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Abstract—In this paper, we consider a problem of sampling a
Wiener process, with samples forwarded to a remote estimator
via a channel that consists of a queue with random delay. The
estimator reconstructs a real-time estimate of the signal from
causally received samples. Motivated by recent research on age-
of-information, we study the optimal sampling strategy that

minimizes the mean square estimation error subject to a sampling
frequency constraint. We prove that the optimal sampling strat-
egy is a threshold policy, and find the optimal threshold. This
threshold is determined by the sampling frequency constraint
and how much the Wiener process varies during the channel
delay. An interesting consequence is that even in the absence of
the sampling frequency constraint, the optimal strategy is not

zero-wait sampling in which a new sample is taken once the
previous sample is delivered; rather, it is optimal to wait for a
non-zero amount of time after the previous sample is delivered,
and then take the next sample. Further, if the sampling times
are independent of the observed Wiener process, the optimal
sampling problem reduces to an age-of-information optimization
problem that has been recently solved. Our comparisons show
that the estimation error of the optimal sampling policy is much
smaller than those of age-optimal sampling, zero-wait sampling,
and classic uniform sampling.

I. INTRODUCTION

Consider a system with two terminals (see Fig. 1): An

observer measuring a Wiener process Wt and an estimator,

whose goal is to provide the best-guess Ŵt for the current

value of Wt. These two terminals are connected by a channel

that transmits time-stamped samples of the form (Si,WSi
),

where the sampling times Si satisfy 0 ≤ S1 ≤ S2 ≤ . . . The

channel is modeled as a work-conserving FIFO queue with

random i.i.d. delay Yi, where Yi ≥ 0 is the channel delay

(i.e., transmission time) of sample i.1 The observer can choose

the sampling times Si causally subject to an average sampling

frequency constraint

lim inf
n→∞

1

n
E[Sn] ≥

1

fmax
,

where fmax is the maximum allowed sampling frequency.

Unless it arrives at an empty system, sample i needs to

wait in the queue until its transmission starts. Let Gi be the

The research was supported in part by the Center for Science of Information
(CSoI), an NSF Science and Technology Center, under grant agreement CCF-
09-39370, by ONR grant N00014-17-1-2417, and by TUBITAK.

1 By “work-conserving”, we meant that the channel is kept busy whenever
there exist some generated samples that are not delivered to the estimator.
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Fig. 1: System model.

transmission starting time of sample i such that Si ≤ Gi.

The delivery time of sample i is Di = Gi + Yi. The initial

value W0 = 0 is known by the estimator for free, represented

by S0 = D0 = 0. At time t, the estimator forms Ŵt using

causally received samples with Di ≤ t. By minimum mean

square error (MMSE) estimation,

Ŵt =E[Wt|WSj
, Dj ≤ t]

=WSi
, if t ∈ [Di, Di+1), i = 0, 1, 2, . . . , (1)

as illustrated in Fig. 2. We measure the quality of remote

estimation via the MMSE:

lim sup
T→∞

1

T
E

[

∫ T

0

(Wt − Ŵt)
2dt

]

.

In this paper, we study the optimal sampling strategy that

achieves the fundamental tradeoff between fmax and MMSE.

The contributions of this paper are summarized as follows:

• The optimal sampling problem for minimizing the MMSE

subject to the sampling frequency constraint is solved

exactly. We prove that the optimal sampling strategy

is a threshold policy, and find the optimal threshold.

This threshold is determined by fmax and the amount of

signal variation during the channel delay (i.e., random

transmission time of a sample). Our threshold policy

has an important difference from the previous threshold

policies studied in, e.g., [1]–[10]: In our model, each

sample waiting in the queue for its transmission oppor-

tunity unnecessarily becomes stale. We have proven that

it is suboptimal to take a new sample when the channel

is busy. Consequently, the threshold should be disabled

whenever there is a packet in transmission.

• An unexpected consequence of our study is that even

in the absence of the sampling frequency constraint

http://arxiv.org/abs/1701.06734v9
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(b) Estimate process Ŵt using causally received samples.

Fig. 2: Sampling and remote estimation of the Wiener process.

(i.e., fmax = ∞), the optimal strategy is not zero-wait

sampling in which a new sample is generated once the

previous sample is delivered; rather, it is optimal to wait

a positive amount of time after the previous sample is

delivered, and then take the next sample.

• If the sampling times are independent of the observed

Wiener process, the optimal sampling problem reduces

to an age-of-information optimization problem solved in

[11], [12]. The asymptotics of the MMSE-optimal and

age-optimal sampling policies at low/high channel delay

or low/high sampling frequencies are studied.

• Our theoretical and numerical comparisons show that the

MMSE of the optimal sampling policy is much smaller

than those of age-optimal sampling, zero-wait sampling,

and classic uniform sampling.

II. RELATED WORK

On the one hand, the results in this paper are closely related

to the recent age-of-information studies, e.g., [11]–[20], where

the focus was on queueing and channel delay, without a

signal model. The discovery that the zero-wait policy is not

always optimal for minimizing the age-of-information can be

found in [11]–[13]. The sub-optimality of a work-conserving

scheduling policy was also observed in [19], which considered

scheduling updates to different users with unreliable channels.

One important observation in our study is that the behavior of

the optimal update policy changes dramatically after adding a

signal model.

On the other hand, the paper can be considered as a con-

tribution to the rich literature on remote estimation, e.g., [1]–

[10], [21], by adding a queueing model. Optimal transmission

scheduling of sensor measurements for estimating a stochastic

process was recently studied in [9], [10], where the samples are

transmitted over a channel with additive noise. In the absence

of channel delay and queueing (i.e., Yi = 0), the problems

of sampling Wiener process and Gaussian random walk were

addressed in [1], [7], [8], where the optimality of threshold

policies was established. To the best of our knowledge, [7] is

the closest study with this paper. Because there is no queueing

t

Si+Yi=Si+1(Si, 0)

√

β

−

√

β

Wt −WSi

(a) If |WSi+Yi
−WSi

| ≥ √
β,

sample i + 1 is taken at time
Si+1 = Si + Yi.

t t

Si+Yi Si+1(Si, 0)

√

β

−

√

β

Wt −WSi

(b) If |WSi+Yi
−WSi

| < √
β,

sample i + 1 is taken at time t
that satisfies t ≥ Si + Yi and
|Wt−WSi

| = √
β.

Fig. 3: Illustration of the threshold policy (4).

and channel delay in [7], the problem analyzed therein is a

special case of ours.

III. MAIN RESULT

Let π = (S0, S1, . . .) represent a sampling policy, and

Π be the set of causal sampling policies which satisfy the

following conditions: (i) The information that is available for

determining the sampling time Si includes the history of the

Wiener process (Wt : t ∈ [0, Si]), the history of channel

states (It : t ∈ [0, Si]), and the sampling times of previous

samples (S0, . . . , Si−1), where It ∈ {0, 1} is the idle/busy

state of the channel at time t. (ii) The inter-sampling times

{Ti = Si+1 − Si, i = 0, 1, . . .} form a regenerative process

[22, Section 6.1]: There exist integers 0 ≤ k1 < k2 < . . . such

that the post-kj process {Tkj+i, i = 0, 1, . . .} has the same

distribution as the post-k1 process {Tk1+i, i = 0, 1, . . .} and

is independent of the pre-kj process {Ti, i = 0, 1, . . . , kj−1};

in addition, E[S2
k1
] < ∞ and 0 < E[(Skj+1

− Skj
)2] < ∞ for

j = 1, 2, . . .2 We assume that the Wiener process Wt and the

channel delay Yi are determined by two external processes,

which are mutually independent and do not change according

to the sampling policy π ∈ Π. We also assume that the Yi’s

are i.i.d. with E[Y 2
i ] < ∞.

