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Abstract

We study the locality properties of the vortex operators in compact U(1) Maxwell-

Chern-Simons and SU(N) Yang-Mills-Chern-Simons theories in 2+1 dimensions. We

find that these theories do admit local vortex operators and thus in the UV regularized

versions should contain stable magnetic vortices. In the continuum limit however

the energy of these vortex excitations generically is logarithmically UV divergent.

Nevertheless the classical analysis shows that at small values of CS coefficient κ

the vortices become light. It is conceivable that they in fact become massless and

condense due to quantum effects below some small κ. If this happens the magnetic

symmetry breaks spontaneously and the theory is confining.
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1 Introduction.

Recently there has been proposed [1, 2] a very general argument (reviewed below) connect-

ing the realization of magnetic ZN symmetry, and the vacuum expectation values of the

spatial ’t Hooft loop V and spatial Wilson loop W in SU(N) gauge theory. The motivation

for these arguments is the study of confinement/deconfinement phase transitions in such

theories. In 2+1 dimensions the role of the spatial ’t Hooft loop operator is played by

the magnetic vortex operator V (x) which creates a magnetic vortex at x. The magnetic

vortex operator is a canonical operator that acts on the physical Hilbert space of theory,

unlike the Polyakov loop which is also used to study the phase structure of gauge theories,

but which is not a canonical operator [1, 2]. An important part of the aforementioned

argument concerns the locality of this magnetic vortex operator. In this note we study

the locality properties of the magnetic vortex operator in 2+1 dimensional gauge theories

when a Chern-Simons term is included for the gauge field. We consider first the case of

compact U(1) and then SU(N). Including the Chern-Simons term does not alter the clas-

sical compact gauge symmetries of the system, but we might expect new behavior because

the Chern-Simons term generates massive gauge degrees of freedom at the perturbative

level [3].

Several related issues have been studied previously. In the absence of the Chern-

Simons term, compact QED in 2+1 dimensions is confining due to monopoles [4], while

SU(N) Yang-Mills in 2+1 dimensions is confining due to the condensation of ZN monopoles

[5]. The existence of similar monopoles with a Chern-Simons term included has been

analyzed for compact U(1) in [6, 7, 8], and for SU(N) in [9, 10, 11]. The general picture

emerging from these studies is that confinement of electric charge is destroyed by the

inclusion of the Chern-Simons term due to the binding of monopole-antimonopole pairs.

However, these instanton-based approaches involve complex instantons, whose physical

interpretation is acknowledged to be incompletely understood [11]. We thus feel it will

be helpful to analyze these models in a different but complementary manner. Compact

Maxwell-Chern-Simons theories have also been studied on the lattice in [12], also revealing
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bound monopole-antimonopole pairs. The strong coupling limit of SU(N) Yang-Mills-

Chern-Simons theories, and in particular the Polyakov loop, have been analyzed in [13]

using the connection to topological field theories. And a Hamiltonian analysis [14] of

SU(N) Yang-Mills-Chern-Simons theories indicates that the Wilson loop is expected not

to have an area law behavior. Cornwall has argued [15] that there is a phase transition

at a finite value of the Chern-Simons coefficient due to an interplay of perturbative and

non-perturbative mass generation effects. As further motivation, much is known about the

existence and properties of magnetic vortices in Chern-Simons theories coupled to matter

fields [16, 17]. Here, instead, we want to focus on the question of vortices in the theory

with just gauge fields, and no additional matter fields.

The key objects in this discussion are the spatial Wilson loop operator (along the

spatial boundary of the system):

W = TrP exp{i

∮

C→∞

dxiAi} (1)

and the magnetic vortex creation operator V (x), whose precise definition will be given

below for the U(1) and SU(N) cases [see (11) and (41)]. In the SU(N) case, W generates

the discrete ZN global symmetry, while V (x) can be viewed as a canonical local order

parameter for this symmetry [1, 2]. Together, W and V satisfy the ’t Hooft algebra [5]:

W V (x)W † = e
2πi
N V (x) (2)

The general argument developed in [1, 2] for SU(N) Yang-Mills, without a Chern-Simons

term, can be briefly summarized as follows.

