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A PHD filter for tracking multiple
extended targets using random matrices

Karl Granström, Member, IEEE, and Umut Orguner, Member, IEEE

Abstract—This paper presents a random set based approach
to tracking of an unknown number of extended targets, in the
presence of clutter measurements and missed detections, where
the targets’ extensions are modeled as random matrices. For this
purpose, the random matrix framework developed recently by
Koch et al. is adapted into the extended target PHD framework,
resulting in the Gaussian inverse Wishart PHD (GIW-PHD) filter.
A suitable multiple target likelihood is derived, and the main
filter recursion is presented along with the necessary assump-
tions and approximations. The particularly challenging case of
close extended targets is addressed with practical measurement
clustering algorithms. The capabilities and limitations of the
resulting extended target tracking framework are illustrated both
in simulations and in experiments based on laser scans.

Index Terms—Target tracking, extended target, PHD filter,
random set, Gaussian distribution, inverse Wishart distribution,
random matrix, laser sensor, occlusion, probability of detection.

I. INTRODUCTION

Early target tracking often made the assumption that each
target can produce at most one measurement at a given time
step, see e.g. [1]. With modern and more accurate sensors, the
targets may occupy multiple resolution cells of the sensor, thus
potentially producing more than one measurement at a given
time step. Such targets are denoted extended, and tracking
of extended targets has received increasing research attention
over the past decade. Examples of extended target tracking
include vehicle tracking using automotive radar, tracking of
sufficiently close airplanes or ships with ground or marine
radar stations, and person tracking using laser range sensors.

Assuming that the received target measurements are Poisson
distributed in number, Gilholm and Salmond presented an
approach to extended target tracking [2]. Their approach is
illustrated with two examples, one in which the target is mod-
eled as a point that may generate more than one measurement,
and another example in which the target is an infinitely thin
stick of length l. An inhomogeneous Poisson point process
measurement model is suggested in [3], where a Poisson
distributed number of measurements is distributed around the
target. The model implies that the target is sufficiently far away
from the sensor for the measurements to resemble a cluster
rather than a geometric structure.

Copyright (c) 2012 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions@ieee.org.

Karl Granström is with the Department of Electrical Engineering, Division
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Another approach to extended target modeling is the random
hypersurface model [4], which has been used to estimate
elliptic targets [5]. Measurements of target down-range extent
are used to aid track retention in [6]. Further approaches
to estimating the target extensions, as ellipses, rectangles, or
more general shapes, are given in [7]–[10].

With finite set statistics (FISST), Mahler introduced a set
theoretic approach in which targets and measurements are
modeled using random finite sets (RFS). The approach allows
multiple target tracking in the presence of clutter and with
uncertain associations to be cast in a Bayesian framework [11],
resulting in an optimal multi-target Bayes filter. An important
contribution of FISST is the statistical moments of the RFS,
which enable practical implementation of the optimal multi-
target Bayes filter. The first order moment of an RFS is
called the probability hypothesis density (PHD), and is an
intensity function defined over the target state space. The PHD
filter propagates the target set’s PHD in time [11], [12], and
represents an approximation to the optimal multi-target Bayes
filter. By approximating the PHD with a Gaussian mixture
(GM), a practical implementation of the PHD filter is obtained,
called the Gaussian mixture PHD (GM-PHD) filter [13]. An
extension of the PHD filter to handle extended targets of the
type presented in [3] is given in [14]. For the closely related
area of group target tracking, in which several targets move
in unison, an approach using the Gaussian mixture PHD filter,
where groups are identified as targets with similar position or
velocity estimates, is presented in [15]. The individual targets
in a group are predicted together using a leader-follower
model. A random finite set formulation of single extended
target tracking is given in [16], a particle implementation is
given for the general case and a closed form solution is shown
for the linear Gaussian case.

A Gaussian mixture implementation of the extended tar-
get PHD filter [14], called the ET-GM-PHD-filter, has been
presented in [17], with an early version given in [18]. In
both of the works [17] and [18], only the kinematic prop-
erties of the targets’ centroids are estimated. Estimating the
targets’ extents is omitted to reduce the complexity of the
presentation, however this also leads to some drawbacks. In
this paper, the case where the target extents are explicitly
modeled and estimated along with the kinematic target states is
investigated. For this purpose, we give an extended target PHD
filter implementation where the target extents are represented
with symmetric positive definite random matrices, i.e. the
extensions are elliptical.

Using random matrices to track extended objects and groups
of targets was suggested by Koch in 2008 [19]. The target
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kinematical states are modeled using a Gaussian distribution,
while the target extension is modeled using an inverse Wishart
distribution. Using random matrices to track group targets
under kinematical constraints is discussed in [20]. Modifi-
cations and improvements to the Gaussian-inverse Wishart
model of [19] have been suggested in [21], and the model [19]
has also been integrated into a Probabilistic Multi-Hypothesis
Tracking (PMHT) framework in [22]. A comparison of random
matrices and the random hypersurface model under single
target assumption is given in [23].

The random matrix approach [19], to the best of our
knowledge, has previously not been used in a framework
for tracking an unknown number of multiple extended tar-
gets, in the presence of missed detections and clutter. The
extended target PHD filter presented in this paper is capable
of estimating both the kinematic states and the extents of
multiple targets, in scenarios where both missed detections
and clutter are allowed. At each time step, we first assume that
the last estimated PHD is approximated with an unnormalized
mixture of Gaussian inverse Wishart (GIW) distributions (i.e.
the weights do not have to sum up to unity). We then show how
the prediction and the measurement updates can be performed
as was done in the single target case in [19], and also give
a likelihood function suitable to handle multiple extended
targets. The extended target PHD filter [14] requires all the
partitions of the measurement set. As a feasible approximation,
as in [17] we use only a subset of all partitions. In order to
better handle spatially close targets, two additional approaches
to measurement set partitioning are suggested. The resulting
filter, called the Gaussian inverse Wishart PHD filter (GIW-
PHD filter), is tested in simulations and in experiments based
on laser scans.

The paper is organized as follows. Section II clearly speci-
fies the extended targets of interest considered in this work and
the selected extent modeling methodology. We mathematically
describe the addressed target tracking problem in Section III.
Section IV first lists the assumptions made, then gives the
extended target PHD filter prediction and correction equations
for the GIW-PHD filter, and finally presents a merging and
pruning scheme for the GIW components. In this work, due
to space considerations, we are not able to give all the details
about the main partitioning algorithm described originally in
[17]. For this reason, Section V presents only the required
modifications and additions to the measurement partitioning
method of [17]. Results from simulations and experiments are
presented in Section VI and Section VII, and the paper is
finalized with conclusions and future work in Section VIII.

II. MODELING THE TARGET EXTENSION

The extended targets considered in this work are charac-
terized by a number of reflection points spread over their
extents. Early examples of extended target tracking assume
fixed measurement sources on the target, which can be tracked
individually to estimate the overall lumped behavior of the
extended target [24]. In many practical cases such an approach
might fail, because the location of the measurement sources
usually change fast according to the target sensor geometry.

Having few measurements from a single source might not
be sufficient to generate good quality individual tracks. For
these reasons, we avoid such an explicit estimation of the
measurement sources, and instead model the global behavior
of the measurements over the target extent.

As a general and simple model for the target extensions,
we use ellipsoids represented by positive definite matrices,
proposed by Koch in his pioneering work [19]. As admitted
by Koch in [19], “ellipsoidal object shapes are certainly a
major simplification in view of large target groups which can
be irregular in shape and in target density”. This remark
might be considered to be true for extended targets when the
targets are very close to the sensor. In this case the target
features form clusters of sensor reports that are too structured
to be represented accurately by ellipsoids. Nevertheless, in
many real-life target tracking scenarios, the targets are neither
sufficiently far from the sensors to generate only a single
measurement, nor are they sufficiently close to the sensors
such that their features are clearly articulated.

