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We study low temperature electron transport in p-wave superconductor-insulator-normal metal
junctions. In diffusive metals the p-wave component of the order parameter decays exponentially
at distances larger than the mean free path l. At the superconductor-normal metal boundary,
due to spin-orbit interaction, there is a triplet to singlet conversion of the superconducting order
parameter. The singlet component survives at distances much larger than l from the boundary. It
is this component that controls the low temperature resistance of the junctions. As a result, the
resistance of the system strongly depends on the angle between the insulating boundary and the
d-vector characterizing the spin structure of the triplet superconducting order parameter. We also
analyze the spatial dependence of the electric potential in the presence of the current, and show that
the electric field is suppressed in the insulating boundary as well as in the normal metal at distances
of order of the coherence length away from the boundary. This is very different from the case of the
normal metal-insulator-normal metal junctions, where the voltage drop takes place predominantly
at the insulator.

PACS numbers: 74.20.Rp, 74.70.Pq, 75.70.Tj.

I. INTRODUCTION

Electron transport in superconducting systems is very
different from that in normal metals. Roughly speaking,
the characteristic size of wave packets which carry cur-
rent in metals is of the order of the Fermi wave length
h̄/pF , while their charge is equal to the electron charge e.
Here pF is the Fermi momentum. On the other hand, the
quasiparticle wave packets are coherent superpositions of
electrons and holes. This results in a characteristic size
of the wave packets which is much larger than h̄/pF . The
charge of the packets depends on the energy and can be
very different from the electron charge e. This has im-
portant consequences in electronic transport properties
of superconductor-insulator-normal metal junctions.

Transport properties of s-wave superconductor-
insulator-normal metal junctions have been the subject
of intensive experimental and theoretical research for
decades, see for example, Refs. 1–6. In this case the
Cooper pairs can be constructed from the two single par-
ticle wave functions related by a time reversal operation.
At low temperatures the characteristic size of wave pack-
ets which carry current in the metal near the bound-
ary is of the order of the normal metal coherence length
LT =

√
D/T , which turns out to be much larger than the

elastic mean free path l. Here D is the diffusion coeffi-
cient, and T is the temperature. One of the consequences
of the large size of the wave packets is that, in the pres-
ence of a current through the junction, the drop of the
gauge-invariant potential Φ is pushed to distances of or-
der LT away from the boundary, which is much larger
than both the thickness of the insulator and the elastic
mean free path l. This is quite different from the case
of normal metal-insulator-normal metal junctions, where
most of the potential drop occurs at the insulator.

In this article we develop a theory of electron transport
in p-wave superconductor-insulator-normal metal junc-

tions. The best known example of a p-wave superfluid
is superfluid 3He. One of the leading candidates for p-
wave pairing in electronic systems is Sr2RuO4. There are
numerous pieces of experimental evidence that the super-
conducting state of this material has odd parity, breaks
time reversal symmetry and is fully gaped.7–13 One of
the simplest forms of the order parameter which satis-
fies these requirements is the chiral p-wave state ∆(p) ∼
px±ipy, which has been suggested in Ref. 14. It is a two-
dimensional analog of superfluid 3He−A.15 Another in-
teresting scenario for the order parameter was suggested
in Ref. 16. Chirality of the pairing wave function leads to
edge states and spontaneous surface currents. While the
quasiparticle tunneling spectroscopy17–19 confirmed the
existence of the subgap states, the experiments in Ref. 20
did not confirm the existence of the edge supercurrent.
(See Ref. 21 for a discussion about about consistency of
the chiral p-wave phase for Sr2RuO4.) We think that
electron transport experiments may clarify the situation.

In this article we consider a p-wave superconductor-
insulator-normal metal junction in the geometry in which
the insulating boundary (xy-plane) is perpendicular to
the c-axis of the layered chiral p-wave superconductor, as
shown in Fig. (1). Although for simplicity we take the
order parameter in the superconductor in the form15,22

∆̂(n) = ∆(n)(d · σ)iσ2, ∆(n) = ∆0e
iϕn , (1)

our results also apply to more complicated forms of the
order parameter, such as for example that in Ref. 16.
Here n is a unit vector in the xy-plane, which points
along p, and ϕn is the azimuthal angle characterizing its
direction n = (cosϕn, sinϕn).

At temperatures well below the gap, tunneling of single
electrons from the metal to the superconductor is forbid-
den. Thus, similar to the s-wave case, the resistance of
the junction is determined by the tunneling of the elec-
tron pairs. Coherent pair tunneling gives rise to coher-
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FIG. 1: Schematic representation of the superconductor-
insulator-normal metal junction. The vector ẑ is along the c-
axis of crystal, and ϑd denotes the angle between spin vector
d and ẑ. The dependence of the voltage inside the normal
metal on the distance from the boundary may be measured
by a scanning tunneling microscope (STM).

ence between electrons and holes inside the normal metal.
Electron-hole coherence in the metal is characterized by
the anomalous Green function. The crucial difference be-
tween the s-wave and the p-wave cases is the following.
In the p-wave case in the absence of spin-orbit interac-
tion only the p-wave component is induced inside the
normal metal. The latter is exponentially suppressed at
distances larger than l away from the superconductor-
normal metal boundary. As a result, in the diffusive
regime the conductance of the junction is significantly
suppressed. In the presence of the spin-orbit interac-
tion the p-wave order parameter in the superconductor
is partially converted to the s-wave component inside the
normal metal. At low temperatures, the s-wave compo-
nent propagates into the metal to large distances from
the boundary. Consequently, it is this component that
determines the low temperature resistance of the system.