A sampling policy π ∈ Π is said to be signal-independent

(signal-dependent), if π is (not) independent of the Wiener

process {Wt, t ≥ 0}. Example policies in Π include:

1. Uniform sampling [23], [24]: The inter-sampling times

are constant, such that for some β ≥ 0,

Si+1 = Si + β. (2)

2. Zero-wait sampling [11]–[14]: A new sample is generated

once the previous sample is delivered, i.e.,

Si+1 = Si + Yi. (3)

3. Threshold policy in signal variation: The sampling times

are given by

Si+1 = inf
{

t ≥ Si + Yi : |Wt −WSi
|≥

√

β
}

, (4)

which is illustrated in Fig. 3. If |WSi+Yi
−WSi

| ≥
√
β,

sample i+1 is generated at the time Si+1 = Si+Yi when

2Really, we assume that Ti is a regenerative process because we an-
alyze the time-average MMSE in (6), but operationally a nicer definition

is lim supn→∞
E[
∫
Dn

0
(Wt − Ŵt)2dt]/E[Dn]. These two definitions are

equivalent when Ti is a regenerative process.
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sample i is delivered; otherwise, if |WSi+Yi
− WSi

| <√
β, sample i+1 is generated at the earliest time t such

that t ≥ Si+Yi and |Wt−WSi
| reaches the threshold

√
β.

It is worthwhile to emphasize that even if there exists time

t ∈ [Si, Si+Yi) such that |Wt−WSi
| ≥ √

β, no sample is

taken at such time t, as depicted in Fig. 3. In other words,

the threshold-based control is disabled during [Si, Si+Yi)
and is reactivated at time Si+Yi. This is a key difference

from previous studies on threshold policies [1]–[10].

4. Threshold policy in time variation [11]–[13]: The sam-

pling times are given by

Si+1 = inf {t ≥ Si + Yi : t− Si ≥ β} . (5)

The optimal sampling problem for minimizing the MMSE

subject to a sampling frequency constraint is formulated as

min
π∈Π

lim sup
T→∞

1

T
E

[

∫ T

0

(Wt − Ŵt)
2dt

]

(6)

s.t. lim inf
n→∞

1

n
E[Sn] ≥

1

fmax
. (7)

Problem (6) is a constrained continuous-time Markov deci-

sion problem with a continuous state space. Somewhat to our

surprise, we were able to exactly solve (6):

Theorem 1. There exists β ≥ 0 such that the sampling policy

(4) is optimal to (6), and the optimal β is determined by

solving3

E[max(β,W 2
Y )]=max

(

1

fmax
,
E[max(β2,W 4

Y )]

2β

)

, (8)

where Y is a random variable with the same distribution as

Yi. The optimal value of (6) is then given by

mmseopt ,
E[max(β2,W 4

Y )]

6E[max(β,W 2
Y )]

+ E[Y ]. (9)

Proof. See Section IV.

The optimal policy in (4) and (8) is called the “MMSE-

optimal” policy. Note that one can use the bisection method

or other one-dimensional search method to solve (8) with quite

low complexity. Interestingly, this optimal policy does not

suffer from the “curse of dimensionality” issue encountered

in many Markov decision problems.

Notice that the feasible policies in Π can use the complete

history of the Wiener process (Wt : t ∈ [0, Si+1]) to determine

Si+1. However, the MMSE-optimal policy in (4) and (8) only

requires recent knowledge of the Wiener process (Wt−WSi
:

t ∈ [Si + Yi, Si+1]) to determine Si+1.

Moreover, according to (8), the threshold
√
β is determined

by the maximum sampling frequency fmax and the distribution

of the signal variation WY during the channel delay Y . It is

worth noting that WY is a random variable that tightly couples

the source process and the channel delay. This is different

from the traditional wisdom of information theory where

source coding and channel coding can be treated separately.

3If β → 0, the last terms in (8) and (13) are determined by L’Hôpital’s
rule.

A. Signal-Independent Sampling and the Age-of-Information

Let Πsig-independent ⊂ Π denote the set of signal-independent

sampling policies, defined as

Πsig-independent={π ∈ Π : π is independent of Wt, t ≥ 0}.

For each π ∈ Πsig-independent, the MMSE (6) can be written as

(see Appendix A for its proof)

lim sup
T→∞

1

T
E

[

∫ T

0

∆(t)dt

]

, (10)

where

∆(t) = t− Si, t ∈ [Di, Di+1), i = 0, 1, 2, . . . , (11)

is the age-of-information [14], that is, the time difference

between the generation time of the freshest received sample

and the current time t. If the policy space in (6) is restricted

from Π to Πsig-independent, (6) reduces to the following age-of-

information optimization problem [11], [12]:

min
π∈Πsig-independent

lim sup
T→∞

1

T
E

[

∫ T

0

∆(t)dt

]

(12)

s.t. lim inf
n→∞

1

n
E[Sn] ≥

1

fmax
.

Problem (6) is significantly more challenging than (12),

because in (6) the sampler needs to make decisions based on

the evolution of the signal process Wt, which is not required

in (12). More powerful techniques than those in [11], [12] are

developed in Section IV to solve (6).

Theorem 2. [11], [12] There exists β ≥ 0 such that the

sampling policy (5) is optimal to (12), and the optimal β is

determined by solving

E[max(β, Y )]=max

(

1

fmax
,
E[max(β2, Y 2)]

2β

)

. (13)

The optimal value of (12) is then given by

mmseage-opt ,
E[max(β2, Y 2)]

2E[max(β, Y )]
+ E[Y ]. (14)

The sampling policy in (5) and (13) is referred to as the

“age-optimal” policy. Because Πsig-independent ⊂ Π,

mmseopt ≤ mmseage-opt. (15)

In the following, the asymptotics of the MMSE-optimal and

age-optimal sampling policies at low/high channel delay or

low/high sampling frequencies are studied.

B. Low Channel Delay or Low Sampling Frequency

Let

Yi = dXi (16)

represent the scaling of the channel delay Yi with d, where

d ≥ 0 and the Xi’s are i.i.d. positive random variables. If d →
0 or fmax → 0, we can obtain from (8) that (see Appendix B
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for its proof)

β =
1

fmax
+ o

(

1

fmax

)

, (17)

where f(x) = o(g(x)) as x → a means that limx→a

f(x)/g(x) = 0. Hence, the MMSE-optimal policy in (4) and

(8) becomes

Si+1=inf

{

t ≥ Si : |Wt −WSi
|≥

√

1

fmax

}

, (18)

and as shown in Appendix B, the optimal value of (6) becomes

mmseopt =
1

6fmax
+ o

(

1

fmax

)

. (19)

The sampling policy (18) was also obtained in [7] for the case

that Yi = 0 for all i.

If d → 0 or fmax → 0, one can show that the age-optimal

policy in (5) and (13) becomes uniform sampling (2) with

β = 1/fmax + o(1/fmax), and the optimal value of (12) is

mmseage-opt = 1/(2fmax) + o(1/fmax). Therefore,

lim
d→0

mmseopt

mmseage-opt

= lim
fmax→0

mmseopt

mmseage-opt

=
1

3
. (20)

C. High Channel Delay or Unbounded Sampling Frequency

If d → ∞ or fmax → ∞, as shown in Appendix C, the

MMSE-optimal policy for solving (6) is given by (4) where

β is determined by solving

2βE[max(β,W 2
Y )] = E[max(β2,W 4

Y )]. (21)

Similarly, if d → ∞ or fmax → ∞, the age-optimal policy for

solving (12) is given by (5) where β is determined by solving

2βE[max(β, Y )] = E[max(β2, Y 2)]. (22)

In these limits, the ratio between mmseopt and mmseage-opt

depends on the distribution of Y .

When the sampling frequency is unbounded, i.e., fmax =
∞, one logically reasonable policy is the zero-wait policy in

(3) [11]–[14]. This zero-wait policy achieves the maximum

throughput and the minimum queueing delay of the channel.

