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We present the covariant symplectic structure of the Topologically Massive Gravity and
find a compact expression for the conserved charges of generic spacetimes with Killing sym-
metries.
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I. INTRODUCTION

The classical theory of symplectic structure was cast into covariant form by Gotay1 [1], Witten
[2] and Zuckerman [3] almost simultaneously. This is an important development in the theory of
symplectic structure founded in the latter part of the nineteenth century . It is particularly apt
for dealing with covariant field theories such as colored gauge theories and gravity.

∗Electronic address: e155529@metu.edu.tr
†Electronic address: btekin@metu.edu.tr
1 One of us (YN) has written a number of papers on covariant symplectic structure without being aware of Gotay’s

paper, principally because it was published in a conference proceedings. Thanks are due to Dr. Partha Gupta for
calling attention to Gotay’s work.
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The covariant symplectic structure is defined by a vector-density-valued 2-form which is closed
and divergence free. Its time component agrees with the inverted Dirac [4] bracket, i.e. the Poisson
bracket of the constraints.

For Yang-Mills and Einstein theories the covariant symplectic structure was given in [2]. These
results can directly be carried over into Kaluza-Klein theories in higher dimensions. However, in
4n + 3 dimensions there is an added feature, namely the existence of Chern-Simons invariants.
In particular for the simplest case of three dimensions we have the theories of Yang-Mills-Chern-
Simons, as well as the Topologically Massive Gravity (TMG) [5]. TMG is a higher derivative
dynamical theory with a single degree of freedom and compared to the pure Einstein’s gravity in
three dimensions, its local structure is quite rich. For this theory the Dirac constraint analysis was
carried out by Deser and Xiang [6]. In this paper, to define the classical phase space in a covariant
way, we find the symplectic structure. The analysis naturally gives the conserved charges that are
generated by Killing symmetries for generic spacetimes.

The lay out of the paper is as follows: In Section II, we give the symplectic structure of the
Maxwell-Chern-Simons theory as a warm-up problem. In Section III, we find the symplectic 2-form
for TMG and show that it is conserved and closed. In section IV, we study the diffeomorphism
invariance of the symplectic structure and show that it has vanishing components in the gauge
directions. In that section, we also find the conserved charges and compute the energy of the BTZ
black hole.

II. MAXWELL-CHERN-SIMONS THEORY

Before we find the symplectic 2-form of TMG, we start with a simpler model, that is the topo-
logically massive electrodynamics. The existence of the symplectic structure leads to a covariant
canonical description of the classical and quantum theory. Since one must choose a time and define
momenta etc . in a canonical description, it might appear that one cannot have covariance. But,
as was shown in [1–3], all the properties of the phase space (Z) is encoded in the symplectic struc-
ture and momenta need not be defined. We will use the notation and follow the construction of
[2]. On Z one defines a 2-form ω which is closed ( δω = 0 ) and non-degenerate (save for the gauge
directions); i.e., for any vector field v on Z, if ιvω = vIωIJ = 0, then v = 0 (which just means, as
a matrix ω has no zero eigenvalues and hence it is invertible). What is quite remarkable is that,
in local coordinates of the phase space (qI), the basic Poisson bracket is given by the components
of the inverse of the 2-form {qI , qJ } = ωIJ . Therefore, one can use the symplectic 2-form to carry
out a covariant, geometric quantization of the system.

The Lagrangian of the Maxwell-Chern-Simons theory is given as

L = −1
4

FµνF µν + κǫµνλFµνAλ, (1)

where κ is a coupling constant. From the first variation of the action we obtain the field equation

∂µF µν + 2κǫµλνFµλ = 0, (2)

along with the boundary term

αµ = −F µνδAν − 2κǫµνλAνδAλ. (3)

Then we obtain the symplectic current as

Jµ = −δαµ = δF µν ∧ δAν + 2κǫµνλδAν ∧ δAλ. (4)
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It is easy to see from there, that Jµ is conserved on shell and closed

∂µJµ = 0, δJµ = 0. (5)

Therefore the two-form defined as

ω =
ˆ

Σ

dΣµJµ =
ˆ

Σ

dΣµ

(

δF µν ∧ δAν + 2κǫµνλδAν ∧ δAλ

)

, (6)

where Σ is an initial value hypersurface, is closed and Poincaré invariant and hence gives the
symplectic structure we seek on the space of classical solutions (let us call it Ẑ), however we still
have to show that it is a gauge invariant closed two-form in the quotient of the solution space,
Z = Ẑ/G, where G is the group of gauge transformations, which, in this case, is U(1). Showing
the gauge invariance of ω on the full space of solutions is easy, since under infinitesimal gauge
transformations we have

