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Abstract

We consider a U(4) Yang-Mills theory on M×S2
F ×S2

F where M is an arbitrary

Riemannian manifold and S2
F × S2

F is the product of two fuzzy spheres spon-

taneously generated from a SU(N ) Yang-Mills theory on M which is suitably

coupled to six scalars in the adjoint of U(N ). We determine the SU(2)× SU(2)-

equivariant U(4) gauge fields and perform the dimensional reduction of the theory

over S2
F ×S2

F . The emergent model is a U(1)4 gauge theory coupled to four com-

plex and eight real scalar fields. We study this theory on R
2 and find that, in

certain limits, it admits vortex type solutions with U(1)3 gauge symmetry and

discuss some of their properties.

http://arxiv.org/abs/1201.0728v2


1 Introduction

Recently, there has been significant advances in understanding the structure of gauge theories

possessing fuzzy extra dimensions [1, 2] (for a review on fuzzy spaces see [3]). It is known

that in certain SU(N ) Yang-Mills theories on a manifold M, which are suitably coupled to

a set of scalar fields, fuzzy spheres may be generated as extra dimensions by spontaneous

symmetry breaking. The vacuum expectation values (VEVs) of the scalar fields form the

fuzzy sphere(s), while the fluctuations around the vacuum are interpreted as gauge fields

over S2
F or S2

F × S2
F [2, 4]. The resulting theories can therefore be viewed as gauge theories

over M × S2
F and M × S2

F × S2
F with smaller gauge groups; which is further corroborated

by the expansion of a tower of Kaluza-Klein modes of the gauge fields. Inclusion of fermions

into this theory was considered in [4, 5]. For instance, in [5] an appropriate set of fermions

in 6D allowed for an effective description of Dirac fermions on M4 × S2
F , which was further

affirmed by a Kaluza-Klein modes expansion over S2
F . It was also found that a chirality

constraint on the fermions leads to a description in terms of ”mirror fermions” in which each

chiral fermion comes with a partner with opposite chirality and quantum numbers.

It appears well motivated to investigate equivariant parametrization of gauge fields and

perform dimensional reduction over the fuzzy extra dimensions to shed some further light

into the structure of these theories. Essentially, it is possible to use the well known coset

space dimensional reduction (CSDR) techniques to achive this task. To briefly recall the

latter consider a Yang-Mills theory with a gauge group S over the product space M ×
G/H. G has a natural action on its coset, and requiring the Yang-Mills gauge fields to

be invariant under the G action up to S gauge transformations leads to a G-equivariant

parametrization of the gauge fields and subsequently to the dimensional reduction of the

theory after integrating over the coset space G/H [6, 7]. CSDR techniques have been widely

used as a method in attempts to obtain the standard model on the Minkowski space M4

starting from a Yang-Mills-Dirac theory on the higher dimensional space M4 × G/H (for

a review on this topic reader can consult [7]). The widely known, prototype example of

CSDR is the SU(2)-equivariant reduction of the Yang-Mills theory over R
4 to an abelian

Higgs model on the two-dimensional hyperbolic space H
2, which was formulated by Witten

[8] prior to the development of the formal approach of [6], and it led to the construction of

instanton solutions with charge greater than 1.

Another approach, parallel to the CSDR scheme, using the language of vector bundles

and quivers is also known in the literature [9]. In recent times, this approach has been

employed in a wide variety of problems, including the formulation of quiver gauge theory of

non-Abelian vortices over R2d
θ corresponding to instantons on R

2d
θ ×S2, R2d

θ ×S2×S2 [10, 11],

to the construction of vortex solutions over Riemann surfaces which become integrable for

appropriate choice of the parameters [12] and to the construction of non-Abelian monopoles

over R
1,1 × S2 in [13]. In [14], reduction of the Yang-Mills-Dirac theory on M × S2 is

considered with a particular emphasis on the effects of the non-trivial monopole background

on the physical particle spectrum of the reduced theory. Dimensional reduction over quantum

sphere is recently studied and led to the formulation of q-deformed quiver gauge theories and

non-Abelian q-vortices [15].

Both of these techniques have also been applied to Yang-Mills theories over R2d
θ ×S2 [16],
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where R
2d
θ is the 2d dimensional Groenewald-Moyal space; a prime example of a noncom-

mutative space. In this framework, Donaldson-Uhlenbeck-Yau (DUY) equations of a U(2k)

Yang-Mills theory have been reduced to a set of equations on R
2d
θ whose solutions are given

by BPS vortices on R
2d
θ and the properties of the latter have been elaborated.

Starting with the article [17], we have initiated investigations on the equivariant reduction

of gauge theories over fuzzy extra dimensions. In [17] the most general SU(2)-equivariant

U(2) gauge field over M×S2
F have been found, and it was utilized to perform the dimensional

reduction over S2
F . It was shown that for M = R

2 the emergent theory is an Abelian

Higgs type model which has non-BPS vortex solutions corresponding to the instantons in

the original theory. There it was also found that these non-BPS vortices attract or repel

depending on the parameters in the model. This article has been followed up by investigating

the situation in which M is also a noncommutative space [18]. Performing the SU(2)-

equivariant dimensional reduction of this theory led to a noncommutative U(1) theory which

couples adjointly to a set of scalar fields. On the Groenewald-Moyal plane M = R
2
θ the

emergent models admit noncommutative vortex as well as fluxon solutions, which are non-

BPS and devoid of a smooth commutative limit as θ → 0.

As we have noted earlier, gauge theory on M4 × S2
F × S2

F has been recently investigated

in [4]. For this purpose authors of [4] have considered a SU(N ) gauge theory on M4, which

is suitably coupled to six scalar fields in the adjoint of U(N ). The model has the same field

content as that of the bosonic part of the N = 4 SUSY Yang-Mills theory, but comes together

with a potential breaking the N = 4 supersymmetry and the R-symmetry which is a global

SU(4). The deformed potential makes possible (after spontaneous symmetry breaking) the

identification of the VEV’s of the scalars with S2
F × S2

F and the fluctuations around this

vacuum as gauge fields on S2
F × S2

F . Structure of fermions in this theory is elaborated in [4].

In a related article, it was shown that twisted fuzzy spheres can be dynamically generated as

extra dimensions starting from a certain orbifold projection of a N = 4 SYM theory whose

consequences have been discussed in [19]. For a review on these results [20] can be consulted.

In the present article, we investigate the SU(2) × SU(2) equivariant formulation of a

U(4) gauge theory over S2
F × S2

F . Starting from the SU(N ) gauge theory model described

above, but now put on some Riemannian Manifold M, we focus on a U(4) gauge theory

on M× S2
F × S2

F after spontaneous symmetry breaking. We determine the SU(2) × SU(2)-

equivariant U(4) gauge fields and perform the dimensional reduction of the theory over

S2
F × S2

F . The emergent model is a U(1)4 gauge theory coupled to four complex and eight

real scalar fields. We study this theory on R
2 and find that, in certain limits, it admits vortex

type solutions with U(1)3 gauge symmetry and discuss some of their properties.

Our work in the rest of the paper is organized as follows. In section 2, we give the basics

of the SU(N ) gauge theory over M and indicate how the gauge theory over M dynamically

develops S2
F × S2

F as extra dimensions. This is followed by a systematic construction of the

SU(2) × SU(2)-equivariant U(4) gauge field using essentially the SO(4) ≈ SU(2) × SU(2)

representation theory. In section 3, we present the results of the equivariant reduction over

M × S2
F × S2

F and give the reduced action in full, and find that the emergent model is a

U(1)4 gauge theory coupled to four complex and eight real scalar fields. This is ensued by a

discussion of the structure of the reduced action. In section 4, we present non-trivial solutions

of the reduced action on R
2 for two different limiting cases of the parameters aL and aR in the
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theory and demonstrate that, these particular models have vortex solutions with U(1)3 gauge

symmetry which tend to attract or repel at the critical point of the parameter space gg̃ = 1.

For completeness, brief definitions of S2
F and S2

F × S2
F are given in appendix A and basics of

the U(N ) gauge theory over M×S2
F and the U(2)-equivariant gauge field parametrization are

discussed in appendix B. In appendix C, we collect the explicit expressions after dimensional

which is presented in section 3.

2 U(4) Gauge Theory over M× S2
F × S2

F

i. Gauge theory on M× S2
F × S2

F :

We start with an SU(N ) gauge theory coupled adjointly to six scalar fields Φi , (i =

1 , · · · , 6). The relevant action is given in the form [4]

S =

∫

M
TrN

( 1

4g2
F †
µνFµν + (DµΦi)

†(DµΦi)
)
+ V (Φ) . (2.1)

In this expression, Aµ are su(N ) valued anti-Hermitian gauge fields, Φi (i = 1, · · · 6) are six

anti-Hermitian scalars transforming in the adjoint of SU(N ) and DµΦi = ∂µΦi+[Aµ ,Φi] are

the covariant derivatives.

It is assumed further that Φi , (i = 1 , · · · , 6) transform in the vector representation of a

global SU(4) ∼= SO(6) group.

When considered on the four dimensional Minkowski spacetime M4, depending on the

form of the potential term V (Φ), the action (2.1) corresponds to the bosonic part of theN = 4

super Yang-Mills theory with the global SU(4) being its R-symmetry, or a modification of it

thereof. The potential may have the form

V (Φ) = VN=4(Φ) + Vbreak(Φ) , (2.2)

where the first term corresponds to the potential of the N = 4 super Yang-Mills theory

VN=4(Φ) =
1

4
g24

6∑

i ,j

[Φi ,Φj ]
2 , (2.3)

while the second term breaks both the N = 4 supersymmetry and the R-symmetry. It

also worths to mention that the above action (2.1) descends from a ten-dimensional N = 1

super Yang-Mills theory by dimensional reduction. We will not review this here as it is not

necessary for our purposes, however a quick discussion can be found in [4].