Surprisingly, this zero-wait policy does not always minimize

the age-of-information in (12) and almost never minimizes the

MMSE in (6), as stated below:

Theorem 3. If fmax = ∞, the zero-wait policy is optimal for

solving (6) if and only if Y = 0 with probability one.

Proof. See Appendix D.

Theorem 4. [12] If fmax = ∞, the zero-wait policy is optimal

for solving (12) if and only if

E[Y 2] ≤ 2 ess inf Y E[Y ], (23)

where ess inf Y = sup{y ∈ [0,∞) : Pr[Y < y] = 0}.

Proof. See Appendix D.

Note that the condition in Theorem 4 is weaker than that

of Theorem 5 in [12].

IV. PROOF OF THE MAIN RESULT

We establish Theorem 1 in four steps: First, we employ

the strong Markov property of the Wiener process to simplify

the optimal sampling problem (6). Second, we study the

Lagrangian dual problem of the simplified problem, and de-

compose the Lagrangian dual problem into a series of mutually

independent per-sample control problems. Each of these per-

sample control problems is a continuous-time Markov decision

problem. Third, we utilize optimal stopping theory [25] to

solve the per-sample control problems. Finally, we show that

the Lagrangian duality gap is zero. By this, the original

problem (6) is solved. The details are as follows.

A. Problem Simplification

We first provide a lemma that is crucial for simplifying (6).

Lemma 1. In the optimal sampling problem (6) for minimizing

the MMSE of the Wiener process, it is suboptimal to take a

new sample before the previous sample is delivered.

Proof. See Appendix E.

In recent studies on age-of-information [11], [12], Lemma

1 was intuitive and hence was used without a proof: If a

sample is taken when the channel is busy, it needs to wait

in the queue until its transmission starts, and becomes stale

while waiting. A better method is to wait until the channel

becomes idle, and then generate a new sample, as stated in

Lemma 1. However, this lemma is not intuitive in the MMSE

minimization problem (6): The proof of Lemma 1 relies on

the strong Markov property of Wiener process, which may not

hold for other signal processes.

By Lemma 1, we only need to consider a sub-class of

sampling policies Π1 ⊂ Π such that each sample is generated

and submitted to the channel after the previous sample is

delivered, i.e.,

Π1 = {π ∈ Π : Si = Gi ≥ Di−1 for all i}. (24)

This completely eliminates the waiting time wasted in the

queue, and hence the queue is always kept empty. The in-

formation that is available for determining Si includes the

history of signal values (Wt : t ∈ [0, Si]) and the channel

delay (Y1, . . . , Yi−1) of previous samples.4 To characterize this

statement precisely, let us define the σ-fields Ft = σ(Ws : s ∈
[0, t]) and F+

t = ∩s>tFs. Then, {F+
t , t ≥ 0} is the filtration

(i.e., a non-decreasing and right-continuous family of σ-fields)

of the Wiener process Wt. Given the transmission durations

(Y1, . . . , Yi−1) of previous samples, Si is a stopping time with

respect to the filtration {F+
t , t ≥ 0} of the Wiener process Wt,

that is

[{Si ≤ t}|Y1, . . . , Yi−1] ∈ F+
t . (25)

4Note that the generation times (S1, . . . , Si−1) of previous samples are
also included in this information.
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Then, the policy space Π1 can be alternatively expressed as

Π1 ={Si : [{Si ≤ t}|Y1, . . . , Yi−1] ∈ F+
t ,

Si = Gi ≥ Di−1 for all i,

Ti = Si+1 − Si is a regenerative process}. (26)

Let Zi = Si+1−Di ≥ 0 represent the waiting time between

the delivery time Di of sample i and the generation time Si+1

of sample i+ 1. Then, Si = Z0 +
∑i−1

j=1(Yj + Zj) and Di =
∑i−1

j=0(Zj + Yj+1). If (Y1, Y2, . . .) is given, (S0, S1, . . .) is

uniquely determined by (Z0, Z1, . . .). Hence, one can also use

π = (Z0, Z1, . . .) to represent a sampling policy.

Because Ti is a regenerative process, by following the

renewal theory in [26] and [22, Section 6.1], one can show

that 1
n
E[Sn] is a convergent sequence and

lim sup
T→∞

1

T
E

[

∫ T

0

(Wt − Ŵt)
2dt

]

= lim
n→∞

E

[

∫Dn

0 (Wt − Ŵt)
2dt

]

E[Dn]

= lim
n→∞

∑n−1
i=0 E

[

∫ Di+1

Di
(Wt −WSi

)2dt
]

∑n−1
i=0 E [Yi + Zi]

,

where in the last step we have used E [Dn] = E[
∑n−1

i=0 (Zi +

Yi+1)] = E[
∑n−1

i=0 (Yi + Zi)]. Hence, (6) can be rewritten as

the following Markov decision problem:

mmseopt , min
π∈Π1

lim
n→∞

∑n−1
i=0 E

[

∫ Di+1

Di
(Wt−WSi

)2dt
]

∑n−1
i=0 E [Yi + Zi]

(27)

s.t. lim
n→∞

1

n

n−1
∑

i=0

E [Yi + Zi] ≥
1

fmax
, (28)

where mmseopt is the optimal value of (27).

In order to solve (27), let us consider the following Markov

decision problem with a parameter c ≥ 0:

p(c), min
π∈Π1

lim
n→∞

1

n

n−1
∑

i=0

E

[

∫ Di+1

Di

(Wt −WSi
)2dt−c(Yi+Zi)

]

(29)

s.t. lim
n→∞

1

n

n−1
∑

i=0

E [Yi + Zi] ≥
1

fmax
,

where p(c) is the optimum value of (29).

Lemma 2. The following assertions are true:

(a). mmseopt T c if and only if p(c) T 0.

(b). If p(c) = 0, the solutions to (27) and (29) are identical.

Proof. See Appendix F.

Hence, the solution to (27) can be obtained by solving (29)

and seeking a copt ≥ 0 such that

p(copt) = 0. (30)

B. Lagrangian Dual Problem of (29)

Although (29) is a continuous-time Markov decision prob-

lem with a continuous state space (not a convex optimization

problem), it is possible to use the Lagrangian dual approach

to solve (29) and show that it admits no duality gap.

Define the following Lagrangian

L(π;λ, c)

= lim
n→∞

1

n

n−1
∑

i=0

E

[

∫ Di+1

Di

(Wt −WSi
)2dt−(c+ λ)(Yi+Zi)

]

+
λ

fmax
. (31)

Let

g(λ, c) , inf
π∈Π1

L(π;λ, c). (32)

Then, the Lagrangian dual problem of (29) is defined by

d(c) , max
λ≥0

g(λ, c), (33)

where d(c) is the optimum value of (33). Weak duality [27],

[28] implies that d(c) ≤ p(c). In Section IV-D, we will

establish strong duality, i.e., d(copt) = p(copt) = 0, at the

optimal choice of c = copt.

In the sequel, we solve (32). By considering the sufficient

statistics of the Markov decision problem (32), we obtain

Lemma 3. For any λ ≥ 0, there exists an optimal solution

(Z0, Z1, . . .) to (32) in which Zi is independent of (Wt, t ∈
[0,WSi

]) for all i = 1, 2, . . .

Proof. See Appendix G.

Using the stopping times and martingale theory of the

Wiener process, we obtain the following lemma:

Lemma 4. Let τ ≥ 0 be a stopping time of the Wiener process

Wt with E[τ2] < ∞, then

E

[
∫ τ

0

W 2
t dt

]

=
1

6
E
[

W 4
τ

]

. (34)

Proof. See Appendix H.

If Zi is independent of (Wt, t ∈ [0,WSi
]), by using Lemma

4, we can show that for every i = 1, 2, . . .,

E

[

∫ Di+1

Di

(Wt −WSi
)2dt

]

=
1

6
E
[

(WSi+Yi+Zi
−WSi

)4
]

+ E [Yi + Zi]E [Yi] , (35)

which is proven in Appendix I.