First, one establishes that V (x) is a local canonical order parameter that maps physical

states to physical states, and so can be used to distinguish the phases of the theory in a

gauge invariant manner. Given this, consider the theory at zero temperature. The spatial

Wilson loop operator (the generator of the magnetic ZN symmetry) acts on the ground

state by transforming the ZN -non invariant fields. There are two natural possibilities:

(i) the ground state is ZN invariant, so that < V >= 0. The operator W only has

an effect near the boundary, so W has a perimeter law behavior. In this case, we expect

vortex states in the spectrum, to carry the unbroken ZN symmetry.
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(ii) the ground state breaks ZN , so that < V > 6= 0. Now W acts nontrivially in

the bulk so that W has an area law behavior. In this case we expect no vortices in the

spectrum.

At higher temperatures, these correspondences no longer hold. Even in an unbroken

phase, the thermal ensemble involves states with nontrivial ZN charges, so that W acts

significantly in the bulk and so generically has an area law behavior even though the

symmetry is restored.

In this note, we ask how much of this argument is modified by the inclusion of a Chern-

Simons term. We will show that the Wilson loop still generates the appropriate discrete

symmetry. But Yang-Mills-Chern-Simons (YMCS) theories are completely massive, and

so the Wilson loop is expected to have a perimeter law behavior [14]. By the previous

argument it should then follow that the magnetic symmetry is unbroken and the spectrum

should contain vortex states. There is one way to avoid this conclusion. The relation

between the VEV of W and V only holds if V is a local operator. The question of locality

of V has not been studied in YMCS theories. Thus it is possible that V is nonlocal, in

which case the magnetic symmetry does not actually have a local order parameter. If that

is the case the symmetry can be unbroken, W may have perimeter law and there could

still be no magnetic vortex states. We note that a similar situation occurs in YM theories

with fundamental matter[20]. This is the question we want to address in this note. We

want to examine more carefully the question of locality of the vortex operator in YMCS

and understand whether the spectrum contains magnetic vortices.

In Section 2 we start our discussion by considering a simpler theory - compact elec-

trodynamics with CS term. Conceptual questions here are similar but the technical side

is much simpler. Our results are somewhat surprising. We find that generically the theory

does indeed contain local vortex operators and a global discreet magnetic symmetry which

is unbroken. Nevertheless in the continuum limit there are no magnetic vortices in the

spectrum. The reason is that the energy of such a vortex is logarithmically UV divergent.

We find however that with a particular scaling of the CS coefficient (logarithmically van-

ishing when UV cutoff is removed) the energy of the vortex becomes finite. This suggests
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that the theory may indeed have a phase with finite energy vortex states and vanishing

photon mass. In Section 3 we extend our discussion to non-Abelian YMCS theories. We

find that here again the local gauge invariant vortex field exists. The situation in the

continuum limit appears to be similar to the Abelian case with a possible vortex phase at

small values of the CS coefficient. Section 4 contains a short summary of our results.

2 Compact QED with the Chern Simons term.

The Lagrangian of Abelian Chern Simons theory in the formal continuum limit is

L = −
1

4g2
FµνF

µν +
κ

2
ǫµνρAµ∂νAρ (3)

The gauge coupling g2 has dimension of mass and κ is dimensionless. Equations of motion

read as ∂νF
µν = κg2ǫµνρ∂νAρ. The mass of the gauge particle is M = κg2. The canonical

structure of the theory is simplest in the Hamiltonian gauge, A0 = 0.

The Hamiltonian is

H =
1

2g2
(E2

i +B2) (4)

with canonical momenta related to the time derivatives of the fields by Πi = − 1
g2
Ȧi+

κ
2
ǫijAj .

The gauge fields and canonical momenta form the canonical algebra, and the algebra

involving the electric fields is

[Ei(~x), Ej(~y)] = −iκg4ǫijδ
2(~x− ~y), [Ai(~x), Ej(~y)] = −ig2δijδ

2(~x− ~y) (5)

The Gauss law,

∂iE
i − κg2ǫij∂iAj = 0 (6)

on a given spatial slice Σ which we take to be the plane, generates time independent local

gauge transformations. The elements of the local gauge group near a point x0 ∈ Σ take

the form

U(x0) = exp{
1

g2
i

∫

Σ

d2xλ(x, x0)(∂iE
i − g2κǫij∂iAj)} (7)
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such that UAU−1 = A + dλ. In the non-compact theory λ ∈ R should be a single-valued

function on Σ such that the eigenvalue of the operator (7) on physical states is unity.