We would like to see now how the product of two fuzzy spheres emerges as extra di-

mensions from this theory as a consequence of spontaneous breaking of the original gauge

symmetry. Following the discussion in [4], we consider a potential of the form

V (Φ) =
1

g2L
V1(Φ

L) +
1

g2R
V1(Φ

R) +
1

g2LR
V1(Φ

L,R) + a2LV
L
2 (ΦL) + a2RV

R
2 (ΦR) , (2.4)

where

ΦL
a = Φa , ΦR

a = Φa+3 , (a = 1, 2, 3) , (2.5)
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and

V1(Φ
L) = TrNFL†

ab F
L
ab , FL

ab = [ΦL
a ,ΦL

b ]− εabcΦ
L
c

V1(Φ
R) = TrNFR†

ab F
R
ab , FR

ab = [ΦR
a ,ΦR

b ]− εabcΦ
R
c

V2(Φ
L) = TrN (ΦL

aΦ
L
a + b̃L)

2 , V2(Φ
R) = TrN (ΦR

a Φ
R
a + b̃R)

2

V1(Φ
L,R) = TrNF

(L ,R)†
ab F

(L ,R)
ab , F

(L ,R)
ab = [ΦL

a ,ΦR
b ] . (2.6)

We observe that the potential V (Φ) is positive definite, and it is possible to pick b̃L and

b̃R as the quadratic Casimirs of respectively SU(2)L and SU(2)R with IRR’s labeled by ℓL
and ℓR

b̃L = ℓL(ℓL + 1) , b̃R = ℓR(ℓR + 1) , 2ℓL , 2ℓR ∈ Z . (2.7)

If it is further assumed that N = (2ℓL + 1)(2ℓR + 1)n, (n ∈ Z), then the configuration

ΦL
a = X(2ℓL+1)

a ⊗ 1(2ℓR+1) ⊗ 1n ,

ΦR
a = 1(2ℓL+1) ⊗X(2ℓR+1)

a ⊗ 1n , (2.8)

[ΦL
a ,ΦR

b ] = 0 , (2.9)

is a global minimum of the potential V (Φ) where X
(2ℓL+1)
a and X

(2ℓR+1)
a are the anti-

Hermitian generators of SU(2)L and SU(2)R respectively in the IRR’s ℓL and ℓR, with the

commutation relations

[X(2ℓL+1)
a ,X

(2ℓL+1)
b ] = εabcX

(2ℓL+1)
c , [X(2ℓR+1)

a ,X
(2ℓR+1)
b ] = εabcX

(2ℓR+1)
c . (2.10)

This vacuum configuration spontaneously breaks the SU(N ) down to U(n) which is the

commutant of ΦL
a ,ΦR

a in (2.8).

Defining

x̂La =
i√

ℓL(ℓL + 1)
X(2ℓL+1)

a ⊗ 1(2ℓR+1) , x̂Ra = 1(2ℓL+1) ⊗
i√

ℓR(ℓR + 1)
X(2ℓR+1)

a , (2.11)

x̂La x̂
L
a = 1 , x̂Ra x̂

R
a = 1 . (2.12)

the vacuum is a product of two fuzzy spheres S2
F ×S2

F generated by x̂La and x̂Ra . (see appendix

A for a description of S2
F × S2

F ).

Fluctuations about this vacuum give a U(n) gauge theory over S2
F × S2

F . We can write

ΦL
a = XL

a +AL
a , ΦR

a = XR
a +AR

a (2.13)

where AL
a , AR

a ∈ u(2ℓL + 1) ⊗ u(2ℓR + 1) ⊗ u(n) with the short-hand notation X
(2ℓL+1)
a ⊗

1(2ℓR+1) ⊗ 1n =: XL
a and 1(2ℓL+1) ⊗X

(2ℓR+1)
a ⊗ 1n =: XR

a .

Thus, ΦL
a ,ΦR

a are the “covariant coordinates” on S2
F ×S2

F , and the associated curvatures

FL
ab, F

R
ab, F

L ,R
ab take their familiar form after expanding according to (2.13)

FL
ab = [XL

a , AL
b ]− [XL

b , AL
a ] + [AL

a , AL
b ]− εabcA

L
c ,

FR
ab = [XR

a , AR
b ]− [XR

b , AR
a ] + [AR

a , AR
b ]− εabcA

R
c ,

FL ,R
ab = [XL

a , AR
b ]− [XR

b , AL
a ] + [AL

a , AR
b ] . (2.14)
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Therefore, we can interpret the spontaneously broken theory as a U(n) gauge theory on

M×S2
F×S2

F with AM := (Aµ , A
L
a , AR

a ) as the gauge fields and FMN as the corresponding field

strength. The V L
2 and the V R

2 serve as constraint terms to suppress the normal components

of the gauge fields on each of the fuzzy spheres, in similar manner as discussed for the case

of a single fuzzy sphere in [2, 17].

It is important to point out that, this gauge theory can be called the “standard” Yang-

Mills theory on M × S2
F × S2

F if we take gL = gR =
√
2gL,R := g̃, scale the scalar fields as

Φ̃ =
√
2g̃Φi and take g̃g = 1, since only then it takes the form of the L2 norm of FMN .

We also note for future use that, with the developments above

TrN =
1

n(2ℓL + 1)(2ℓR + 1)
TrMat(2ℓL+1) ⊗ TrMat(2ℓR+1) ⊗ TrMat(n) (2.15)

where Mat(k) denotes the algebra of k × k matrices.

Finally, it is also useful to remark that there are other possibilities for the vacuum config-

uration as discussed in [4] which for instance lead to S2
F ×S2

F carrying magnetic fluxes under

the U(1) component of the unbroken gauge group SU(n)×SU(m)×U(1) after spontaneous

symmetry breaking.

ii. The SU(2)× SU(2)-Equivariant Gauge Field

We will now formulate the SU(2)L×SU(2)R ∼= SO(4)-equivariant, U(4) gauge theory on

M×S2
F ×S2

F . The gauge fields carry the fundamental representation of U(4). We introduce

SO(4) symmetry generators under which Aµ is a scalar up to a U(4) gauge transformation,

that is carrying the SO(4) IRR (0, 0) and AL
a and AR

a are SO(4) tensors carrying the IRRs

(1, 0) and (0, 1), respectively. In other words, AL
a is a vector under the SU(2)L and a scalar

under the SU(2)R, whereas A
R
a is an SU(2)R vector and an SU(2)L scalar.

On S2
F × S2

F the SU(2) × SU(2) ∼= SO(4) rotational symmetry is implemented by the

adjoint actions adXL
a and adXR

a (see appendix A):

adXL
a · = [XL

a , ·] , adXR
a · = [XR

a , ·] , [adXL
a , adXR

a ] = 0 . (2.16)

Let’s introduce the anti-Hermitian symmetry generators

ωL
a = X(2ℓL+1)

a ⊗ 1(2ℓR+1) ⊗ 14 − 1(2ℓL+1) ⊗ 1(2ℓR+1) ⊗ i
LL
a

2
,

ωR
a = 1(2ℓL+1) ⊗X(2ℓR+1)

a ⊗ 14 − 1(2ℓL+1) ⊗ 1(2ℓR+1) ⊗ i
LR
a

2
. (2.17)

Here LL
a and LR

a are 4 × 4 matrices whose structure will be given shortly. They are chosen

so that ωL
a and ωR

a fulfill the consistency conditions

[ωL
a , ωL

b ] = iεabcω
L
c ,

[ωR
a , ωR

b ] = iεabcω
R
c , (2.18)

[ωL
a , ωR

b ] = 0 . (2.19)

In order to write down the matrices LL
a and LR

a consider first the 4× 4 matrices denoted

as emn(m,n = 1, 2, 3, 4) whose all entries are zero except the entry on the mth row and the
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nth column which is 1. We let

Ja = −iεabcebc , Ka = −i(ea4 − e4a) , (2.20)

and define

LL
a = Ja +Ka , LR

a = Ja −Ka . (2.21)

These matrices fulfill

[LL
a , LL

b ] = 2iεabcL
L
c ,

[LR
a , LR

b ] = 2iεabcL
R
c ,

[LL
a , LR

b ] = 0 . (2.22)

Therefore we have altogether six anti-symmetric SU(4) matrices generating the two sub-

groups SU(2)L and SU(2)R. Remaining nine symmetric generators of SU(4) may be taken

as LL
aL

R
b . Together with the 4 × 4 identity 14, L

L
a , L

R
a and LL

aL
R
b span U(4) and furnish a

basis for the fundamental representation of U(4).

LL
a and LR

a form a 4× 4 basis of the Lie algebra so(4) = su(2)⊕ su(2). In addition, these

matrices satisfy the relations

LL
aL

L
b = iεabcL

L
c + δab14 ,

LR
a L

R
b = iεabcL

R
c + δab14 , (2.23)

which permits to view them as two sets of 4× 4‘Pauli Matrices”.

From the point of view of the SO(4) representation theory LL
a , L

R
a carry the reducible

representations of SU(2)L and SU(2)R. LL
a carries two copies of the IRR (12 , 0), whereas

LR
a carries two copies of the IRR (0 , 12 ), which can be clearly observed from their Casimir

operators with the eigenvalues 3.

As the gauge fields AL
a and AR

a on S2
F ×S2

F are u(4) valued, they are elements of u(2ℓL+

1) × u(2ℓR + 1) × u(4). Therefore, it is now clear that LL
a and LR

a in (2.17) are responsible

for generating the U(4) gauge symmetry in SO(4).

The SU(2) × SU(2) ∼= SO(4)-equivariance conditions stated at the beginning of this

section can now be explicitly described as the fulfillment of the following conditions under

the adjoint actions of ωL and ωR.

[ωL
a , Aµ] = 0 = [ωR

a , Aµ] ,

[ωL
a , AL

b ] = εabcA
L
c ,

[ωR
a , AR

b ] = εabcA
R
c ,

[ωL
a , AR

b ] = 0 = [ωR
a , AL

b ] . (2.24)

It is necessary to find explicit parametrizations of Aµ, A
L
a and AR

a fulfilling these conditions.

The adjoint actions of ωL and ωR expand in Clebsch-Gordan series as

2×
[
(ℓL , 0) ⊗ (

1

2
, 0)

]
⊗
[
(ℓL , 0) ⊗ (

1

2
, 0)

]
= 4(0 , 0) ⊕ 8(1 , 0) ⊕ · · · , (2.25)

2×
[
(0 , ℓR)⊗ (0 ,

1

2
)

]
⊗
[
(0 , ℓR)⊗ (0 ,

1

2
)

]
= 4(0 , 0) ⊕ 8(0 , 1) ⊕ · · · , (2.26)

6



where the factor of two in each line above is due to the two copies of the IRRs (12 , 0) and (0 , 12 )

in LL
a and LR

a , respectively. Therefore the relavant part of the Clebsch-Gordan expansion

takes the form

4(0 , 0) ⊕ 8(1 , 0) ⊕ 8(0 , 1) . (2.27)

The solution space for Aµ is then 4-dimensional, whereas each of the solution spaces of AL
a

and AR
a are 8-dimensional.

It is not very hard to see that there are four invariants under the action of ωL
a and ωR

a .