Define the σ-fields Fs
t = σ(Ws+v − Ws : v ∈ [0, t]) and

Fs+
t = ∩v>tFs

v , as well as the filtration {Fs+
t , t ≥ 0} of

the time-shifted Wiener process {Ws+t − Ws, t ∈ [0,∞)}.

Define Ms as the set of square-integrable stopping times of

{Ws+t −Ws, t ∈ [0,∞)}, i.e.,

Ms = {τ ≥ 0 : {τ ≤ t} ∈ Fs+
t ,E

[

τ2
]

< ∞}.

By using (35) and considering the sufficient statistics of the

Markov decision problem (32), we obtain
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Theorem 5. An optimal solution (Z0, Z1, . . .) to (32) satisfies

Zi = min
τ∈MSi+Yi

E

[

1

2
(WSi+Yi+τ −WSi

)4

−β(Yi + τ)

∣

∣

∣

∣

WSi+Yi
−WSi

, Yi

]

, (36)

where β is given by

β = 3(c+ λ− E [Y ]). (37)

Proof. See Appendix J.

C. Per-Sample Optimal Stopping Solution to (36)

We use optimal stopping theory [25] to solve (36). Let

us first pose (36) in the language of optimal stopping. A

continuous-time two-dimensional Markov chain Xt on a prob-

ability space (R2,F ,P) is defined as follows: Given the initial

state X0 = x = (s, b), the state Xt at time t is

Xt = (s+ t, b+Wt), (38)

where {Wt, t ≥ 0} is a standard Wiener process. Define

Px(A) = P(A|X0 = x) and ExZ = E(Z|X0 = x),
respectively, as the conditional probability of event A and the

conditional expectation of random variable Z for given initial

state X0 = x. Define the σ-fields FX
t = σ(Xv : v ∈ [0, t])

and FX+
t = ∩v>tFX

v , as well as the filtration {FX+
t , t ≥ 0}

of the Markov chain Xt. A random variable τ : R2 → [0,∞)
is said to be a stopping time of Xt if {τ ≤ t} ∈ FX+

t for

all t ≥ 0. Let M be the set of square-integrable stopping times

of Xt, i.e.,

M = {τ ≥ 0 : {τ ≤ t} ∈ FX+
t ,E

[

τ2
]

< ∞}.

Our goal is to solve the following optimal stopping problem:

sup
τ∈M

Exg(Xτ ), (39)

where the function g : R2 → R is defined as

g(s, b) = βs− 1

2
b4 (40)

with parameter β ≥ 0, and x is the initial state of the Markov

chain X(t). Notice that (39) becomes (36) if the initial state is

x = (Yi,WSi+Yi
−WSi

), and Wt is replaced by WSi+Yi+t −
WSi

.

Theorem 6. For all initial state (s, b) ∈ R
2 and β ≥ 0, an

optimal stopping time for solving (39) is

τ∗ = inf
{

t ≥ 0 : |b+Wt|≥
√

β
}

. (41)

In order to prove Theorem 6, let us define the function

u(x) = Exg(Xτ∗) and establish some properties of u(x).

Lemma 5. u(x) ≥ g(x) for all x ∈ R
2, and

u(s, b) =

{

βs− 1
2b

4, if b2 ≥ β;

βs+ 1
2β

2 − βb2, if b2 < β.
(42)

Proof. See Appendix K.
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Fig. 4: MMSE vs. fmax tradeoff for i.i.d. exponential channel

delay.

A function f(x) is said to be excessive for the process Xt

if [25]

Exf(Xt) ≤ f(x), for all t ≥ 0, x ∈ R
2. (43)

By using the Itô-Tanaka-Meyer formula in stochastic calculus,

we can obtain

Lemma 6. The function u(x) is excessive for the process Xt.

Proof. See Appendix L.

Now, we are ready to prove Theorem 6.

Proof of Theorem 6. In Lemma 5 and Lemma 6, we have

shown that u(x) = Exg(Xτ∗) is an excessive function and

u(x) ≥ g(x). In addition, it is known that Px(τ
∗ < ∞) = 1

for all x ∈ R
2 [29, Theorem 8.5.3]. These conditions, together

with the Corollary to Theorem 1 in [25, Section 3.3.1], imply

that τ∗ is an optimal stopping time of (39). This completes

the proof.

An immediate consequence of Theorem 6 is

Corollary 1. An optimal solution to (36) is

Zi =

{

inf
{

t ≥ 0 : |WSi+Yi+t −WSi
| ≥ √

β
}

, if β ≥ 0;
0, if β < 0.

(44)

D. Zero Duality Gap between (29) and (33) at c = copt

Theorem 7. The following assertions are true:

(a). The duality gap between (29) and (33) is zero such that

d(c) = p(c).

(b). A common optimal solution to (6), (27), and (29) with

c = copt, is given by (4) and (8).

Proof Sketch of Theorem 7. We first use Theorem 5 and

Corollary 1 to find a geometric multiplier [27] for the primal

problem (29). Hence, the duality gap between (29) and (33) is

zero, because otherwise there exists no geometric multiplier

[27, Section 6.1-6.2]. By this, part (a) is proven. Next, we

consider the case of c = copt and use Lemma 2 to prove part

(b). See Appendix M for the details.

Hence, Theorem 1 follows from Theorem 7.
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Fig. 5: MMSE vs. the scale parameter σ of i.i.d. log-normal

channel delay for fmax = 0.8.

V. NUMERICAL RESULTS

In this section, we evaluate the estimation performance

achieved by the following four sampling policies:

1. Uniform sampling: The policy in (2) with β = fmax.

2. Zero-wait sampling [11]–[14]: The sampling policy in

(3), which is feasible when fmax ≥ E[Yi].
3. Age-optimal sampling [11], [12]: The sampling policy in

(5) and (13), which is the optimal solution to (12).

4. MMSE-optimal sampling: The sampling policy in (4) and

(8), which is the optimal solution to (6).

Let mmseuniform, mmsezero-wait, mmseage-opt, and mmseopt, be

the MMSEs of uniform sampling, zero-wait sampling, age-

optimal sampling, MMSE-optimal sampling, respectively. Ac-

cording to (15), as well as the facts that uniform sampling is

feasible for (12) and zero-wait sampling is feasible for (12)

when fmax ≥ E[Yi], we can obtain

mmseopt ≤ mmseage-opt ≤ mmseuniform,

mmseopt ≤ mmseage-opt ≤ mmsezero-wait, when fmax ≥ E[Yi],

which fit with our numerical results below.

Figure 4 depicts the tradeoff between MMSE and fmax for

i.i.d. exponential channel delay with mean E[Yi] = 1/µ = 1.

Hence, the maximum throughput of the channel is µ = 1.

In this setting, mmseuniform is characterized by eq. (25) of

[14], which was obtained using a D/M/1 queueing model. For

small values of fmax, age-optimal sampling is similar with

uniform sampling, and hence mmseage-opt and mmseuniform are

of similar values. However, as fmax approaches the maximum

throughput 1, mmseuniform increases to infinite. This is because

the queue length in uniform sampling is large at high sampling

frequencies, and the samples become stale during their long

waiting times in the queue. On the other hand, mmseopt and

mmseage-opt decrease with respect to fmax. The reason is that

the set of feasible policies satisfying the constraints in (6) and

(12) becomes larger as fmax grows, and hence the optimal

values of (6) and (12) are decreasing in fmax. Moreover,

the gap between mmseopt and mmseage-opt is large for small

values of fmax. The ratio mmseopt/mmseage-opt tends to 1/3
as fmax → 0, which is in accordance with (20). As we

expected, mmsezero-wait is larger than mmseopt and mmseage-opt

when fmax ≥ 1.
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Fig. 6: MMSE vs. the scale parameter σ of i.i.d. log-normal

channel delay for fmax = 1.5.