Singular λ’s correspond to transformations which are in general nontrivial on the physical

states.

Our interest however is in the compact theory. This means that magnetic vortices

of flux 2π must be physically unobservable. As discussed in [21] this amounts to further

restricting the physical Hilbert space to states which are trivial under the action of the

vortex operator.

In other words certain large gauge transformations must act on the physical states

trivially in the compact theory as opposed to the non-compact one. The compact gauge

group therefore includes these singular gauge transformations in addition to the regular

ones, which form the gauge group in the noncompact theory. Consider a multi-valued angle

function θ(x, x0) which is singular at one point and has a discontinuity along a straight

curve C(x0) that starts at the point x0 and goes to infinity. The operator of the gauge

transformation with this singular gauge function creates a magnetic vortex. Its explicit

form (after partial integration and dropping a boundary term owing to the fact that all

gauge invariant fields decay at infinity) is

Ṽ (x0) = exp{−
1

g2
i

∫

Σ

d2x ∂̃iθ(x− x0)

(

Ei − g2κǫijAj

)

} (8)

We have defined

∂̃iθ(x− x0) = ∂iθ(x− x0)− 2πǫijc(x)jδ(x− C(x0)) =
ǫij(x− x0)j
(x− x0)2

(9)

c(x)j is a unit vector tangent to the curve C(x, x0).

We may want to include Ṽ into the compact gauge group. However to be part of the

gauge group, it must commute (at least weakly) with other elements of the group. One

can check explicitly that Ṽ (x, x0) does not commute with the elements of the noncompact

group. To rectify this situation we define, following [21] a slightly modified operator

V (C, x0) = exp
2πi

g2
ǫij

∫

d2xc(x)jδ(x− C(x, x0))Ei(x) (10)

6



This operator is merely a “collection” of the electric fields which are perpendicular to the

curve C(x0). More explicitly one can write it in the following form

V (C, x0) = exp
2πi

g2
ǫij

∫

C

dliEj(x) (11)

Gauge invariance of this operator, [V, U ] = 0, follows immediately. We also need to check

the commutativity of V (x) with V (y). Defining the volume form v = 1
2
ǫijdx

i ∧ dxj on Σ

we have the following commutation rules,

V (C0)V (C1) = V (C1)V (C0)exp

{

i8π2κL(C0, C1)

}

(12)

Where L(C1, C2) =
∫

Σ
vδ2(C0 − C1). It is clear that if the curves cross each other then

L = ±1 and if they are parallel L = 0. In order that V be a Lorentz scalar the commutator

should not depend on the curves C1 and C2 To guarantee this we need to set

4πκ = k ∈ Z (13)

We find therefore that the requirement of compactness quantizes the coefficient of the

Chern Simons term very much like in the non-Abelian theory .

To see that (11) creates magnetic vortices of integer strength it is enough to consider

the commutator

[B(x), V m(x0)] = 2πmδ2(x− x0)V
m(x0), m ∈ Z. (14)

Therefore V m(x0) creates a point-like magnetic vortex of vorticity m and magnetic flux

2πm. Being gauge invariant this operator also creates an electric charge

Q =
1

g2

∫

Σ

d2x∂iE
i =

k

4π

∫

Σ

d2xB =
mk

2
(15)

Since V has to be included in the gauge group, the magnetic flux and the electric charge

created by it must be unobservable. Therefore the Hamiltonian of the theory must commute

with V . The noncompact Hamiltonian eq.(4) does not quite do the job. It should be

modified but in such a way that in the continuum limit the same form is recovered for

smooth fields. The modified Hamiltonian that satisfies these conditions has been suggested
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in [21]. Since the UV structure is important for our considerations, it is most usefully

presented in the lattice notations

HB =
1

a4g2n2

∑

x

(1− Re eina
2B(x)), HE =

m2g2

4π2a2

∑

x

(1− Re e
i2π a

mg2
ǫij n̂jEi(x)), (16)

a is the lattice spacing and m,n ∈ Z and n̂j is the unit vector parallel to the link. The

normalization of the electric and magnetic terms is such that in the naive continuum limit

a → 0 they reduce to B2 and E2 respectively.

Using the Gauss’ law one can see that if 2n = k , the magnetic part HB becomes a

combination of the vortex operators V . Therefore without loss of generality we assume

2n < k. For m = 1 the electric part of the Hamiltonian is also a sum of a fundamental

vortex and anti-vortex, and we take m > 1.