These are the three ‘idempotents”

QL =
XℓL

a ⊗ 1(2ℓR+1) ⊗ LL
a − i

21

ℓL + 1/2
, Q†

L = −QL , Q2
L = −14(2ℓL+1)(2ℓR+1) , (2.28)

QR =
1(2ℓL+1) ⊗XℓR

a ⊗ LR
a − i

21

ℓR + 1/2
, Q†

R = −QR , Q2
R = −14(2ℓL+1)(2ℓR+1) , (2.29)

iQLQR = i
(XℓL

a ⊗ 1(2ℓR+1) ⊗ LL
a − i

21)(1(2ℓL+1) ⊗XℓR
a ⊗ LR

a − i
21)

(ℓL + 1/2)(ℓR + 1/2)
,

(iQLQR)
† = −iQLQR , (iQLQR)

2 = −14(2ℓL+1)(2ℓR+1) , (2.30)

which are all [4(2ℓL + 1)(2ℓR + 1)]2 matrices and the identity matrix −14(2ℓL+1)(2ℓR+1).

These lead to the parametrization

Aµ =
1

2
aLµQ

L +
1

2
aRµQ

R +
i

2
bµ1+

1

2
icµQ

LQR , (2.31)

where aµ, bµ, cµ and dµ are all Hermitian U(1) gauge fields, and to the parametrizations

AL
a =

1

2
(χ1 + χ′

1)[X
L
a , QL] +

1

2
(χ2 + χ′

2 − 1)QL[XL
a , QL] + i

1

2
χ3

1

2
{X̂L

a , QL}+ 1

2
χ4ω̂

L
a

+
1

2
(χ1−χ′

1)iQ
R[XL

a , QL]+
1

2
(χ2−χ′

2)iQ
RQL[XL

a , QL]+i
1

2
χ′
3

1

2
iQR{X̂L

a , QL}+1

2
χ′
4iQ

Rω̂L
a .

(2.32)

AR
a =

1

2
(λ1 + λ′

1)[X
R
a , QR] +

1

2
(λ2 + λ′

2 − 1)QR[XR
a , QR] + i

1

2
λ3

1

2
{X̂R

a , QR}+ 1

2
λ4ω̂

R
a

+
1

2
(λ1−λ′

1)iQ
L[XR

a , QR]+
1

2
(λ2−λ′

2)iQ
LQR[XR

a , QR]+i
1

2
λ′
3

1

2
iQL{X̂R

a , QR}+1

2
λ′
4iQ

Lω̂R
a .

(2.33)

Here χi, χ
′
i, λi and λ′

i i = (1, 2, 3, 4) are Hermitian scalar fields over M, the curly brackets

denote anti-commutators throughout, and we have used

X̂L
a :=

1

ℓL + 1/2
XL

a , ω̂L
a :=

1

ℓL + 1/2
ωL
a ,

X̂R
a :=

1

ℓR + 1/2
XR

a , ω̂R
a :=

1

ℓR + 1/2
ωR
a . (2.34)

Let us also introduce the notation

AL
a := ÃL

a + iQRÃ′L
a

AR
a := ÃR

a + iQLÃ′R
a (2.35)

for future convenience.
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3 Reduction of the Yang-Mills Action over S2
F

Using the SU(2) × SU(2)-equivariant gauge field in the action functional of the U(4) Yang-

Mills theory on M⊗ S2
F × S2

F , we can explicitly trace it over the fuzzy spheres to reduce it

to a theory on M. It is quite useful to note the following identities

{Q , [Xa , Q]} = 0 , {Xa , [Xa , Q]} = 0 , (sum over repeated a is implied) , (3.1)

[Q , {Xa , Q}] = 0 , [Xa , {Xa , Q}] = 0 , (sum over repeated a is implied) . (3.2)

which are valid for both the left and the right quantities and they significantly simplify the

calculations, since they greatly reduce the number of traces to be computed.

The reduced action has the form

S =

∫

M
LF + LG +

1

g2L
V L
1 +

1

g2R
V R
1 +

1

g2LR
V L,R
1 + a2LV

L
2 + a2RV

R
2 . (3.3)

Each term in this expression is defined and evaluated below, while some details are relegated

to the appendix C.

3.1. The Field Strength Term

The field strength can be expressed as

Fµν =
1

2
fL
µνQ

L +
1

2
fR
µνQ

R +
i

2
gµν14 +

i

2
hµνQ

LQR (3.4)

where

fL
µν = ∂µa

L
ν − ∂νa

L
µ , fR

µν = ∂µa
R
ν − ∂νa

R
µ ,

gµν = ∂µbν − ∂νbµ , hµν = ∂µcν − ∂νcµ (3.5)

The corresponding contribution to the Lagrangian is

LF :=
1

4g2
TrN

(
F †
µνFµν

)

=
1

16g2

( ∣∣fL
µν

∣∣2 +
∣∣fR

µν

∣∣2 + |gµν |2 + |hµν |2 +
2

(2ℓL + 1)(2ℓR + 1)
fL
µνf

R
µν

− 1

(2ℓR + 1)

(
fR
µνgµν − fL

µνhµν
)
− 1

(2ℓL + 1)

(
fL
µνgµν − fR

µνhµν
)

− 2

(2ℓL + 1)(2ℓR + 1)
gµνhµν

)
. (3.6)

3.2. The Gradient Term

The covariant derivatives are naturally expressed in two pieces

DµΦ
L
a =

1

2

(
Dµ(χ1 + χ′

1) +QLDµ(χ2 + χ′
2)
)
[XL

a , QL] +
i

4
∂µχ3{X̂L

a , Q
L}+ 1

2
∂µχ4ω̂

L
a

+ iQR

(
1

2

(
Dµ(χ1 − χ′

1) +QLDµ(χ2 − χ′
2)
)
[XL

a , QL] +
i

4
∂µχ

′
3{X̂L

a , QL}+ 1

2
∂µχ

′
4ω̂

L
a

)

(3.7)
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DµΦ
R
a =

1

2

(
Dµ(λ1 + λ′

1) +QRDµ(λ2 + λ′
2)
)
[XR

a , QR] +
i

4
∂µλ3{X̂R

a , QR}+ 1

2
∂µλ4ω̂

R
a

+ iQL

(
1

2

(
Dµ(λ1 − λ′

1) +QRDµ(λ2 − λ′
2)
)
[XR

a , QR] +
i

4
∂µλ

′
3{X̂R

a , QR}+ 1

2
∂µλ

′
4ω̂

R
a

)

(3.8)

where we have (i = 1, 2)

Dµχi = ∂µχi + εjiaµχj + εjicµχj

Dµχ
′
i = ∂µχ

′
i + εjiaµχ

′
j − εjicµχ

′
j . (3.9)

with (i = 1, 2).

The gradient term takes the form

LG := LL
G + LR

G = TrN
(
(DµΦ

L
a )

†(DµΦ
L
a ) + (DµΦ

R
a )

†(DµΦ
R
a )
)
, (3.10)

where

LL
G =

ℓL(ℓL + 1)

(ℓL + 1/2)2

[(
1 +

1

2(ℓR + 1)

)(
(Dµχ1)

2 + (Dµχ2)
2
)
+

(
1− 1

2(ℓR + 1)

)(
(Dµχ

′
1)

2

+(Dµχ
′
2)

2
)]

+
1

4

ℓL(ℓL + 1)(ℓ2L + ℓL − 1/4)

(ℓL + 1/2)4

[
(∂µχ3)

2 + (∂µχ
′
3)

2 +
1

(ℓR + 1
2)

∂µχ3∂µχ
′
3

]

+
1

2

ℓL(ℓL + 1)

(ℓL + 1/2)3

[
∂µχ3∂µχ4 + ∂µχ

′
3∂µχ

′
4 +

1

2(ℓR + 1)

(
∂µχ3∂µχ

′
4 + ∂µχ

′
3∂µχ4

)]

+
1

4

ℓ2L + ℓL + 3/4

(ℓL + 1/2)2

[
(∂µχ4)

2 + (∂µχ
′
4)

2 +
1

(ℓR + 1
2 )

∂µχ4∂µχ
′
4

]
. (3.11)

LR
G =

ℓR(ℓR + 1)

(ℓR + 1/2)2

[(
1 +

1

2(ℓL + 1)

)(
(Dµλ1)

2 + (Dµλ2)
2
)
+

(
1− 1

2(ℓL + 1)

)(
(Dµλ

′
1)

2

+(Dµλ
′
2)

2
)]

+
1

4

ℓR(ℓR + 1)(ℓ2R + ℓR − 1/4)

(ℓR + 1/2)4

[
(∂µλ3)

2 + (∂µλ
′
3)

2 +
1

(ℓL + 1)
∂µλ3∂µλ

′
3

]

+
1

2

ℓR(ℓR + 1)

(ℓR + 1/2)3

[
∂µλ3∂µλ4 + ∂µλ

′
3∂µλ

′
4 +

1

2(ℓL + 1)

(
∂µλ3∂µλ

′
4 + ∂µλ

′
3∂µλ4

)]

+
1

4

ℓ2R + ℓR + 3/4

(ℓR + 1/2)2

[
(∂µλ4)

2 + (∂µλ
′
4)

2 +
1

2(ℓL + 1)
∂µλ4∂µλ

′
4

]
. (3.12)

It is useful to form the complex fields

χ = χ1 + iχ2 , χ̄ = χ1 − iχ2 , λ = λ1 + iλ2 , λ̄ = λ1 − iλ2 , (3.13)

then the covariant derivatives are expressed as

Dµχ = ∂µχ+ i(aLµ + cµ)χ , Dµχ
′ = ∂µχ

′ + i(aLµ − cµ)χ
′ ,

Dµλ = ∂µλ+ i(aRµ + cµ)λ , Dµλ
′ = ∂µλ

′ + i(aRµ − cµ)λ
′ . (3.14)

We note that primed fields carry charge −1 under cµ.
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3.3. The Potential Term

Working with the duals, we have for FL
ab

1

2
εabcF

L
ab =

1

2
ǫabc[Φ

L
a ,Φ

L
b ]− ΦL

c = FL
c + iQRF̃L

c , (3.15)

FL
c =

1

2

(
PL+
1 (χ1 + χ2Q

L) + PL−
1 (χ′

1 + χ′
2Q

L)
)
[XL

c , QL]

+
i

4

(
2|χ|2 + 2|χ′|2 − PL

2

) {XL
c , QL}

(ℓL + 1/2)
+

1

4
PL
3

ωL
c

(ℓL + 1/2)2
, (3.16)

F̃L
c =

1

2

(
PL+
1 (χ1 + χ2Q

L)− PL−
1 (χ′

1 + χ′
2Q

L)
)
[XL

c , QL]

+
i

4

(
2|χ|2 − 2|χ′|2 − P̃L

2

) {XL
c , QL}

(ℓL + 1/2)
+

1

4
P̃L
3

ωL
c

(ℓL + 1/2)2
, (3.17)

and PL±
1 , PL

2 and PL
3 , P̃

L
2 , P̃

L
3 are given in the appendix C.