Figure 5 and Figure 6 illustrate the MMSE of i.i.d. log-

normal channel delay for fmax = 0.8 and fmax = 1.5,

respectively, where Yi = eσXi/E[eσXi ], σ > 0 is the scale

parameter of log-normal distribution, and (X1, X2, . . .) are

i.i.d. Gaussian random variables with zero mean and unit

variance. Because E[Yi] = 1, the maximum throughput of the

channel is 1. In Fig. 5, since fmax < 1, zero-wait sampling is

not feasible and hence is not plotted. As the scale parameter σ
grows, the tail of the log-normal distribution becomes heavier

and heavier. We observe that mmseuniform grows quickly with

respect to σ, much faster than mmseopt and mmseage-opt. In

addition, the gap between mmseopt and mmseage-opt increases

as σ grows. In Fig. 6, because fmax > 1, mmseuniform is infinite

and hence is not plotted. We can find that mmsezero-wait grows

quickly with respect to σ and is much larger than mmseopt and

mmseage-opt.

VI. CONCLUSION

In this paper, we have investigated optimal sampling and

remote estimation of the Wiener process over a channel with

random delay. The optimal sampling policy for minimizing the

mean square estimation error subject to a sampling frequency

constraint has been obtained. We prove that the optimal

sampling policy is a threshold policy, and find the optimal

threshold. Analytical and numerical comparisons with several

important sampling policies, including age-optimal sampling,

zero-wait sampling, and classic uniform sampling, have been

provided. The results in this paper generalize recent research

on ago-of-information by adding a signal model, and can be

also considered a contribution to the rich literature on remote

estimation by adding a channel that consists of a queue with

random delay.
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APPENDIX A

PROOF OF (10)

If π is independent of {Wt, t ∈ [0,∞)}, the Si’s and Di’s

are independent of {Wt, t ∈ [0,∞)}. Hence,

E

{

∫ Di+1

Di

(Wt − Ŵt)
2dt

}

(a)
=E

{

E

{

∫ Di+1

Di

(Wt −WSi
)2dt

∣

∣

∣

∣

∣

Si, Di, Di+1

}}

(b)
=E

{

∫ Di+1

Di

E
{

(Wt −WSi
)2|Si, Di, Di+1

}

dt

}

(c)
=E

{

∫ Di+1

Di

E
[

(Wt −WSi
)2
]

dt

}

(d)
=E

{

∫ Di+1

Di

(t− Si)dt

}

(e)
=E

{

∫ Di+1

Di

∆(t)dt

}

,

where step (a) is due to the law of iterated expectations, step

(b) is due to Fubini’s theorem, step (c) is because Si, Di, Di+1

are independent of the Wiener process, step (d) is due to

Wald’s identity E[W 2
T ] = T [30, Theorem 2.48] and the strong

Markov property of the Wiener process [30, Theorem 2.16],

and step (e) is due to (11). By this, (10) is proven.

APPENDIX B

PROOFS OF (17) AND (19)

If fmax → 0, (8) tells us that

E[max(β,W 2
Y )] =

1

fmax
,

which implies

β ≤ 1

fmax
≤ β + E[W 2

Y ] = β + E[Y ].

Hence,

1

fmax
− E[Y ] ≤ β ≤ 1

fmax
.

If fmax → 0, (17) follows. Because Y is independent of the

Wiener process, using the law of iterated expectations and the

Gaussian distribution of the Wiener process, we can obtain

E[W 4
Y ] = 3E[Y 2] and E[W 2

Y ] = 3E[Y ]. Hence,

β ≤ E[max(β,W 2
Y )] ≤ β + E[W 2

Y ] = β + E[Y ],

β2 ≤ E[max(β2,W 4
Y )] ≤ β2 + E[W 4

Y ] = β2 + 3E[Y 2].

Therefore,

β2

β + E[Y ]
≤ E[max(β2,W 4

Y )]

E[max(β,W 2
Y )]

≤ β2 + 3E[Y 2]

β
. (45)

By combining (9), (17), and (45), (19) follows in the case of

fmax → 0.
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If d → 0, then Y → 0 and WY → 0 with probability one.

Hence, E[max(β,W 2
Y )] → β and E[max(β2,W 4

Y )] → β2.

Substituting these into (8) and (45), yields

lim
d→0

β =
1

fmax
, lim

d→0

{

E[max(β2,W 4
Y )]

6E[max(β,W 2
Y )]

+ E[Y ]

}

=
1

6fmax
.

By this, (17) and (19) are proven in the case of d → 0. This

completes the proof.

APPENDIX C

PROOF OF (21)

If fmax → ∞, the sampling frequency constraint in (6) can

be removed. By (8), the optimal β is determined by (21).

If d → ∞, let us consider the equation

E[max(β,W 2
Y )]=

E[max(β2,W 4
Y )]

2β
. (46)

If Y grows by a times, then β and E[max(β,W 2
Y )] in (46)

both should grow by a times, and E[max(β2,W 4
Y )] in (46)

should grow by a2 times. Hence, if d → ∞, it holds in (8)

that

1

fmax
≤ E[max(β2,W 4

Y )]

2β
(47)

and the solution to (8) is given by (21). This completes the

proof.

APPENDIX D

PROOFS OF THEOREMS 3 AND 4

Proof of Theorem 3. The zero-wait policy can be expressed

as (4) with β = 0. Because Y is independent of the

Wiener process, using the law of iterated expectations and the

Gaussian distribution of the Wiener process, we can obtain

E[W 4
Y ] = 3E[Y 2]. According to (21), β = 0 if and only if

E[W 4
Y ] = 3E[Y 2] = 0 which is equivalent to Y = 0 with

probability one. This completes the proof.

Proof of Theorem 4. In the one direction, the zero-wait policy

can be expressed as (5) with β ≤ ess inf Y . If the zero-wait

policy is optimal, then the solution to (22) must satisfy β ≤
ess inf Y , which further implies β ≤ Y with probability one.

From this, we can get

2ess inf Y E[Y ] ≥ 2βE[Y ] = E[Y 2], (48)

By this, (23) follows.

In the other direction, if (23) holds, we will show that the

zero-wait policy is age-optimal by considering the following

two cases.

Case 1: E[Y ] > 0. By choosing

β =
E[Y 2]

2E[Y ]
, (49)

we can get β ≤ ess inf Y and hence

β ≤ Y (50)

with probability one. According to (49) and (50), such a β is

the solution to (22). Hence, the zero-wait policy expressed by

(5) with β ≤ ess inf Y is the age-optimal policy.

Case 2: E[Y ] = 0 and hence Y = 0 with probability one. In

this case, β = 0 is the solution to (22). Hence, the zero-wait

policy expressed by (5) with β = 0 is the age-optimal policy.

Combining these two cases, the proof is completed.

APPENDIX E

PROOF OF LEMMA 1

Suppose that in policy π, sample i is generated when the

channel is busy sending another sample, and hence sample

i needs to wait for some time before submitted to the

channel, i.e., Si < Gi. Let us consider a virtual sampling

policy π′ = {S0, . . . , Si−1, Gi, Si+1, . . .}. We call policy π′

a virtual policy because the generation time of sample i in

policy π′ is S′
i = Gi and it may happen that S′

i > Si+1.

However, this will not affect our proof below. We will show

that the MMSE of policy π′ is smaller than that of policy

π = {S0, . . . , Si−1, Si, Si+1, . . .}.