In this work, the targets of interest are those sufficiently
far away from the sensor so that their measurements resemble
a cluster of points. In Figure 1 we give an example of the
ellipsoidal model applied to real laser range data. The figure
shows two plots with measurements of a bicyclist and a
pedestrian. While neither bikes nor humans are shaped as
ellipses, we see that, given the measurements, the random
matrix model is a reasonable approximation of the extensions
of the bicyclist and pedestrian. In the results section of this
work we also present results from experiments where multiple
humans are tracked in laser range data using the ellipsoidal
models.

When the target extents are modeled as ellipsoids, clearly
there are many different ways to estimate the parameters
of the ellipses. Classically, the target tracking problem is
considered in a Bayesian framework utilizing state estimators
such as Kalman filters, its extensions, and particle filters.
We follow this tradition and use Koch’s Bayesian random
matrix methodology, where the random matrices are inverse-
Wishart distributed. The inverse Wishart probability density
function is a convenient prior for the considered types of
measurements, and iterative update formulae for the inverse-
Wishart parameters are obtained. The Bayesian framework
used conveniently supplies probabilistic uncertainty measures
to describe the extension estimates.

III. TARGET TRACKING PROBLEM FORMULATION

The set of extended targets at time k is denoted

Xk =
{
ξ
(i)
k

}Nx,k
i=1

, ξ
(i)
k ,

(
x
(i)
k , X

(i)
k

)
, (1)

where Nx,k is the unknown number of targets, and, in accor-
dance with [19], x(i)

k is referred to as the kinematical state of
the i:th target, and X

(i)
k is referred to as the extension state.

We denote the augmented state composed of the kinematic
and extension states by ξ

(i)
k . Let the operation | · | denote

set cardinality, i.e. |Xk| = Nx,k. The target dynamic motion
model is defined as [19]

x
(i)
k+1 =

(
Fk+1|k ⊗ Id

)
x
(i)
k + w

(i)
k+1 (2)
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Fig. 1. The ellipsoidal extension model applied to laser range data. Measurements of a bicyclist (a) and a pedestrian (b). Both legs of the pedestrian are
measured, explaining the two distinct clusters of three and four measurements, respectively. The measurements z

(j)
k are shown as black dots, the kinematical

state estimates x̂k|k are shown as a black squares, and the representative extension state estimates X̂k|k are shown as gray ellipses.

where w
(i)
k+1 is zero mean Gaussian process noise with co-

variance ∆
(i)
k+1|k = Qk+1|k ⊗ X

(i)
k+1 and d is the dimension

of the target extent, i.e. X(i)
k is a d × d symmetric positive

definite matrix and Id is an identity matrix of dimension
d. The notation A ⊗ B denotes the Kronecker product of
matrices A and B. The object kinematics are modeled up to
the (s− 1):th derivative, i.e. the length of the kinematic state
vector is nx = s×d. Here s = 3, and Fk+1|k and Qk+1|k are
given by [19]

Fk+1|k =

1 Ts
1
2T

2
s

0 1 Ts
0 0 e−Ts/θ

 , (3a)

Qk+1|k = Σ2
(

1− e−2Ts/θ
)

diag ([0 0 1]) , (3b)

where Ts is the sampling time, Σ is the scalar acceleration
standard deviation and θ is the maneuver correlation time.

The set of measurements obtained at time k is denoted

Zk =
{
z
(j)
k

}Nz,k
j=1

(4)

where Nz,k = |Zk| is the number of measurements. The
measurement model is defined as [19]

z
(j)
k = (Hk ⊗ Id)x

(i)
k + e

(j)
k , (5)

where e
(j)
k is white Gaussian noise with covariance given by

the target extension matrix X
(i)
k , and Hk = [1 0 0] as in

[19]. Each target generates a Poisson distributed number of
measurements, where the Poisson rate γ (ξk) is a function of
the augmented state.

Clutter measurements are modeled as being Poisson dis-
tributed in number, with rate parameter βFA,k clutter measure-
ments per surveillance volume per scan. With surveillance vol-
ume S, the mean number of clutter measurements is βFA,kS
clutter measurements per scan. The clutter measurements are
modeled as being uniformly distributed over the surveillance
area.

The goal at each time step is to estimate the set of targets
XK given the sets of measurements ZK = {Zk}Kk=1. This
is achieved by propagating the predicted and updated PHDs
of the set of targets Xk, denoted Dk|k−1( · ) and Dk|k( · ),
respectively, using the extended target PHD filter presented
in [14].

IV. THE GAUSSIAN INVERSE WISHART PHD FILTER

For the multi-target tracking problem described in Sec-
tion III, the extended target PHD filter prediction equations
are given as follows [12].

Dk+1|k (ξk+1) =

∫
pS (ξk) pk+1|k (ξk+1|ξk)Dk|k (ξk) dξk

+Db
k+1 (ξk+1) , (6)

where we omitted new target spawning1, and

• pS ( · ) is the probability of survival as a function of the
augmented target state;

• pk+1|k ( · | · ) is the state transition density, describing the
transition from state ξk to state ξk+1;

• Db
k ( · ) is the birth PHD, representing new targets.

The correction equations for the extended target PHD filter has
the following form [14],

Dk|k
(
ξk|Zk

)
= LZk (ξk)Dk|k−1

(
ξk|Zk−1

)
. (7)

The measurement pseudo-likelihood function LZk( · ) in (7) is
defined as

LZk (ξk) ,
(

1− e−γ(ξk)
)
pD (ξk) + e−γ(ξk)pD (ξk) (8)

×
∑
p∠Zk

ωp

∑
W∈p

γ (ξk)
|W |

dW

∏
zk∈W

φzk (ξk)

λkck (zk)
,

where

• λk , βFA,kS is the mean number of clutter measure-
ments;

• ck (zk) = 1/S is the spatial distribution of the clutter
over the surveillance volume;

• the notation p∠Zk denotes that p partitions the measure-
ment set Zk into non-empty cells W . When used under
a summation sign, the summation is over all possible
partitions;

• the notation W ∈ p denotes that the set W is a cell in
the partition p. When used under a summation sign, the
summation is over all sets in the partition;

1More details on target spawning are given in Section VI-D.
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• the quantities ωp and dW are non-negative coefficients
defined, for each partition p and cell W respectively, as

ωp =

∏
W∈p dW∑

p′∠Zk

∏
W ′∈p′ dW ′

, (9)

dW =δ|W |,1 +Dk|k−1

[
pDγ

|W |e−γ
∏

zk∈W

φzk ( · )
λkck (zk)

]
,

(10)

where δi,j is the Kronecker delta and the notation f [g]
denotes the integral

∫
f(x)g(x)dx.

• φzk (ξk) , p(zk|ξk) is the likelihood function for a single
target generated measurement. Under the measurement
model (5) it is given as

φzk (ξk) = N (zk ; (Hk ⊗ Id)xk, Xk) . (11)

In the following subsections, we are going to assume that
we are at an intermediate stage of estimation at time tk and
the current estimated PHD Dk|k( · ) can be approximated as
an unnormalized mixture of Gaussian inverse Wishart (GIW)
distributions as follows.

Dk|k (ξk) ≈
Jk|k∑
j=1

w
(j)
k|kN

(
xk ; m

(j)
k|k, P

(j)
k|k ⊗Xk

)
×IW

(
Xk ; ν

(j)
k|k, V

(j)
k|k

)
, (12)

where
• Jk|k is the number of components;
• w(j)

k|k is the weight of the j:th component;

• m(j)
k|k and P (j)

k|k ⊗Xk are the Gaussian mean and covari-
ance of the j:th component;

• ν(j)k|k and V (j)
k|k are the inverse Wishart degrees of freedom

and inverse scale matrix of the j:th component;
• the notation N (x ; m,P ) denotes a Gaussian distribution

defined over the variable x with mean m and covariance
P ;

• the notation IW (X ; ν, V ) denotes an inverse Wishart
distribution defined over the variable X with degrees of
freedom ν and inverse scale matrix V .

Further, let ξ(j)k|k be an abbreviation of the sufficient statistics
of the j:th GIW component, i.e.