Similarly for FR
ab we have

1

2
εabcF

R
ab =

1

2
ǫabc[Φ

R
a ,Φ

R
b ]− ΦR

c = FR
c + iQLF̃R

c , (3.18)

FR
c =

1

2

(
PR+
1 (λ1 + λ2Q

R) + PR−
1 (λ′

1 + λ′
2Q

R)
)
[XR

c , QR]

+
i

4

(
2|λ|2 + 2|λ′|2 − PR

2

) {XR
c , QR}

(ℓR + 1/2)
+

1

4
PR
3

ωL
c

(ℓR + 1/2)2
, (3.19)

F̃R
c =

1

2

(
PR+
1 (λ1 + λ2Q

R)− PR−
1 (λ′

1 + λ′
2Q

R)
)
[XR

c , QR]

+
i

4

(
2|λ|2 − 2|λ′|2 − P̃R

2

) {XR
c , QR}

(ℓR + 1/2)
+

1

4
P̃R
3

ωL
c

(ℓR + 1/2)2
, (3.20)

and PR±
1 , PR

2 and PR
3 , P̃R

2 , P̃R
3 are given in the appendix C.

In addition, we have for FL ,R
ab

FL ,R
ab = i

(
(χ2 + χ′

2)− (χ1 + χ′
1)Q

L
)
[XL

a , QL]Ã′R
b

+ iÃ′L
a

(
(λ2 + λ′

2)− (λ1 + λ′
1)Q

R
)
[XR

b , QR] . (3.21)

where the notation introduced earlier in (2.35) is used.

With these we find for V L
1 , V R

1 and V L,R
1

V L
1 = TrNFL†

ab F
L
ab

= −2TrN
(
(FL

c )2 + (F̃L
c )2 + 2iQRF

L
c F̃

L
c

)

= TL
1 (|χ|4 + |χ′|4) + TL

2 |χ|2 + T̃L
2 |χ′|2 + TL

3 , (3.22)
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V R
1 = TrNFR†

ab F
R
ab

= −2TrN
(
(FR

c )2 + (F̃R
c )2 + 2iQLF

R
c F̃R

c

)

= TR
1 (|λ|4 + |λ′|4) + TR

2 |λ|2 + T̃R
2 |λ′|2 + TR

3 , (3.23)

V L,R
1 = 2S1

(
|χλ′ − χ′λ|2 + |λ̄χ− χ′λ̄′|2

)
+ |χ+ χ′|2

(
SL
2 λ

′2
3 + S̃L

2 λ
′2
4 + SL

3 λ
′
3λ

′
4

)

+ |λ+ λ′|2
(
SR
2 χ

′2
3 + S̃R

2 χ
′2
4 + SR

3 χ
′
3χ

′
4

)
, (3.24)

where TL,R
1 , TL,R

2 , T̃L,R
2 , TL,R

3 , S1, S
L
2 , S̃

L
2 , S

L
3 , S

R
2 , S̃

R
2 and SR

3 are given in appendix C.

3.4. The Constraint Term

Taking b̃L = ℓL(ℓL + 1) and b̃R = ℓR(ℓR + 1) as discussed earlier in section 2 we find

ΦL
aΦ

L
a + ℓL(ℓL + 1) = RL

1 + iQLRL
2 + iQR(R̃L

1 + iQLR̃L
2 ) , (3.25)

ΦR
a Φ

R
a + ℓR(ℓR + 1) = RR

1 + iQRRR
2 + iQL(R̃R

1 + iQLR̃R
2 ) (3.26)

where RL
1 , R

L
2 and R̃L

1 , R̃
L
2 and RR

1 , R
R
2 and R̃R

1 , R̃
R
2 are given in the appendix C.

The constraint terms in the action take the form

V L
2 = (RL

1 )
2 + (RL

2 )
2 + (R̃L

1 )
2 + (R̃L

2 )
2 +

1

(ℓL + 1
2 )

(
RL

1R
L
2 + R̃L

1 R̃
L
2

)

+
1

(ℓR + 1
2)

(
RL

1 R̃
L
1 +RL

2 R̃
L
2

)
+

1

2(ℓL + 1
2)(ℓR + 1

2)

(
RL

1 R̃
L
2 + R̃L

1R
L
2

)
. (3.27)

V R
2 = (RR

1 )
2 + (RR

2 )
2 + (R̃R

1 )
2 + (R̃R

2 )
2 +

1

(ℓR + 1
2)

(
RR

1 R
R
2 + R̃R

1 R̃
R
2

)

+
1

(ℓL + 1
2)

(
RR

1 R̃
R
1 +RR

2 R̃
R
2

)
+

1

2(ℓL + 1
2 )(ℓR + 1

2)

(
RR

1 R̃
R
2 + R̃R

1 R
R
2

)
. (3.28)

3.5. Structure of the Reduced Theory

In order to understand the structure of the reduced theory it is useful to analyze its vacuum

structure. The potential has the form

V =
1

g2L
V L
1 +

1

g2R
V R
1 +

1

g2LR
V L,R
1 + a2LV

L
2 + a2RV

R
2 . (3.29)

Apart from the case aL = aR = 0, V is zero if and only if V L
1 , V R

1 , V L,R
1 , V L

2 , V R
2 all vanish.

Noting that zeros of V L
1 , V R

1 , V L,R
1 coincide with zeros of the curvature terms, it is left to

find the solutions of

FL
ab = 0 , FR

ab = 0 , FL ,R
ab = 0 , (3.30)
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using the results obtained in the previous section.

It turns out that the only solution to these equations, which is also a zero of both V L
2 , V R

2

is given as

|χ| = |χ′| = |λ| = |λ′| = 1

2
,

χλ′ = χ′λ , λ̄χ = χ′λ̄′ ,

χ3 = χ′
3 = χ4 = χ′

4 = 0 , λ3 = λ′
3 = λ4 = λ′

4 = 0 . (3.31)

In fact, the first condition on the second line together with the first line implies the second

condition on the second line. It should be clear that vacua is not simply connected. The first

two lines of (3.31) imply that one of the complex fields can be written in terms of the other

three. For instance, λ′ = χ′λ
χ

= 4χ′λχ̄. The vacuum manifold has therefore the structure of

T 3 = S1 × S1 × S1, which has in particular π1(T
3) = Z⊕ Z⊕ Z.

Let us record the form of the action in the limit ℓL , ℓR → ∞ which is going to be of

essential interest in the next section.

LF =
1

16g2

( ∣∣fL
µν

∣∣2 +
∣∣fR

µν

∣∣2 + |gµν |2 + |hµν |2) (3.32)

LG = |Dµχ|2 + |Dµχ
′|2 + |Dµλ|2 + |Dµλ

′|2 + 1

4

(
(∂µχ3)

2 + (∂µχ
′
3)

2 + (∂µχ4)
2 + (∂µχ

′
4)

2

+ (∂µλ3)
2 + (∂µλ

′
3)

2 + (∂µλ4)
2 + (∂µλ

′
4)

2
)
. (3.33)

V L
1 =

1

g2L

(
4

(
|χ|2 + 1

4
(χ3 + χ′

3)−
1

4

)2

+ 4

(
|χ′|2 + 1

4
(χ3 − χ′

3)−
1

4

)2

+ 2(χ3 + χ′
3)

2|χ|2 + 2(χ3 − χ′
3)

2|χ′|2 + 1

2
(χ2

4 + χ′2
4 )

)
. (3.34)

V R
1 =

1

g2R

(
4

(
|λ|2 + 1

4
(λ3 + λ′

3)−
1

4

)2

+ 4

(
|λ′|2 + 1

4
(λ3 − λ′

3)−
1

4

)2

+ 2(λ3 + λ′
3)

2|λ|2 + 2(λ3 − λ′
3)

2|λ′|2 + 1

2
(λ2

4 + λ′2
4 )

)
. (3.35)

V L,R
1 =

ℓL ,ℓR→∞
1

g2L,R

(
2(|χλ′ − χ′λ|2 + |λ̄χ− χ′λ̄′|2)− 1

2

(
|χ+ χ′|2(λ′2

3 + λ′2
4 )

+ |λ+ λ′|2(χ′2
3 + χ′2

4

))
. (3.36)

4 Vortices

We will now discuss the vortex solutions of the reduced theory in the ℓL , ℓR → ∞ limit. For

simplicity, we restrict our attention to the case M = R
2. There is no canonical choice for

the coefficients a2L , a2R of the fuzzy constraint term; here we consider only the extreme cases

of a2L = a2R = 0 and a2L , a2R → ∞, which correspond respectively to imposing no constraint

at all, and to imposing the constraints “by hand”.
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4.1. Case 1: No constraint

As the constraint terms are absent, it is observed from the equations (3.33 - 3.36) that bµ, χ4

and λ4 decouple. In this case we have a U(1)3 gauge theory. The vacuum has the nontrivial

structure given in (3.31). On R
2 this leads to vortices since the mapping of the circle at

spatial infinity to the vacuum manifold

S1(∞) −→ T 3 (4.1)

is characterized by π1(T
3) = Z⊕ Z⊕ Z.

To obtain a detailed description of these vortices we can select the radial gauge in which

aLr = aRr = cr = 0 and make the rotationally symmetric ansatz by setting

χ = χ(r)ein1θ −→
r→∞

1

2
ein1θ , χ′ = χ′(r)ein2θ −→

r→∞
1

2
ein2θ ,

λ = λ(r)eim1θ −→
r→∞

1

2
eim1θ , λ′ = λ′(r)eim2θ −→

r→∞
1

2
eim2θ . (4.2)

From (3.31) and (4.2) we see that the integers n1, n2,m1,m2 are not all independent but

related to each other as

(n1 − n2)− (m1 −m2) = 0 , (4.3)

which is consistent with the fact that π1(T
3) = Z⊕ Z⊕ Z. In what follows we eliminate m2

using (4.3) and take the winding numbers of the complex fields as the set (n1, n2,m1).

The real scalars are

χ3 = χ3(r) , χ′
3 = χ′

3(r) , λ3 = λ3(r) , λ′
3 = λ′

3(r) , χ′
4 = χ′

4(r) , λ′
4 = λ′

4(r) . (4.4)

and they all tend to zero at spatial infinity (r → ∞).