Aλ → Aλ + ∂λξ implying δAλ → δAλ and δFµν → δFµν . (7)

Hence, ω is gauge invariant on the full solution space. Let us now show that it is also gauge
invariant on Z. To do this we must show that ω has vanishing components along the pure gauge
directions. Then, we can split the field into pure gauge and non-gauge parts as

δA′
µ = δAµ + ∂µξ, (8)

where ξ is a one form on the cotangent space of the phase space manifold. Then the change in ω
due to this pure gauge part is

∆ω =
ˆ

Σ

dΣµ

(

∂λδF λµ + 4κǫλνµ∂λδAν

)

∧ ξ +
ˆ

Σ

dΣµ∂λ

[(

δF µλ + 4κǫµνλδAν

)

∧ ξ
]

. (9)

The first term vanishes on shell and the second one is a boundary term disappearing for fields
decaying sufficiently fast. Therefore, ω is the sought-after symplectic structure on the classical
phase space modulo gauge transformations.

III. TOPOLOGICALLY MASSIVE GRAVITY

For gravity the situation is slightly more complicated. The action for TMG is given by [5]

I =
ˆ

d3x

[√
gR +

1
2µ

ǫαβγΓµ
αν

(

∂βΓν
γµ +

2
3

Γν
βρΓρ

γµ

)]

, (10)

where ǫαβγ is the totally antisymmetric Levi-Civita symbol, which, as a tensor density, has the
same weight as

√
g. (One can add a cosmological constant to this action; but this will not change

the discussion below.)
Now, we calculate the variation of this action with respect to the metric:

δI = δIEH + δICS . (11)

The Einstein-Hilbert term is known to yield

δIEH = δ

ˆ

d3x
√

gR

=
ˆ

d3x
√

gδgµνGµν +
ˆ

d3x∂α

(√
ggµνδΓα

µν − √
ggαµδΓν

µν

)

. (12)
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For Chern-Simons term we have

δICS = δ

ˆ

d3x
1

2µ
ǫαβγΓµ

αν

(

∂βΓν
γµ +

2
3

Γν
βρΓρ

γµ

)

=
1

2µ

ˆ

d3xǫαβγδΓµ
ανRν

µβγ +
ˆ

d3x∂α

(

− 1
2µ

ǫανσΓρ
νβδΓβ

σρ

)

=
1
µ

ˆ

d3x
√

gδgµνCµν +
ˆ

d3x∂α

[

− 1
µ

ǫανσ

(

R̃ρ
σδgνρ +

1
2

Γρ
νβδΓβ

σρ

)]

, (13)

where the Cotton tensor is Cµν = ǫµβγ
√

g
∇βR̃ν

γ with R̃µν = Rµν − 1
4
gµνR. This yields the equation

of motion Gµν + 1
µ

Cµν = 0 and the boundary term

Λα = Λα
EH + Λα

CS , (14)

where

Λα
EH =

√
ggµνδΓα

µν − √
ggαµδΓν

µν , (15)

Λα
CS = − 1

µ
ǫανσ

(

R̃ρ
σδgνρ +

1
2

Γρ
νβδΓβ

σρ

)

. (16)

From the boundary terms one can construct the symplectic current as follows:

Jα = Jα
EH + Jα

CS , (17)

where

Jα
EH = −δΛα

EH√
g

= δΓα
µν ∧

(

δgµν +
1
2

gµνδ ln g

)

− δΓν
µν ∧

(

δgαµ +
1
2

gαµδ ln g

)

(18)

and

Jα
CS = −δΛα

CS√
g

=
1
µ

ǫανσ

√
g

(

δR̃ρ
σ ∧ δgνρ +

1
2

δΓρ
νβ ∧ δΓβ

σρ

)

. (19)

Then, the symplectic two-form on the phase space of TMG, ω =
´

Σ
dΣα

√
gJα reads

ω =
ˆ

Σ

dΣα
√

g

[

δΓα
µν ∧

(

δgµν +
1
2

gµνδ ln g

)

− δΓν
µν ∧

(

δgαµ +
1
2

gαµδ ln g

)

+
1
µ

ǫανσ

√
g

(

δR̃ρ
σ ∧ δgνρ +

1
2

δΓρ
νβ ∧ δΓβ

σρ

)

]

.