ξ
(j)
k|k ,

(
m

(j)
k|k, P

(j)
k|k, ν

(j)
k|k, V

(j)
k|k

)
. (13)

Note that the distribution for the kinematical state xk depends
on the extension state Xk. Estimates of the kinematic state
uncertainty and of the target extent are obtained as in [19],

P̂
(j)
k|k =

P
(j)
k|k ⊗ V

(j)
k|k

ν
(j)
k|k + s− sd− 2

, (14)

X̂
(j)
k|k =

V
(j)
k|k

ν
(j)
k|k − 2d− 2

, (15)

for ν
(j)
k|k such that the denominators are positive. In the

following, we give the assumptions made in the derivation
of the GIW-PHD filter in Section IV-A. The prediction and

update formulas for the PHD representation in (12) are then
presented in Section IV-B and Section IV-C. Finally, GIW
mixture reduction using a pruning and merging scheme is
addressed in Section IV-D.

A. Assumptions

In order to derive prediction and correction equations for
the GIW-PHD filter, a number of assumptions are made. The
first four assumptions are standard in most target tracking
applications, see e.g. [1].

Assumption 1: Each target evolves and generates observa-
tions independently of all other targets. �

Assumption 2: Each target’s kinematical part follows a lin-
ear Gaussian dynamical model, and the sensor has a linear
Gaussian measurement model. �

Assumption 3: Clutter is Poisson distributed in number, and
independent of target-originated measurements. �

Assumption 4: The survival probability is state indepen-
dent, i.e. pS (ξk) = pS. �
The next assumption is reasonable in scenarios where target
interactions are negligible [13].

Assumption 5: The predicted multi-target RFS is Poisson.
�
In [13], [17] the PHD is represented as a mixture of Gaussian
distributions, here a different assumption is made to accom-
modate the random matrix model.

Assumption 6: The intensity of the birth RFS is a mixture
of GIW distributions. �
The following assumption is inherited from [19], where it is
noted that it implies restrictions that can be justified in many
practical cases.

Assumption 7: The target augmented state transition den-
sity satisfies

pk+1|k (ξk+1|ξk) ≈p1k+1|k (xk+1|Xk+1,xk) p2k+1|k (Xk+1|Xk)

(16)

for all ξk and ξk+1. �
In addition to these, two more assumptions are made con-
cerning the probability of detection pD ( · ) and the rate γ( · )
that governs each target’s measurement generation. These
assumptions require a bit more elaboration.

Assumption 8: The following approximation about pD ( · )
holds for all ξk

pD (ξk)N
(
xk ; m

(j)
k|k−1, P

(j)
k|k−1 ⊗Xk

)
× IW

(
Xk ; ν

(j)
k|k−1, V

(j)
k|k−1

)
≈pD

(
ξ
(j)
k|k−1

)
N
(
xk ; m

(j)
k|k−1, P

(j)
k|k−1 ⊗Xk

)
× IW

(
Xk ; ν

(j)
k|k−1, V

(j)
k|k−1

)
. (17)

Let p(j)D , pD
(
ξ
(j)
k|k−1

)
abbreviate the probability of detection

for the j:th GIW component. �
In Assumption 8 the approximation (17) is trivially satisfied

when pD ( · ) = pD, i.e. when pD ( · ) is constant. In general,
Assumption 8 holds approximately when the function pD ( · )
does not vary much in the uncertainty zone of a target in the



5

augmented state space ξk. This is true either when pD ( · ) is
a sufficiently smooth function, or when the signal to noise
ratio (SNR) is high enough such that the uncertainty zone is
sufficiently small. A similar approach to variable probability
of detection has been taken in order to model the clutter notch
in ground moving target indicator target tracking [25].

For the expected number of measurements from the targets,
represented by γ( · ), similar remarks apply and the following
assumption is made.

Assumption 9: The following approximation about γ( · )
holds for all ξk, j = 1, . . . , Jk|k−1 and all integers n ≥ 1,

e−γ(ξk)γn(ξk)N
(
x ; m

(j)
k|k−1, P

(j)
k|k−1 ⊗Xk

)
× IW

(
Xk ; ν

(j)
k|k−1, V

(j)
k|k−1

)
≈e−γ

(
ξ
(j)

k|k−1

)
γn
(
ξ
(j)
k|k−1

)
N
(
x ; m

(j)
k|k−1, P

(j)
k|k−1 ⊗Xk

)
× IW

(
Xk ; ν

(j)
k|k−1, V

(j)
k|k−1

)
. (18)

Let γ(j) , γ
(
ξ
(j)
k|k−1

)
abbreviate the expected number of

measurements for the j:th GIW component. �
The trivial situation γ( · ) = γ, i.e. when γ( · ) is constant,

is again a special case where Assumption 9 is satisfied.
In general, satisfying Assumption 9 is more difficult than
Assumption 8. Nevertheless Assumption 9 is expected to
hold approximately either when γ ( · ) is a sufficiently smooth
function or when the signal to noise ratio (SNR) is high enough
such that the uncertainty zone of a target in the augmented
state space ξk is sufficiently small.

B. Prediction

Utilizing Assumptions 4 and 7, the prediction of existing
targets can be written as

pS

∫
p1k+1|k (xk+1|Xk+1,xk)

× p2k+1|k (Xk+1|Xk)Dk|k (xk, Xk) dxkdXk

=pS

Jk|k∑
j=1

w
(j)
k|k

∫
N
(
xk ; m

(j)
k|k, P

(j)
k|k ⊗Xk+1

)
×p1k+1|k (xk+1|Xk+1,xk)

dxk︸ ︷︷ ︸
Kinematical part

×
∫
IW

(
Xk ; ν

(j)
k|k, V

(j)
k|k

)
p2k+1|k (Xk+1|Xk) dXk︸ ︷︷ ︸

Extension part

. (19)

Using the linear Gaussian model given in (2), the prediction
for the kinematical part becomes [19]∫

N
(
xk ; m

(j)
k|k, P

(j)
k|k ⊗Xk+1

)
× p1k+1|k (xk+1|Xk+1,xk) dxk

=N
(
xk+1 ; m

(j)
k+1|k, P

(j)
k+1|k ⊗Xk+1

)
, (20)

where

m
(j)
k+1|k =

(
Fk+1|k ⊗ Id

)
m

(j)
k|k, (21a)

P
(j)
k+1|k = Fk+1|kP

(j)
k|kF

T

k+1|k + Qk+1|k. (21b)

The extension part is less straightforward. Here, we apply
the same heuristic approach as in [19], i.e. we make the
approximation∫

IW
(
Xk ; ν

(j)
k|k, V

(j)
k|k

)
p2k+1|k (Xk+1|Xk) dXk

≈IW
(
Xk+1 ; ν

(j)
k+1|k, V

(j)
k+1|k

)
(22)

where the predicted degrees of freedom and inverse scale
matrix are approximated by

ν
(j)
k+1|k = e−Ts/τν(j)k|k, (23a)

V
(j)
k+1|k =

ν
(j)
k+1|k − d− 1

ν
(j)
k|k − d− 1

V
(j)
k|k , (23b)

where τ is a temporal decay constant. Thus, the PHD
corresponding to predicted existing targets is

Jk|k∑
j=1

w
(j)
k+1|kN

(
xk+1 ; m

(j)
k+1|k, P

(j)
k+1|k ⊗Xk+1

)
×IW

(
Xk+1 ; ν

(j)
k+1|k, V

(j)
k+1|k

)
, (24)

where w
(j)
k+1|k = pSw

(j)
k|k, the Gaussian mean m

(j)
k+1|k and

covariance P (j)
k+1|k are given in (21), and the inverse Wishart

degrees of freedom ν
(j)
k+1|k and inverse scale matrix V (j)

k+1|k are
given in (23).

The birth PHD

Db
k (ξk) =

Jb,k∑
j=1

w
(j)
b,kN

(
xk ; m

(j)
b,k, P

(j)
b,k ⊗Xk

)
×IW

(
Xk ; ν

(j)
b,k , V

(j)
b,k

)
, (25)

represents new targets that appear at time step k. The full
predicted PHD Dk+1|k (ξk+1) is the sum of the PHD of
predicted existing targets (24) and the birth PHD (25), and
contains a total of Jk+1|k = Jk|k + Jb,k+1 GIW components.