Now that we have the formulation of the compact CS QED we can ask about the

locality properties of vortex operators. The operator V we have considered so far is of

no interest of itself, since is is trivial on all physical states. We thus have to look at the

operators which create magnetic flux smaller than 2π

Vp(C, x0) = exp
2pπi

g2
ǫij

∫

C

dli Ej(x), p ∈ Q (17)

Here p is a rational number p ∈ (0, 1). The question we are asking is, are there such values

of p for which Vp is a gauge invariant local operator. The gauge invariance with respect

to the noncompact gauge group is straightforward, since Vp only depends on the electric

field, and the electric field itself is gauge invariant. However Vp should also commute with

the ”fundamental” vortex V , since V is part of the gauge group. Therefore we have

[V, Vp] = 0 =⇒ kp = l ∈ Z and l < k. (18)

This condition is already informative. For example we see that there are no non-trivial

vortices in k = 1 theory. The condition of locality requires that Vp(x) commute with each

other at different points x and y. This commutator also should be independent of the

contour C in the definition eq.(17).

[Vp(x), Vp(y)] = 0 =⇒ kp2 = r ∈ Z (19)
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Both equations (18) and (19) have to be satisfied for the existence of non-trivial local

vortices. Whether it is possible or not to satisfy these equations clearly depends on the

CS coefficient k. For example there are no solutions for k = 2 and k = 3 theories. For

k = 4 we can choose l = 2 and this gives a vortex of vorticity p = 1/2. In general one

can solve the constraints in the following way. Writing CS coefficient in terms of its prime

factors, k = q1 q2 q3... qm, where all qi are not necessarily different, one has the following

two conditions to satisfy

q1 q2 q3... qm p = l, q1 q2 q3... qm p2 = r. (20)

The first condition is solved if p divides k which means, without loss of generality, we have

p =
1

q1 q2 q3... qi
, where i < m (21)

Using this in the second condition one can see that the most general form of k which allows

vortices will be

If k = t2z =⇒ p =
1

t
, t ≥ 2 and t, z ∈ Z (22)

For example if k is a prime number there are no solutions. Generically it is easier to find

a solution at large values of k.

The above relations also show that should a solution exist, there is always a vortex of

minimal vorticity. All the other local vortices are simple powers of this minimal vortex. For

example for k = 36, the above conditions give three solutions (and their integer multiples)

, p = (1/2, 1/3, 1/6). Obviously “p= 1/6” is the minimal vortex. The minimal value of

p = 1
w
determines the global magnetic symmetry group of the theory as Zw.

One last requirement that Vp should satisfy, is locality with respect to the energy

density eq.(16). In obvious notation

[hE(x), Vp(y)] = 0, x 6= y =⇒
kp

m
∈ Z (23)

This can always be satisfied by choosing m = k. To satisfy the other condition

[hB(x), Vp(y)] = 0 =⇒
np

2
∈ Z (24)
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we can take n = 2. Certainly one can define other Hamiltonians which will be compatible

with the above conditions. We see therefore that for those values of k for which vortex

operators are local with respect to each other we can always choose the Hamiltonian such

that they are also local relative to the Hamiltonian density.

Thus we conclude that for many values of k local physical vortex operators exist. They

are order parameters for a global Zw magnetic symmetry. The value of w is determined by

k through the solution of the equations for minimal p. Thus the argument described in the

introduction applies and, at least in the lattice theory there are vortex states. Calculating

their energy in the lattice theory is not a simple matter. However the interesting question

is whether these states survive in the continuum limit. That is to say, whether their energy

stays finite as the lattice spacing approaches zero.

We note that the continuum limit of the theory (16) is a slightly delicate matter. One

must certainly take the limit a → 0. However since we expect in the continuum the scaling

B and E to be ga−3/2, to guarantee the expandability of the electric exponential in eq.(16)

we should take gka1/2 ≫ 1. For the expandability of the magnetic exponential we should

keep ga1/2 ≪ 1. These two conditions are compatible if k ≫ 1. With this scaling the mass

of the photon can be also kept finite in the continuum limit. One should keep in mind

that this scaling of the couplings is sufficient to get the continuum limit, but it may not

be necessary. In particular it could certainly happen that at finite k the scaling of B and

E changes close to the cutoff and the continuum limit still exists.