As for the gauge fields we have

aLθ = aLθ (r) −→
r→∞

−n1 + n2

2
,

aRθ = aRθ (r) −→
r→∞

−m1 +m2

2
= −2m1 − (n1 − n2)

2
,

cθ = cθ(r) −→
r→∞

−n1 − n2

2
. (4.5)

Asymptotic profiles of the fields listed above are all dictated by the finiteness of the action

(4.6).
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The action takes the form

S = 2π

∫ ∞

0
rdr

[
1

8g2

( 1

r2
(∂ra

L
θ )

2 +
1

r2
(∂ra

R
θ )

2 +
1

r2
(∂rcθ)

2
)
+ (∂rχ)

2 +
1

r2
(n1 + aLθ + cθ)

2χ2

+ (∂rχ
′)2 +

1

r2
(n2 + aLθ − cθ)

2χ′2 + (∂rλ)
2 +

1

r2
(m1 + aRθ + cθ)

2λ2 + (∂rλ
′)2

+
1

r2
(m1 − (n1 − n2) + aRθ − cθ)

2λ′2 +
1

4

(
(∂rχ3)

2 + (∂rχ
′
3)

2 + (∂rχ
′
4)

2 + (∂rλ3)
2

+ (∂rλ
′
3)

2 + (∂rλ
′
4)

2
)
+

1

g2L

(
4

(
χ2 +

1

4
(χ3 + χ′

3)−
1

4

)2

+ 4

(
χ′2 +

1

4
(χ3 − χ′

3)−
1

4

)2

+ 2(χ3 + χ′
3)

2χ2 + 2(χ3 − χ′
3)

2χ′2 +
1

2
χ′2
4

)
+

1

g2R

(
4

(
λ2 +

1

4
(λ3 + λ′

3)−
1

4

)2

+ 4

(
λ′2 +

1

4
(λ3 − λ′

3)−
1

4

)2

+ 2(λ3 + λ′
3)

2λ2 + 2(λ3 − λ′
3)

2λ′2 +
1

2
λ′2
4

)

+
1

g2L,R

(
2(χλ′ − χ′λ)2 + 2(λ̄χ− χ′λ̄′)2 + F

]
(4.6)

where

F =





−1
2

(
(χ+ χ′)2(λ′2

3 + λ′2
4 ) + (λ+ λ′)2(χ′2

3 + χ′2
4

))
for n1 = n2

−1
2

(
(χ2 + χ′2)(λ′2

3 + λ′2
4 ) + (λ2 + λ′2)(χ′2

3 + χ′2
4

))
for n1 6= n2

(4.7)

The equations of motion for the scalar and the gauge fields follow from (4.6) and (4.7)

in a straightforward manner. These are coupled non-linear differential equations for which

we have not found any exact analytical solutions. However, it is possible to obtain the

asymptotic profiles of the fields as r → ∞. In this case we can write down the fluctuations

around the vacuum values as

χ =
1

2
− δχ , χ′ =

1

2
− δχ′ , λ =

1

2
− δλ , λ′ =

1

2
− δλ′ , aLθ = −n1 + n2

2
+ δaL ,

aRθ = −2m1 − (n1 − n2)

2
+ δaR , cθ = −n1 − n2

2
+ δcθ , (4.8)

while we can keep the same notation for the real scalars as they all fluctuate about the zero

vacuum values. Assuming further that ( δa
L

r
)2, ( δa

R

r
)2, ( δC

r
)2 are subleading1 to the fluctua-

tions in the complex and the real scalar fields, we obtain the following coupled set of linear

1The region of validity of this approximation in terms of the parameters of the model will be given a little

later on.
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second order differential equations:

∂2
r δa

L − 1

r
δaL − 4g2δaL = 0 ,

∂2
r δa

R − 1

r
δaR − 4g2δaR = 0 ,

∂2
r δc−

1

r
δc − 8g2δc = 0 ,

∂2
r δχ+

1

r
δχ+

4

g2L

(
−δχ+

1

4
(χ3 + χ′

3)

)
− 1

g2L,R
(δχ − δχ′) = 0 ,

∂2
r δχ

′ +
1

r
δχ′ +

4

g2L

(
−δχ+

1

4
(χ3 − χ′

3)

)
+

1

g2L,R
(δχ− δχ′) = 0 ,

∂2
r δλ+

1

r
δλ+

4

g2R

(
−δλ+

1

4
(λ3 + λ′

3)

)
− 1

g2L,R
(δλ− δλ′) = 0 ,

∂2
r δλ

′ +
1

r
δλ′ +

4

g2R

(
−δλ+

1

4
(λ3 − λ′

3)

)
+

1

g2L,R
(δλ − δλ′) = 0 ,

∂2
rχ3 +

1

r
χ3 +

4

g2L

(
δχ+ δχ′ − 3

2
χ3

)
= 0 , (4.9)

∂2
rχ

′
3 +

1

r
χ′
3 +

4

g2L

(
δχ− δχ′ − 3

2
χ′
3

)
+

γ

g2L,R
χ′
3 = 0 ,

∂2
rλ3 +

1

r
λ3 +

4

g2R

(
δλ+ δλ′ − 3

2
λ3

)
= 0 ,

∂2
rλ

′
3 +

1

r
λ′
3 +

4

g2R

(
δλ− δλ′ − 3

2
λ′
3

)
+

γ

g2L,R
λ′
3 = 0 ,

∂2
rχ

′
4 +

1

r
χ′
4 −

2

g2L
χ′
4 +

γ

g2L,R
χ′
4 = 0 ,

∂2
rλ

′
4 +

1

r
λ′
4 −

2

g2R
λ′
4 +

γ

g2L,R
λ′
4 = 0 .

where

γ =

{
1 for n1 6= n2

2 for n1 = n2 .
(4.10)

The gauge fields have the asymptotic profiles

δaL = FLrK1(2gr)

δaR = FRrK1(2gr)

δc = FrK1(2
√
2gr) . (4.11)
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Some algebra yields the asymptotic profiles of the scalar fields as

δχ = C1K0

(√
2r

gL

)
+ C2K0

(
2
√
2r

gL

)
+C3K0

(√
αL
+r

)
+ C4K0

(√
αL
−r
)

δχ′ = C1K0

(√
2r

gL

)
+ C2K0

(
2
√
2r

gL

)
−C3K0

(√
αL
+r

)
− C4K0

(√
αL
−r
)

χ3 = C1K0

(√
2r

gL

)
− 2C2K0

(
2
√
2r

gL

)

χ′
3 = C ′

3K0

(√
αL
+r

)
+ C ′

4K0

(√
αL
−r
)

χ′
4 = C5K0

(√
βLr

)

δλ = D1K0

(√
2r

gR

)
+D2K0

(
2
√
2r

gR

)
+D3K0

(√
αR
+r

)
+D4K0

(√
αR
−r
)

δλ′ = D1K0

(√
2r

gR

)
+D2K0

(
2
√
2r

gR

)
−D3K0

(√
αR
+r

)
−D4K0

(√
αR
−r
)

λ3 = D1K0

(√
2r

gR

)
− 2D2K0

(
2
√
2r

gR

)

λ′
3 = D′

3K0

(√
αR
+r

)
+D′

4K0

(√
αR
−r
)

λ′
4 = D5K0

(√
βRr

)
(4.12)

where 



αL
± = 5

g2
L

+ 1
2g2

L,R

± 1
2

(
36
g4
L

− 12
g2
L
g2
L,R

+ 9
g4
L,R

) 1

2

for γ = 1

αL
± = 5

g2
L

±
(

9
g4
L

− 4
g2
L
g2
L,R

+ 4
g4
L,R

) 1

2

for γ = 2

(4.13)





αR
± = 5

g2
R

+ 1
2g2

L,R

± 1
2

(
36
g4
R

− 12
g2
R
g2
L,R

+ 9
g4
L,R

) 1

2

for γ = 1

αR
± = 5

g2
R

±
(

36
g4
R

− 4
g2
R
g2
L,R

+ 4
g4
L,R

) 1

2

for γ = 2

(4.14)

βL =
2

g2L
− γ

g2L,R
, βR =

2

g2R
− γ

g2L,R
. (4.15)

We further have that the coefficients C ′
3 and C ′

4 are fixed in terms of C3 and C4 as

γ = 1 →





C ′
3 =

(
g2
L

2 αL
+ − g2

L

g2
L,R

− 2

)
C3 ,

C ′
4 =

(
g2
L

2 αL
− − g2

L

g2
L,R

− 2

)
C4 .

(4.16)

γ = 2 →
{

C ′
3 = −2C3 ,

C ′
4 = C4 ,

(4.17)
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and likewise for the D′
3 and D′

4

γ = 1 →





D′
3 =

(
g2
R

2 αR
+ − g2

R

g2
L,R

− 2

)
D3 ,

D′
4 =

(
g2
R

2 αR
− − g2

R

g2
L,R

− 2

)
D4 .

(4.18)

γ = 2 →
{

D′
3 = −2D3 ,

D′
4 = D4 .

(4.19)

The coefficients Ca,Da, F
L, FR, F, (a = 1 , · · · , 5) can be found by numerical methods. Such

a numerical computation was given in [17], for the case of U(1) vortices emerging from

the equivariant reduction of a U(2) theory over M × S2
F . We will not go into numerical

calculations in this article. However, we can still note a few qualitative features stemming

from the asymptotic profiles of fields listed above. Focusing on the special case, gL = gR =√
2gL,R := g̃, the expressions above simplify to





αL
± = 6±2

√
3

g̃2
for γ = 1 ,

αL
± = 6±

√
17

2g̃2 for γ = 2 ,

(4.20)

and β = 2
g̃2

for γ = 1. For γ = 2, it is easily observed that there are no fluctuations in zero

vacuum value of the fields χ′
4 and λ′

4 at this approximation. It follows from the asymptotic

form of the Bessel functions that, ( δa
L

r
)2, ( δa

R

r
)2, ( δC

r
)2 are subleading to the fluctuations in

the complex and the real scalar fields, as long as 4g >
√
2
g̃
. Furthermore, the field strengths

decay faster than the scalar fields if 2g >
√
2
g̃
. This result indicates that vortices tend

to attract as long as 2g >
√
2
g̃
, since it is known that field strengths are responsible for

the repulsive and scalars are responsible for the attractive forces between vortices [21]. In

particular, the reduced ”standard” Yang-Mills theory with gg̃ = 1 falls into this region of the

parameter space.