C. Correction

The corrected PHD is a GIW mixture given by

Dk|k (ξk) = DND
k|k (ξk) +

∑
p∠Zk

∑
W∈p

DD
k|k (ξk,W ), (26)

where DND
k|k ( · ), handling the no detection cases, is given by

DND
k|k (ξk) =

Jk|k−1∑
j=1

w
(j)
k|kN

(
xk ; m

(j)
k|k, P

(j)
k|k

)
× IW

(
Xk ; ν

(j)
k|k, V

(j)
k|k

)
, (27a)

w
(j)
k|k =

(
1−

(
1− e−γ

(j)
)
p
(j)
D

)
w

(j)
k|k−1, (27b)

ξ
(j)
k|k =ξ

(j)
k|k−1. (27c)

The GIW mixture DD
k|k (ξk,W ), handling the detected target

cases, requires the likelihood of the measurements in each cell
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W ,∏
zk∈W

φzk (ξk)

λkck (zk)
=β
−|W |
FA,k

∏
zk∈W

N
(
z
(i)
k ; (Hk ⊗ Id)xk, Xk

)
,

(28)

multiplied with the predicted GIW components,

N
(
xk ; m

(j)
k|k−1, P

(j)
k|k−1 ⊗Xk

)
IW

(
Xk ; ν

(j)
k|k−1, V

(j)
k|k−1

)
.

(29)
The product of (28) and (29) can be rewritten as

β
−|W |
FA,kL

(j,W )
k N

(
xk ; m

(j,W )
k|k , P

(j,W )
k|k ⊗Xk

)
×IW

(
Xk ; ν

(j,W )
k|k , V

(j,W )
k|k

)
. (30)

The details behind the derivation are given in Appendix A. The
corrected Gaussian mean and covariance and inverse Wishart
degrees of freedom and inverse scale matrix in (30) are given
by

m
(j,W )
k|k = m

(j)
k|k−1 +

(
K

(j,W )
k|k−1 ⊗ Id

)
ε
(j,W )
k|k−1, (31a)

P
(j,W )
k|k = P

(j)
k|k−1 −K

(j,W )
k|k−1S

(j,W )
k|k−1

(
K

(j,W )
k|k−1

)T

, (31b)

ν
(j,W )
k|k = ν

(j)
k|k−1 + |W |, (31c)

V
(j,W )
k|k = V

(j)
k|k−1 +N

(j,W )
k|k−1 + ZWk , (31d)

where the centroid measurement, scatter matrix, innovation
factor, gain matrix, innovation vector and innovation matrix
are defined as

z̄Wk =
1

|W |
∑

z
(i)
k ∈W

z
(i)
k , (32a)

ZWk =
∑

z
(i)
k ∈W

(
z
(i)
k − z̄Wk

)(
z
(i)
k − z̄Wk

)T

, (32b)

S
(j,W )
k|k−1 =HkP

(j)
k|k−1H

T

k +
1

|W |
, (32c)

K
(j,W )
k|k−1 =P

(j)
k|k−1H

T

k

(
S
(j,W )
k|k−1

)−1
, (32d)

ε
(j,W )
k|k−1 =z̄Wk − (Hk ⊗ Id)m

(j)
k|k−1, (32e)

N
(j,W )
k|k−1 =

(
S
(j,W )
k|k−1

)−1
ε
(j,W )
k|k−1

(
ε
(j,W )
k|k−1

)T

. (32f)

The likelihood in (30) is given by

L(j,W )
k =

1(
π|W ||W |S(j,W )

k|k−1

) d
2

∣∣∣V (j)
k|k−1

∣∣∣ ν
(j)
k|k−1

2

∣∣∣V (j,W )
k|k

∣∣∣ ν
(j,W )
k|k

2

Γd

(
ν
(j,W )

k|k
2

)
Γd

(
ν
(j)

k|k−1

2

) .
(33)

where |V | denotes the determinant of the matrix V , and |W |
is the number of measurements in the cell W . The updated
GIW component weight is given by

w
(j,W )
k|k =

ωp

dW
e−γ

(j)

(
γ(j)

βFA,k

)|W |
p
(j)
D L

(j,W )
k w

(j)
k|k−1, (34)

where

dW = δ|W |,1 +

Jk|k−1∑
`=1

e−γ
(`)

(
γ(`)

βFA,k

)|W |
p
(`)
D L

(`,W )
k w

(`)
k|k−1.

(35)

Finally, the coefficients ωp can be calculated by (9). The
corrected PHD is of the form given in (12) with weights given
by (34), and Gaussian and inverse Wishart parameters given
in (31). Let |pp| denote the number of cells W in the p:th par-
tition, and let the set of partitions contain P unique partitions.
The corrected PHD then has Jk|k = Jk|k−1+Jk|k−1

∑P
p=1 |pp|

GIW components.

D. Pruning and merging

From the prediction and correction, one quickly realizes
that as time progresses, the number of GIW components
increases rapidly. To keep the number of components at a
tractable level, pruning and merging of GIW components is
performed similarly to [13]. Empirically we have found that
the merging threshold U must be chosen conservatively to
avoid merging GIW components which correspond to multiple
spatially close targets, because merging such components may
cause cardinality error. The details of the implemented pruning
and merging scheme are given below in Table I. Note that
calculation of the merged covariance P̃

(`)
k|k does not include

the spread of means, the reason is that the means m(i)
k|k and

covariances P (i)
k|k are of different dimensions (s × d and s,

respectively). However, with a conservative merging threshold
U , the spread of means is typically quite small and is thus
negligible.

We also alert the reader about the very simple approach
to merging of inverse-Wishart parameters in Table I. This
procedure is sufficient when a conservative threshold is used,
and the GIW-PHD filter is not very sensitive to changes in
the merging algorithm. Nevertheless, finding a better method
for GIW component merging is a potential subject for future
research.

E. Implementation of the GIW-PHD filter

To facilitate implementation, we give pseudo code for
the GIW-PHD filter, and address implementation issues and
computational complexity, in a Technical Report [26, Online].

V. PARTITIONING THE MEASUREMENT SET

A central part of the correction equation given in (7), (8), is
the partitioning of the set of measurements Zk into partitions
p containing non-empty cells W with measurements z

(j)
k . For

a given partition, the cells can be understood as containing
measurements that are all from the same source, either a single
target or a clutter source.

The measurement pseudo-likelihood (8) requires a sum-
mation over all possible partitions, which quickly becomes
intractable because the number of possible partitions increases
very rapidly as the size of Zk increases [14], [17]. It has been
noted that the full set of partitions can be approximated with
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TABLE I
PSEUDO-CODE FOR GIW-PHD FILTER PRUNING AND MERGING

1: input: GIW components
{
w

(j)
k|k, ξ

(j)
k|k

}Jk|k

j=1
, a truncation threshold T ,

a merging threshold U and a maximum allowable number of GIW
components Jmax.

2: initialize: Set `← 0 and I ←
{
i = 1, . . . , Jk|k

∣∣∣w(i)
k|k > T

}
.

3: repeat
4: `← `+ 1
5: j ← argmax

i∈I
w

(i)
k|k

6: Compute P̂ (j)
k|k using (14).

7: L←
{
i ∈ I

∣∣∣∣(m(i)
k|k −m

(j)
k|k

)T (
P̂

(j)
k|k

)−1 (
m

(i)
k|k −m

(j)
k|k

)
≤ U

}
8: w̃

(`)
k|k ←

∑
i∈L w

(i)
k|k

9: m̃
(`)
k|k ←

1

w̃
(`)
k|k

∑
i∈L w

(i)
k|km

(i)
k|k ,

10: P̃
(`)
k|k ←

1

w̃
(`)
k|k

∑
i∈L w

(i)
k|kP

(i)
k|k

11: ν̃
(`)
k|k ←

1

w̃
(`)
k|k

∑
i∈L w

(i)
k|kν

(i)
k|k ,

12: Ṽ
(`)
k|k ←

1

w̃
(`)
k|k

∑
i∈L w

(i)
k|kV

(i)
k|k

13: I ← I\L
14: until I = ∅
15: If ` > Jmax then replace

{
w̃

(j)
k|k, m̃

(j)
k|k, P̃

(j)
k|k, ν̃

(j)
k|k, Ṽ

(j)
k|k

}`

j=1
by those

of the Jmax GIW components with largest weights.