In the continuum limit for smooth configurations of the fields the theory is described

by the Lagrangian eq.(3). However while solving continuum equations we may sometimes

encounter field configurations with fast variations. For these configurations it is important

to take into account the compactness of the theory. In particular consider the electric field

created by the ”minimal” vortex operator V1/w.

[V (x), Ei(y)] = Ei(y) + ei(x, y), ei(x, y) =
1

w
g4κn̂(y)iδ(y − C(x, y)) (25)

where n̂(y) is the vector tangential the curve C at the point y. Since the operator V (x)

is local, its only observable action in the compact theory is at the point x. However if we
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just calculate the energy using the naive Hamiltonian eq.(4) we find infrared divergence

proportional to the length of the curve C. Clearly if faced with this type of configurations

in continuum calculations we should subtract this infrared divergence by hand. Rather

than do this we find it convenient to think about it in the following way. Let us split the

general electric field configuration into a smooth piece and a piece that contains arbitrary

number of strings of the type of eq.(25)

Ei = Ei
smooth + ei (26)

and subtract the contribution of ei in the Hamiltonian. The only remnant of ei then is

in the Gauss’ law, since ei of eq.(25) corresponds to a pointlike charge k
2w

at the point x.

Thus the smooth field Ei
smooth satisfies not the naive Gauss’ law, but rather a modified one

∂iE
i
smooth|mod k

2w
δ2(x) − κg2ǫij∂iAj = 0 (27)

In other words we can work entirely in terms of Esmooth if we remember that we may

allow Gauss’ law to be violated by the presence of pointlike charges of charge κg2/w. The

appearance of w in this way is the only remnant of the compactness of the theory. In the

following we will work in terms of the smooth fields but will drop the subscript smooth for

brevity.

With this caveat in mind, to determine the energy of the magnetic vortex in the

continuum limit we now should solve the continuum equations of motion. For a minimum

vorticity solution 1/w following [23, 24] one can take the time independent symmetric

ansatz,

Ai(r) = ǫij
xj

r2
[g(r)−

1

w
] A0(r) = h(r) (28)

The equations of motion read

g′′(r)−
1

r
g′(r)− rMh′(r) = 0, (29)

h′′(r) +
1

r
h′(r)−

M

r
g′(r) = 0, (30)
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where M = g2κ. We are looking for the solutions with vorticity 1/w. The magnetic field is

B = −1
r
g′(r) so we impose g(0) = 1/w and g(∞) = 0 and we also demand that the fields

decay exponentially at infinity. The solution under these conditions can be found as

g(r) =
Mr

w
K1(Mr), B(r) =

M2

w
K0(Mr) (31)

h(r) = −
M

w
K0(Mr) Ei = −

xiM2

wr
K1(Mr), (32)

where K0, K1 are the Bessel functions.The energy of this vortex follows as

E =
π

g2

∫ ∞

0

r dr{(
dh

dr
)2 +

1

r2
(
dg

dr
)2} (33)

E =
πκ

w2
M(− γE + ln2− ln

M

Λ
) (34)

where Λ is the ultraviolet cutoff scale.

This result warrants several comments. First, we see that the energy of the vortex is

IR finite. This is closely related to the fact that the locality of the operator V1/w allowed

us to ”violate” the Gauss’ law. Looking at the electric and magnetic fields in eqn (32) we

indeed see that the naive Gauss’ law is violated precisely by the amount allowed by eq.(27).

Without this deficit in the Gauss law any solution would have infrared divergent energy.

This is because any nonvanishing magnetic flux Φ would require a long range electric field

Ei ∝ g2Φκ xi

x2 to satisfy the Gauss’ law. The Coulomb energy of this field is logarithmically

divergent in IR. The absence of this long range piece in the field and the associated IR

divergence in the energy is what distinguishes the compact and the noncompact theory.