We show below that Rashba-type spin-orbit coupling
at the boundary between the normal metal and the p-
wave superconductor leads to strong dependence of the
resistance on the direction of the vector d, which char-
acterizes the spin structure of the order parameter in
Eq. (1). Since the spin orientation of the order parame-
ter may be controlled by an external magnetic field23 our
predictions may be tested in experiment. Qualitatively,
this dependence may be understood as follows. In our
geometry (with the z-axis parallel to the c-axis of the
crystal) the z-component of the total (orbital plus spin)
angular momentum, Jz = Lz + sz, is conserved during
tunneling even in the presence of spin-orbit interaction.
Therefore the s-wave singlet proximity effect in the nor-
mal metal is produced only by the pairs with Jz = 0
in the p-wave superconductor. Since in our geometry
the z-component of the orbital angular momentum in a
px + ipy superconductor is Lz = +1 we conclude that
only the part of the condensate with sz = −1 induces
the s-wave proximity effect in the normal metal. This

condensate fraction corresponds to the the components
of the vector d lying in the xy-plane.

II. KINETIC SCHEME FOR DESCRIPTION OF
ELECTRON TRANSPORT IN P-WAVE

SUPERCONDUCTOR-NORMAL METAL
JUNCTIONS.

The conventional description of the electronic trans-
port in superconductors based on the Boltzmann kinetic
equation is valid when all spatial scales in the problem,
including the mean free path l, are larger than the char-
acteristic size of electron wave packets. At low temper-
atures, LT � l, this condition is violated and this ap-
proach cannot be used for the description of the effects
mentioned above.

The set of equations describing the electronic transport
in s-wave superconductors in this situation has been de-
rived in Ref. 24. Below we review a modification of this
approach for the case where the superconducting part of
the junction is a p-wave superconductor. The central ob-
ject of this approach is the matrix Green function in the
Keldysh space

Ǧ(x1;x2) =

(
ĜR ĜK

0 ĜA

)
. (2)

The retarded, advanced and Keldysh Green functions in
this equation can be written in the following form

ĜR``′(x1;x2) = −iθ(t1 − t2)〈{ψ`(x1), ψ†`′(x2)}〉, (3)

ĜA``′(x1;x2) = iθ(t2 − t1)〈{ψ`(x1), ψ†`′(x2)}〉, (4)

ĜK``′(x1;x2) = −i〈[ψ`(x1), ψ†`′(x2)]〉. (5)

Here x = (r, t) denotes the space-time coordinate, and
the indices `, `′ = 1...4 label the four components of the
fermion operator in the Nambu/spin space; ψ1 = ψ↑,

ψ2 = ψ↓, ψ3 = ψ†↑, ψ4 = ψ†↓. Finally, the anticommutator
and the commutator of operators A and B are denoted
by {A,B} and [A,B] respectively.

Introducing the new variables, x = (r, t) = (x1+x2)/2,
and x′ = (r′, t′) = x1 − x2, we can define the quasiclas-
sical Green function by Fourier transforming Ǧ(x1;x2)
with respect to x′ and integrating over ξp = εp − EF as

ǧ(x,n, ε) =
i

π

∫
dξp

∫
d4x′eiεt

′−ipr′τ3Ǧ(x1;x2). (6)

Here EF is the Fermi energy, εp is the electron energy
spectrum, and n is a unit vector labeling a location on the
Fermi surface (for example, for a spherical Fermi surface
it can be chosen as n = p/|p|), and τ3 is the third Pauli
matrix. In this paper, we will denote the Pauli matrices
in the Nambu space by τi, and the Pauli matrices in spin
space by σi. The Keldysh space structure of the Green
functions will be indicated explicitly when necessary.
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The quasiclassical Green’s function (6) satisfies the
normalization condition

ǧǧ = 1, (7)

which can be spelled out in terms of components in the
Keldysh space as,

ĝ(R,A)ĝ(R,A) = 1, (8)

ĝRĝK + ĝK ĝA = 0. (9)

The normalization condition Eq. (9) is satisfied for any
Keldysh function of the form

ĝK = ĝRĥ− ĥĝA. (10)

The matrix ĥ may be parameterized as24

ĥ = f0τ̂0 + f1τ̂3. (11)

Here f0 and f1 are respectively the odd and even in ε
parts of the distribution function (see Ref. 25 for an al-
ternative treatment).

In this paper we only consider stationary situations. In
this case the Green functions depend on the energy ε but
not on the time t. If kF l� 1 the Gorkov equation for the
Green function in Eq. (2) can be reduced to the quasi-
classical Eilenberger equations for the Green functions

defined in Eq. (6)24

ivF ·∇ǧ +
[
ετ̌3 − ∆̌(n)− Σ̌, ǧ

]
= 0. (12)

Here Σ̌ is the self energy associated with impurity scat-
tering. In the Born approximation Σ̌ = −i〈ǧ〉/2τe, where
〈. . .〉 denotes average over the solid angle in momentum
space and τe is the elastic mean free time. The only
difference of Eq. (12) from the conventional s-wave su-
perconductor case is in the form Eq. (1) for the order
parameter.