16: output:
{
w̃

(j)
k|k, ξ̃

(j)
k|k

}`

j=1
, ξ̃(j)

k|k =
(
m̃

(j)
k|k, P̃

(j)
k|k, ν̃

(j)
k|k, Ṽ

(j)
k|k

)

a subset of partitions, so long as this subset contains the most
likely ones among all of the possible partitions [17], [18]. A
method called Distance Partition was suggested in [18], and
it was augmented with the Sub-Partition algorithm in [17] to
better handle the case of spatially close targets.

Distance Partition is based on the fundamental insight that
measurements that are caused by the same extended target
are spatially close to each other. Partitions are computed such
that spatially close measurements are put into the same cell.
However, a method based only on this places measurements
from multiple targets in the same cell if two or more targets are
spatially close, which may cause cardinality errors. In the Sub-
Partition algorithm presented in [17], this problem was solved
by generating additional partitions by considering the number
of measurements in each cell |W |, and comparing it to the
expected number of measurements from a single target. Given
a maximum likelihood estimate K of the number of targets that
caused the measurements in the cell, Sub-Partition uses K-
means++ clustering to split the cell into K sub-cells. A new
partition, that includes the sub-cells instead of the original cell,
is added to the list of partitions. Though this method solves
the cardinality issues in many practical cases, it is noted in
[17] that it is only a first order solution to the problem.

Initial simulations with extended targets modeled using
random matrices showed that Distance Partitioning with Sub-
Partition was insufficient to handle some instances of multiple
extended targets that are spatially close. The phenomenon is
best explained with an example. Consider the two different
sized and spatially close extended targets, with correspond-
ing measurements, in Figure 2a. Distance Partition would
place all measurements in the same cell, due to the spatial
proximity of the measurements. Compare to the division of

the measurements using K-means++ in Figure 2b, which
is the algorithm used in Sub-Partition. The result from K-
means++ is typical, because for this type of scenario the
K-means++ loss function profits much more by dividing
the measurements by a vertical line, rather than a horizontal
one. Because such a resulting additional partition will get a
relatively lower likelihood, compared to the partition which
assigns all the measurements to a single target (obtained
initially by Distance Partitioning), the additional partition
would not improve performance. Despite using Sub-Partition,
the result would typically be a cardinality error in the filtering.

In order to be able to handle this type of true target
scenario, in this paper two additional partitioning methods are
suggested. The first is a method called Prediction Partition,
which is based on the predicted GIW-PHD components. The
second method, called EM Partition, is based on the expec-
tation maximization (EM) algorithm [27]. Both methods are
based on the intuition that in order to solve the problem for
situations as in Figure 2, one has to incorporate the predicted
kinematic and extent states of the targets into the partitioning
process.

A. Prediction Partition

This partitioning method uses the predicted GIW compo-
nents. For components with weight w(j)

k+1|k > 0.5, a d-

dimensional extension estimate X̂
(j)
k+1|k is computed as in

(15). A corresponding position mean is obtained by taking the
d first components of m(j)

k+1|k, denoted m
(j),d
k+1|k. A partition

is obtained by iterating over the components, in the order
of decreasing weight, and putting all measurements z

(i)
k that

fulfill(
z
(i)
k −m

(j),d
k+1|k

)T (
X̂

(j)
k+1|k

)−1 (
z
(i)
k −m

(j),d
k+1|k

)
< ∆d (p)

(36)
into the same cell. Here, ∆d (p) is computed using the inverse
cumulative χ2 distribution with d degrees of freedom, for
probability p = 0.99. If a measurement falls into two or more
extension estimates, it is only put into the cell corresponding to
the component with highest weight. The measurements that do
not fulfill (36) for any GIW component are placed in individual
cells containing only one measurement.

This method works well when the true target motion can be
well modeled by the dynamic motion model (2). However,
when the targets maneuver the method is expected to be
insufficient because the target predictions will be significantly
erroneous.

B. EM Partition

The reason that K-means++ were successful in some
scenarios in [17] was that the targets were mainly of the
same size and circular (i.e. as opposed to elliptical). A
typical extended target scenario can have targets of quite
different sizes generating significantly different numbers of
measurements, and the targets’ measurement distributions can
be significantly skewed, rather than circular. When there are
targets of different sizes, the K-means++ algorithm, which
does not use any measure of the clusters’ physical sizes,
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Fig. 2. Illustration of Sub-Partition. (a) Two spatially close extended targets, with corresponding measurements in black and gray. (b) Sub-cells resulting
from K-means++, shown in black and gray. Ideally, the measurements should be split into two sub-cells along the y = 15 line.

often fails. The Expectation Maximization (EM) algorithm
for Gaussian mixtures, which is a generalization of the K-
means++ algorithm (see e.g. chapter 9 of [28]), incorporates
both cluster sizes and number of measurements in each cluster
via the covariances and the mixing coefficients. The specifics
of the EM algorithm for Gaussian mixtures can be found in
e.g. [28].

In the EM Partition algorithm, the Gaussian mixture param-
eters are initialized with means µ` = m

(j),d
k+1|k, covariances

Σ` = X̂
(j)
k+1|k and mixing coefficients π` ∝ γ

(
ξ
(j)
k+1|k

)
for components j with weight w(j)

k+1|k > 0.5. An additional
mixture component is added with mean µ` at the center of the
surveillance area, circular covariance Σ` scaled such that the
corresponding 99% probability volume approximately covers
the surveillance area, and mixing coefficient π` = 10−9. The
mixing coefficients π` are normalized to satisfy

∑
` π` = 1

before the first E-step.
The additional mixture component is added to capture

the clutter measurements, such that the mixture components
corresponding to the target estimates can converge approx-
imately to the true partitioning. Note that for a given set
of initial Gaussian mixture components, the EM algorithm
will converge to the closest local maximum of the likelihood
function, i.e. there is no guarantee that EM converges to the
global maximum. Because EM Partition is initialized using the
predicted GIW components, similarly to Prediction Partition
it is sensitive to maneuvers that are modeled poorly by the
motion model. However, because of the adaptation capability
of the EM-iterations, EM Partition is slightly less sensitive than
Prediction Partition.

C. Discussion

It is important to note that each of the three partitioning
methods2 used in this work have its respective failure modes.
A problem with Distance Partition with Sub-Partition was
highlighted in Figure 2. Prediction Partition relies on the
prediction of the GIW components, this method sometimes
returns a non-informative partition when targets are maneu-
vering. EM Partition can converge to a local maximum of the
likelihood function that yields a non-informative partition. For
this reason, it is a better choice to use all three methods, rather
than just one method on its own. The more partitions that
are used, the better the full set of partitions is approximated.
Indeed, it is possible that adding further partitioning methods

2Distance Partition with Sub-Partition [17], Prediction Partition and EM
Partition

would improve performance, however this should also be
balanced against the fact that considering more partitions
requires more computations.

VI. SIMULATION RESULTS

This section presents results from extended target tracking
simulations. The target tracking setup is presented in the next
section, followed by the results from four different extended
target tracking scenarios.

A. Target tracking setup

Four different scenarios were simulated, each with two
targets. The true tracks are shown in Figure 3. The true target
extensions are given by

X
(i)
k = R

(i)
k diag

([
A2
i a

2
i

]) (
R
(i)
k

)T

, (37)

where R
(i)
k is a rotation matrix applied such that the i:th

extension’s major axis is aligned with the i:th target’s direction
of motion at time step k, and Ai and ai are the length of
the major and minor axes, respectively. In all four scenar-
ios, the major and minor axes are (A1, a1) = (20, 5) and
(A2, a2) = (10, 2.5) for the two targets, respectively.