Second, the energy is UV divergent. Thus the magnetic vortices do not survive in

the continuum limit as finite energy excitations. This of course does not contradict our

original argument. The Zw symmetry is unbroken in the vacuum and excitations carrying

the quantum numbers of this symmetry are very heavy. The symmetry therefore seems

completely irrelevant for the low energy dynamics. The curious thing though is that al-

though the energy of the vortex is large, it is still much lower than the natural ultraviolet
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scale Λ. The vortices therefore are not genuine ultraviolet objects in the lattice theory,

but rather occupy an intermediate scale between the UV scale Λ and the IR scale M. In

fact bringing M down to zero makes vortices light. At M = µ ln−1 Λ
µ
the energy of the

vortex is finite4. This behavior in fact is very reminiscent of vortices in the Higgs phase

of the Abelian Higgs model. The mass of such a vortex at weak coupling is very large;

M ∝ M2
v /g

2 lnMH/Mv, where Mv is the mass of the massive photon and MH is the mass

of the Higgs particle. However as the photon mass decreases, that is as the theory ap-

proaches the phase transition line, vortices become light. On the phase transition itself

they in fact become massless and condense in the Coulomb phase. It is not unlikely that

similar phenomenon occurs in our model. As κ decreases at fixed g2 the photon becomes

lighter, and the mass of the vortex also decreases. It could happen that at some value

of κ the vortices actually become massless and drive a phase transition into a phase with

broken magnetic symmetry. A transition of precisely such type was conjectured to happen

in the lattice model at k = 8 in [25] and was seen in the variational calculation of [21].

Of course, within the naive continuum limit we consider here we are unable to see such

behavior. However the fact that the vortices become light within the validity of the naive

continuum limit is quite suggestive in this respect. It is interesting to note that if the

vortices indeed condense, the magnetic Zw symmetry is spontaneously broken. By virtue

of the argument given in the introduction this means that the low k phase is confining.

3 Non-Abelian theories.

We now want to extend our analysis to non-Abelian theories. We will study the SU(N)

gauge theory with the the Lagrangian

L =
1

2g2
trFµνF

µν − κǫµνλtr

(

Aµ∂νAλ +
2

3
AµAνAλ

)

(35)

4The reader may wonder why we are not bothered by the factor κ in eq.(34). After all we saw that in
the continuum limit naturally κ → ∞. The point is that the flux of the minimal vortex generically scales
as w2 ∝ k. For example if k = x2 with some integer x, then clearly the minimal solution of the eq.(22)
corresponds to w = x. Thus k/w2 is finite in the continuum limit.
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CS coefficient has the well known quantization, 4πκ = k [3]. We denote Aµ = Aa
µT

a and

tr[T a, T b] = −1
2
δab The Lie algebra generators obey [T a, T b] = fabcT c. The field strength

and the covariant derivative are Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ], Dµ = ∂µ + [Aµ, ]. The

classical equations of motion follow as

DµF
µν −

1

2
g2κǫνλµFλµ = 0 (36)

The canonical structure of this theory is similar to the Abelian case. In the Aa
0 = 0 gauge

we have [17]

Πa
i = −

1

g2
Ea

i +
κ

2
ǫijAa

j , where Ea
i = Ȧa

i . (37)

The Hamiltonian is

H =
1

2g2
{(Ea

i )
2 + (Ba)2}, where Ba =

1

2
ǫij F

a
ij. (38)

The canonical algebra is

[Ea
i (~x), E

b
j (~y)] = −iδabκg4ǫijδ

2(~x− ~y), [Aa
i (~x), E

b
j (~y)] = −ig2δabδijδ

2(~x− ~y) (39)

In terms of the momenta the Gauss law is

(DiΠi)
a = −

κ

2
ǫij∂iA

a
j (40)

In the non Abelian YMCS theory, the large Wilson loop still commutes with the

Hamiltonian. This is obvious in the Hamiltonian formalism, since the commutation relation

between the vector potential and the chromoelectric field is unaffected by the presence of

the CS term. The form of the Hamiltonian in terms of Ai and Ei is also the same as without

the CS term. Since W is a function of Ai only, its commutator with the Hamiltonian is

exactly the same as in the theory without CS. Therefore the fundamental Wilson loop still

generates a symmetry.

Again our question is whether the theory admits local vortex operators. In the non-

Abelian theory our choices are more limited than in compact QED. In the SU(N) Yang
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Mills theory, the only candidates for local operators are those that create quantized flux

[5, 18]. The vortex operator in YM theory is [18, 19]:

V (x) = exp{
4πi

g2N

∫

C

dyiǫijTr(Y Ei(y)) (41)

where the hyper charge generator Y is defined as

Y = diag (1, 1, ...,−(N − 1)) (42)

and the electric field is taken in the matrix notation Ei = T aEa
i . It can be proven that in

SU(N) YM theory, this operator despite its nonlocal and gauge non-invariant appearance

is in fact a local, gauge invariant, Lorentz scalar field [18, 19]. The way it was constructed

there was to require that it satisfies the ’tHooft algebra [5] with the fundamental Wilson

loop

V †(x)W (C)V (x) = exp{
2πi

N
n(x, C)}W (C) (43)

with n(x, C) being the linking number on the plane between the point x and the closed

curve C.