We neglect the electron-electron interactions in the
normal metal. As a result, in our approximation the
order parameter vanishes inside the normal metal. This
yields the following equations for the retarded, advanced
and Keldysh Green functions:

ivF ·∇ĝR,A + ε[τ̂3, ĝ
R,A] = [Σ̂R,A, ĝR,A], (13)

ivF ·∇ĝK + ε[τ3, ĝ
K ] = Σ̂RĝK + Σ̂K ĝA

−ĝRΣ̂K − ĝKΣ̂A. (14)

Multiplying Eq. (14) with τ3 and τ0 and taking the trace,
and using the fact that Tr(ĝR− ĝA) = 0, one obtains the
following equations for f1 and f0

Tr
[
β̂
]
vF ·∇f1 = − 1

2τe
f0Tr

(
〈α̂〉α̂− [〈ĝR〉, ĝR] + [〈ĝA〉, ĝA]

)
+

1

2τe
Tr [〈α̂f0〉α̂]

− 1

2τe
f1Tr

(
〈α̂〉β̂ − [〈ĝR〉, ĝR]τ̂3 + τ̂3[〈ĝA〉, ĝA]

)
+

1

2τe
Tr
[
〈β̂f1〉α̂

]
, (15)

Tr
[
β̂
]
vF ·∇f0 = − 1

2τe
f0Tr

(
〈τ̂3β̂τ̂3〉α̂− [〈ĝR〉, ĝR]τ̂3 + τ̂3[〈ĝA〉, ĝA]

)
+

1

2τe
Tr
[
〈α̂f0〉τ̂3β̂τ̂3

]
− 1

2τe
f1Tr

(
〈ĝR〉β̂τ̂3 − τ̂3β̂〈ĝA〉 − [〈ĝR〉, ĝR] + [〈ĝA〉, ĝA]

)
+

1

2τe
Tr
[
〈β̂f1〉τ̂3β̂τ̂3

]
. (16)

Here we defined α̂ = ĝR − ĝA and β̂ = ĝRτ̂3 − τ̂3ĝA.

The gauge-invariant potential and the electric current
can be expressed in terms of quasiclassical Keldysh green
functions as,

Φ(r) =
1

4e

∫
dε

∫
d2nTr{ĝK(r,n, ε)} (17)

J(r) = −eν0
4

∫
dε

∫
d2nvFTr{τ̂3ĝK(r,n, ε)}. (18)

Here the integral over n denotes averaging over the Fermi
surface, d2n = dΩn/4π.

We discuss the boundary conditions for the quasiclas-
sical transport equations (12) - (16) in Sec. II A.

A. Boundary conditions for p-wave
superconductor-normal metal interface

The p-wave superconductivity is destroyed by elastic
scattering processes when l < ξ0, where ξ0 is the zero
temperature coherence length in a clean superconductor.
Therefore we consider the case where the p-wave super-
conductor is relatively clean and l � ξ. For the same
reason the p-wave proximity effect is exponentially sup-
pressed in the metal at distances larger than l from the
boundary. On the other hand, in a spatially inhomo-
geneous system in the presence of spin-orbit interaction
the p- and s- wave components of the anomalous Green
functions are mixed. At low temperatures, the s-wave
component induced by spin-orbit coupling extends into
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the metal to distances much larger than l, and determines
the low temperature transport properties of the junction.
Therefore spin-orbit coupling plays a crucial role in low
temperature electron transport in normal metal–p-wave
superconductor junctions.

Though our results have a general character, in this ar-
ticle we assume that a Rashba type spin orbit coupling is
present only at the boundary. The corresponding poten-
tial energy at the boundary may be modeled by the form
V = (u0σ0+u1ẑ×p‖ ·σ)δ(z), where p‖ is the component
of the electron momentum parallel to the boundary, and
ẑ is the unit vector normal to the boundary. We assume
that u1 � u0, and consider a disorder free boundary, so
that p‖ is conserved.

The boundary conditions for quasiclassical Green func-
tions in superconductors were obtained in Refs. 26–28.
In the case of a spin active boundary27 they may be ex-
pressed in terms of the p‖-dependent scattering matrix of
the insulating barrier. The latter relates the spinor am-
plitudes of the outgoing (ψo) and incident (ψi) electron
waves, (

ψSo
ψNo

)
=

(
S11 S12

S21 S22

)(
ψSi
ψNi

)
. (19)

Here the superscripts N and S denote respectively the
normal metal and the superconductor side of the barrier.
The presence of spin-orbit interaction at the boundary
results in a spin-dependent transmission amplitude S12,
which may be written in the form

S12 = t0 + tsγ(ϕn), (20)

γ(ϕn) = cosϕnσy − sinϕnσx. (21)

Here we introduced the azimuthal angle ϕn as p‖ =
|p‖|(x̂ cosϕn + ŷ sinϕn). The spin-dependent and spin-
independent transmission amplitudes ts and t0, are scalar
functions of |p‖|. To lowest order in the transmission
amplitude, the boundary condition for the quasiclassical
Green functions may be written as27

ǧ(rN ,nNo ) = −1

2

[
Š21

(
ǧ(rS ,nSi )− 1

)
Š†21, ǧ(rN ,nNo )

]
+Š22ǧ(rN ,nNi )Š−122 , (22)

ǧ(rS ,nSi ) = −1

2

[
ǧ(rS ,nSi ), Š†21

(
ǧ(rN ,nNo )− 1

)
Š21

]
+Š−111 ǧ(rS ,nSo )Š11. (23)

Here nSi,o and nNi,o are the unit vectors indicating po-
sitions on the Fermi surface in the superconductor (S)
and the normal metal (N) for the incident (i) and out-
going (o) waves. By momentum conservation they cor-
respond to the same p‖ and thus are characterized by
the same azimuthal angle ϕn. For simplicity we assume
that Fermi surface in the superconductor to be a cor-
rugated cylinder with the symmetry axis along ẑ, and
that in the normal metal to be a sphere. The Fermi sur-
face points corresponding to the incident and reflected
waves are illustrated in Fig. 2. The coordinates rN and

rS correspond respectively to the normal metal - and the
superconductor- sides of the insulating boundary. For
brevity the obvious ε dependence of Green functions has
been dropped. Finally the matrices Šαβ are defined fol-
lowing Ref. 27 as

Šαβ = Sαβ(p‖)
1 + τ3

2
+ Sβα(−p‖)T

1− τ3
2

, (24)

where Sαβ is defined in Eq. (20) and the superscript T
denotes the matrix transposition in the spin space. At
weak tunneling we may approximate Š11 ≈ Š22 ≈ 1, and

