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Abstract

We consider the solution of large scattering problems
in electromagnetics involving three-dimensional arbitrary
geometries with closed surfaces. The problems are formulated
accurately with the combined-field integral equation and the
resulting dense matrix equations are solved iteratively by
employing the multilevel fast multipole algorithm (MLFMA).
With an efficient parallelization of MLFMA on relatively
inexpensive computing platforms using distributed-memory
architectures, we easily solve large-scale problems that are
discretized with tens of millions of unknowns. Accuracy
of the solutions is demonstrated on scattering problems
involving spheres of various sizes, including a sphere of
radius 110λ discretized with 41,883,638 unknowns, which
is the largest integral-equation problem ever solved, to the
best of our knowledge. In addition to canonical problems,
we also present the solution of real-life problems involving
complicated targets with large dimensions.

1 Introduction

Surface integral equations are commonly used to formulate
scattering problems involving three-dimensional conductors
with arbitrary shapes [24]. When the scatterer involves closed
surfaces, the combined-field integral equation (CFIE) is
usually preferred to formulate the problem. This is because
CFIE is free of the internal resonances [22] and it provides
better-conditioned matrix equations than the electric-field
integral equation (EFIE) and the magnetic-field integral
equation [17],[31]. Simultaneous discretizations of the
scatterer and CFIE lead to dense matrix equations, which can
be solved iteratively using efficient acceleration methods, such
as the multilevel fast multipole algorithm (MLFMA) [27].
However, accurate solutions of many real-life problems

require discretizations with millions of elements leading
to matrix equations with millions of unknowns. To solve
these large problems, it is helpful to increase computational
resources by parallelizing MLFMA. Recently, there have
been many efforts to develop parallel implementations of
MLFMA running on clusters of computers connected via fast
networks [30]. Thanks to these efforts, it has become possible
to solve 20–30 million unknowns on relatively inexpensive
computing platforms [18],[19],[28]–[30].

In this paper, we present our efforts to develop a sophisticated
simulation environment based on MLFMA for the solution
of large-scale scattering problems formulated by CFIE.
Efficient and accurate solutions require a multidisciplinary
study involving diverse components, such as discretization,
iterative algorithms, preconditioners, and parallelization. For
numerical solutions, we model the surfaces by using small
planar triangles. Then, we employ linear basis functions,
such as Rao-Wilton-Glisson (RWG) [25] functions, to expand
the unknown surface current density. Formulation of closed
surfaces with CFIE usually leads to well-conditioned matrix
equations that are easy to solve iteratively. We further
improve the iterative convergence by employing efficient
preconditioners. For the solution of large-scale problems
involving complicated structures, we implement a parallel
version of MLFMA that is suitable for use on clusters of
personal computers. By achieving an efficient parallelization
of MLFMA, we are able to solve problems with tens of
millions of unknowns. As an example, we present the results
of a scattering problem involving a sphere of radius 110λ
discretized with 41,883,638 unknowns, the largest integral-
equation problem solved to date. We also demonstrate the
effectiveness of our simulation environment by presenting
examples on scattering problems involving a complicated
target with a size larger than 300λ.

2 Combined-Field Integral Equation (CFIE)

For perfectly conducting objects, EFIE can be written directly
by testing the boundary condition for the tangential electric



field on the surface as

−ik t̂ ·
∫

S

dr′J(r′) ·
(
I − ∇∇′

k2

)
g(r, r′) =

1
η
t̂ ·Einc(r),

(1)
where the scattered electric field is expressed in terms of the
induced (unknown) surface current J(r), t̂ is any tangential
unit vector on the surface at the observation point r, Einc(r)
is the incident electric field, η is the impedance of free space,
k is the wavenumber, and

gl(r, r′) =
eikR

4πR

(
R = |r − r′|

)
(2)

denotes the free-space Green’s function in phasor notation
with the e−iwt convention. For closed surfaces, MFIE can be
formulated similarly (by using the boundary condition for the
tangential magnetic field) as

J(r)− n̂×
∫

S

dr′J(r′)×∇′g(r, r′) = n̂×Hinc(r), (3)

where the observation point r approaches the surface from the
outside, n̂ is the outwardly directed normal, and Hinc(r) is
the incident magnetic field. In the case of EFIE, the tangential
component of the electric field is directly sampled (tested)
on the surface by using the tangential unit vector t̂. On the
other hand, MFIE is constructed by using a cross product
with the outward normal vector n̂ to obtain the tangential
magnetic field on the surface of the scatterer. The alternative
choices, i.e., testing the fields by using the normal and the
tangential unit vectors for EFIE and MFIE, respectively,
usually produce extremely ill-conditioned matrix equations,
when the discretization is performed by using a Galerkin
scheme.