We claim that the operator in (41) is also the appropriate vortex operator when a

Chern-Simons term is included for the gauge field. The commutation relation (43) is still

satisfied by the expression (41). However an additional requirement was that V be gauge

invariant. Here we should be more specific what we mean by that. The expression (41)

is not explicitly gauge invariant since it depends on the chromoelectric field in the hyper

charge direction. However for κ = 0 it has been proven that the matrix elements of

V between physical states (those that satisfy Gauss’ law) and non-physical states (non-

singlet under gauge transformations) vanish. This means that when we calculate matrix

elements of any number of operators V between gauge invariant states, only intermediate

states from the physical sector contribute and so the form (41) can be safely used even

though it is not explicitly gauge invariant. Let us briefly recap the proof[2]. The wave

functional of any physical state in a theory without Chern Simons term depends only on
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gauge invariant characteristics of the vector potential, i.e. only on the values of Wilson

loops over all possible contours.

Ψ[Ai] = Ψ[{W (C)}] (44)

Consider the action on such a state of the operator V (x) and its gauge transform VΩ(x).

V |Ψ > = ΨV [Ai] = Ψ[{VW (C)V †}]

VΩ|Ψ > = ΨΩ
V [Ai] = Ψ[{VΩW (C)V †

Ω}] (45)

The action of V (x) and VΩ(x) on the Wilson loop is identical - they both multiply it by the

center group phase (which stays unaffected by Ω) if x is inside C and do nothing otherwise.

Therefore

V |Ψ >= VΩ|Ψ > (46)

for any physical state Ψ. Thus we have

ΩV |Ψ >= ΩV Ω†|Ψ >= V |Ψ > (47)

where the first equality follows from the fact that a physical state is invariant under action

of any gauge transformation Ω and the second equality follows from eq.(46). But this

equation is nothing but the statement that the state V |Ψ > is physical, i.e. invariant

under any nonsingular gauge transformation. Thus we have proved that V transforms a

physical state into another physical state.

In the Chern-Simons theory the vortex operator should also be gauge invariant. We

thus have to check that it transforms a physical state into another physical state. The

difference with the pure YM theory is that the wave function of a gauge invariant state

does not depend only on the Wilson loops. The physical wave function should satisfy the

following equation

i(Di
δ

δAi
)aΨ[A] =

κ

2
ǫij∂iA

a
jΨ[A] (48)
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The general form of Ψ has been determined in [14] in terms of certain nonlinear vari-

ables. For our purposes we find it more convenient to work directly in terms of the vector

potentials Ai. Let us take Ψ in the form

Ψ = exp{−iS} (49)

Then the eikonal S satisfies a linear inhomogeneous equation

Dab
i

δ

δAb
i

S[A] =
κ

2
ǫij∂iA

a
j (50)

The solution of the homogeneous equation is indeed any functional that depends on Wilson

loops S0[W ]. We can find a particular solution of the inhomogeneous equation using the

following argument. S[A] must be a functional whose change under a standard gauge

transformation of vector potentials δAi = Diλ is proportional to κ
2

∫

d2xǫij∂iA
a
jλ

a. Such

a functional can be represented as a Chern Simons action on a space with a boundary.

Let us introduce an additional coordinate τ ∈ [−∞, 1] and functions of three coordinates

Ai(x, τ) so that at the boundary τ = 1, the value of these functions is equal to the value

of the vector potentials in our theory Ai(x, τ = 1) = Ai(x). Let us write the Chern Simons

term (in the Weyl gauge) on this manifold

SCS =

∫ 1

−∞

dτ

∫

d2xǫijA
a
i (x, τ)Ȧ

a
j (x, τ) (51)

Under the τ independent gauge transformation this action changes by a boundary term

δSCS = −

∫

d2x ǫijλ
a(x)∂iA

a
j (x, τ = 1) = −

∫

d2x ǫijλ
a(x)∂iA

a
j (x) (52)

which is precisely of the form required to satisfy eq.(50). A particular solution of eq.(50)

is therefore

Sp = −
κ

2
SCS = −

κ

2

∫ 1

−∞

dτ

∫

d2xǫijA
a
i (x, τ)Ȧ

a
j (x, τ) (53)

The introduction of the extra coordinate τ and the expression eq.(51) is not at all unnatural.