4.2. Case 2: The constraints fully imposed

The fuzzy constraints

ΦL
aΦ

L
a + ℓL(ℓL + 1) = 0 , ΦR

aΦ
R
a + ℓR(ℓR + 1) = 0 (4.21)

are equivalent to the algebraic equations

RL
1 = 0 , RL

2 = 0 , R̃L
1 = 0 , R̃L

2 = 0 , RR
1 = 0 , RR

2 = 0 , R̃R
1 = 0 , R̃R

2 = 0 .

(4.22)

where expressions for all R are given in the appendix C. These equations can be solved order

by order in powers of the parameters 1
ℓL

and 1
ℓR

to obtain expressions for the real scalar fields

in terms of the modulus of the complex scalars in the theory. Substituting the leading order

solutions of the real fields yields an action involving the complex scalars only.
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To leading order in 1
ℓL

and 1
ℓR
, (4.22) yield

χ3 =
1

ℓ2L
(|χ|2 + |χ′|2 − 1

2
) , χ4 = − 1

ℓL
(|χ|2 + |χ′|2 − 1

2
) ,

χ′
3 =

1

ℓ2L
(|χ|2 − |χ′|2) , χ′

4 = − 1

ℓL
(|χ|2 − |χ′|2) ,

λ3 =
1

ℓ2R
(|λ|2 + |λ′|2 − 1

2
) , λ4 = − 1

ℓR
(|λ|2 + |λ′|2 − 1

2
) ,

λ′
3 =

1

ℓ2R
(|λ|2 − |λ′|2) , λ′

4 = − 1

ℓR
(|λ|2 − |λ′|2) , (4.23)

Substituting (4.23) into the reduced action obtained in section 3 gives

S =

∫
d2y

1

16g2

(
(
1− 1

16ℓ2L

)
|fL

µν |2 +
(
1− 1

16ℓ2R

)
|fR

µν |2 +
3

8ℓLℓR
fL
µνf

R
µν + |hµν |2

+
1

2

(
1

ℓR
− 1

ℓ2R

)
hµνf

L
µν +

1

2

(
1

ℓL
− 1

ℓ2L

)
hµνf

R
µν

)
+

(
1− 1

4ℓ2L
+

1

2(ℓR + 1)

)
|Dµχ|2

+

(
1− 1

4ℓ2L
− 1

2(ℓR + 1)

)
|Dµχ

′|2 +
(
1− 1

4ℓ2R
+

1

2(ℓL + 1)

)
|Dµλ|2

+

(
1− 1

4ℓ2R
− 1

2(ℓL + 1)

)
|Dµλ

′|2 + 1

2ℓ2L

((
∂µ|χ|2

)2
+
(
∂µ|χ′|2

)2)
(4.24)

+
1

2ℓ2R

((
∂µ|λ|2

)2
+
(
∂µ|λ′|2

)2)
+

4

g2L

(
1 +

5

4ℓ2L

)((
|χ|2 − 1

4

)2

+

(
|χ′|2 − 1

4

)2
)

+
4

g2R

(
1 +

5

4ℓ2R

)((
|λ|2 − 1

4

)2

+

(
|λ′|2 − 1

4

)2
)

+
1

g2L,R

(
2(|χλ′ − χ′λ|2

+|λ̄χ− χ′λ̄′|2)− 1

2ℓ2R
|χ+ χ′|2(|λ|2 − |λ′|2)2 − 1

2ℓ2L
|λ+ λ′|2(|χ|2 − |χ′|2)2

)
.

where we have already solved the equations of motion for bµ and inserted

gµν =
1

4

(
1

ℓL
− 1

ℓ2L

)
fL
µν +

1

4

(
1

ℓR
− 1

ℓ2R

)
fR
µν +

1

4ℓLℓR
hµν . (4.25)

It is readily observed that the minimum of the potential resides at

|χ| = |χ′| = |λ| = |λ′| = 1

2
,

χλ′ = χ′λ , λ̄χ = χ′λ̄′ . (4.26)

We can again pick the radial gauge, and make the rotationally symmetric ansatz to look for

vortex solutions. The action takes the form
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S = 2π

∫ ∞

0
rdr

[
1

8g2

(
1

r2
(
1− 1

16ℓ2L

)
(∂ra

L
θ )

2 +
(
1− 1

16ℓ2R

) 1
r2

(∂ra
R
θ )

2 +
1

r2
(∂rcθ)

2
)

+
1

r2
3

8ℓLℓR
(∂ra

L
θ )(∂ra

R
θ ) +

1

r2
1

2

(
1

ℓR
− 1

ℓ2R

)
(∂ra

L
θ )(∂rcθ) +

1

r2
1

2

(
1

ℓL
− 1

ℓ2L

)
(∂ra

R
θ )(∂rcθ)

)

+

(
1− 1

4ℓ2L
+

1

2(ℓR + 1)

)(
(∂rχ)

2 +
1

r2
(n1 + aLθ + cθ)

2χ2

)

+

(
1− 1

4ℓ2L
− 1

2(ℓR + 1)

)(
(∂rχ

′)2 +
1

r2
(n2 + aLθ − cθ)

2χ′2
)

+

(
1− 1

4ℓ2R
+

1

2(ℓL + 1)

)(
(∂rλ)

2 +
1

r2
(m1 + aRθ + cθ)

2λ2

)

+

(
1− 1

4ℓ2R
− 1

2(ℓL + 1)

)(
(∂rλ

′)2 +
1

r2
(m1 − (n1 − n2) + aRθ − cθ)

2λ′2
)

+
2

ℓ2L

(
χ2(∂rχ)

2 + χ′2(∂rχ
′)2
)
+

2

ℓ2R

(
λ2(∂rλ)

2 + λ′2(∂rλ
′)2
)

+
4

g2L

(
1 +

5

4ℓ2L

)((
χ2 − 1

4

)2

+

(
χ′2 − 1

4

)2
)
+

4

g2R

(
1 +

5

4ℓ2R

)((
λ2 − 1

4

)2

+

(
λ′2 − 1

4

)2
)

+
1

g2L,R

(
2(χλ′ − χ′λ)2 + 2(λχ− χλ′)2 + F

)]
(4.27)

where

F =





− 1
2ℓ2

R

(χ+ χ′)2(λ2 − λ′2)2 − 1
2ℓ2

L

(λ+ λ′)2(χ2 − χ′2)2 for n1 = n2

− 1
2ℓ2

R

(χ2 + χ′2)(λ2 − λ′2)2 − 1
2ℓ2

L

(λ2 + λ′2)(χ2 − χ′2)2 for n1 6= n2

(4.28)

To leading order asymptotic profiles of the gauge fields are

δaL = α1rK1(2gr) + α2rK1

(
2g

(
1 +

1

4

(
1

ℓ2L
+

1

ℓ2R

))
r

)
,

δaR = α1rK1(2gr) + α2rK1

(
2g

(
1 +

1

4

(
1

ℓ2L
+

1

ℓ2R

))
r

)
,

δc = α3rK1

(
2
√
2g

(
1− 3

8

(
1

ℓ2L
+

1

ℓ2R

))
r

)
. (4.29)

The asymptotic profiles of the scalar fields read

δχ = C1K0 (
√
µ1r) + C2K0 (

√
µ2r)

δχ′ = C ′
1K0 (

√
µ1r) + C ′

2K0 (
√
µ2r)

δλ = C3K0 (
√
ν1r) + C4K0 (

√
ν2r)

δχ = C ′
3K0 (

√
ν1r) + C ′

4K0 (
√
ν2r) (4.30)
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Focusing on the case gL = gR =
√
2gL,R := g̃, we find

√
µ1 =

2
√
2

g̃

(
1 +

1

4ℓ2L

)
,

√
µ2 =

2

g̃

(
1 +

3

8ℓ2L
− 3

8ℓ2R

)
,

√
ν1 =

2
√
2

g̃

(
1 +

1

4ℓ2R

)
,

√
ν2 =

2

g̃

(
1 +

3

8ℓ2R
− 3

8ℓ2L

)
. (4.31)

In this case, it follows from the asymptotic form of the Bessel functions that, ( δa
L

r
)2, ( δa

R

r
)2,

( δC
r
)2 are subleading to the fluctuations in the complex and the real scalar fields, as long as

4g > 2
√
2

g̃
. For finite values of ℓL , ℓR, at the critical gg̃ = 1 coupling the vortices tend to

repel since the scalars decay faster than the field strength. In particular, in the strict limit

ℓL , ℓR → ∞ the model collapses to the critically coupled BPS vortices at gg̃ = 1. The BPS

bound for this model can be written. Saturating the bound gives the action

S =
π

2
(n1 + n2 +m1 +m2)

= π(n2 +m1) , (4.32)

since m2 = −(n1 − n2) +m1 and the BPS equations are

D1χ± iD2χ = 0 , D1χ
′ ± iD2χ

′ = 0 ,

D1λ± iD2λ = 0 , D1λ
′ ± iD2λ

′ = 0 . (4.33)

BL +
1√
2
B ∓ 4

√
2g2

(
|χ|2 − 1

4

)
= 0 , BL − 1√

2
B ∓ 4

√
2g2

(
|χ′|2 − 1

4

)
= 0 ,

BR +
1√
2
B ∓ 4

√
2g2

(
(|λ|2 − 1

4

)
= 0 , BR − 1√

2
B ∓ 4

√
2g2

(
|λ′|2 − 1

4

)
= 0 , (4.34)

together with the supplementary conditions

χλ′ = χ′λ , λ̄χ = χ′λ̄′ , (4.35)

and where BL = fL
rθ, B

R = fR
rθ, B = hLrθ. A similar model, though on the noncommutative

plane R
2
θ have appeared in [11]. We have not found any reference in the literature studying

the solutions of these BPS equations however we think that, in principal, it may be possible

to construct them using the methods of [22, 21]. This is beyond the scope of the present

article.

5 Conclusions

In the present article, we have investigated the SU(2)×SU(2) equivariant reduction of a U(4)

gauge theory over S2
F × S2

F . We have started from an SU(N ) gauge theory suitably coupled
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to a set of scalar fields in the adjoint of SU(N ) on a manifold M, which leads in general

to a U(n) gauge theory on M × S2
F × S2

F after spontaneous symmetry breaking. Focusing

on the U(4) theory we have determined the most general SU(2) × SU(2)-equivariant U(4)

gauge fields and performed the dimensional reduction of the theory over S2
F × S2

F . We have

found that the emergent model is a U(1)4 gauge theory coupled to four complex and eight real

scalar fields. Studying this theory on R
2 in two different limiting cases we have demonstrated

that, these particular models have vortex solutions with U(1)3 gauge symmetry which tend

to attract or repel at the critical point of the parameter space gg̃ = 1 as discussed in the

previous section.