Š12 = t01̌ + tsγ̌. (25)

Here we introduced

γ̌ =

(
γ̂ 0
0 γ̂

)
, γ̂ =

(
γ(ϕn) 0

0 −γ(ϕn)T

)
. (26)

with γ(ϕn) defined in Eq. (21).

z

y

ni

S

no

Nn i

Nx
ϑn

ϑ1 ϑ0
FIG. 2: Fermi surface topologies of the superconductor (cor-
rugated cylinder at left) and the normal metal (sphere at
right). The vectors ni and no correspond to respectively in-
cident and outgoing waves. The superscripts N and S denote
the superconductor and the normal metal sides of the insulat-
ing barrier. The vectors nN and nS correspond to the same
parallel momentum, as shown by the green lines. The mo-
mentum domain where tunneling is possible is bounded by
the angles ϑ0 and ϑ1. These angles define the integration
limits in Eqs. (50) and (53).

For the purpose of studying electron transport at low
temperatures, T � ∆, we only need the Green func-
tions with energies ε well below the gap ∆. The Green
functions inside the superconductor are practically unaf-
fected by tunneling. Therefore, the boundary condition
for the normal metal Green function is given by Eq. (22),
where the superconductor Green functions are replaced
by their value in the bulk. Since latter do not depend on
pz we have ǧ(rS ,nSi ) = ǧ(rS ,nSo ) ≡ ǧ(rS ,nS). It is useful
to define symmetric and antisymmetric Green functions
as26,28

ǧs,a(r,n) =
1

2
[ǧ(r,ni)± ǧ(r,no)] (27)
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With this notation Eq. (22) may be written as follows:

ǧa(rN ,nN ) = − t
2
0

4

[
ǧ(rS ,nS), ǧs(r

N ,nN )
]

− t0ts
4

[{
γ̌, ǧ(rS ,nS)

}
, ǧs(r

N ,nN )
]

+
t0ts
2

[
γ̌, ǧs(r

N ,nN )
]
. (28)

Here we for simplicity assume that due to weakness of
spin-orbit coupling the electron tunneling amplitude with
spin flip is smaller than that without, ts � t0 � 1. The
first term in Eq. (28) arises from the spin-conserving tun-
neling and coincides with that in Ref. 26 at small trans-
parency. This term dominates electron transport prop-
erties of the junction in the high temperature regime.
The second term comes from the spin orbit coupling. Al-
though it is smaller than the first one, it generates the
s-wave component proximity effect in the normal metal
and thus determines the electron transport at low tem-
peratures. Finally, the last term is odd in the parallel
momentum. Therefore it vanishes upon averaging over
the Fermi surface and does not contribute to electron
transport in the diffusive regime.

B. Kinetic scheme in the diffusive regime

In the low temperature regime, T � vF /l, the proxim-

ity effect extends to distances of order LT =
√
D/T � l

into the normal metal (here D is the electron diffusion
constant). At such length scales the transport properties
of the junction may be described in terms of the Usadel
Green functions Ǧ(r). The latter correspond to coin-
cident coordinates of the electron operators in Eq. (2),
r = r′, and may be expressed in terms of the Eilenberger
Green functions (6) by averaging them over the Fermi
surface

Ǧ(r) =

∫
d2n ǧ(r,n), d2n =

1

4π
d cosϑndϕn. (29)

where the polar and azimuthal angles ϑn and ϕn

characterize the unit vector n = (nx, ny, nz) =
(sinϑn cosϕn, sinϑn sinϕn, cosϑn).

We neglect the spin-orbit interaction in the normal
metal and assume that the electrons in the normal lead
are not spin polarized. The triplet component of the
anomalous Green function is exponentially suppressed at
distances larger than l from the boundary with the super-
conductor. The singlet component, on the other hand,
survives even at distances much larger than l. There-
fore it dominates the electron transport in the junction
at low temperatures. Below we focus on the singlet com-
ponent of the Usadel Green function, Ĝ(r), which is a
4× 4 matrix in the Keldysh and Nambu space. Its vari-
ous components α = R,A,K in the Keldysh space have
the following form

Ĝα(r) =

(
Gα −iFα
iF̃α −G̃α

)
. (30)

The corresponding spin structure of the full 8× 8 Green
function in Eq. (29) is given by

Ǧα(r) =

(
Gασ0 −iFαiσ2
iF̃αiσ2 −G̃ασ0

)
. (31)

At length scales greater than l the singlet component of
the Usadel Green function satisfies the differential equa-
tion

D∇ ·
[
Ĝ(r)∇Ĝ(r)

]
+ iε

[
τ̂3, Ĝ(r)

]
= 0. (32)

Expanding in the Keldysh space, this equation gives

D∇ ·
(
Ĝ(R,A)∇Ĝ(R,A)

)
+ iε[τ̂3, Ĝ

(R,A)] = 0, (33)

D∇ ·
(
ĜR∇ĜK + ĜK∇ĜA

)
+ iε[τ̂3, Ĝ

K ] = 0. (34)

The first equation (33) is the Usadel equation, which de-
scribes the equilibrium properties of the system. The sec-
ond equation (34) for Keldysh component describes the
non-equilibrium properties. The Usadel Green function
satisfies the normalization conditions (8) and (9). The
condition (9) is satisfied by any matrix of the form (10).

