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KOMLÓS PROPERTIES IN BANACH LATTICES

E. Y. EMELYANOV1, N. ERKURŞUN-ÖZCAN2, S. G. GOROKHOVA3

Abstract. Several Komlós like properties in Banach lattices are inves-

tigated. We prove that C(K) fails the oo-pre-Komlós property, assum-

ing that the compact Hausdorff space K has a nonempty separable open

subset U without isolated points such that every u ∈ U has countable

neighborhood base. We prove also that for any infinite dimensional Ba-

nach lattice E there is an unbounded convex uo-pre-Komlós set C ⊆ E+

which is not uo-Komlós.

1. Introduction

In recent paper [5], the unbounded order convergence in Banach lattices

was deeply studied. Among other things, this development has lead to

study of generalizations of the Komlós celebrated theorem [7] to the Banach

lattice setting. The authors of [5] did their generalization through AL-

representations of a Banach lattice with a strictly positive order continuous

functional, replacing almost everywhere convergence by unbounded order

convergence. Beside such a natural extension, many questions on generalized

Komlós properties are still requiring an investigation.

In the present paper, we study Komlós properties in more breadth set-

tings, than for the uo-convergence. In Section 2, we define and investigate

several Komlós properties for different modes of boundedness and conver-

gence in a Banach lattice. Section 3 is completely devoted to Komlós prop-

erties in Banach lattices of continuous functions. Section 4 is dealing with

so-called Komlós sets.

As the nature of the Komlós theorem is sequential, we restrict ourselves

to sequential convergences in Banach lattices. For unexplained terminology

and notations we refer the reader to [1, 2, 3, 4, 5, 6]. In the present paper,

E stands for a real Banach lattice.
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2. Komlós like properties in Banach lattices

Let xn be a sequence in E and x ∈ E. Recall that:

(1) xn converges in order to x (we write xn
o
−→x), if there is a sequence

yn decreasing to 0 (we write yn ↓ 0) with |xn − x| ≤ yn for all n;

(2) if xn converges in norm to x, we write xn
n
−→x;

(3) xn is unbounded order convergent to x (we write xn
uo
−→x) if |xn −

x| ∧ u
o
−→ 0 for every u ∈ E+;

(4) if |xn − x| ∧ u
n
−→ 0 for every u ∈ E+, we write xn

un
−→x and say that

xn is unbounded norm convergent to x.

The main motivation for the present paper is the following classical result

[7].

Theorem 1 (Komlós). Let E = L1(µ), where µ is a probability measure.

Then, for every norm bounded sequence xn, there is a subsequence xnk
such

that the Cesáro means 1
m

m∑
j=1

xnkj
of any further subsequence xnkj

converge

almost everywhere to some x ∈ X.

The Komlós theorem has initiated many investigations and was extended

recently for Banach lattices [5] by replacing a.e.-convergence with uo-conver-

gence. This development has inspired the following definition.

Definition 1. A Banach lattices E is said to have ab-Komlós property

(respectively, ab-pre-Komlós property) if, for every a-bounded sequence xn

in E, there exist a subsequence xnk
and an element x ∈ E such that

x = b− lim
m→∞

1

m

m∑

j=1

xnkj

for any subsequence xnkj
of xnk

(respectively, the sequence 1
m

m∑
j=1

xnkj
is b-

Cauchy for any subsequence xnkj
of xnk

).

Here, a-boundedness stands for o- or n-boundedness; and b-convergence

stands for o-, uo-, n-, or un-convergence.

Clearly, it suffices to check ab-Komlós and ab-pre-Komlós properties only

for sequences in E+. Furthermore, no-Komlós implies oo-Komlós and, if E is

σ-Dedekind complete, they coincide with no-pre-Komlós and oo-pre-Komlós

properties respectively.

nuo-Komlós and nuo-pre-Komlós properties were introduced in [5, Def.5.1]

under the names of Komlós and pre-Komlós properties respectively. The

Komlós Theorem 1 has been extended further in [5, Prop.5.13] as follows.
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Proposition 1 (Gao–Troitsky–Xanthos). Let E be a regular sublattice of

an order continuous Banach lattice F . Then E has the nuo-pre-Komlós

property. Moreover, E has the nuo-Komlós property iff it is sequentially

boundedly uo-complete.