We find this line of research very interesting as it gives us concrete results on the structure

of gauge theories with fuzzy extra dimensions.In particular, we are interested in investigating

the SU(2)-equivariant formulation of a U(3) gauge theory on M× S2
F . In this case, SU(2)

gauge transformations in U(3) are generated by the SU(2) rank 1 and rank 2 irreducible

tensors in the adjoint representation of SU(2) and among the rotational invariants of the

symmetry generators, suitably contracted rank two tensor operators over the fuzzy sphere

also appear. In other words, and somewhat more accurately, fuzzy version of xaxbQab, Qab

being the quadrupole tensor carrying the spin 2representations of SU(2), appears as another

rotational invariant in the theory whose contribution should be taken into account. We will

report on these and related developments elsewhere in the near future.
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Appendix

A. S2
F and S2

F × S2
F

The fuzzy sphere at level ℓ is defined to be the algebra of (2ℓ + 1) × (2ℓ + 1) matrices

Mat(2ℓ+ 1). The three Hermitian “coordinate functions”

x̂a :=
i√

ℓ(ℓ+ 1)
X(2ℓ+1)

a (A.1)

satisfy

[x̂a , x̂b] =
i√

ℓ(ℓ+ 1)
εabcx̂c , x̂ax̂a = R , (A.2)

and generate the full matrix algebra Mat(2ℓ + 1). There are three natural derivations of

functions, defined by the adjoint action of su(2) on S2
F :

f → adX(2ℓ+1)
a f := [X(2ℓ+1)

a , f ] , f ∈ Mat(2ℓ+ 1) . (A.3)

In the limit ℓ → ∞, the functions x̂a are identified with the standard coordinates xa on R
3,

restricted to the unit sphere, and the infinite-dimensional algebra C∞(S2) of functions on the

sphere is recovered. Also in this limit, the derivations [X
(2ℓ+1)
a , ·] become the vector fields

−iLa = εabcxa∂b, induced by the usual action of SO(3).

In similar manner the product space S2
F×S2

F is defined to be the algebra of ((2ℓL + 1)(2ℓR + 1))

matrices Mat(2ℓL + 1)(2ℓR + 1). There are now six Hermitian “coordinate functions”

x̂La :=
i√

ℓL(ℓL + 1)
X(2ℓL+1)

a ⊗12ℓR+1 , x̂Ra := 12ℓL+1⊗
i√

ℓR(ℓR + 1)
X(2ℓR+1)

a , a = 1, 2, 3 .

(A.4)
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which satisfy

[x̂La , x̂Lb ] =
i√

ℓL(ℓL + 1)
εabcx̂

L
c , [x̂Ra , x̂Rb ] =

i√
ℓR(ℓR + 1)

εabcx̂
R
c , [x̂La , x̂Rb ] = 0 . (A.5)

x̂La x̂
L
a = 1 , x̂Ra x̂

R
a = 1 . (A.6)

and generate the full matrix algebra Mat(2ℓL + 1)(2ℓR + 1).

There are six natural derivations of functions, defined by the adjoint action of su(2) ⊕
su(2) = so(4) on S2

F × S2
F :

f → adXL
a f := [XL

a , f ] , f → adXR
a f := [XR

a , f ] , f ∈ Mat(2ℓL + 1)(2ℓR + 1) . (A.7)

In the limit ℓL , ℓR → ∞, x̂La x̂Ra and are identified with the standard coordinates xLa and xRa
on R

6, restricted to S2 × S2, and the infinite-dimensional algebra C∞(S2 × S2) of functions

on S2 × S2 is recovered. Also in this limit, the derivations become the vector fields −iLL
a =

εabcx
L
a ∂

L
b , −iLR

a = εabcx
R
a ∂

R
b induced by the usual action of SO(3) × SO(3).

B. U(2) Gauge Theory M× S2
F

i. Gauge theory on M× S2
F :

The relevant SU(N ) Yang-Mills theory has the action

S =

∫

M
TrN

( 1

4g2
F †
µνFµν+(Dµφa)

†(Dµφa)
)
+

1

g̃2
TrN

(
F †
abFab

)
+a2TrN

(
(φaφa+ b̃)2

)
. (B.1)

Here, φa (a = 1, 2, 3) are anti-Hermitian scalars, transforming in the adjoint of SU(N ) and in

the vector representation of an additional global SO(3) symmetry, Dµφa = ∂µφa+[Aµ , φa] are

the covariant derivatives and Aµ are the su(N ) valued anti-Hermitian gauge fields associated

to the curvature Fµν . Fab is given as

Fab := [φa , φb]− εabcφc , (B.2)

In above a, b̃, g and g̃ are constants and TrN = N−1Tr denotes a normalized trace.

This theory spontaneously develops extra dimensions in the form of fuzzy spheres [2].

The potential terms for the scalars are positive definite, and the solutions

Fab = 0 , −φaφa = b̃ (B.3)

are evidently a global minima. Most general solution to this equation is not known. However

depending on the values taken by the parameter b̃, a large class of solutions has been found in

[2]. Here we restrict ourselves to the simplest situation.Taking the value of b̃ as the quadratic

Casimir of an irreducible representation of SU(2) labeled by ℓ, b̃ = ℓ(ℓ+ 1) with 2ℓ ∈ Z and

assuming further that the dimension N of the matrices φa is (2ℓ+1)n, (B.3) is solved by the

configurations of the form

φa = X(2ℓ+1)
a ⊗ 1n , (B.4)

where X
(2ℓ+1)
a are the (anti-Hermitian) generators of SU(2) in the irreducible representation

ℓ, which has dimension 2ℓ + 1. We observe that this vacuum configuration spontaneously

breaks the U(N ) down to U(n) which is the commutant of φa in (B.4).
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Fluctuations about the vacuum (B.4) may be written as

φa = Xa +Aa , (B.5)

where Aa ∈ u(2ℓ+ 1)⊗ u(n) and we have used the short-hand notation X
(2ℓ+1)
a ⊗ 1n =: Xa.

Then Aa (a = 1, 2, 3) may be interpreted as three components of a U(n) gauge field on

the fuzzy sphere S2
F . φa are indeed the “covariant coordinates” on S2

F and Fab is the field

strength, which takes the form

Fab = [Xa , Ab]− [Xb , Aa] + [Aa , Ab]− εabcAc . (B.6)

when expressed in terms of the gauge fields Aa.

To summarize, with (B.5) the action in (B.1) takes the form of a U(n) gauge theory on

M×S2
F (2ℓ+1) with the gauge field components AM (ŷ) = (Aµ(ŷ) , Aa(ŷ)) ∈ u(n)⊗u(2ℓ+1)

and field strength tensor (ŷ are a set of coordinates for the noncommutative manifold M)

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]

Fµa = Dµφa = ∂µφa + [Aµ, φa] (B.7)

Fab = [φa, φb]− ǫabcφc .

ii. The SU(2)-Equivariant Gauge Field :

Let us focus on the case of a U(2) gauge theory on M × S2
F . The construction of the

most general SU(2)-equivariant gauge field on S2
F can be performed as follows [17]:

We pick the symmetry generators ωa which generate SU(2) rotations upto U(2) gauge

transformations. Accordingly, we choose

ωa = X(2ℓ+1)
a ⊗ 12 − 12ℓ+1 ⊗

iσa

2
, ωa ∈ u(2) ⊗ u(2ℓ+ 1) , for a = 1, 2, 3 (B.8)

These ωa are the generators of the representation 1/2 ⊗ ℓ of SU(2), where by m we denote

the spin m representation of SU(2) of dimension 2m + 1. SU(2)-equivariance of the theory

requires the fulfillment of the symmetry constraints,

[ωa , Aµ] = 0 , [ωa, φb] = ǫabcφc, (B.9)

on the gauge field and a consistency condition on these constraints is [ωa, ωb] = εabcωc which

is readily satisfied by our choice of ωa.

The solutions to these constraints are obtained using the representation theory of SU(2).

The adjoint action of ω expands into the Clebsch-Gordan series, whose relevant part reads

(1/2 ⊗ ℓ)⊗ (1/2 ⊗ ℓ) = 2 0⊕ 4 1 ⊕ . . . . (B.10)

Thus, the set of solutions to equations in (B.9) are two and four-dimensional respectively.

The fields are conveniently parametrized as

Aµ =
1

2
Qaµ(ŷ) +

1

2
ibµ(ŷ) , (B.11)

Aa =
1

2
ϕ1(ŷ)[Xa, Q] +

1

2
(ϕ2(ŷ)− 1)Q[Xa, Q] + i

1

2
ϕ3(ŷ)

1

2
{X̂a, Q}+ 1

2
ϕ4(ŷ)ω̂a, , (B.12)
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with φa = Xa+Aa and aµ, bµ are Hermitian U(1) gauge fields, ϕi are Hermitian scalar fields

over M, the curly brackets denote anti-commutators throughout, and

X̂a :=
1

ℓ+ 1/2
Xa , ω̂a :=

1

ℓ+ 1/2
ωa. (B.13)

They contain, in addition to the Mat2(2ℓ+ 1) identity matrix, the only non-trivial rotational

invariant under ω, which is

Q :=
Xa ⊗ σa − i/2

ℓ+ 1/2
, Q† = −Q , Q2 = −12(2ℓ+1) . (B.14)

Indeed, Q is the fuzzy version of q := iσ · x and converges to it in the ℓ → ∞ limit.

C. Explicit Formulae

In this appendix, we list the explicit expressions for PL±
1 , PL

2 and PL
3 , P̃

L
2 , P̃

L
3 , P

R±
1 , PR

2

and PR
3 , P̃R

2 , P̃R
3 , TL,R

1 , TL,R
2 , T̃L,R

2 , TL,R
3 ,, RL

1 , R
L
2 and R̃L

1 , R̃
L
2 and RR

1 , R
R
2 and R̃R

1 , R̃
R
2 ,

which were introduced for brevity of notation in section 3.