(20)

Without the use of field equations it is not difficult to see that the two-form is closed, δω = 0.
The next part of the computation is to show that Jα is conserved on shell, that is, ∇αJα = 0

modulo field equations and their variations, δGµν + 1
µ

δCµν = 0. Below we give some details of this
computation. Let us define the covariant divergence of the current as

∇αJα ≡ I1 + I2 +
1
µ

I3, (21)

where

I1 ≡ 1
2

∇α

(

gµνδΓα
µν ∧ δ ln g − gαµδΓν

µν ∧ δ ln g
)

, (22)
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I2 ≡ ∇α

(

δΓα
µν ∧ δgµν − δΓν

µν ∧ δgαµ
)

, (23)

and

I3 ≡ ∇α

[

ǫανσ

√
g

(

δR̃ρ
σ ∧ δgνρ +

1
2

δΓρ
νβ ∧ δΓβ

σρ

)

]

. (24)

Using the Palatini identity, δRµν = ∇αδΓα
µν − ∇µδΓα

να and the explicit form of δΓ in terms of
the metric and the symmetries of the involved tensors one can reduce I1 and I2 to the following
forms:

I1 =
1
2

gµνδRµν ∧ δ ln g + gµνδΓα
µν ∧ δΓλ

αλ, (25)

I2 = δRµν ∧ δgµν − gµνδΓα
µν ∧ δΓλ

αλ. (26)

With the help of field equations I1 + I2 can be reduced to

I1 + I2 =
1
µ

I4 (27)

where

I4 = δCµν ∧
(

δgµν − 1
2

gµνδ ln g

)

− Cµνδgµν ∧ δ ln g. (28)

The variation of the Cotton tensor,

δCµν =
ǫµβγ

√
g

(

−1
2

∇βR̃ν
γδ ln g + ∇βδR̃ν

γ + R̃σ
γδΓν

βσ

)

, (29)

can be used to reduce I4 to

I4 =
ǫµβγ

√
g

(

R̃σ
γδΓν

βσ + ∇βδR̃ν
γ

)

∧ δgµν . (30)

I3 can be brought into the form

I3 = −ǫµβγ

√
g

(

∇βδR̃ν
γ ∧ δgµν + gλµδR̃ν

γ ∧ δΓλ
βν + δΓν

µσ ∧ ∇βδΓσ
γν

)

. (31)

Then combining I3 and I4 one obtains

∇αJα =
ǫµβγ

µ
√

g
δΓν

βσ ∧
[

δ
(

gµνR̃σ
γ

)

+ ∇µδΓσ
γν

]

. (32)

Finally, using the explicit form of the Riemann tensor in terms of the connection and the three
dimensional identities

ǫµβγRσ
µγν = ǫµβγ

(

δσ
γR̃µν + R̃σ

γgµν

)

, (33)

ǫµβγδRσ
µγν = ǫµβγδσ

γδR̃µν + ǫµβγδ
(

R̃σ
γgµν

)

, (34)

one can show that the right hand side of (32) is zero and the symplectic current, Jα, is covariantly
conserved on shell.

Finally, we have to show that ω is diffeomorphism invariant both in the full solution space and
in the more relevant quotient space of solutions modulo the diffeomorphism group. The former
computation requires no work since the constructed symplectic current only involves tensors as
ingredients. The latter one, on the other hand, is somewhat nontrivial, but it is quite fruitful since
it will also give us the conserved charges corresponding to the Killing symmetries. Therefore, we
devote the following section to this computation.
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IV. DIFFEOMORPHISMS AND CONSERVED QUANTITIES

To see that ω has vanishing components in the pure gauge directions let us decompose the
variation of the metric into non-gauge and pure gauge parts:

δg′
µν = δgµν + ∇µξν + ∇νξµ, (35)

where ξ is a one-form on the cotangent space of the phase space. Under this decomposition the
relevant tensors split as: 2

δΓ′λ
µν = δΓλ

µν + ∇µ∇νξλ + R λ
ν µβξβ, (36)

δR̃′µ
ν = δR̃µ

ν + ξβ∇βR̃µ
ν + R̃µ

β∇νξβ − R̃νβ∇βξµ. (37)

The change in the symplectic current of the Einstein-Hilbert part can be computed as [2]:

∆Jα
EH = ∇µXµα

EH + Rµα (ξµ ∧ δ ln g + 2ξν ∧ δgµν) + Rµνδgµν ∧ ξα + δR ∧ ξα + 2ξµ ∧ δRαµ, (38)

where the Xµα
EH is an antisymmetric tensor defined as:

Xµα
EH = ∇µδgνα ∧ ξν + δgνα ∧∇νξµ +

1
2

δ ln g ∧∇αξµ +∇νδgµν ∧ ξα +∇µδ ln g ∧ ξα − (α ↔ µ) . (39)

If we consider the pure Einstein-Hilbert theory alone, then the last four terms of (38) vanish
on shell and the first term is a boundary term, which vanishes for sufficiently decaying metric
variations. Therefore, the corresponding symplectic two-form ωEH is diffeomorphism invariant on
Z, the quotient space of classical solutions to the diffeomorphism group.