In the normal metal the matrix ĥ may be expressed in
terms of the symmetric and antisymmetric distribution
functions f0 and f1 using Eq. (11).24

In a normal metal in contact with a single supercon-
ducting lead, Eq. (34) can be used to obtain following
equations for distribution functions by using Eqs. (10)
and (11):

∇ ·
(

Tr
[
1− ĜR(r)ĜA(r)

]
∇f0(r, ε)

)
= 0, (35)

∇ ·
(

Tr
[
1− τ3ĜR(r)τ3Ĝ

A(r)
]
∇f1(r, ε)

)
= 0. (36)

The expressions for the density of states, electrochem-
ical potential and current density in terms of the Usadel
Green functions are

ν(r, ε) = ν0Re
{
GR(r, ε)

}
, (37)

Φ(r) =
1

eν0

∫
dεν(r, ε)f1(r, ε), (38)

J(r) = eν0D

∫
dεΠ(r, ε)∇f1(r, ε). (39)

Here Π(r, ε) = 1+ |GR(r, ε)|2 + |FR(r, ε)|2, ν0 = mpF /π
2

is the density of states of the normal metal in the absence
of the proximity effect.

Using Eq. (8) one can write the retarded Usadel Green
function in terms of the complex angles θ(r) and χ(r) as

ĜR(r) =

(
cos θ(r) −i sin θ(r)eiχ(r)

i sin θ(r)e−iχ(r) − cos θ(r)

)
. (40)

The corresponding parametrization for ad-
vanced Green function can be obtained by using

ĜA(r) = −τ3
[
ĜR(r)

]†
τ3.
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For the system of interest, where the normal metal
is connected to a single superconductor the phase χ(r)
is independent of coordinates and is set by the phase
of the order parameter in the superconductor. In this
case (∇χ(r) = 0) the Usadel equation in (33) reduces
to the following second order differential equation for the
complex function θ(r):

D

2
∇2θ(r) + iε sin θ(r) = 0, (41)

which is the well known sine-Gordon equation.
The equations for the distribution functions in (35) and

(36) take the following forms in this parametrization:

D∇ ·
(
cos2 θR(r)∇f0(r)

)
= 0, (42)

D∇ ·
(
cosh2 θI(r)∇f1(r)

)
= 0. (43)

Here we introduced the real and imaginary parts of
θ(r) = θR(r) + iθI(r).

Finally, using Eqs. (38), (39), and (40) we get the fol-
lowing expressions for the electric current and potential

Jn(r) = eDν0

∫
dε cosh2 θI(r)∇f1(r) (44)

Φ(r) =
1

e

∫
dε cos θR(r) cosh θI(r)f1(r). (45)

Below we will be interested only in linear in the external
electric field effects, in which case f0 = tanh(ε/2T ), has
its equilibrium form.

The equations (33-34) or (41-43) must be supple-
mented with the boundary conditions. In Sec. II B 1
we obtain such conditions for a boundary between the
normal metal and the p-wave superconductor in the ge-
ometry of our device.

1. Diffusive Boundary Conditions in the Vertical Geometry

The boundary conditions for the Usadel Green func-
tion Ĝ(r) may be found by solving the Eilenberger equa-
tions (12) with boundary conditions (28) at distances of
the order of the mean free path l from the boundary.
This can be done using the method of Ref. 28. A key ob-
servation is that the Eilenberger equations (in which one
may set ε→ 0 for distances less than the mean free path
from the boundary) conserve the matrix current normal
to the boundary,

ǰ(r) =

∫
d2nǧ(r,n)vF · ẑ = vF

∫ ′
d2nǧa(r,n)n · ẑ. (46)

The prime in the second expression indicates the fact that
the integral must be taken over half the Fermi surface,
n · ẑ ≥ 0.

At weak tunneling the singlet component ĵ of the ma-
trix current at the boundary may be expressed in terms
of the Usadel Green function Ĝ(r) as28

ĵ(rN ) = DĜ(r)ẑ ·∇Ĝ(r)|r=rN . (47)

On the other hand, the matrix current may be evaluated
by multiplying Eq. (28) with vFn

N · ẑ and integrating
the result over half the Fermi surface, nN · ẑ ≥ 0. In
doing so it is important to keep in mind that at weak
tunneling the symmetric part of Green function in the
normal metal is independent of nN , ǧs(r

N ,nN ) = Ǧ(rN ),
and that the superconductor Green function ǧs(r

S ,nS)
may be replaced by its bulk value at ε = 0. The latter is
given by

ǧ(n) = −
[

0 ei(ϕn+χ0)d · σiσ2
e−i(ϕn+χ0)iσ2d

∗ · σ 0

]
.(48)

Here we used Eq. (1). We consider unitary states,
d× d∗ = 0, and parameterize the vector d by an overall
phase χ0 and the spherical angles ϑd, and ϕd as,

dT = eiχ0(sinϑd cosϕd, sinϑd sinϕd, cosϑd). (49)

It is easy to see that only the second term in the right
hand side of Eq. (28) contributes to the matrix current.
The contributions of the other two terms vanish upon the
integration over n because both γ̌ and the superconduc-
tor Green function ǧ(rS ,nS) depend on the azimuthal
angle ϕn as e±iϕn , see Eqs. (21), (26) and (48). We thus
obtain

ǰ(r) = −vF
4

∫ ϑ1

ϑ0

d cosϑn
2

tst0ẑ · n
[

ˇ̄G(rS), Ǧ(rN ).
]

(50)

Here vF is Fermi velocity in the normal metal, and the
integration limits ϑ0 and ϑ1 define the domain where
tunneling is possible. This domain corresponds to the
projection of the corrugated cylindrical Fermi surface in
the superconductor to the Fermi surface in the metal, see

Fig. 2. Finally, ˇ̄G(rS) is given by

ˇ̄G(rS) ≡
∫
dϕSp
2π

{
ǧ(rS ,nSi ), γ̌

}
=

[
0 ei(ϕd+χ0)iσ2

e−i(ϕd+χ0)iσ2 0

]
. (51)