The expected number of measurements generated by the
targets is assumed to be a function of the extended target

volume V(i)
k , π

√∣∣∣X(i)
k

∣∣∣ = πAiai. This assumption is

reasonable in many real world scenarios, where a smaller
target would occupy fewer of the sensor’s resolution cells than
a larger target, thus yielding fewer measurements. Here we
adopt the following simple model for the expected number of
measurements that the targets generate,

γ
(i)
k =

⌊√
4

π
V(i)
k + 0.5

⌋
=
⌊
2
√
Aiai + 0.5

⌋
, (38)

where b · c is the floor function and bx+ 0.5c rounds x to
the nearest integer. This model is equivalent to assuming a
uniform expected number of measurements per square root
of surveillance area. In a typical real world scenario, the
number of target measurements may also depend on the
distance between the target and the sensor, i.e. depend on the
kinematical target state x

(i)
k . This case can easily be handled

with a modified expected number of measurements model. For
the sake of simplicity, this case is not included in this paper,
and the readers are referred to [17] for such an example.

The motion model parameters are set to Ts = 1s, θ = 1s,
Σ = 0.1m/s2 and τ = 5s. In three of four scenarios, the



9

parameters of the Jb,k = 2 birth PHD components are set as
follows, w(j)

b,k = 0.1, and

m
(j)
b,k =

[(
x
(j)
0

)T

0T

4

]T
, P

(j)
b,k = diag

(
[1002 252 252]

)
,

ν
(j)
b,k = 7, V

(j)
b,k = diag ([1 1]) . (39)

The mean vectors m(j)
b,k are set such that they correspond to

the starting points of the true targets. In the fourth scenario,
there is Jb,k = 1 birth component, with mean vector set to the
mean of the two targets’ starting points. Knowing the starting
points of the targets a priori is naturally not possible in many
real world scenarios. In the experiment section, we elaborate
further on how the birth PHD can be constructed in a real
scenario.

A total of 100 Monte Carlo simulations were preformed for
each scenario, with a clutter rate of 10 clutter measurements
per time step. The results are presented in terms of the
multi-target measure optimal subpattern assignment metric
(OSPA) [29], cardinality and length of the estimated major and
minor axes of the extension matrices.

B. Crossing tracks

In this scenario, the target tracks cross at close distance,
see Figure 3a. The results are shown in Figure 4. The plots
clearly show that straight line motion can be readily handled
by the presented filter, even when the targets are spatially
close. Noteworthy are the estimates of the major and minor
axes, Ai and ai, respectively. The results show that extensions
which do not change over time (e.g. do not grow, shrink or
rotate) can be estimated with low error.

C. Parallel tracks

In the second scenario, the two targets move closer and
then move in parallel, before separating again, see Figure 3b.
While moving in parallel, the true target extensions’ three
standard deviation ellipses (corresponding to the 99% prob-
ability volume) are separated by 2.5m. The results are shown
in Figure 5. The mean sum of weights is close to the true
value, however there is a downward trend while the targets
are moving in parallel. This is caused mainly by missed
detections, which often causes the PHD filter to lose the target
estimate corresponding to the target that was not detected. In
the subsequent time steps, when the target is detected again,
the measurements from both targets are typically treated as
being caused by one target.

This can also be seen in the OSPA value, which increases
during parallel motion, and also has larger standard deviation.
The estimates of Ai and ai are slightly worse than in the
previous scenario. In the beginning and end of the simulation
this is caused by the rotation of the extension matrices Xk.
This result is intuitive – the turning makes the extension more
difficult to track since the prediction (23) does not account for
the rotation of the extension.

D. Separating tracks

In the third scenario, the two targets start such that their
respective three standard deviation ellipsoids, computed from
the true extensions Xk, are touching. First the targets move
in parallel, after about half the scenario they separate, see
Figure 3c. For this scenario, a birth PHD with Jb,k = 1
component was used. The results are shown in Figure 6. For
the first half of this scenario, when the target extents are
touching, the filter incorrectly estimates one large extended
target, instead of two smaller ones, in about 60% of the
Monte Carlo simulations. This is what causes the mean sum of
weights to be around 1.4. The targets start to separate at time
52, and from time 57 the cardinality is estimated correctly.
Because the cardinality is underestimated in about 60% of
the Monte Carlo simulations, the estimated major and minor
axes, Ai and ai, are difficult to interpret for the first half of the
scenario. When the GIW-PHD filter estimates only one target,
the major axis of the extracted target is estimated to be slightly
lower than A1 = 20m. We had expected the major axis to be
estimated as 20m or more when the targets are combined.
However, this “underestimation” appears to be a property of
the particular prediction and correction equations used for the
inverse Wishart parameters. The major axes of the targets are,
in a way, averaged to obtain a smaller estimate than 20m. For
the second half, when the targets are separated, the results are
better.

Furthermore, the results show that there is little need for a
specific model for target spawning. As soon as the two targets
are slightly separated, the partitioning algorithm (Distance
Partition) automatically starts to generate a partition that suits
the spawning event. This partition then dominates the other
partitions, which can be seen e.g. in terms of the partition
weights ωp. This process is evident also from the cardinality
estimates, which are corrected shortly after the targets sepa-
rate.

E. Closely spaced targets

In the fourth scenario, the targets move closer and then
move in parallel, both in straight lines and through a curve,
before separating again, see Figure 3d. Estimating cardinality
correctly becomes increasingly difficult as multiple targets
move close to each other. Early tests showed that Distance
Partition with Sub-Partition was insufficient to handle some
cases of spatially close extended targets modeled as random
matrices. To improve performance, Prediction Partition and
EM Partition was implemented.

To test the PHD-filters capability of tracking multiple closely
spaced targets, the scenarios in Figure 3b and Figure 3d
were simulated when the targets’ extents were separated by
a distance d. The tracks in Figure 3b were simulated for
separating distances d = 0, 0.5, 1, . . . , 5 [m], and the mean
sum of weights is shown in Figure 7a. When rounded to the
nearest integer there is no cardinality error at any distance d,
however estimating cardinality correctly becomes increasingly
difficult at closer distances, which is shown by the lower
mean value for d < 2.5m. Without Prediction Partition
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Fig. 3. True target tracks used in simulations. (a) Crossing tracks. (b) Parallel tracks. (c) Separating tracks. (d) Turning tracks.
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Fig. 4. (a) Mean OSPA (solid line) ± one standard deviation (dashed lines). (b) Cardinality estimate, taken as the sum of weights (black), compared to true
cardinality (gray). (c) Estimates of the major and minor axes, Ai and ai, respectively. Mean estimates (black) compared to true value (gray).
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Fig. 5. (a) Mean OSPA (solid line) ± one standard deviation (dashed lines). (b) Cardinality estimate, taken as the sum of weights (black), compared to true
cardinality (gray). (c) Estimates of the major and minor axes, Ai and ai, respectively. Mean estimates (black) compared to true value (gray).
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Fig. 6. (a) Mean OSPA (solid line) ± one standard deviation (dashed lines). (b) Cardinality estimate, taken as the sum of weights (black), compared to true
cardinality (gray). (c) Estimates of the major and minor axes, Ai and ai, respectively. Mean estimates (black) compared to true value (gray).

and EM Partition, simulations show that the cardinality is
underestimated for distances d < 7m.

The tracks in Figure 3d contain a turn, making prediction
of the extended target estimates harder, because the dynamic
motion model is constant velocity and predicts target motion
in a straight line. This scenario was simulated at two differ-
ent speeds, 125m/s and 62.5m/s. The separating distances
were d = 0, 0.5, 1, . . . , 25 [m] for the faster speed and
d = 0, 0.5, 1, . . . , 5 [m] for the slower speed.

At the higher speed, target prediction is more difficult, es-
pecially during the turn, and subsequently Prediction Partition
and EM Partition fails to compute informative partitions more
often. This is a common cause of cardinality error. However, at
the lower speed, the true target motion per time step is smaller,
and the linear constant velocity prediction is good enough for
Prediction Partition and EM Partition to compute informative
partitions. The mean sum of weights at both speeds is shown
in Figure 7b and Figure 7c, respectively. The filter can handle
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the maneuver, i.e. there is no cardinality error when the mean
sum of weights is rounded to the nearest integer, when the
targets are separated by d ≥ 21m at the higher speed. At the
lower speed only d ≥ 2m separation is needed.