Let us now consider the change in the Chern-Simons part of the symplectic current:

µ∆Jα
CS =

ǫανσ

√
g

[

(

−R̃βσ∇βξρ + R̃ρ
β∇σξβ + ∇βR̃ρ

σξβ
)

∧ δgνρ

+ δR̃ρ
σ ∧ (∇ρξν + ∇νξρ) +

(

∇ν∇βξρ + R ρ
β νγξγ

)

∧ δΓβ
σρ

]

.

(40)

The strategy is to collect terms in the form ∇µXµα
CS plus terms that will cancel the remaining

non-boundary terms in the Einstein-Hilbert part (38). This can be achieved by using basic geo-
metric relations, such as the relation between the Riemann tensor and the Einstein tensor in three
dimensions, and the identities

∇βδR̃β
σ =

1
4

∇σδR + δΓλ
βσR̃β

λ − δΓλ
βλR̃β

σ, (41)

ǫµαβξν = gµνǫραβξρ + gανǫµρβξρ + gβνǫµαρξρ. (42)

After a tedious computation one obtains:

µ∆Jα
CS = ∇µXµα

CS + Cµα (ξµ ∧ δ ln g + 2ξν ∧ δgµν) + Cµνδgµν ∧ ξα + 2ξµ ∧ δCαµ, (43)

2 Note that the computation boils down to finding the Lie derivative of the associated tensors, LξT , with respect to
the vector ξ.
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where the Xµα
CS is an antisymmetric tensor defined as:

Xµα
CS =

ǫαµσ

√
g

(

−δΓβ
σρ ∧ ∇βξρ + 2δR̃ν

σ ∧ ξν + R̃ρ
γδgσρ ∧ ξγ + R̃β

σδgβρ ∧ ξρ
)

. (44)

Combining (38) and (43) and using the field equations and their variations one finds that ω has
no components in the pure gauge directions for sufficiently fast decaying metric variations. Finding
such a symplectic two-form for TMG was the goal of this paper.

Finally, let us see how conserved charges can be obtained from the above construction. If
we restrict the diffeomorphisms to the isometries of the background spacetime, then we have the
Killing equation, ∇µξν + ∇νξµ = 0. This leads to

∆Jα = ∇µ

(

Xµα
EH +

1
µ

Xµα
CS

)

= 0, (45)

and to the local conservation ∂µ

[√
g

(

Xµα
EH + 1

µ
Xµα

CS

)]

= 0. Strictly speaking, to obtain the con-
served charge we should identify δgµν → hµν , where hµν is a perturbation around a given back-
ground with Killing symmetries, and keep the ξµ terms on the same side of the wedge products
before dropping them. Therefore, the conserved charges can be written (up to a multiplicative
constant) as

Qµ = − 1
2π

ˆ

∂Σ

dSα
√

g

(

Xµα
EH +

1
µ

Xµα
CS

)

, (46)

which gives nonzero results for more slowly decaying metric variations. We adopted the constant
− 1

2π
in (46) and the convention that the the one-forms ξ to be kept at the right side of the wedge

products. With this choice, the conserved charges of TMG read:

Qµ =
1

2π

ˆ

∂Σ

dSα
√

g

[

(

∇µhναξν + hνα∇νξµ − 1
2

h∇αξµ + ∇νhµνξα − ∇µhξα − (α ↔ µ)
)

+
1
µ

ǫµασ

√
g

(

−δΓβ
σρ∇βξρ + 2δR̃ν

σξν + R̃ρ
γhσρξγ + R̃β

σhβρξρ
)

]

,

(47)

where 2δΓβ
σρ = gβλ (∇σhρλ + ∇ρhσλ − ∇λhσρ) and δR̃ν

σ = δ
(

gνλR̃λσ

)

. To compute the latter,

one just needs the Palatini identity. The first line of (47) is exactly the expression given in [8], which
can also be recast in the more compact form of [7]. The second line generalizes the (anti)-de Sitter
(AdS) background case of [9]. Presumably, the expression given in [10] for generic backgrounds
reduces to the more compact form above. To see that our expression gives the correct charges, we
computed the energy of the BTZ black hole [11] around AdS background. We obtained E = m− a

µl2

and J = a − m
µ

, which is the same result given in [12, 13]. (Here, a is the rotation parameter in
the metric and the vacuum is defined as a = m = 0.) In the appendix, we consider the conserved
charges of three non-Einstein solutions of TMG.