For the solution of problems involving closed surfaces,
both EFIE and MFIE suffer from the internal-resonance
problem and they do not provide unique solutions at
resonance frequencies related to the geometrical properties of
the closed conductors [22]. To alleviate this problem, EFIE
and MFIE are combined to obtain CFIE as

CFIE = α(r)EFIE +
[
1− α(r)

]
MFIE, (4)

where α(r) is chosen in the range from 0.0 to 1.0 depending
on the observation (testing) point on the surface. For
composite structures involving both open and closed surfaces,
EFIE (α(r) = 1) is used for the open parts, while MFIE is
activated in addition to EFIE (0 < α(r) < 1) for the closed
parts. The scatterers considered in this paper involve only
closed surfaces. Consequently, we use α(r) = 0.2 for all
testing points, which is usually an optimal choice for the
convergence rate of the iterative solutions [7]. Compared
to EFIE and MFIE, CFIE is not only free of the internal
resonance problem, but also provides well-conditioned matrix
equations that are crucial for iterative solvers, such as
MLFMA [17]. In addition, iterative convergence of CFIE
solutions can be further accelerated by using simple and
cost-efficient preconditioners.

3 Discretization of CFIE

For the numerical solution of CFIE, the unknown current
density on the surface of the scatterer is expanded in a series
of basis functions bn(r), i.e.,

J(r) =
N∑

n=1

anbn(r), (5)

where an is the unknown coefficient of nth basis function.
Then, the boundary conditions are enforced by a projection
onto the testing functions tm(r) and N ×N matrix equations
are obtained as

N∑
n=1

ZC
mnan = vC

m, m = 1, ..., N. (6)

In (6), matrix elements are derived as

ZC
mn = αmZE

mn + (1− αm)ZM
mn, (7)

where

ZE
mn = −ik

∫

Sm

drtm(r) ·
∫

Sn

dr′bn(r′)g(r, r′)

+
i

k

∫

Sm

drtm(r) ·
∫

Sn

dr′bn(r′) ·
[
∇∇′g(r, r′)

]

(8)

and

ZM
mn =

∫

Sm

drtm(r) · bn(r)

−
∫

Sm

drtm(r) · n̂×
∫

Sn

dr′bn(r′)×∇′g(r, r′) (9)

are the contributions of EFIE and MFIE, respectively. Sim-
ilarly, elements of the right-hand-side vector can be written
as

vC
m = αmvE

m + (1− αm)vM
m

=
∫

Sm

drtm(r) ·
[αm

η
Einc(r) + (1− αm)n̂×Hinc(r)

]
.

(10)

In (8)–(10), Sm and Sn represent the supports of the mth
testing and nth basis functions, respectively.

In this paper, surfaces are discretized by using small
triangles, on which RWG functions are defined. We use the
same set of RWG functions as the basis and testing functions
according to a Galerkin scheme. The matrix elements in
(7)–(9) can be interpreted as the interactions between the
basis and testing functions. In the MLFMA implementations,
there are O(N) near-field interactions that are calculated
directly by evaluating the integrals in (8) and (9). In general,
we perform the following steps for the efficient and accurate
calculation of these interactions:

1) The loops are constructed over the triangles instead of
the functions. In such a construction, the integrals over
the basis and testing functions must be divided into many



basic (double) integrals that are independent from the
alignment of the functions [6].

2) The inner integrals in the forms of

I1 =
∫

St

dr′




1
x′

y′


 g(r, r′) (11)

I2 =
∫

St

dr′




1
x′

y′


∇′g(r, r′), (12)

are evaluated accurately by using singularity extraction
techniques [14],[20],[23], Gaussian quadratures [5], and
adaptive integration methods [6]. Then, the inner inte-
grals are used in forming the integrands of the outer
integrals.

3) The outer integrals are calculated by using Gaussian
quadratures and adaptive integration methods. For MFIE
part of the matrix elements, a singularity extraction
technique is applied for some of the outer integrals
to improve the accuracy and efficiency of the calcula-
tions [16].