To conclude, the results show that when a constant velocity
motion model is used, the presented extended target tracking
filter can handle all scenarios except the ones where multiple
spatially close targets are maneuvering quickly. In scenarios
where the target maneuvers are dominant, the use of interact-
ing multiple models (IMM) [30] for motion prediction seems
to be a reasonable solution, e.g. this was done in Section V of
[21]. The presented tracking filter can easily be generalized to
use an IMM filter, however this was considered to be beyond
the scope of this paper.

VII. EXPERIMENT RESULTS

This section presents results from experiments based on
data from a laser range sensor. Measurements were collected
using a SICK LMS laser range sensor, which measures range
every 0.5◦ over a 180◦ surveillance area. Ranges shorter than
13m were converted to (x, y) measurements using a polar to
Cartesian transformation. The two data sets contain 411 and
400 laser range sweeps, respectively. Human targets entered
the surveillance area at different times, and were measured by
the sensor at waist level. There is no ground truth available
for the data, however by examining the measurements the true
cardinality can be observed.

These two data sets have previously been used in [17],
where only the kinematical part of the target state is tracked.
A comparison of the results for the presented GIW-PHD filter
to those for the ET-GM-PHD filter from [17] is performed.

A. Target tracking setup

The sensor’s sampling time is Ts = 0.2s. The motion model
parameters are set to θ = 1s, Σ = 2m/s2 and τ = 5s. For
the sensor used, new targets will appear somewhere along the
edge of the semi circular surveillance area. Therefore, the birth
PHD has Jb,k = 20 components located along the edge of the
surveillance area, the intensity Db

k ( · ) in the (x, y) dimension
is shown in Figure 8. The birth components’ weights are set
to w(j)

b,k = 0.1/Jb,k and the inverse Wishart parameters are set
to ν(j)b,k = 7 and V (j)

b,k = diag
(
[0.252 0.12]

)
.

For the sensor used here, the expected number of target
generated measurements γ varies rapidly with the distance
between the target and the sensor. We have found that the
correction weight update (34) is not sensitive to setting the
corresponding filter parameter constant, however Sub-Partition
needs a reasonable estimate of γ in order to compute a
maximum likelihood estimate K of the number of targets
that generated the measurements in a cell W . To facilitate
this, in the Sub-Partition algorithm we have estimated γ by
assuming that a 50cm wide target is located at the particular
cell’s centroid z̄Wk . A width of 50cm roughly corresponds
to the size of an average person, who is facing the sensor.
This simple heuristic works well for the particular experiments
presented here, however it remains within future work to
design a method which does not rely on a priori information
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Fig. 8. Birth PHD used in experiments. The dark areas are locations which
the birth PHD models as likely locations for new targets to appear. The edge
of the surveillance area is shown as a dashed white line.

of the tracking scenario. A study of the extended target PHD
filter’s performance for incorrect values of the filter parameter
corresponding to γ is given in [17].

B. Experiment with close targets

This data set contains 411 laser range scans. Two humans
walked through the surveillance area, repeatedly moving to-
wards and away from each other, both in the same direction
and in the opposite direction. Thus, the data set contains
situations where the targets are spatially close for both longer
and shorter periods of time. The positions of the extracted
targets are shown in Figure 9a, the number of extracted targets
are compared to the ground truth in Figure 9b and the sum
of weights is shown in Figure 9c. There is no cardinality
error for the entire length of the experiment, however at time
164 there is an unexpected increase in the sum of weights
to 2.4. The sum of weights increases because the target
generated measurements for one of the targets, at that time
step, resemble two small clusters rather than one larger cluster.
The GIW-PHD filter interprets this as an increased likelihood
of an additional target being present. These results are a small
improvement over the results in [17], where the ET-GM-PHD
filter underestimates the cardinality for three consecutive time
steps when the targets are close and moving in the same
direction.

C. Experiment with occlusion

This data set contains 400 laser range scans. Four humans
walked through the surveillance area, however at most three
humans were present at any one time. The first target stands
still at the position (x, y) ≈ (0.4, 6) for most of the experiment.
The second target walks behind the first target, causing the
second target to be fully occluded (i.e. the second target is
not measured), and also walks in front of the first target,
causing the first target to be partially occluded (i.e. only parts
of the first target are measured). With a constant probability
of detection, the occlusion would cause target loss. To handle
the occlusion without target loss, a state dependent probability
of detection is implemented. The variable probability is based
on a simple understanding of the sensor – objects that are
located behind other objects cannot be measured by the sensor,
therefore the probability of detection behind a target should
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Fig. 7. Mean sum of weights for closely spaced targets, at various separating distance. The true cardinality is 2 for all three plots. (a) Tracks in Figure 3b,
note that if the mean sum of weights is rounded to the nearest integer there is no cardinality error. (b) Tracks in Figure 3d at speed 125m/s. At distances
d ≥ 21m the cardinality is estimated correctly. (c) Tracks in Figure 3d at speed 62.5m/s. At distances d ≥ 2m the cardinality is estimated correctly.
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Fig. 9. Results from experiments, the top row shows results for the experiment with close targets (Section VII-B), the bottom row shows results for the
experiment with occlusion (Section VII-C). (a) and (d) show the positions of the extracted targets’ kinematical states. Light gray points corresponds to earlier
time steps, dark gray corresponds to later time steps. (b) and (e) show the number of extracted targets in black, compared to the true cardinality in gray. (c)
and (f) show the sum of weights over time for the two experiments.

be (close to) zero. The details of the variable probability of
detection are given in Appendix B.

The positions of the extracted targets are shown in Fig-
ure 9d, the number of extracted targets are compared to the
ground truth in Figure 9e and the sum of weights is shown in
Figure 9f. At time 345, the time step when the fourth target
enters the surveillance area, the cardinality is underestimated
by 1. At this time step, the fourth target only generates one
measurement, which the GIW-PHD filter interprets as clutter.

These results are a considerable improvement over the
results in [17], where the ET-GM-PHD filter underestimated the
cardinality in two situations where two targets are spatially
close, such that one target is partially occluded. In [17],
a variable probability of detection was also used. However
with the target centroid occluded, the probability of detection
of the partially occluded target is incorrectly set close to
zero, causing cardinality error. With an estimate of the target
extension, the partially occluded target can still be found to
be detectable using the variable probability of detection in
Appendix B. Thus, the experiment shows that for the data
used, the GIW-PHD filter can handle occlusion and spatially
close targets simultaneously. The experiment also shows the

benefit of estimating both the kinematical and extent states,
compared to only estimating the kinematical state.

D. Discussion

The two experiments above are not an exhaustive evaluation
of the GIW-PHD filter, but they serve as a proof of concept and
a potential application (e.g. person tracking for mobile robots).
The comparison to the results in [17], in which the target extent
is not explicitly estimated, support the intuitive hypothesis
that estimating the size of the extended targets improves the
tracking performance. Initial steps have been taken toward
including extension parameters in the target state in the ET-
GM-PHD filter [7]. Thus, more experiments that compare the
ET-GM-PHD filter and the GIW-PHD filter are needed, e.g. for
data that contains more clutter than typical laser data does.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented a PHD filter for multiple extended
target tracking, in the presence of clutter and missed detection.
The target extensions are modeled as random matrices [19],
and a suitable likelihood function is derived. The PHD is
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approximated using Gaussian inverse Wishart distributions,
and the assumptions necessary to obtain a computationally
tractable PHD filter are presented. Two methods for measure-
ment set partitioning are suggested to be added to the methods
presented in [17]. The first method is based on the predicted
Gaussian inverse Wishart PHD components and the second
method is based on the well known EM algorithm. Adding
the two partitioning methods improves tracking of multiple
targets of different sizes when they are spatially close. A sim-
ulation study confirms that the presented PHD filter can handle
spatially close targets, with the exception of when the targets
maneuver quickly. It is further shown that target spawning can
be handled without the use of a specific spawning model. The
spawning is instead implicitly handled by the measurement
partitioning. A potential application, person tracking using
laser range sensors, is presented. Two experiments show the
benefit of estimating the size of the target extents, compared
to only tracking the kinematical states of the target centroid,
as is performed in [17].