Note that the Wiener process {Wt : t ∈ [0,∞)} does

not change according to the sampling policy, and the sample

delivery times {D1, D2, . . .} remain the same in policy π and

policy π′. Hence, the only difference between policies π and

π′ is that the generation time of sample i is postponed from

Si to Gi. The MMSE estimator of policy π is given by (1)

and the MMSE estimator of policy π′ is given by

Ŵt =







0, t ∈ [0, D1);
WGi

, t ∈ [Di, Di+1);
WSj

, t ∈ [Dj , Dj+1), j 6= i, j ≥ 1.
(51)

Because Si ≤ Gi ≤ Di ≤ Di+1, by the strong Markov prop-

erty of the Wiener process [30, Theorem 2.16],
∫ Di+1

Di
2[Wt−

WGi
]dt and WGi

−WSi
are mutually independent. Hence,

E

{

∫ Di+1

Di

(Wt −WSi
)2dt

}

=E

{

∫ Di+1

Di

(Wt −WGi
)2 + (WGi

−WSi
)2dt

}

+ E

{

∫ Di+1

Di

2(Wt −WGi
)(WGi

−WSi
)dt

}

=E

{

∫ Di+1

Di

(Wt −WGi
)2 + (WGi

−WSi
)2dt

}

+ E

{

∫ Di+1

Di

2(Wt −WGi
)dt

}

E[WGi
−WSi

].

Note that the channel is busy whenever there exist some

generated samples that are not delivered to the estimator.

Hence, during the time interval [Si, Gi], the channel is busy

sending some samples generated before Si in policy π. Be-

cause E[Y 2
j ] < ∞, we can get E[Yj ] < ∞ and

E[Gi − Si] ≤ E

[ i−1
∑

j=1

Yj

]

< ∞.
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By Wald’s identity [30, Theorem 2.44], we have E[WGi
−

WSi
] = 0 and hence

E

{

∫ Di+1

Di

(Wt −WSi
)2dt

}

≥E

{

∫ Di+1

Di

(Wt −WGi
)2dt

}

. (52)

Therefore, the MMSE of policy π′ is smaller than that of

policy π.

By repeating the above arguments for all samples i
satisfying Si < Gi, one can show that policy π′′ =
{S0, G1, . . . , Gi−1, Gi, Gi+1, . . .} is better than policy π =
{S0, S1, . . . , Si−1, Si, Si+1, . . .}. This completes the proof.

APPENDIX F

PROOF OF LEMMA 2

Part (a) is proven in two steps:

Step 1: We will prove that mmseopt ≤ c if and only if

p(c) ≤ 0.

If mmseopt ≤ c, then there exists a policy π =
(Z0, Z1, . . .) ∈ Π1 that is feasible for both (27) and (29),

which satisfies

lim
n→∞

∑n−1
i=0 E

[

∫Di+1

Di
(Wt −WSi

)2dt
]

∑n−1
i=0 E [Yi+Zi]

≤ c. (53)

Hence,

lim
n→∞

1
n

∑n−1
i=0 E

[

∫Di+1

Di
(Wt −WSi

)2dt− c(Yi + Zi)
]

1
n

∑n−1
i=0 E [Yi+Zi]

≤ 0.

(54)

Because the inter-sampling times Ti = Yi + Zi are re-

generative, the renewal theory [26] tells us that the limit

limn→∞
1
n

∑n−1
i=0 E [Yi+Zi] exists and is positive. By this,

we get

lim
n→∞

1

n

n−1
∑

i=0

E

[

∫ Di+1

Di

(Wt −WSi
)2dt− c(Yi + Zi)

]

≤ 0.

(55)

Therefore, p(c) ≤ 0.

On the reverse direction, if p(c) ≤ 0, then there exists a

policy π = (Z0, Z1, . . .) ∈ Π1 that is feasible for both (27)

and (29), which satisfies (55). From (55), we can derive (54)

and (53). Hence, mmseopt ≤ c. By this, we have proven that

mmseopt ≤ c if and only if p(c) ≤ 0.

Step 2: We needs to prove that mmseopt < c if and only if

p(c) < 0. This statement can be proven by using the arguments

in Step 1, in which “≤” should be replaced by “<”. Finally,

from the statement of Step 1, it immediately follows that

mmseopt > c if and only if p(c) > 0. This completes the

proof of part (a).

Part (b): We first show that each optimal solution to (27)

is an optimal solution to (29). By the claim of part (a),

p(c) = 0 is equivalent to mmseopt = c. Suppose that policy

π = (Z0, Z1, . . .) ∈ Π1 is an optimal solution to (27). Then,

mmseπ = mmseopt = c. Applying this in the arguments of

(53)-(55), we can show that policy π satisfies

lim
n→∞

1

n

n−1
∑

i=0

E

[

∫ Di+1

Di

(Wt −WSi
)2dt− c(Yi + Zi)

]

= 0.

This and p(c) = 0 imply that policy π is an optimal solution

to (29).

Similarly, we can prove that each optimal solution to (29)

is an optimal solution to (27). By this, part (b) is proven.

APPENDIX G

PROOF OF LEMMA 3

Because the Yi’s are i.i.d., Zi is independent of

Yi+1, Yi+2, . . ., and the strong Markov property of the Wiener

process [30, Theorem 2.16], in the Lagrangian L(π;λ) the

term related to Zi is

E

[

∫ Si+Yi+Zi+Yi+1

Si+Yi

(Wt −WSi
)2dt−(c+ λ)(Yi + Zi)

]

,

(56)

which is determined by the control decision Zi and the

recent information of the system Ii = (Yi, (WSi+t − WSi
,

t ≥ 0)). According to [31, p. 252] and [32, Chapter 6], Ii
is the sufficient statistic for determining Zi in (32). There-

fore, there exists an optimal policy (Z0, Z1, . . .) in which

Zi is determined based on only Ii, which is independent of

(Wt : t ∈ [0, Si]). This completes the proof.

APPENDIX H

PROOF OF LEMMA 4

According to Theorem 2.51 and Exercise 2.15 of [30], W 4
t −

6
∫ t

0
W 2

s ds and W 4
t − 6tW 2

t + 3t2 are two martingales of the

Wiener process {Wt, t ∈ [0,∞)}. Hence,
∫ t

0
W 2

s ds− tW 2
t +

t2/2 is also a martingale of the Wiener process.

Because the minimum of two stopping times is a stopping

time and constant times are stopping times [29], it follows that

t ∧ τ is a bounded stopping time for every t ∈ [0,∞), where

x ∧ y = min[x, y]. Then, it follows from Theorem 8.5.1 of

[29] that for every t ∈ [0,∞)

E

[
∫ t∧τ

0

W 2
s ds

]

=
1

6
E
[

W 4
t∧τ

]

(57)

= E

[

(t ∧ τ)W 2
t∧τ−

1

2
(t ∧ τ)2

]

. (58)

Notice that
∫ t∧τ

0
W 2

s ds is positive and increasing with respect

to t. By applying the monotone convergence theorem [29,

Theorem 1.5.5], we can obtain

lim
t→∞

E

[
∫ t∧τ

0

W 2
s ds

]

= E

[
∫ τ

0

W 2
s ds

]

.

The remaining task is to show that

lim
t→∞

E
[

W 4
t∧τ

]

= E
[

W 4
τ

]

. (59)
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Towards this goal, we combine (57) and (58), and apply

Cauchy-Schwarz inequality to get

E
[

W 4
t∧τ

]

=E
[

6(t ∧ τ)W 2
t∧τ − 3(t ∧ τ)2

]

≤6
√

E [(t ∧ τ)2]E [W 4
t∧τ ]− 3E

[

(t ∧ τ)2
]

.

Let x =
√

E [W 4
t∧τ ] /E [(t ∧ τ)2], then x2 − 6x + 3 ≤ 0.

By the roots and properties of quadratic functions, we obtain

3−
√
6 ≤ x ≤ 3 +

√
6 and hence

E
[

W 4
t∧τ

]

≤ (3 +
√
6)2E

[

(t ∧ τ)2
]

≤ (3 +
√
6)2E

[

τ2
]

< ∞.