4 Multilevel Fast Multipole Algorithm

The dense matrix equation in (6) can be solved iteratively,
where the matrix-vector multiplications (MVMs) are acceler-
ated by employing MLFMA. In general, MLFMA splits the
MVMs as [27]

Z
C · x = Z

C

NF · x + Z
C

FF · x, (13)

where the near-field interactions denoted by Z
C

NF are calcu-
lated directly and stored in memory, while the far-field in-
teractions (Z

C

FF ) are computed approximately in a group-by-
group manner. For a single-level fast multipole algorithm [4],
far-field interactions can be written as

ZC
mn =

ik

(4π)2

∫
d2k̂F Cm(k̂) αT (k, RCC′) ·GC′n(k̂)

(14)
where k̂ is the angular direction on the unit sphere, k = kk̂,
and

αT (k, RCC′) =
T∑

t=0

it(2t + 1)h(1)
t (kRCC′)Pt(k̂ · R̂CC′)

(15)
is the translation function written in terms of the spherical
Hankel function of the first kind h

(1)
t and the Legendre

polynomial Pt. The translation function in (15) evaluates
the interaction between the basis and testing groups that are
located at C ′ and C, respectively, and separated by

RCC′ = |RCC′ |R̂CC′ = rC − rC′ . (16)

In (14),

GC′n(k̂) =
(
I − k̂k̂

) ·
∫

Sn

dr′ exp [−ik · (r′ − rC′)]bn(r′)

(17)

is the radiation pattern of the nth basis function with respect
to a nearby reference point C ′ [3]. Similarly,

F Cm(k̂) =
[
αmF E

Cm(k̂) + (1− αm)F M
Cm(k̂)

]
(18)

represents the receiving pattern of the mth testing function
with respect to a reference point C, where

F E
Cm(k̂) =

(
I − k̂k̂

) ·
∫

Sm

dr exp [ik · (r − rC)]tm(r)

(19)

and

F M
Cm(k̂) = −k̂ ×

∫

Sm

dr exp [ik · (r − rC)]tm(r)× n̂(r).

(20)

Using the RWG functions, the integrals in (18)–(20) can be
evaluated analytically.

In MLFMA, the interactions in (14) are calculated in a
multilevel scheme using a tree structure constructed by
including the scatterer in a cubic box and recursively dividing
the computational domain into subboxes. The tree structure
of MLFMA includes L = O(log N) levels. At level l from 1
to L, the number of nonempty boxes (clusters) is Nl, where
N1 = O(N) and NL = O(1). Each MVM involves four main
stages that are performed as follows.
• Near-field interactions: In MLFMA, there are O(N) near-

field interactions that are used to perform the multiplica-
tion

y = Z
C

NF · x. (21)

These interactions are calculated and stored in the mem-
ory before the iterative solution.

• Aggregation: Radiated fields at the centers of the clusters
are calculated from the bottom of the tree structure to the
highest level. The fields are sampled uniformly in the φ
direction, while we use the Gauss-Legendre quadrature in
the θ direction [4]. To determine the number of samples
required for a desired level of accuracy, we use the excess
bandwidth formula considering the worst-case scenario
according to a one-box-buffer scheme [21]. Oscillatory
nature of the Helmholtz solutions requires that the sam-
pling rate depends on cluster size as measured by the
wavelength (λ = 2π/k). During the aggregation stage,
we employ local Lagrange interpolation method to match
the different sampling rates of the consecutive levels [10].
The radiation patterns of the basis functions are calculated
and stored in the memory before the iterative solutions.

• Translation: Radiated fields are translated into incoming
fields. For a basis cluster at any level, there are O(1)
testing clusters to translate the radiated field. In addition,
using cubic (identical) clusters, there is a maximum
of 73 − 33 = 316 different translations in each level,
independent of the number of clusters [29]. Similar to
the radiation and receiving patterns, translation operators
defined in (15) are also calculated and stored in memory



before the iterations. We employ interpolation methods
to calculate these operators in O(N) time [9],[26].

• Disaggregation: The incoming fields at the centers of the
clusters are calculated from the top of the tree structure to
the lowest level. The sampling scheme for the incoming
fields is the same as the sampling scheme for the radiated
fields calculated during the aggregation stage. Different
from the aggregation stage, however, sampling rates of
the consecutive levels are matched by using transpose
interpolation (anterpolation) [2]. At the lowest level, the
incoming fields are multiplied by the receiving patterns
of the testing functions. Similar to the radiation patterns
of the basis functions, the receiving patterns are also
calculated and stored in the memory before the itera-
tive solution. Finally, the angular integration in (14) is
performed to complete the MVM.

Since the memory requirement and the processing time
required for each level of MLFMA are proportional to N , the
overall complexity of the MVMs is O(N log N) [27]. The
complexity of the setup, which involves the construction of
the multilevel tree and calculation of the data required during
the MVMs (near-field interactions, radiation and receiving
patterns of the basis and testing functions, and the translation
operators) is O(N).