Let us mention also the next corollary (see [5, Cor.5.14]) of [5, Prop.5.13].

Corollary 1 (Gao–Troitsky–Xanthos). Every order continuous Banach lat-

tice E has the nuo-pre-Komlós property. Moreover, E has the nuo-Komlós

property iff it is a KB-space.

Proposition 2. Every o-continuous Banach lattice E has the nun-pre-

Komlós property. Moreover, if E is a KB-space then E has the nun-Komlós

property.

Proof. It follows from Corollary 1 since uo-convergence implies un-conver-

gence (see [4, Prop.2.5]). �

Example 1. The Banach lattice c of real convergent sequences fails the

oo-Komlós (and hence no-Komlós) property. To see this, take the sequence

xn =
n∑

j=1

e2j in [0,1] ⊂ c. Clearly, for any subsequence xnkj
, the sequence

1
m

m∑
j=1

xnkj
is uo-divergent, and also o-divergent, since it is order bounded.

It shows also that c fails the nuo-Komlós property. Since the sequence

1
m

m∑
j=1

xnkj
is not n-Cauchy, c fails the nn-pre-Komlós property as well.

It can be easily seen that c has oo-, ouo-, and nuo-pre-Komlós property

(cf. also [5, Cor.5.10]).

Proposition 3. Any o-continuous Banach lattice E has oo- and on-Komlós

property.

Proof. Let xn ∈ [−u, u] for all n. By [5, Cor.5.14], E has nuo-pre-Komlós

property, and hence ouo-pre-Komlós property. So, there exists a subsequence

xnk
such that any sequence 1

m

m∑
j=1

xnkj
⊂ [−u, u] is uo-Cauchy, and hence

o-Cauchy. By o-continuity of the norm, E is Dedekind complete. It follows

that there exist y ∈ E with y = o− lim
m→∞

1
m

m∑
j=1

xnkj
for any subsequence xnkj

of xnk
. Using o-continuity once more, we get y = n− lim

m→∞

1
m

m∑
j=1

xnkj
. �
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3. Komlós properties in Banach lattices of continuous

functions

Notice that, in E = C(K): oo-Komlós, no-Komlós, ouo-Komlós, and nuo-

Komlós properties coincide. The same is true for oo-, no-, ouo-, and nuo-

pre-Komlós properties. Furthermore, nn-Komlós property coincides with

both nn-pre-Komlós and on-pre-Komlós properties.

In view of Example 1, the Banach lattice c ∼= C(N ∪ {∞}) fails the oo-

Komlós property, but still has the oo-pre-Komlós property. We point out

that the one-point compactification N ∪ {∞} of N is a separable compact

metric space in which all points except ∞ are isolated.

It was mentioned in [5, Ex.5.3] that it was still unknown whether or not

C[0, 1] has the nuo-pre-Komlós property. Here, we clarify the situation with

Banach lattices C(K) for a large class of compact Hausdorff spaces.

Theorem 2. Let K be a compact Hausdorff space without isolated points

in which there exist two distinct sequences tn and t′n such that cl{tn}
∞

n=1 =

cl{t′n}
∞

n=1 = K. Then C(K) fails the oo-pre-Komlós property.

Proof. Define fk(t) on {tn}
k
n=1∪{t′n}

k
n=1 to be equal to 1 if t = t1, ..., tk and

fk(t) = 0 if t = t′1, ..., t
′

k. Then extend each fk(t) continuously to whole K

so that fk(K) ⊆ [0, 1]. It is easy to see that, for any subsequence fkj the

sequence

gm =
1

m

m∑

j=1

fkj (m ∈ N)

of Cesáro means is not oo-Cauchy. �

Theorem 3. Let K be a compact Hausdorff space with a nonempty sepa-

rable open subset U ⊂ K without isolated points such that every u ∈ U has

countable neighborhood base. Then C(K) fails the oo-pre-Komlós property.