We have

PL
1 =

ℓ2L + ℓL − 1/4

(ℓL + 1/2)2
χ3 +

1

ℓL + 1/2
χ4 , (C.1)

PL′
1 =

ℓ2L + ℓL − 1/4

(ℓL + 1/2)2
χ′
3 +

1

ℓL + 1/2
χ′
4 (C.2)

PL
2 = (1− χ3)

(
1 +

χ4

ℓL + 1/2
− χ3

2(ℓL + 1/2)2

)
− χ′

3

(
χ′
4

ℓL + 1/2
− χ′

3

2(ℓL + 1/2)2

)
, (C.3)

PL
3 =

ℓL(ℓL + 1)

(ℓL + 1/2)2
(
χ2
3 − 2χ3

)
+ χ2

4 + 2
ℓ2L + ℓL − 1/4

ℓL + 1/2
χ4 +

ℓL(ℓL + 1)

(ℓL + 1/2)2
χ′2
3 + χ′2

4 . (C.4)

PL±
1 = PL

1 ± PL′
1 . (C.5)

PR
1 =

ℓ2R + ℓL − 1/4

(ℓR + 1/2)2
λ3 +

1

ℓR + 1/2
λ4 , (C.6)

PR′
1 =

ℓ2R + ℓR − 1/4

(ℓR + 1/2)2
λ′
3 +

1

ℓR + 1/2
λ′
4 , (C.7)

PR
2 = (1− λ3)

(
1 +

λ4

ℓR + 1/2
− λ3

2(ℓR + 1/2)2

)
− λ′

3

(
λ′
4

ℓR + 1/2
− λ′

3

2(ℓR + 1/2)2

)
, (C.8)

PR
3 =

ℓR(ℓR + 1)

(ℓR + 1/2)2
(
λ2
3 − 2λ3

)
+ λ2

4 + 2
ℓ2R + ℓR − 1/4

ℓR + 1/2
λ4 +

ℓR(ℓR + 1)

(ℓR + 1/2)2
λ′2
3 + λ′2

4 , (C.9)

PR±
1 = PR

1 ± PR′
1 . (C.10)

P̃L
2 = −

(
1 +

1

2(ℓL + 1/2)2

)
χ′
3 +

1

(ℓL + 1/2)
χ′
4 +

1

(ℓL + 1/2)2
χ3χ

′
3

− 1

(ℓL + 1/2)

(
χ3χ

′
4 + χ′

3χ4

)
, (C.11)
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P̃L
3 =

2(ℓ2L + ℓL − 1
4 )

(ℓL + 1/2)
χ′
4 +

2ℓL(ℓL + 1)

(ℓL + 1/2)2
(χ3 − 1)χ′

3 + 2χ4χ
′
4 , (C.12)

P̃R
2 = −

(
1 +

1

2(ℓR + 1/2)2

)
λ′
3 +

1

(ℓR + 1/2)
λ′
4 +

1

(ℓR + 1/2)2
λ3λ

′
3

− 1

(ℓR + 1/2)

(
λ3λ

′
4 + λ′

3λ4

)
, (C.13)

P̃R
3 =

2(ℓ2R + ℓR − 1
4)

(ℓR + 1/2)
λ′
4 +

2ℓR(ℓR + 1)

(ℓR + 1/2)2
(λ3 − 1)λ′

3 + 2λ4λ
′
4 , (C.14)

TL
1 = 4

ℓL(ℓL + 1)(ℓ2L + ℓL − 1/4)

(ℓL + 1/2)4
, (C.15)

TL
2 = 2

ℓL(ℓL + 1)

(ℓL + 1/2)2

(
(PL+

1 )2 − ℓ2L + ℓL − 1/4

(ℓL + 1/2)2
(PL

2 + P̃L
2 ) +

1

2(ℓL + 1/2)2
(PL

3 + P̃L
3 )

)

+
1

(ℓR + 1/2)

1

(ℓL + 1/2)2

(
ℓL(ℓL+1)(PL+

1 )2+
2ℓL(ℓL + 1)(ℓ2L + ℓL − 1/4)

(ℓL + 1/2)2

(
1− 1

2
(PL

2 + P̃L
2 )

)

+
1

2(ℓL + 1/2)
(PL

3 + P̃L
3 )

)
. (C.16)

T̃L
2 = 2

ℓL(ℓL + 1)

(ℓL + 1/2)2

(
(PL−

1 )2 − ℓ2L + ℓL − 1/4

(ℓL + 1/2)2
(PL

2 − P̃L
2 ) +

1

2(ℓL + 1/2)2
(PL

3 − P̃L
3 )

)

+
1

(ℓR + 1/2)

1

(ℓL + 1/2)2

(
−ℓL(ℓL+1)(PL−

1 )2−2ℓL(ℓL + 1)(ℓ2L + ℓL − 1/4)

(ℓL + 1/2)2

(
1− 1

2
(P̃L

2 − PL
2 )

)

+
1

2(ℓL + 1/2)
(P̃L

3 − PL
3 )

)
. (C.17)

TL
3 =

1

2(ℓL + 1/2)4

(
ℓL(ℓL+1)(ℓ2L+ℓL−1/4)

(
(PL

2 )
2 + (P̃L

2 )2
)
+
1

4
(ℓ2L+ℓL+3/4)

(
(PL

3 )
2 + (P̃L

3 )2
)

− ℓL(ℓL+1)(PL
2 PL

3 + P̃L
2 P̃

L
3 )

)
+

1

2

1

(ℓR + 1/2)

1

(ℓL + 1/2)3

(
ℓL(ℓL + 1)(ℓ2L + ℓL − 1/4)

(ℓL + 1/2)
PL
2 P̃

L
2

+
1

4

(ℓ2L + ℓL + 3/4)

(ℓL + 1/2)
PL
3 P̃

L
3 − 1

2
(PL

2 P̃
L
3 + P̃L

2 PL
3 )

)
. (C.18)

TR
1 = 4

ℓR(ℓR + 1)(ℓRL + ℓR − 1/4)

(ℓR + 1/2)4
, (C.19)
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TR
2 = 2

ℓR(ℓR + 1)

(ℓR + 1/2)2

(
(PR+

1 )2 − ℓ2R + ℓR − 1/4

(ℓR + 1/2)2
(PR

2 + P̃R
2 ) +

1

2(ℓR + 1/2)2
(PR

3 + P̃R
3 )

)

+
1

(ℓL + 1/2)

1

(ℓR + 1/2)2

(
ℓR(ℓR+1)(PR+

1 )2+
2ℓR(ℓR + 1)(ℓ2R + ℓR − 1/4)

(ℓR + 1/2)2

(
1− 1

2
(PR

2 + P̃R
2 )

)

+
1

2(ℓR + 1/2)
(PR

3 + P̃R
3 )

)
. (C.20)

T̃R
2 = 2

ℓR(ℓR + 1)

(ℓR + 1/2)2

(
(PR−

1 )2 − ℓ2R + ℓR − 1/4

(ℓR + 1/2)2
(PR

2 − P̃R
2 ) +

1

2(ℓR + 1/2)2
(PR

3 − P̃R
3 )

)

+
1

(ℓL + 1/2)

1

(ℓR + 1/2)2

(
−ℓR(ℓR+1)(PR−

1 )2−2ℓR(ℓR + 1)(ℓ2R + ℓR − 1/4)

(ℓR + 1/2)2

(
1− 1

2
(P̃R

2 − PR
2 )

)

+
1

2(ℓR + 1/2)
(P̃R

3 − PR
3 )

)
. (C.21)

TR
3 =

1

2(ℓR + 1/2)4

(
ℓR(ℓR+1)(ℓ2R+ℓR−1/4)

(
(PR

2 )2 + (P̃R
2 )2

)
+
1

4
(ℓ2R+ℓR+3/4)

(
(PR

3 )2 + (P̃R
3 )2

)

−ℓR(ℓR+1)(PR
2 PR

3 +P̃R
2 P̃R

3 )

)
+
1

2

1

(ℓL + 1/2)

1

(ℓR + 1/2)3

(
ℓR(ℓR + 1)(ℓ2R + ℓR − 1/4)

(ℓR + 1/2)
PR
2 P̃R

2

+
1

4

(ℓ2R + ℓR + 3/4)

(ℓR + 1/2)
PR
3 P̃R

3 − 1

2
(PR

2 P̃R
3 + P̃R

2 PR
3 )

)
. (C.22)

RL
1 = −1

2

(
2(χ2

1 + χ2
2) + 2(χ′2

1 + χ′2
2 )− 1

)
− 1

4(ℓL + 1
2)

2
χ3 −

(
(ℓL +

1

2
)− 1

2(ℓL + 1
2)

)
χ4

− 4ℓL(ℓL + 1)− 2

16(ℓL + 1
2)

2
(χ2

3 + χ′2
3 )−

1

4
(χ2

4 + χ′2
4 )−

1

4(ℓL + 1
2 )

(χ3χ4 + χ′
3χ

′
4) , (C.23)

RL
2 =

1

4(ℓL + 1
2)

(
2(χ2

1 + χ2
2) + 2(χ′2

1 + χ′2
2 )− 1

)
−
(
(ℓL +

1

2
)− 3

4(ℓL + 1
2)

)
χ3 −

1

2
χ4

− 1

16(ℓL + 1
2)

3
(χ2

3 + χ′2
3 )−

(
1

2
− 1

4(ℓL + 1
2)

2

)
(χ3χ4 + χ′

3χ
′
4)−

1

4(ℓL + 1
2 )

(χ2
4 + χ′2

4 ) .

(C.24)

R̃L
1 = −1

2

(
2(χ2

1 + χ2
2)− 2(χ′2

1 + χ′2
2 )
)
− 1

4(ℓL + 1
2)

2
χ′
3 −

(
(ℓL +

1

2
)− 1

2(ℓL + 1
2)

)
χ′
4

− 4ℓL(ℓL + 1)− 2

16(ℓL + 1
2 )

2
(2χ3χ

′
3)−

1

4
(2χ4χ

′
4)−

1

4(ℓL + 1
2 )

(χ3χ
′
4 + χ′

3χ4) , (C.25)

28



R̃L
2 =

1

4(ℓL + 1
2)

(
2(χ2

1 + χ2
2)− 2(χ′2

1 + χ′2
2 )
)
−
(
(ℓL +

1

2
)− 3

4(ℓL + 1
2)

)
χ′
3 −

1

2
χ′
4

− 1

16(ℓL + 1
2)

3
(2χ3χ

′
3)−

(
1

2
− 1

4(ℓL + 1
2 )

2

)
(χ3χ

′
4 + χ′

3χ4)−
1

4(ℓL + 1
2)
(2χ4χ

′
4) . (C.26)

RR
1 = −1

2

(
2(λ2

1 + λ2
2) + 2(λ′2

1 + λ′2
2 )− 1

)
− 1

4(ℓR + 1
2)

2
λ3 −

(
(ℓR +

1

2
)− 1

2(ℓR + 1
2)

)
λ4

− 4ℓR(ℓR + 1)− 2

16(ℓR + 1
2)

2
(λ2

3 + λ′2
3 )−

1

4
(λ2

4 + λ′2
4 )−

1

4(ℓR + 1
2)
(λ3λ4 + λ′

3λ
′
4) , (C.27)

RR
2 =

1

4(ℓR + 1
2)

(
2(λ2
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