Comparing Eqs. (47) and (50) we obtain the following
boundary condition for the Usadel Green function,

DǦ(r)∂zǦ(r)|r=rN = t
[
Ǧ(rN ), ˇ̄G(rS)

]
, (52)

where

t =
1

4
| sinϑd|

∫ ϑ1

ϑ0

d cosϑn
2

(tst0vF cosϑn). (53)

Note that the boundary condition in Eq. (52) has the
same structure as that for a boundary between an nor-
mal metal and an s-wave superconductor. The reason is
that only the s-wave component of the anomalous Green
function survives in the normal metal at distances larger
than l from the boundary. The difference however is that
in our case the effective barrier transparency t in Eq. (53)
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depends on the spin-flip tunneling amplitude ts, and on
the vector d characterizing the spin orientation of the
triplet order parameter. The phase of the effective s-wave
anomalous Green function (51), χ0+ϕd, also depends on
the orientation of the spin vector d in the xy-plane.

The aforementioned analogy enables one to treat the
proximity effect in normal metal- p-wave superconduc-
tor systems in the diffusive regime as proximity effect
in an effective s-wave superconductor problem, in which
the phase of the s-wave order parameter and the bar-
rier transparency depend on the spin orientation of the
p-wave condensate.

It is convenient to recast the boundary condition
Eq. (52) in terms of the parametrization in Eq. (40).
In our setup, see Fig. 1, the phase χ(r) of the anoma-
lous Usadel Green function (40) is uniform in space and
equal to the phase of the effective s-wave order param-
eter, χ(r) = ϕn + χ0. The boundary condition for the
angle θ(rN ) becomes

D∂zθ(r)
∣∣
r=rN

= 2t cos
[
θ(rN )

]
. (54)

The Keldysh component of the boundary condition in
Eq. (52) gives the following boundary condition for the
even part of the distribution function:

D cosh2 θI(r)∂zf1(r)|r=rN = 2tΓεf1(rN ). (55)

Here we assumed that f1(rS) = 0 is zero inside super-
conductor and introduced the notation

Γε = cosh θI(r
N ) sin θR(rN ). (56)

The set of equations (41) and (43) along with the
boundary conditions (54) and (55) gives a description
of electron transport in diffusive metal–p-wave supercon-
ductor systems. Below we apply these equations to our
device geometry.

III. RESISTANCE OF P-WAVE
SUPERCONDUCTOR- NORMAL METAL

JUNCTION

We consider the geometry in which the superconductor
fills the z < 0 half space and the normal metal occupies
the z > 0 half space, see Fig. 1. At weak tunneling
the Green function in the superconductor is practically
unaffected by the presence of the tunneling barrier. On
the other hand, the low energy properties of the normal
metal are significantly affected by the proximity effect.
The singlet Usadel Green function (30) in the normal
metal is described by the set of equations (40), (41), (43)
with the boundary conditions (54) and (55).

The solution of Eq. (41) satisfying the condition
limz→∞ θ(z) = 0, has the form

θ(ε, z) = 4 arctan

[
exp

(
βε + (i− 1)

z

Lε

)]
. (57)

Here βε is an energy-dependent integration constant.
Its value is determined from the boundary condition in
Eq. (54), which gives

coshβε −
2

coshβε
= (1− i)Lt

Lε
(58)

where

Lt =
D

t
, Lε =

√
D

ε
. (59)

The algebraic equation (58) has multiple solutions for
the integration constant βε. The physical solution must
satisfy the condition limε→0 θ(ε, z = 0+) = π/2, which
gives

eβε =
α+
√
α2 + 8

2
− 1

2

√
(α+

√
α2 + 8)2 − 4, (60)

where we introduced the notation α = (1− i)Lt/Lε.

Lt � LΕ

0.01

0.5

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

z

LΕ

0.2

0.4

0.6

0.8

1.0

Ν

Ν0

FIG. 3: (color online) Density of states in the normal metal
as a function of the distance from the superconductor-normal
metal boundary for different temperatures: Lt/Lε = 0.01
(blue), Lt/Lε = 0.5 (green), and Lt/Lε = 1.2 (red).

An important aspect of the solution Eq. (57) is that
in the normal metal, at small values of ε and at small
distances from the boundary, θ(z) ≈ π/2 which is the
same as in the bulk of the superconductor. In particular,
it means that at small energies the density of states in
metal is strongly suppressed at distances smaller than
Lε. The full spatial dependence of the density of states
ν(ε, z) may be obtained by substituting the solution (57),
(60) of the Usadel equation into Eqs. (37), and (40). In
Fig. 3 we have plotted the result as a function of z/Lε
for different values of Lt/Lε.

Note that the effective diffusion constant for the distri-
bution function f1 is determined by the imaginary part
of θ, see Eq. (43). From the solution (57) it follows that
the imaginary part θI is close to zero both at z � Lε
and z � Lε and has a maximum at z ∼ Lε whose value
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depends on Lε/Lt. Therefore the effective diffusion coef-
ficient in Eq. (43) approaches its normal metal value at
z � Lε and z � Lε. In the intermediate region z ∼ Lε
the diffusion coefficient exceeds the Drude value.

The differential equation (43) for the non-equilibrium
part of the distribution function has the first integral,
which has the meaning of the conserved partial current
density at a given energy ε

Jε ≡ eDν0 cosh2 θI(z)∂zf1(ε, z). (61)

The energy dependence of the partial current Jε can be
obtained by noticing that far away form the boundary
the distribution function should have the form

f1(ε, z) =
1

cosh2 ε
2T

eJ0
2TσD

(z − z0), (62)

where σD = e2ν0D is the Drude conductivity of the nor-
mal metal, and we introduced the current density,

J0 =

∫ ∞
−∞

dεJε. (63)

Substituting Eq. (62) into Eq. (61) we obtain the follow-
ing expression for the partial current

Jε =
J0
4T

1

cosh2 ε
2T

. (64)

Using Eqs. (61) and (64) the solution of Eq. (43) which
satisfies the boundary condition (55) and the asymptotic
form (62) at large distances may be written in the form

f1(ε, z) =
eJ0

2TσD cosh2 ε
2T

[
Lt
2Γε

+

∫ z

0

dz′

cosh2 θI(ε, z′)

]
.