5 Iterative Solvers and Preconditioners

For the iterative solutions accelerated by MLFMA, we
employ Krylov subspace methods, such as conjugate
gradient (CG), conjugate gradient squared (CGS), biconjugate
gradient (BiCG), stabilized BiCG (BiCGStab), quasi-minimal
residual (QMR), transpose-free QMR (TFQMR), generalized
minimal residual (GMRES), and least-square QR (LSQR)
algorithms [1]. For a given problem, performance of each
algorithm may vary significantly, depending on the shape of
the geometry, discretization, and the type of the formulation.
Since reducing the number of iterations is extremely important
to obtain efficient solutions, we investigate and compare the
iterative solutions provided by various algorithms. For the
solution of scattering problems formulated with CFIE, we
prefer GMRES and BiCGStab, which usually perform better
than other algorithms [13]. In addition, we further accelerate
the iterative convergence by employing preconditioners and
modifying the original matrix equation as

M−1Z · a = M−1v (22)

by multiplying both sides with M−1. In (22), M is a
preconditioner matrix constructed by using some of the near-
field interactions. Due to its favorable computing cost, we
usually employ the block-diagonal preconditioner (BDP) [27]
obtained by selecting only the self interactions of the
lowest-level clusters. For the solution of the matrix equations
obtained by CFIE, BDP reduces the number of iterations
significantly.

6 Parallelization of MLFMA

Many real-life scattering problems formulated by integral
equations require the solution of matrix equations with
millions of unknowns. For the solution of these large-scale
problems, it is helpful to increase computational resources
by assembling parallel computing platforms and at the
same time by parallelizing the solvers. Of the various
parallelization schemes for MLFMA, the most popular use
distributed-memory architectures by constructing clusters
of computers with local memories connected via fast
networks [30]. However, parallelization of MLFMA is not
trivial. Simple parallelization strategies usually fail to provide
efficient solutions because of the communications between
the processors and the unavoidable duplication of some of
the computations over multiple processors.

A simple parallelization of MLFMA involves the distribution
of the clusters among the processors [8]. In this scheme,
each cluster at any level is assigned to a single processor.
For an efficient parallelization of MLFMA, it is essential to
distribute the tree structure among the processors with minimal
duplication and communication between the processors. In
this manner, the simple strategy works efficiently for the lower
levels, which include many clusters with low sampling rates
for the fields. Problems arise in the higher levels involving
small numbers of clusters with large sampling rates.

1) It is difficult to distribute small numbers of clusters in
the higher levels with a good load balance. To avoid
communications during the aggregation and disaggre-
gation stages, the clusters in the higher levels should
be duplicated in multiple processors. Even using load-
balancing algorithms, these duplications may deteriorate
the efficiency of the parallelization dramatically, since
these clusters have large numbers of samples for the
fields.

2) Distributing the clusters among the processors, the
translations involve dense one-to-one communications
between the processors. The amount of the transferred
data can be very large in the higher levels, which may
also reduce the parallelization efficiency significantly.

Identifying the problems of the simple strategy as described
above, a hybrid partitioning approach employs different parti-
tioning strategies for the lower and higher levels to improve
the parallelization efficiency [30]. In this technique, processor
assignments are made on the basis of the fields of the clusters
in the higher levels. Then, each cluster in these levels is shared
by all processors and each processor is assigned to the same
portion of the fields of all clusters. Since the fields in the
higher levels have large sampling rates, the samples can be
distributed efficiently among the processors. In addition, dense
one-to-one communications between the processors during the
translations are eliminated. On the other hand, distributing
fields among the processors introduces new communications
during the aggregation and disaggregation stages. These com-
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Fig. 1: Bistatic RCS (in dB) of spheres of radii 80λ, 96λ,
and 110λ from 160◦ to 180◦, where 180◦ corresponds to the
forward-scattering direction.

munications are performed to transfer relatively small amounts
of data required for the interpolations and produced by the
anterpolations, and their extra cost is usually unimportant
when the number of processors is small (1 to 16). For the
solutions using large numbers of processors, however, the
hybrid parallelization may become inefficient due to increasing
amount of the transferred data during the aggregation and
disaggregation stages. For these solutions, a hierarchical parti-
tioning approach based on appropriate partitioning of both the
samples of the fields and the clusters for all levels can provide
high efficiency [12].