Then, we use Fatou’s lemma [29, Theorem 1.5.4] to derive

E
[

W 4
τ

]

=E

[

lim
t→∞

W 4
t∧τ

]

≤ lim inf
t→∞

E
[

W 4
t∧τ

]

≤(3 +
√
6)2E

[

τ2
]

< ∞. (60)

Further, by (60) and Doob’s maximal inequality [30, Theorem

12.30] and [29, Theorem 5.4.3],

E

[

sup
t∈[0,∞)

W 4
t∧τ

]

=E

[

sup
t∈[0,τ ]

W 4
t

]

≤
(

4

3

)4

E
[

W 4
τ

]

< ∞. (61)

Because W 4
t∧τ ≤ supt∈[0,∞)W

4
t∧τ and supt∈[0,∞)W

4
t∧τ is

integrable, (59) follows from dominated convergence theorem

[29, Theorem 1.5.6]. This completes the proof.

APPENDIX I

PROOF OF (35)

By using (26) and the condition that Zi is independent of

(Wt, t ∈ [0,WSi
]), we obtain that for given Yi and Yi+1, Yi

and Yi + Zi + Yi+1 are stopping times of the time-shifted

Wiener process {WSi+t −WSi
, t ≥ 0}. Hence,

=E

{

∫ Di+1

Di

(Wt −WSi
)2dt

}

=E

{

∫ Yi+Zi+Yi+1

Yi

(WSi+t −WSi
)2dt

}

(a)
=E

{

E

{

∫ Yi+Zi+Yi+1

Yi

(WSi+t −WSi
)2dt

∣

∣

∣

∣

∣

Yi, Yi+1

}}

(b)
=
1

6
E

{

E

{

(WSi+Yi+Zi+Yi+1
−WSi

)4

∣

∣

∣

∣

∣

Yi, Yi+1

}}

− 1

6
E

{

E

{

(WSi+Yi
−WSi

)4

∣

∣

∣

∣

∣

Yi, Yi+1

}}

(c)
=
1

6
E
[

(WSi+Yi+Zi+Yi+1
−WSi

)4
]

− 1

6
E
[

(WSi+Yi
−WSi

)4
]

,

(62)

where step (a) and step (c) are due to the law of iterated

expectations, and step (b) is due to Lemma 4. Because Si+1 =
Si + Yi + Zi, we have

E
[

(WSi+Yi+Zi+Yi+1
−WSi

)4
]

=E
{

[(WSi+Yi+Zi
−WSi

) + (WSi+1+Yi+1
−WSi+1

)]4
}

=E
[

(WSi+Yi+Zi
−WSi

)4
]

+ 4E
[

(WSi+Yi+Zi
−WSi

)3(WSi+1+Yi+1
−WSi+1

)
]

+ 6E
[

(WSi+Yi+Zi
−WSi

)2(WSi+1+Yi+1
−WSi+1

)2
]

+ 4E
[

(WSi+Yi+Zi
−WSi

)(WSi+1+Yi+1
−WSi+1

)3
]

+ E
[

(WSi+1+Yi+1
−WSi+1

)4
]

=E
[

(WSi+Yi+Zi
−WSi

)4
]

+ 4E
[

(WSi+Yi+Zi
−WSi

)3
]

E
[

(WSi+1+Yi+1
−WSi+1

)
]

+ 6E
[

(WSi+Yi+Zi
−WSi

)2
]

E
[

(WSi+1+Yi+1
−WSi+1

)2
]

+ 4E [(WSi+Yi+Zi
−WSi

)]E
[

(WSi+1+Yi+1
−WSi+1

)3
]

+ E
[

(WSi+1+Yi+1
−WSi+1

)4
]

,

where in the last equation we have used the fact that Yi+1 is

independent of Yi and Zi, and the strong Markov property of

the Wiener process [30, Theorem 2.16]. Because

E
[

(WSi+1+Yi+1
−WSi+1

)3|Yi+1

]

=E
[

(WSi+1+Yi+1
−WSi+1

)|Yi+1

]

= 0,

by the law of iterated expectations, we have

E
[

(WSi+1+Yi+1
−WSi+1

)3
]

=E
[

(WSi+1+Yi+1
−WSi+1

)
]

= 0.

In addition, Wald’s identity tells us that E
[

W 2
τ

]

= E [τ ] for

any stopping time τ with E [τ ] < ∞. Hence,

E
[

(WSi+Yi+Zi+Yi+1
−WSi

)4
]

=E
[

(WSi+Yi+Zi
−WSi

)4
]

+6E [Yi+Zi]E [Yi+1]

+E
[

(WSi+1+Yi+1
−WSi+1

)4
]

. (63)

Finally, because (WSi+t −WSi
) and (WSi+1+t −WSi+1

) are

both Wiener processes, and the Yi’s are i.i.d.,

E
[

(WSi+Yi
−WSi

)4
]

= E
[

(WSi+1+Yi+1
−WSi+1

)4
]

. (64)
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Combining (62)-(64), yields (35).

APPENDIX J

PROOF OF THEOREM 5

By (35), (56) can be rewritten as

E

[

∫ Si+Yi+Zi+Yi+1

Si+Yi

(Wt −WSi
)2dt−(c+ λ)(Yi + Zi)

]

=
1

6
(WSi+Yi+Zi

−WSi
)4− β

3
(Yi+Zi)

=
1

6
[(WSi+Yi

−WSi
)+(WSi+Yi+Zi

−WSi+Yi
)]4− β

3
(Yi+Zi).

(65)

Because the Yi’s are i.i.d. and the strong Markov property of

the Wiener process [30, Theorem 2.16], the term in (65) is

determined by the control decision Zi and the information

I ′
i = (WSi+Yi

− WSi
, Yi, (WSi+Yi+t − WSi+Yi

, t ≥ 0)).
According to [31, p. 252] and [32, Chapter 6], I ′

i is the

sufficient statistic for determining the waiting time Zi in

(32). Therefore, there exists an optimal policy (Z0, Z1, . . .)
in which Zi is determined based on only I ′

i. By this, (32) is

decomposed into a sequence of per-sample control problems

(36). In addition, because the Yi’s are i.i.d. and the strong

Markov property of the Wiener process, the Zi’s in this

optimal policy are i.i.d. Similarly, the (WSi+Yi+Zi
−WSi

)’s
in this optimal policy are i.i.d.

APPENDIX K

PROOF OF LEMMA 5

Case 1: If b2 ≥ β, then (41) tells us that

τ∗ = 0 (66)

and

u(x) = E[g(X0)|X0 = x] = g(x) = βs− 1

2
b4. (67)

Case 2: If b2 < β, then τ∗ > 0 and (b+Wτ∗)2 = β. Invoking

Theorem 8.5.5 in [29], yields

Exτ
∗ = −(

√

β − b)(−
√

β − b) = β − b2. (68)

Using this, we can obtain

u(x) = Exg(X(τ∗))

= β(s+ Exτ
∗)− 1

2
Ex

[

(b+Wτ∗)4
]

= β(s+ β − b2)− 1

2
β2

= βs+
1

2
β2 − b2β. (69)

Hence, in Case 2,

u(x)− g(x) =
1

2
β2 − b2β +

1

2
b4 =

1

2
(b2 − β)2 ≥ 0.

By combining these two cases, Lemma 5 is proven.

APPENDIX L

PROOF OF LEMMA 6

The function u(s, b) is continuous differentiable in (s, b).