(65)
Here θI(z

′) is given by Eqs. (57) and (60), and Γε was
defined in Eq. (56).

Substituting this result in Eq. (45) we get the following
expression for the gauge invariant potential

Φ(z) =
J0
σD

∫ ∞
0

dε

2T

cos θR(ε, z) cosh θI(ε, z)

cosh2 ε
2T

×
(
Lt
2Γε

+

∫ z

0

dz′

cosh2 θI(ε, z′)

)
. (66)

In Fig. (4), we plotted the dependence of the gauge in-
variant potential on the dimensionless distance from the
boundary, z/LT , for different values of the dimensionless
barrier transparency parameter, Lt/LT .

One of the important features of transport through the
junction is that at low temperatures the gauge invari-
ant potential Φ(z) is significantly suppressed near the
superconductor-normal metal boundary, and is a non-
linear functions of z. In particular, the voltage drop
across the insulator, Φ(z = 0), goes to zero in the low
temperature limit.

Because of the nontrivial spatial distribution of the
electric field in the junction its resistive properties may

Φ ν e t,20

TzL_1.0

Φ0

Φ0

Φ0

V ν e t20stm

FIG. 4: (color online) The spatial variation of the gauge-
invariant potential Φ (solid lines) and the compensating volt-
age Vstm at the STM tip (dashed lines) on the dimension-
less distance z/LT from the boundary is plotted at different
temperatures; Lt/LT = 0.01 (blue), Lt/LT = 1 (green) and
Lt/LT = 5 (red). The solid grey lines represent the large
distance asymptotes of the gauge invariant potential. Their
intercepts with the vertical axis for the three values of Lt/LT
are marked by Φ0 in the corresponding color. The value of
Φ0 defines the junction resistance R∞ in Eq. (70).

be characterized in different ways. One measure of the
resistance can be defined in terms of the voltage drop
across the insulating barrier. We define the resistance of
the insulating boundary per unit area as

R0 =
Φ(z = +0)

J0
. (67)

Using Eq. (66) one can expression the boundary resis-
tance R0 per unit area in the form

R0 =
1

e2ν0t

Lt
LT

A

(
Lt
LT

)
, (68)

where the dimensionless function A (Lt/LT ) is defined by
the following integral

A

(
Lt
LT

)
=

LT
Lt

∫ ∞
0

dε

4T

cot θR(ε, 0)

cosh2 ε
2T

. (69)

This function is plotted in Fig. 5. In low and high tem-
perature limits this expression tends to the following con-
stants; A(0) ≈ 0.37 and A(∞) ≈ 0.53. As a result in the
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FIG. 5: Plot of the function A(Lt/LT ) in Eqs. (68), (69).

high and low temperature regimes the boundary resis-
tance R0 ∝

√
T .

Note that at low temperatures, LT � Lt, the magni-
tude of the jump of Φ(z) at the insulator boundary ap-
proaches zero at T → 0. This is very different from the
resistance of the normal metal-insulator-normal metal
junctions where in the presence of a current though the
junction RNIN = 1/e2ν0t̃, where t̃ ∼ t20 is the transmis-
sion coefficient of the insulator.

Another measure of the junction resistance may be ob-
tained by extrapolating the linear dependence of Φ(z) at
large distances, Φ(z) = J0z/σD + Φ0 to the location of
the barrier, z = 0. This is shown by grey solid lines
in Fig. 4. The value of the intercept with the vertical
axis, Φ0, defines the total resistance per unit area of the
junction

R∞ =
Φ0

J0
. (70)

Using Eq. (66) we obtain

R∞ =
1

e2tν0
B

(
Lt
LT

)
, (71)

where the function B(Lt/LT ) is given by the following
integral

B =

∫ ∞
0

dε

2T

1

cosh2 ε
2T

[
1

2Γε
−
∫ ∞
0

dz′

Lt
tanh2 θI(ε, z

′)

]
.

(72)
The first term in the brackets is positive and represents
the contribution of the insulating boundary. The second
term is negative. It describes the reduction of the resis-
tance of the normal metal due to the proximity effect.

The junction resistance R∞ is plotted in Fig. (6) as
a function of Lt/LT . At relatively high temperatures
Lt/LT � 1, junction resistance R∞ is dominated by the
contribution from the insulating boundary (first term in
Eq. (72)). In this case B(Lt/LT ) ≈ 0.53Lt/LT , in agree-
ment with the discussion below Eq. (69). In the low

R ν e t20∞

TL _L t
2 4 6 8 10

- 1

0

1

2

3

4

5

FIG. 6: The junction resistance R∞ per unit area (in units of
1/e2ν0t) is a plotted as a function of Lt/LT .

temperature regime, Lt � LT , the junction resistance
is dominated by the change in the resistance of the nor-
mal metal due to the proximity effect (second term in
Eq. (72) and becomes negative. In this case the junction
resistance reduces to

R∞ = − b

e2tν0

LT
Lt
, (73)

where the constant b is given by

b =

∫ ∞
0

dλ

2

λ−1/2

cosh2 λ
2

×
∫ ∞
0

dζ tanh2
[
4 Im arctan

(
(
√

2− 1)e(i−1)ζ
)]

≈ 0.39. (74)

A. Probing the spatial distribution of the
gauge-invariant potential Φ(r)

Let us now discuss the possibility of experimental ob-
servation of the suppression of Φ(x) near the junction’s
boundary by using a scanning tunneling probe. We con-
sider the setup illustrated in Fig. 1.