V. CONCLUSION

We have found the symplectic structure of the topologically massive gravity, a closed, conserved,
gauge invariant 2-form on the phase space. The nontrivial part of the computation was to show
that the symplectic 2-form has vanishing components along the pure diffeomorphism directions.
We have also found a compact expression for the conserved Killing charges for generic backgrounds
and computed the energy of the BTZ black hole. A covariant canonical quantization can be carried
out with the help of the symplectic structure we have presented.
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VII. APPENDIX: CONSERVED CHARGES FOR NON-EINSTEIN SOLUTIONS OF

TMG

Using the conserved charge expression (47) let us compute the charges of the previously studied
non-Einstein solutions of TMG. The charges of the below metrics have been computed with different
techniques before [10, 14–16].

A. Logarithmic solution of TMG at the chiral point

At the chiral point µℓ = 1, where ℓ2 = − 1
Λ

, the following metric solves TMG [17]:

ds2 = −N(r)dt2 +
dr2

N(r)
+ r2(Nθ(r)dt − dθ)2 + Nk(r)(dt − ℓdθ)2, (48)

where

N(r) =
r2

ℓ2
− m +

m2ℓ2

4r2
, Nθ(r) =

mℓ

2r2
, Nk(r) = k log(

2r2 − mℓ2

2r2
0

). (49)

Defining the background as m = k = 0, our formula (47) yields the energy (using the Killing vector
ξµ = (−1, 0, 0)) and the angular momentum (using the Killing vector ξµ = (0, 0, 1)) as

E = 4k, J = 4kℓ. (50)

These are the same charges as the ones found in [17], employing the counterterm approach,and in
[14], using the first order formalism, and in [15], employing Nester’s definition of conserved charges
[18] (Note that here our convention is 8G = 1.)

B. Null warped AdS3

The following metric solves TMG for µℓ = −3 ( See [16] and the references therein for the
detailed description of the warped AdS metrics )

ds2

ℓ2
= −2rdtdθ +

dr2

4r2
+ (r2 + r + k)dθ2. (51)

Taking k = 0 case to be the background metric, we compute the charges of this spacetime to be

E = 0, J = −8kℓ

3
, (52)

which are the same as the ones given in [10, 16].
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C. Spacelike stretched black holes

The following metric solves TMG for any value of µ

ds2 = −N(r)dt2 + ℓ2R(r)(dθ + N θ(r)dt)2 +
ℓ4dr2

4R(r)N(r)
, (53)

where the metric functions are given as

R(r) ≡ r

4

(

3(ν2 − 1)r + (ν2 + 3)(r+ + r−) − 4ν
√

r+r−(ν2 + 3)
)

, (54)

N(r) ≡ ℓ2(ν2 + 3)(r − r+)(r − r−)
4R(r)

, N θ(r) ≡ 2νr −
√

r+r−(ν2 + 3)
2R(r)

, (55)

where3 ν = −µℓ
3

. The solution describes a spacelike stretched black hole for ν2 > 1 with r± as
inner and outer horizons. This type of solutions to TMG was found by Nutku [19] and Gurses
[20] and studied in [10, 14–16]. The conserved charges of this metric was discussed in the latter
works. Using (47) and defining the background to be r± = 0 case and using the Killing vectors4

ξµ = (−1/ℓ, 0, 0) and ξµ = (0, 0, 1) we get

E =

(

3 + ν2
)

3ν

(

ν(r+ + r−) −
√

(3 + ν2) r+r−

)

, (56)

J =
ℓ

24ν

[

2(10ν4 − 15ν2 + 9)(r2
+ + r2

−) + 18(ν2 − 1)(ν2 − 2)r+r− (57)

+ ν(5ν2 − 9)(r+ + r−)
√

(3 + ν2) r+r−

]

.

Both E and J turn out to be finite in a highly nontrivial way: Einstein-Hilbert and Chern-
Simons parts give divergent results separately, but they yield a finite result when added. Energy
computed here is exactly the same as the one given in [10, 15, 16]. However, the angular momentum,
J , differs from the one, J , given in those papers. J is a linear combination of E and J given above.
The relation is as follows:

J = c1J + c2ℓE, (58)

where

c1 =
(3 + ν2)(3 + 5ν2)
2(ν4 + 15ν2 − 18)

, (59)

c2 = −ν(101ν4 − 72ν2 + 27)(r+ + r−) + 2
√

(3 + ν2) r+r−(67ν4 + 9ν2 − 72)
16(ν4 + 15ν2 − 18)

. (60)
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