1). For i"2,2, k one has

zm
i
"

Tr(a
i
x)#b

i
Tr(a

1
x)#b

1

"

Tr(a
i
x)#b

i
!(Tr(a

i
a)#b

i
)

Tr(a
1
x)#b

1
!(Tr(a

1
a)#b

1
)

(3.3)

"

Tr(a
i
(x!a))

Tr(a
1
(x!a))

"

a
i

a
1

)
1#(x!a) ) h

i
(x)

1#(x!a) ) h
1
(x)

with polynomials h
i
(x), h

1
(x)3K[x]. Since a

i
/a

1
is an mth power in K

we see from (3.3) that Pa splits also in K (x, z
i
)/K(x) for i"2,2, k. So

Pa splits completely in K(x, z
2
,2, z

k
, y

k`1
,2, y

s
)/K(x), and Pa rami"es

in K (x, y
1
)/K(x). We conclude that Pa has only K-rational extensions

in E.
Now we assume that condition (2) does not hold; say

a3S
1
WS

i
and a

i
/a

1
is not an mth power in K.
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Since z
i
"y

i
/y

1
satis"es an equation

zm
i
"

a
i

a
1

)
1#(x!a) ) h

i
(x)

1#(x!a) ) h
1
(x)

,

the place Pa is inert in K (x, z
i
)/K(x) in this case. j

COROLLARY 3.5. ¸et E"K (x, y
1
,2, y

s
) and E@"K(x, y@

1
,2, y@

s
) be de-

,ned by the equations

ym
i
"Tr(a

i
x)#b

i
, resp. y@m

i
"Tr(a@

i
x)#b@

i

with a
i
, a@

i
3KCM0N and b

i
, b@

i
3F

q
, for i"1,2, s. Suppose that the correspond-

ing con,gurations of hyperplanes (H
1
,2, H

s
) resp. (H@

1
,2, H@

s
) are admissible

and that all ratios a
i
/a

j
resp. a@

i
/a@

j
are mth powers in K. If

dA
s

Z
i/1

H
iB(dA

s
Z
i/1

H@
iB,

then

g (E/K)(g (E@/K) and N(E)'N(E@).

Proof. Clear from Theorems 1.1, 2.1, and 3.4. j

Corollary 3.5 converts the problem of "nding curves (of the type con-
sidered in this paper) with many points and small genus into "nding &&dense''
con"gurations of hyperplanes.

4. EXAMPLES

In this section we give several examples of curves with many rational
points. The corresponding con"gurations are found in Figs. 1}4.
FIGURE 1



FIGURE 2

444 OG ZBUDAK AND STICHTENOTH
EXAMPLE 4.1 (Parallel Hyperplanes; see Fig. 1). Let a3F
qr
CM0N and let

b
1
,2, b

s
3F

q
, with b

i
Ob

j
for iOj. Consider the con"guration of hyper-

planes (H
1
,2, H

s
) with

H
i
:"t (S

a,b
i

), i"1,2, s.

Since H
i
WH

j
"0 for iOj, this con"guration is admissible, and (with nota-

tions as in Sections 2 and 3) we have

dS"s ) qr~1 and t"1#s ) qr~1.

The corresponding function "eld E/F
qr

has genus

g"1#
ms~1

2
(!m!1#sqr~1(m!1)),
FIGURE 3



FIGURE 4
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and its number of F
qr
-rational places is

N"ms(qr!sqr~1)#ms~1(1#sqr~1).

Note that the case r"2 (and m"2) is the con"guration that was used by
Stepanov [Ste 1, Ste 2].

From here on we will restrict ourselves to the case r"2, for simplicity.
Hyperplanes are then just lines in the a$ne plane over F

q
.
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EXAMPLE 4.2 (Lines Intersecting in One Point; see Fig. 2). Let r"2 and
s4(q#1)/m. Choose a

1
,2 a

s
3F]

qr
such that all a

i
are mth powers and

a
i
/a

j
3/F

q
for iOj. Let

H
j
:"t (S

a
j
,0

) for j"1,2, s.

Then H
i
WH

j
"M(0, 0)N for iOj, and the con"guration (H

1
,2, H

s
) is admiss-

ible with

dS"1#s(q!1) and t"2#s (q!1).