Diameter 160λ 192λ 220λ
Unknowns 23,405,664 33,791,232 41,883,648

Setup (minutes) 94 183 274
BiCGStab Iterations 17 21 19

MVM (seconds) 270 372 441
Solution (minutes) 155 264 290

Total Memory (GB) 113 184 229
Relative Error 4.4% 4.5% 4.7%

Table I: Solutions of large sphere problems with MLFMA
parallelized into 16 processes.

7 Results

By constructing a sophisticated simulation environment based
on parallel MLFMA, we are able to solve scattering problems
discretized with tens of millions of unknowns. As an example,
we present the solution of large scattering problems involving
spheres of radii 80λ, 96λ, and 110λ, which are discretized
with 23,405,664, 33,791,232, and 41,883,648 unknowns, re-
spectively, using λ/10 triangulation. For all three problems, 9-
level MLFMA is employed and parallelized into 16 processes
running on a cluster of quad-core Intel Xeon 5355 processors
connected via an Infiniband network. Using a top-down strat-
egy, the cluster size in the lowest level is 0.16λ–0.21λ. We
use the hybrid parallelization approach to distribute the tree
structures among the processors. Both the near-field and the
far-field interactions are calculated with 1% error. In Table I,
we present the processing time and the total memory usage for
the solution of the sphere problems. Using BDP, the number of
BiCGStab iterations to reduce the residual error below 10−3 is
17–21. For the largest problem with 41,883,648 unknowns, the
setup and the iterative solution parts take about 274 and 290
minutes, respectively, and the total memory usage is 229 GB
using the single-precision representation to store the data.

To present the accuracy of the solutions, Fig. 1 depicts the
normalized bistatic radar cross section (RCS/λ2) values in
decibels (dB) for the spheres. Analytical values obtained by
Mie-series solutions are also plotted as a reference from 160◦

to 180◦, where 180◦ corresponds to the forward-scattering
direction. Fig. 1 shows that the computational values sampled
at 0.1◦ are in agreement with the analytical curves. For more
quantitative information, we define a relative error as

eR =
||A−C||2
||A||2 , (23)

where A and C are the analytical and computational values
of the far-zone electric field, respectively, ||.||2 is the l2-norm
defined as

||x||2 =

√√√√
S∑

s=1

∣∣x[s]
∣∣2, (24)

and S is the number of samples. As also listed in Table I,
the relative error is smaller than 5% in the 160◦–180◦

range for all three solutions. This error is mostly due to
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Fig. 2: A stealth airborne target Flamme.

the discretization of CFIE with the RWG functions and
the accuracy can be improved by employing higher-order
linear-linear basis functions [11].

Next, we present solutions of a real-life problem involving
the Flamme, which is a stealth airborne target, as detailed
in [15] and also depicted in Fig. 2. The scattering problem
is solved at 16 GHz and the maximum dimension of the
Flamme is 6 meters, corresponding to 320λ. Using λ/10
triangulation, the problem is discretized with 24,782,400
unknowns. Solutions are performed by a 10-level MLFMA
parallelized into 16 processes. The nose of the target is in
the x direction. Fig. 3(a) presents the co-polar RCS values in
dBm2 on the x-y plane as a function of the bistatic angle φ,
when the target is illuminated by a plane wave propagating
in the −x direction with the electric field polarized in
the y direction (φ polarization). In the plots, 0◦ and 180◦

correspond to the back-scattering and forward-scattering
directions, respectively. In Fig. 3(b), the bistatic RCS values
are plotted from 0◦ to 360◦ when the target is illuminated
by a plane wave propagating in the x-y plane at a 30◦ angle
from the x axis (from φ = 30◦). In this plot, 30◦ and 210◦

correspond to the back-scattering and forward-scattering
directions, respectively. After the setup, which takes about
104 minutes, the problem is solved twice (for two excitations)
in about 470 minutes. Using BiCGStab and BDP, the numbers
of iterations to reduce the residual error below 10−3 are 36
and 35 for the illuminations from φ = 0◦ and φ = 30◦,
respectively.

8 Conclusion

In this paper, we consider fast and accurate solutions
of large-scale scattering problems formulated by CFIE.
Using a parallel implementation of MLFMA, we are able
to solve problems discretized with tens of millions of
unknowns. We demonstrate the accuracy and efficiency
of our implementations by considering both canonical
and real-life problems, including a sphere of radius 110λ
and the stealth Flamme geometry with a size larger than 300λ.
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[11] Ö. Ergül and L. Gürel, “Linear-linear basis functions
for MLFMA solutions of magnetic-field and combined-
field integral equations,” IEEE Trans. Antennas Propagat.,
vol. 55, no. 4, pp. 1103–1110, Apr. 2007.
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