One should view this extra coordinate as parameterizing a curve in the field space. With

this interpretation we have

dτȦj(x, τ) = δAi (54)
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and

∫ 1

−∞

dτ

∫

d2xǫijA
i(x, τ)Ȧj(x, τ) =

∫

C

δAiǫijAj (55)

where the line integral is taken over the trajectory C in the field space which ends at the

point {Ai(x)}.

We have thus determined the general form of the wave function of a physical state in

the YMCS theory to be

Ψ[A] = exp{i
κ

2

∫ 1

−∞

dτ

∫

d2xǫijA
i(x, τ)Ȧj(x, τ)}Ψ0[W ] (56)

Now it is straightforward to see how the vortex operator acts on it. Under the action of

the vortex operator

V (x)Aa
i (y, τ) V

†(x) = Ai(x, τ) +
4π

N
TrY T aǫij

∫

dzjδ
2(z − C(x, y)) (57)

Remembering that Ea
i = −g2Πa

i + g2κǫijA
a
j , we see that the change in the phase factor in

the wave functional is exactly cancelled by the A-dependent term in the vortex operator

eq.(41).

V (x) e−iSp V †(x) = e−iSp. (58)

Thus

VΨ[A] = exp{i
κ

2

∫ 1

−∞

dτ

∫

d2xǫijA
i(x, τ)Ȧj(x, τ)}Ψ0[V

†WV ] (59)

Clearly a gauge transformed vortex operator VΩ has exactly the same action on the wave

functional Ψ[A],

VΨ = VΩΨ (60)

which establishes gauge invariance of V in the same sense as in the YM theory.

We now can check the locality of the operator V by calculating straightforwardly

the relevant commutation relation. A simple calculation gives [V (x), V (y)] = 0. Thus

the operators are local with respect to each other. When considering the locality with
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respect to the Hamiltonian density we are faced with the same ambiguity as in the Abelian

theory. The electric part of naive continuum Hamiltonian is not local relative to V , since

Ei is shifted by the action of V along the curve C. Just like in the Abelian case one should

consider a properly regularized version ofH in order to be able to draw a definite conclusion.

In the non-Abelian case such a regularized Hamiltonian is not available. However in the

Abelian case we saw that there is quite a lot of flexibility in defining such a regularized

version. In particular we saw that whenever the vortex operators were local with respect

to each other, we were always able to define the local Hamiltonian density. We expect that

this situation persists in the non-Abelian theory too.

The situation in the continuum limit is again similar to the Abelian case. There are no

finite energy solutions of the non-Abelian equations of motion which have finite vorticity.

The only way to find such solutions would be again to relax the Gauss’ law constraint by

allowing point like charges which correspond to the singular chromoelectric field created

by V . However again those IR finite configurations will have UV logarithmically divergent

energy. In fact taking Abelian ansatz the YM equations of motion reduce to those we

considered in the previous section and thus lead to the same energy dependence on the

UV cutoff. Strictly speaking this conclusion is only valid for large enough value of k, since

for small k quantum corrections to this classical analysis may be large. Thus again it is

possible that at small k the theory is in a different phase as suggested in [15].

4 Summary.

To summarize, we have studied the question of locality of the vortex creation operator in

compact Chern- Simons theories. We have found that compact CS QED does admit local

vortex operators for many values of the CS coefficient k. The energy of the vortex exci-

tations however generically is logarithmically UV divergent in the continuum limit. With

a particular scaling of the CS coefficient these vortices become light and might condense

at small values of k. Our results for non-Abelian CSYM theory are similar. Local vortex

operators exist, but the particles that carry vorticity are heavy in the continuum limit.
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These results are broadly compatible with suggestions made in the literature that

at low values of the Chern Simons coefficient the YMCS theory might undergo a phase

transition. If this happens it is very likely that this other phase has a broken magnetic

symmetry and is therefore confining. This is a very interesting possibility which seems

worthwhile exploring by numerical lattice methods.
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