In addition, ∂2

∂2b
u(s, b) is continuous everywhere but at b =

±√
β. By the Itô-Tanaka-Meyer formula [30, Theorem 7.14

and Corollary 7.35], we obtain that almost surely

u(s+ t, b+Wt)− u(s, b)

=

∫ t

0

∂

∂b
u(s+ r, b+Wr)dWr

+

∫ t

0

∂

∂s
u(s+ r, b+Wr)dr

+
1

2

∫ ∞

−∞

La(t)
∂2

∂b2
u(s+ r, b+ a)da, (70)

where La(t) is the local time that the Wiener process spends

at the level a, i.e.,

La(t) = lim
ǫ↓0

1

2ǫ

∫ t

0

1{|Ws−a|≤ǫ}ds, (71)

and 1A is the indicator function of event A. By the property

of local times of the Wiener process [30, Theorem 6.18], we

obtain that almost surely

u(s+ t, b+Wt)− u(s, b)

=

∫ t

0

∂

∂b
u(s+ r, b+Wr)dWr

+

∫ t

0

∂

∂s
u(s+ r, b+Wr)dr

+
1

2

∫ t

0

∂2

∂b2
u(s+ r, b +Wr)dr. (72)

Because

∂

∂b
u(s, b) =

{

−2b3, if b2 ≥ β;

−2βb, if b2 < β,

we can obtain that for all t ≥ 0 and all x = (s, b) ∈ R
2

Ex

{

∫ t

0

[

∂

∂b
u(s+ r, b+Wr)

]2

dr

}

< ∞. (73)

This and Thoerem 7.11 of [30] imply that
∫ t

0
∂
∂b
u(s + r, b +

Wr)dWr is a martingale and

Ex

[
∫ t

0

∂

∂b
u(s+ r, b+Wr)dWr

]

= 0, ∀ t ≥ 0. (74)

By combining (38), (72), and (74), we get

Ex [u(Xt)]−u(x) = Ex

{
∫ t

0

[

∂

∂s
u(Xr)+

1

2

∂2

∂b2
u(Xr)

]

dr

}

.

(75)

It is easy to compute that if b2 > β,

∂

∂s
u(s, b) +

1

2

∂2

∂b2
u(s, b) = β − 3b2 ≤ 0;
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and if b2 < β,

∂

∂s
u(s, b) +

1

2

∂2

∂b2
u(s, b) = β − β = 0.

Hence,

∂

∂s
u(s, b) +

1

2

∂2

∂b2
u(s, b) ≤ 0 (76)

for all (s, b) ∈ R
2 except for b = ±

√
β. Since the Lebesgue

measure of those r for which b+Wr = ±
√
β is zero, we get

from (75) and (76) that Ex [u(Xt)] ≤ u(x) for all x ∈ R
2 and

t ≥ 0. This completes the proof.

APPENDIX M

PROOF OF THEOREM 7

Theorem 7 is proven in three steps:

Step 1: We will show that the duality gap between (29) and

(33) is zero, i.e., d(c) = p(c).
To that end, we needs to find π⋆ = (Z0, Z1, . . .) and λ⋆

that satisfy the following conditions:

π⋆ ∈ Π, lim
n→∞

1

n

n−1
∑

i=0

E [Yi + Zi]−
1

fmax
≥ 0, (77)

λ⋆ ≥ 0, (78)

L(π⋆;λ⋆, copt) = inf
π∈Π1

L(π;λ⋆, copt), (79)

λ⋆

{

lim
n→∞

1

n

n−1
∑

i=0

E [Yi + Zi]−
1

fmax

}

= 0. (80)

According to Theorem 5 and Corollary 1, the solution π⋆

to (79) is given by (44) where β = 3(c + λ⋆ − E [Y ]). In

addition, as shown in the proof of Theorem 5, the Zi’s in

policy π⋆ are i.i.d. From (77), (78), and (80), λ⋆ is determined

by considering two cases: If λ⋆ > 0, then

lim
n→∞

1

n

n−1
∑

i=0

E [Yi + Zi] = E [Yi + Zi] =
1

fmax
. (81)

If λ⋆ = 0, then

lim
n→∞

1

n

n−1
∑

i=0

E [Yi + Zi] = E [Yi + Zi] ≥
1

fmax
. (82)

Hence, such π⋆ and λ⋆ satisfy (77)-(80). By [27, Prop. 6.2.5],

π⋆ is an optimal solution to the primal problem (29) and λ⋆

is a geometric multiplier [27] for the primal problem (29).

In addition, the duality gap between (29) and (33) is zero,

because otherwise there exists no geometric multiplier [27,

Section 6.1-6.2].

Step 2: We will show that a common optimal solution to

(6), (27), and (29) with c = copt, is given by (4) where β ≥ 0
is determined by solving

E[Yi + Zi]=max

(

1

fmax
,
E[(WSi+Yi+Zi

−WSi
)4]

2β

)

, (83)

where the last term is determined by L’Hôpital’s rule if β → 0.

We consider the case that c = copt. In Step 1, we have

shown that policy π⋆ in (44) with β = 3(copt + λ⋆ − E [Y ])
is an optimal solution to (29). According to the definition of

copt in (30), p(copt) = 0. By Lemma 2(b), this policy π⋆ is

also an optimal solution to (27). In addition, p(copt) = 0 and

Lemma 2(a) imply mmseopt = copt. Substituting policy π⋆ and

(35) into (27), yields

copt = lim
n→∞

∑n−1
i=0 E

[

(WSi+Yi+Zi
−WSi

)4+(Yi + Zi)E[Y ]
]

6
∑n−1

i=0 E [Yi+Zi]

=
E
[

(WSi+Yi+Zi
−WSi

)4
]

6E [Yi+Zi]
+ E[Y ], (84)

where in the last equation we have used that the Zi’s are i.i.d.

and the (WSi+Yi+Zi
− WSi

)’s are i.i.d., which were shown

in the proof of Theorem 5. According to (84), copt ≥ E[Y ].
Hence, β = 3(copt +λ⋆−E [Y ]) ≥ 0, in which case policy π⋆

in (44) is exactly (4).

The value of β can be obtained by considering the following

two cases:

Case 1: If λ > 0, then (84) and (81) imply that

E [Yi + Zi] =
1

fmax
, (85)

β > 3(copt − E[Y ]) =
E
[

(WSi+Yi+Zi
−WSi

)4
]

2E [Yi+Zi]
. (86)

Case 2: If λ = 0, then (84) and (82) imply that

E [Yi + Zi] ≥
1

fmax
, (87)

β = 3(copt − E[Y ]) =
E
[

(WSi+Yi+Zi
−WSi

)4
]

2E [Yi+Zi]
. (88)

Combining (85)-(88), (83) follows. By (84), the optimal value

of (27) is given by

mmseopt =
E[(WSi+Yi+Zi

−WSi
)4]

6E[Yi + Zi]
+ E[Y ]. (89)

Step 3: We will show that the expectations in (83) and (89)

are given by

E[Yi + Zi] = E[max(β,W 2
Y )], (90)

E[(WSi+Yi+Zi
−WSi

)4] = E[max(β2,W 4
Y )]. (91)

According to (44) with β ≥ 0, we have

WSi+Yi+Zi
−WSi

=

{

WSi+Yi
−WSi

, if |WSi+Yi
−WSi

| ≥
√
β;√

β, if |WSi+Yi
−WSi

| < √
β.

Hence,

E[(WSi+Yi+Zi
−WSi

)4] = E[max(β2, (WSi+Yi
−WSi

)4)].
(92)

In addition, from (66) and (68) we know that if |WSi+Yi
−

WSi
| ≥

√
β

E[Zi|Yi] = 0;

otherwise,

E[Zi|Yi] = β − (WSi+Yi
−WSi

)2.
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Hence,

E[Zi|Yi] = max[β − (WSi+Yi
−WSi

)2, 0].

Using the law of iterated expectations, the strong Markov

property of the Wiener process, and Wald’s identity

E[(WSi+Yi
−WSi

)2] = E[Yi], yields

E[Zi + Yi]

=E[E[Zi|Yi] + Yi]

=E[max(β − (WSi+Yi
−WSi

)2, 0) + Yi]

=E[max(β − (WSi+Yi
−WSi

)2, 0) + (WSi+Yi
−WSi

)2]

=E[max(β, (WSi+Yi
−WSi

)2)]. (93)

Finally, because Wt and WSi+t −WSi
are of the same distri-

bution, (90) and (91) follow from (93) and (92), respectively.

This completes the proof.
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