The presented target tracking filter estimates the target
extent as a random matrix, giving an elliptical extended target
shape. Alternatively, the target ellipse could be explicitly
parametrized, included in the state vector, and estimated with
the kinematical states. Such an example is given in [7], where
elliptical shapes are tracked using a laser range sensor and
a ET-GM-PHD filter. Ellipse tracking is also performed using
random hypersurface models in [5], a comparison between
random matrices and random hypersurface models for the
single target case is given in [23]. A comparison of the
presented GIW-PHD filter, and elliptic random hypersurface
models using the ET-GM-PHD filter, could be interesting for
the multiple target case.

The importance of measurement set partitioning was high-
lighted in the paper, and the case of close targets maneuvering
quickly was shown to be difficult to handle. This could
possibly be improved through the use of additional partitioning
methods, or via modeling different type of motions using an
IMM type filter. A prediction model that allows transformations
of the extension, e.g. rotations, would possibly improve the
filter performance.

Target spawning is not explicitly modeled in this work,
however, it could be handled implicitly via the partitioning
methods used. The targets must be separated sufficiently for
the spawning to be detected, and the spawning event is
therefore detected with a small time delay. It is not obvious
how a Gaussian inverse Wishart distribution can be split into
two Gaussian inverse Wishart distributions, however devising
such a method could possibly improve performance for target
spawning events.

A heuristic for determining the parameter γ in the Sub-
Partition algorithm was suggested. A method which does
not rely on either assumptions or a priori knowledge of
the tracking scenario would be useful in the general case.
Finally, an improved method for merging of GIW components
is needed.

APPENDIX A
DERIVATION OF THE CORRECTION

Under the measurement model (5), the likelihood of n
measurements zj is

n∏
j=1

N (zj ; (H ⊗ Id)x, X) =

n∏
j=1

N
(
zj ; H̃x, X

)
= (2π)

−nd/2 |X|−n/2

× etr

−1

2

 n∑
j=1

(
zj − H̃x

)(
zj − H̃x

)T

X−1

 ,

(40)

where etr ( · ) = exp (Tr ( · )) is exponential trace. Define
the centroid measurement as z̄ , 1

n

∑n
j=1 zj and the scatter

matrix as Z ,
∑n
j=1 (zj − z̄) (zj − z̄)

T, and rewrite the
summation as
n∑
j=1

(
zj − H̃x

)(
zj − H̃x

)T

= Z + n
(
z̄− H̃x

)(
z̄− H̃x

)T

.

(41)

Inserting (41) into (40) gives
n∏
j=1

N
(
zj ; H̃x, X

)
(42a)

= (2π)
−nd/2 |X|−n/2etr

(
−1

2
ZX−1

)
× etr

(
−1

2

(
z̄− H̃x

)(
z̄− H̃x

)T
(
X

n

)−1)
(42b)

= (2π)
−(n−1)d/2 |X|−(n−1)/2n−d/2

× etr

(
−1

2
ZX−1

)
N
(
z̄ ; H̃x,

X

n

)
(42c)

=LauxN
(
z̄ ; H̃x,

X

n

)
. (42d)

Now, let the predicted target distribution be

N (x ; m,P ⊗X) IW (X ; ν, V ) . (43)

The product of the measurement likelihood (42) and the
predicted distribution (43) is

LauxN
(
z̄ ; H̃x,

X

n

)
N (x ; m,P ⊗X) IW (X ; ν, V )

=N (x ; m+, P+ ⊗X)N
(
z̄ ; H̃m, SX

)
IW (X ; ν, V )Laux

(44)

where we have

m+ = m+ (K ⊗ Id)
(
z̄− H̃m

)
, (45a)

P+ = P −KSKT. (45b)

with innovation factor S = HPHT + 1/n and gain matrix
K = PHTS−1.

This result is easy to derive using the product formula for
Gaussians, and using some basic properties of the Kronecker
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product. We thus have the corrected Gaussian distribution with
mean and covariance (45), multiplied with

N
(
z̄ ; H̃m, SX

)
IW (X ; ν, V )Laux (46a)

= (2π)
−d/2 |SX|−1/2 |V |

ν/2 |X|−(ν+d+1)/2

2νd/2Γd (ν/2)

× etr

(
−1

2

(
z̄− H̃m

)(
z̄− H̃m

)T

(SX)
−1
)

× etr

(
−1

2
V X−1

)
etr

(
−1

2
ZX−1

)
× (2π)

−(n−1)d/2 |X|−(n−1)/2n−d/2 (46b)

= (2π)
−nd/2

(nS)
−d/2 |V |ν/2

2νd/2Γd (ν/2)

× 2(ν+n)d/2Γd ((ν + n)/2)

|V +N + Z|(ν+n)/2

× |V +N + Z|(ν+n)/2 |X|−(ν+n+d+1)/2

2(ν+n)d/2Γd ((ν + n)/2)

× etr

(
−1

2
(V +N + Z)X−1

)
(46c)

= (πnnS)
−d/2 |V |ν/2

|V +N + Z|(ν+n)/2
Γd ((ν + n)/2)

Γd (ν/2)

× IW (X ; ν+, V+) (46d)
=L × IW (X ; ν+, V+) (46e)

where we have N = S−1
(
z̄− H̃m

)(
z̄− H̃m

)T

and

ν+ = ν + n, (47a)
V+ = V +N + Z, (47b)

and the likelihood function L is defined as

L = (πnnS)
−d/2 |V |ν/2

|V+|ν+/2
Γd (ν+/2)

Γd (ν/2)
. (48)

The likelihood function can be shown to be proportional to a
generalized matrix variate beta type II distribution [31]. We
have thus shown how the likelihood of n measurements zj
multiplied with a predicted GIW distribution can be rewritten
as a corrected GIW distribution multiplied with a likelihood
function.

APPENDIX B
VARIABLE PROBABILITY OF DETECTION FOR THE LASER

RANGE SENSOR

The variable probability of detection used here is similar to
the one presented in [17], however it relies on less assump-
tions, and instead utilizes the estimated target extensions. The
idea is to decrease the probability of detection behind (i.e. at
larger range from the sensor) each GIW component. In doing
so, the function considers the component weight, the size of
the estimated extension and the uncertainty in bearing (i.e. the
polar angle from the sensor to the component).

For a given point (x, y) in the surveillance area, the proba-
bility of detection is computed as

pD (x, y) = max (pD,min , pD,0 − p̃D) , (49a)

p̃D =
∑

i:r>r(i)

w(i) max (G1,G2,A) , (49b)

Gg = exp

(
−
(
ϕ− ϕ(i) + (−1)g2σϕ,e

)2
0.01σϕ,p

)
, (49c)

A =
∣∣∣ϕ− ϕ(i)

∣∣∣ < 2σϕ,e, (49d)

where
• pD,min is the minimum probability of detection value

allowed;
• pD,0 is the nominal probability of detection of targets

which are not occluded;
• r =

√
x2 + y2 and ϕ = tan−1 (y/x) is the range and

bearing to the point (x, y);
• w(i), r(i) and ϕ(i) is the weight, range and bearing to the
i:th GIW component’s kinematical state;

• σϕ,e is the cross range size of the i:th component,
computed by Cartesian to polar conversion of the extent
matrix estimated as in (15);

• σϕ,p is the bearing standard deviation of the i:th compo-
nents kinematical state, computed by Cartesian to polar
conversion of the position uncertainty estimated as in
(14).

To obtain the probability of detection for a GIW component
ξ
(i)
k|k−1, the ellipsoid corresponding to two standard deviations

of the estimated extent (15) is discretized into points (x, y),
and for each discrete point along the extent a probability of
detection is computed. The probability of detection for the
GIW component pD

(
ξ
(i)
k|k−1

)
is then given as the maximum

of the probabilities computed along the discretized extent. In
comparison, the variable probability of detection is computed
only for the kinematical state position in [17]. Taking the
maximum probability along the extent is what enables the
GIW-PHD filter to handle partial target occlusion.
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