Proof. Let D = {dk}
∞

k=1 be a countable dense subset of a nonempty open

subset U ⊂ K without isolated points. Without lost of generality, we may

choose countable neighborhood bases Bd = {Un
d }

∞

n=1 of elements d ∈ D such

that

Un+1
d ⊆ Un

d (∀d ∈ D,n ∈ N)

and dm 6∈ Uk
dk

for m < k.

We choose a sequence {dnk
}∞k=1 of distinct elements of D as follows

dn1
∈ U1

d1
, dn2

∈ U2
d1
, dn3

∈ U2
d2
, dn4

∈ U3
d1
, dn5

∈ U3
d2
, dn6

∈ U3
d3
, ... .
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It is an easy exercise to show that cl{dn2k−1
}∞k=1 = cl{dn2k

}∞k=1 = clU .

By Theorem 2, there is a sequence fk ∈ clU such that fk(clU) ⊆ [0, 1]

for all k with the property that for any subsequence fkj the sequence

gm =
1

m

m∑

j=1

fkj (m ∈ N)

of Cesáro means is not oo-Cauchy in C(clU). Now, extend fk to f̄k ∈ C(K)

so that f̄k(K) ⊆ [0, 1] for all k. Clearly, for any subsequence f̄kj the sequence

ym =
1

m

m∑

j=1

f̄kj (m ∈ N)

is not oo-Cauchy in C(K). �

Corollary 2. For a compact metric space K possessing a nonempty sepa-

rable open subset without isolated points, the Banach lattice C(K) fails the

oo-pre-Komlós property.

Note that ℓ∞ ∼= C(βN) has oo-Komlós property (cf. e.g., [5, Ex.5.11])

From the other hand side, [5, Ex.5.2] implies that ℓ∞(Γ) fails the oo-pre-

Komlós property, whenever Card(Γ) ≥ c.

4. Komlós sets

The converse of the Komlós Theorem 1 has been proved in [8, Thm.2.1],

namely Lennard has proved that: for a probability measure µ, every convex

C ⊂ L1(µ) must be norm bounded provided that C satisfies the property: for

every sequence xn in C there exist a subsequence xnk
and an x ∈ E, with

x = uo− lim
m→∞

1

m

m∑

j=1

xnkj

for any subsequence xnkj
of xnk

. Subsets of any Banach lattice E satisfying

above property are called Komlós sets in [5, Def.5.22]. This motivates the

following definition.

Definition 2. We say that C ⊂ E is an o-, uo-, n, or un-Komlós set

(respectively, o-, uo-, n-, or un-pre-Komlós set) if, for every sequence xn in

C, there exist a subsequence xnk
and x ∈ E such that, for any further subse-

quence xnkj
, the sequence gm = 1

m

m∑
j=1

xnkj
is o-, uo-, n-, or un-convergent

to x (respectively, gm is o-, uo-, n-, or un-Cauchy).
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The main result of paper [5] concerning Komlós sets [5, Thm.5.23] can be

read as follows.

Theorem 4 (Gao–Troitsky–Xanthos). Let E be a Banach lattice with the

projection property. If Eoc̃ is a norming subspace of E∗, then any convex

uo-Komlós set C in E is norm bounded.

Below, in Proposition 4 we show that in arbitrary Banach lattice E every

convex uo-Komlós set C ⊆ E+ is norm bounded.

The following result shows that in [8, Thm.2.1] and in [5, Thm.5.23] uo-

Komlós sets can not be replaced by uo-pre-Komlós set.

Theorem 5. In any infinite dimensional Banach lattice E, there is an un-

bounded convex uo-pre-Komlós set C ⊆ E+.

Proof. By [5, Cor.3.6, Cor.3.13], any disjoint sequence is a uo-Komlós set.