So we have

g"1#
ms~1

2
(!m!1#(m!1) (1#s (q!1)))

and

N"ms(q2!(1#s(q!1)))#ms~1(2#s (q!1)).

EXAMPLE 4.3 (See Fig. 3). Let r"2 and let m be a proper divisor of q#1.
Choose a

1
, a

2
3F

qÈ
CM0N such that a

1
, a

2
are mth powers and a

1
/a

2
3/F

q
. Let

b
1
,2, b

u
3F

q
be pairwise distinct and consider the con"guration

(H
1
,2 , H

s
), where s"2u and

H
1
"t (S

aÇ,bÇ
), H

2
"t (S

aÈ,bÇ
), H

3
"t(S

aÇ,bÈ
),2,

H
2u~1

"t(S
aÇ,bu

), H
2u
"t(S

aÈ,bu
).

We obtain now

dS"2qu!u2,

t"1#dS"2qu!u2#1.

Therefore

g"1#
m2u~1

2
(!m!1!(m!1)(2qu!u2))

and

N"m2u(q2!2qu#u2)#m2u~1(2qu!u2#1).
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EXAMPLE 4.4. (1) (See Fig. 4a) q"2, qr"4, m"3, s"2 and H
1
, H

2
intersect in one point. We have

g"4 and N"15.

(2) (See Fig. 4a) q"4, qr"16, m"5, s"2, dS"7, and t"6. We
have

g"56 and N"255.

(3) (See Fig. 4a) q"8, qr"64, m"3, s"2, dS"15, and t"16. We
have

g"40 and N"489.

(4) (See Fig. 4a) q"3, qr"9, m"2, s"2, dS"5, and t"6. We have

g"3 and N"28.

In the cases which correspond to Fig. 4e and 4f, the notion &&splitting
intersection''means that the corresponding place of K (x) has rational exten-
sions in E/K (x).

(5) (See Fig. 4e) q"3, qr"9, m"2, s"3, dS"6, and t"4. We have

g"7 and N"40.

(6) (See Fig. 4c) q"3, qr"9, m"2, s"3, dS"7, and t"8. We have

g"9 and N"48.

(7) (See Fig. 4f) q"3, qr"9, m"2, s"4, dS"7, and t"4. We have

g"17 and N"64.

(8) (See Fig. 4d) q"3, qr"9, m"2, s"4, dS"8, and t"9. We have

g"21 and N"88.

(9) (See Fig. 4a) q"9, qr"81, m"2, s"2, dS"17, and t"18. We
have

g"15 and N"292.
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(10) (See Fig. 4b) q"9, qr"81, m"2, s"3, dS"24, and t"25. We
have

g"43 and N"556.

(11) (See Fig. 4a) q"5, qr"25, m"2, s"2, dS"9, and t"10. We
have

g"7 and N"84.

One can easily generalize our method by considering distinct exponents
m

1
,2, m

s
; i.e.,

ymii
"Tr(a

i
x)#b

i
for i"1,2, s.

Choosing the m
i
properly, one "nds other examples of curves with many

points. As an example, we consider
(12) (See Fig. 4a) q"7, qr"49,

y2
1
"xq#x, y4

2
"aqxq#ax,

with a being a 4th power in F
49

CF
7
. We have

g"29 and N"328.

Remark 4.5. The following notion is common: for q being a power of
some prime number and an integer g50, let

N
q
(g)"maxMND N is the number of F

q
!rational points

on some curve of genus g de"ned over F
q
N.

(Curve means here a non-singular, absolutely irreducible projective curve.)
By the Hasse}Weil theorem,

N
q
(g)4q#1#2g )Jq.

OesterleH gave an essential improvement of this upper bound, based on Serre's
explicit formulas [Se 2]. Lower bounds for N

q
(g) are usually obtained by

constructing speci"c curves of genus g over F
q
. The tables in [G}V 2, A] give

the at present best known lower bounds for N
q
(g). All our examples in

Example 4.4 (2), (3), (5), (6), (7), (8), (9), (10), (11), (12) provide improvements of
the tables. Some of our curves are very close to the OesterleH bound, for
instance in the case qr"9 and g"7 resp. 9 where the OesterleH bound is 43
resp. 51. Examples 4.4. (1) and (4) reach the OesterleH bound.
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