The electron transport between the STM tip and the
metal can be described with the aid of the tunneling
Hamiltonian

HT =
∑
kp

[
tkpc

†
kcp + t∗kpc

†
pck

]
. (75)

Here c† is an electron creation operator, and k labels the
states in the STM tip and p labels the states in the wire.
In the tunneling approximation the STM current can be
written in the form

Istm(z) =
gn
2e

∫ ∞
−∞

dε cos θR(ε, z) cosh θI(ε, z)

×
[
fstm1 (ε)− f1(ε, z)

]
, (76)
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where gn is the conductance of the tunneling con-
tact in the normal state. The nonequilibrium distri-
bution function in the STM is given by fstm1 (ε) =
eVstm/2T cosh2(ε/2T ), where Vstm is the STM voltage
measured relative to that in the superconductor.

Using Eq. (45) we can rewrite Eq. (76) in the form

Istm(z) = gnΦ(z)− gt(T, z)Vstm, (77)

where

gt(T, z) = gn

∫ ∞
0

dε

2T

cos θR(ε, z) cosh θI(ε, z)

cosh2 ε
2T

(78)

is the conductance of the tunneling contact.
In the case where the voltage Vstm at the tip vanishes

the value of the tunneling current through the STM con-
tact is proportional to Φ(z),

Istm(z) = gnΦ(z). (79)

In particular, Istm(z) is significantly suppressed near the
superconductor-normal metal boundary, reflecting corre-
sponding suppression of Φ(x).

On the other hand, if Istm = 0, we get

Vstm(z) =
gn

gt(T, z)
Φ(z), (80)

where Φ(z) is given by Eq. (66). The graph of Vstm(z)
is plotted in Fig. 4 by dashed lines for several tempera-
tures. It is interesting to note that, in contrast to the
gauge invariant potential, Eq. (79), the compensating
STM voltage in Eq. (80) does not exhibit the aforemen-
tioned suppression near the boundary at low tempera-
tures, LT � Lt. The slope dVstm(z)/dz remains practi-
cally the same as in the normal metal in the absence of
superconductor, both at z � LT and at z � LT . The
reason is that the conductance of the tunneling barrier
between the STM and the metal, gt(T, z), reflects the
suppression of the single particle density of states in the
metal, as described by Eq. (78). This nearly cancels the
suppression of Φ(z) in Eq. (80).

IV. CONCLUSIONS

We show that the low temperature resistance of the
p-wave superconductor-diffusive normal metal junctions
is controlled by the spin-orbit interaction. As a result
the junction resistance, tunneling density of states in the
metal and other transport properties of the device exhibit
a strong dependence on the angle between the vector d
characterizing the spin part of the superconducting wave
function, and the normal to the surface of the junction.
In particular, the s-wave component of the proximity ef-
fect in metal vanishes when d is parallel to the c-axis.

The absence of the corresponding dependence of the
Knight shift on the angle between d and the c-axis in

Sr2RuO4 crystals is one of the problems in the inter-
pretation of Sr2RuO4 as a conventional p-wave super-
conductor. This fact was attributed to weakness of the
spin-orbit interaction in Sr2RuO4.23 We would like to
point out that the resistance of the junction should be
strongly dependent on the angle between d and z even
in the case of weak spin-orbit interaction. Therefore the
measurement of this effect could clarify the situation.

Another consequence of the sensitivity of the proxim-
ity effect to the orientation of the condensate spin is that
a current passing across such a junction leads to spin ac-
cumulation inside the p-wave superconductor (although
inside the proximity region no spin accumulation occurs).

We also would like to mention that the boundary con-
ditions Eq. (52) can be used to describe the Josephson
effect in junctions consisting of two p-wave superconduc-
tors separated by a diffusive normal metal. The structure
of boundary conditions (52) is similar to those of for s-
wave superconductor-normal metal junction. Therefore
the supercurrent for the p-wave case may be obtained
from the conventional formulas for the s-wave case if we
substitute the phase difference in the s-wave case with
φd + χ0, see Eqs. (51) and (49), and the transmission
coefficient with t.

An important consequence of the proximity effect near
the superconductor-normal metal boundary is the sup-
pression of the Hall effect in the metal near the super-
conducting boundary. Qualitatively, this suppression is
related to the fact that, due to proximity effect, at low en-
ergies the quasiparticle wave functions in metal are a co-
herent superposition of electron and hole wave functions,
and the effective charge of the quasiparticles approaches
zero at ε→ 0. The presented above scheme of calculation
of the electronic transport was derived in zeroth order in
ωcτ , where ωc is the cyclotron frequency and τ is the
elastic mean free time. In this approximation the elec-
tron wave functions near the Fermi surface are electron-
hole symmetric, which yields a vanishing Hall effect. To
describe Hall effect one has to add to the expression for
the current a term linear in ωcτ ,29

JH ∝ ωcτb×
∫
dε cos θR cosh3 θI∇f1 (81)

here ωc is the cyclotron frequency, and b is the unit vector
in the direction of the magnetic field. Since the magni-
tude of the proximity effect is controlled by t, which is
proportional to sinϑd, the Hall conductance is expected
to have a strong dependence on the orientation of the
order parameter, d. Since the latter may be oriented by
the external magnetic field, both the magnetoresistance
of the junction and the Hall resistance are expected to
be strongly anisotropic with respect to orientation of the
magnetic field.

Finally, we note that our results hold for more general
realizations of px + ipy order parameter in superconduc-
tors with complicated topology of the Fermi surface, such
as the one proposed in Ref. 16.
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