Take a disjoint sequence dn in E+ such that ‖dn‖ = n for all n. Let xi =
∞∑
n=1

αi
ndn be a sequence in the convex hull C = co{dn}

∞

n=1. By diagonal

argument, it is easy to find a subsequence xij satisfying

lim
n→∞

α
ij
n = βn (∀n). (1)

By choosing further subsequence, if necessary, we may suppose that

|α
ij
n − βn| ≤ 1 (∀j ≥ n). (2)

For u = o −
∞∑
n=1

ndn, y = o −
∞∑
n=1

βndn in the universal completion Eu (cf.

[1, Def.7.20]) of E, by using (1) and (2) we get that

|xij − y| ≤
1

n
u (3)

for big enough j. In view of (3), the sequence xij o-converges to y = o −
∞∑
n=1

βndn in Eu, and hence is uo-Cauchy in E by [5, 3.12]. It follows that

every further subsequence xijl is uo-Cauchy, and hence, by [5, 3.13], the

sequence gm = 1
m

m∑
l=1

xijl of its Cesáro means is uo-Cauchy as well.

Thus, C is a norm unbounded convex uo-pre-Komlós set. �

Proposition 4. In any Banach lattice E every convex uo-Komlós set C ⊆

E+ is norm bounded.

Proof. Let C ⊆ E+ be a norm unbounded convex set. We are going to show

that C is not uo-Komlós.
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Choose a sequence xn ∈ C so that ‖x1‖ ≥ 4 and

1

2n
‖xn‖ ≥ 2

n−1∑

k=1

1

2k
‖xk‖ (∀n > 1).

Define an increasing sequence zn ∈ E+ as follows:

zn =

n∑

k=1

1

2k
xk.

Clearly, every subsequence znk
of zn is not uo-convergent, since otherwise

znk

uo
−→ z ∈ E+ and z − znk

= |z − znk
| ∧ z

o
−→ 0, which means that znk

↑ z,

and hence ‖znk
‖ ≤ ‖z‖ < ∞, violating

‖zn‖ ≥
1

2n
‖xn‖ ≥ 2

n−1∑

k=1

1

2k
‖xk‖ ≥ 2‖zn−1‖ ≥ 2n (∀n ≥ 1).

The sequence wm = 1
m

m∑
j=1

znk
is also increasing and ‖wm‖ → ∞. The similar

argument shows that wm is not uo-convergent. Let

yn =
1

2n
x1 + zn ∈ C (∀n ≥ 1).

Since 1
m

m∑
k=1

1
2nk

x1 ≤
1
m
x1

o
−→ 0, the sequence of the Cesáro means

1

m

m∑

k=1

ynk
=

1

m

m∑

k=1

1

2nk
x1 +

1

m

m∑

k=1

znk
= wm +

1

m

m∑

k=1

1

2nk
x1 (m ∈ N)

is not uo-convergent. It shows that C is not uo-Komlós. �

Note that the similar argument, as in the proof of Proposition 4, shows

that in any Banach lattice E every convex un-Komlós set C ⊆ E+ is norm

bounded.

The next result follows directly from Theorem 5 and Proposition 4.

Theorem 6. Let E be an infinite dimensional Banach lattice. Then there

exists a norm unbounded convex uo-pre-Komlós set C ∈ E+ which is not

uo-Komlós.

Corollary 3. Let E be an Banach lattice. The following conditions are

equivalent:

(1) dim(E) < ∞;

(2) E is uo-complete;

(3) E is sequentially uo-complete;

(4) every uo-pre-Komlós set is uo-Komlós;
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(5) every convex uo-pre-Komlós set C ∈ E+ is norm bounded.

Proof. Implications (1) ⇒ (2) ⇒ (3) are trivial, and (3) ⇒ (4) easily follows

from Definition 2.

(4) ⇒ (5): Let C ∈ E+ be a convex uo-pre-Komlós set. Then C is uo-

Komlós by the assumption. Proposition 4 ensures that C is norm bounded.

(5) ⇒ (1): It is exactly Theorem 5. �
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