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1 Introduction

The study of the structure and properties of hadrons represents one of the main directions in
particle and nuclear physics. There are different approaches in investigation of the structure
of hadrons, especially, the most promising one in this direction is the study of the radiative
decays and electromagnetic properties of the hadrons and their excitations (for a review,
see for example [1]). Negative parity partners of the octet baryons arise from increasing of
orbital angular momentum by one unit.

The investigation of the magnetic moment of the negative parity baryons can provide
us useful information about their internal structure. Note that the study of the magnetic
moment of the N∗ baryon has already been planned at Mainz Microtron (MAMI) facility
[2–4] and Jefferson Laboratory (JLAB) [5]. The main difficulty in measurement of the
magnetic moments of the excited baryons is can be attributed to the considerably large
width they posses. Due to this fact the magnetic moments can be measured from the
polarization observables of the decay products of the excited resonances. The very first
effort in measuring the magnetic moment of the ∆+(1232) in the reaction γp → pπ0γ
has been realized at MAMI, and future program to get information about the magnetic
moment of the N∗(1535) baryon in the reaction γp → pηγ has already been planned. The
magnetic moments of the spin-1/2 negative parity baryons have been calculated within the
nonrelativistic quark model [6], simple quark model [7], lattice QCD [8], chiral perturbation
theory [9], light cone QCD sum rules (LCSR) [10], and effective Hamiltonian model [11].

In the present work we calculate the magnetic moments of the negative parity, spin-
3/2 partners of the octet baryons in framework of the LCSR method (more about LCSR
formalism can be found in [12]). It should be reminded here that, theoretically there
exists only one work where magnetic moment of the negative parity, spin-3/2 Λ-baryon is
calculated in framework of the chiral quark model [13].

The paper is organized as follows. In section 2 we introduce the interpolating currents for
the spin-3/2 partners of the octet baryons and derive sum rules for the magnetic moments of
negative parity baryons. In the same section, we also calculate the two-point correlators in
order to obtain the sum rules for mass and residues of the negative parity, spin-3/2 Section
3 is devoted to numerical analysis of the obtained sum rules for the magnetic moments of
these baryons, and discussion and conclusion.

2 Calculation of the magnetic moments of negative

parity, spin-3/2 baryons from LCSR

The starting point in calculation of the magnetic moment of the negative parity, spin-3/2
baryons from the QCD side is the consideration of the following correlation function:

Πµν = i

∫

d4xeipx
〈

0
∣

∣

∣
T
{

ηBµ (x)η̄
B
ν (0)

}
∣

∣

∣
0
〉

F
, (1)

where ηBµ is the interpolating current for the corresponding baryon, F refers to the external
electromagnetic field, and T is the time ordering operator.
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In order to obtain the sum rules for the magnetic moments, the correlation function
is calculated in terms of hadrons and the quark-gluon degrees of freedom. Using then the
quark-hadron duality ansatz these two forms of the correlation function are related by using
the analytical continuation.

The phenomenological part of the correlation function can be obtained by saturating
it with the complete states of single particle hadronic states carrying the same quantum
numbers as the interpolating currents. We get from Eq.(1):

Πµν =
〈0|ηµ|32

+
(p2)〉〈32

+
(p2)γ(q)|32

+
(p1)〉〈32

+
(p1)|η̄ν |0〉

(m2
3
2

+ − p21)(m
2
3
2

+ − p22)

+
〈0|ηµ|32

−
(p2)〉〈32

−
(p2)γ(q)|32

+
(p1)〉〈32

+
(p1)|η̄ν |0〉

(m2
3
2

+ − p21)(m
2
3
2

−
− p22)

+
〈0|ηµ|32

+
(p2)〉〈32

+
(p2)γ(q)|32

−
(p1)〉〈32

−
(p1)|η̄ν |0〉

(m2
3
2

−
− p21)(m

2
3
2

+ − p22)

+
〈0|ηµ|32

−
(p2)〉〈32

−
(p2)γ(q)|32

−
(p1)〉〈32

−
(p1)|η̄ν |0〉

(m2
3
2

−
− p21)(m

2
3
2

−
− p22)

. (2)

In general the current ηµ interacts not only with spin-3/2 states, but also with spin-1/2
states. Since our aim is to calculate the magnetic moments of the negative parity, spin-3/2
baryons, the contributions coming spin-1/2 baryons must be eliminated. The prescription
to eliminate these unwanted contributions can be summarized as follows.

The general form of the matrix element of ηµ between spin-1/2 and vacuum states can
be written as,

〈0 |ηµ| 1

2
(p)〉 = (Apµ +Bγµ)u(p) . (3)

Multiplying both sides with γµ, and using condition ηµγ
µ = 0 we get,

〈0 |ηµ| 1

2

+
(p)〉 = B

(

− 4

m 1
2

+

pµ + γµ

)

u(p) , (4)

and similarly,

〈0 |ηµ| 1

2

−
(p)〉 = Bγ5

(

− 4

m 1
2

−

pµ + γµ

)

u(p) . (5)

We see from Eqs. (4) and (5) that the unwanted spin-1/2 state contributions are propor-
tional to either pµ or γµ, and they must be eliminated. For this goal an ordering procedure
of the Dirac matrices is needed which is necessary in obtaining the independent structures.
In the present study the ordering of the Dirac matrices chosen is γµ/ε/q/pγν. In the light of
these remarks we can now proceed to calculate Πµν given in Eq. (2) in terms of hadrons,
for which the following matrix elements are needed,

〈0 |ηµ| 3

2

+
(p)〉 = λ 3

2

+uµ(p) ,

〈0 |ηµ| 3

2

−
(p)〉 = λ 3

2

−γ5uµ(p) ,

〈3
2

+
(p) |η̄ν | 0〉 = λ 3

2

+ ūν(p) ,

〈3
2

−
(p) |η̄ν | 0〉 = −λ 3

2

−ūν(p)γ5 , (6)
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where uµ(p) is the Rarita-Schwinger spinor for the spin-3/2 particles. The matrix element
〈B 3

2

+(p2)|B 3
2

+(p1)〉γ is determined in the following way:

〈B 3
2

+(p2)|B 3
2

+(p1)〉γ = ερūα(p2)Oαρβuβ(p1) ≡

ερūα(p2)

{

− gαβ
[

γρ(f+

1 + f+

2 ) +
(p1 + p2)

ρ

2m 3
2

+

f+

2 + qρf+

3

]

− qαqβ

2m2
3
2

+

[

γρ(g+1 + g+2 ) +
(p1 + p2)

ρ

2m 3
2

+

g+2 + qρg+3

]}

uβ(p1) , (7)

where fi and gi are the form factors whose values are needed only at the point q2 = 0. The
matrix elements 〈B 3

2

−(p2)|B 3
2

−(p1)〉γ and 〈B 3
2

+(p2)|B 3
2

−(p1)〉γ can be obtained from Eq. (7)
by making the replacements of the form factors as,

fi → f ∗
i , gi → g∗i , and fi → f tr

i , gi → gtri ,

respectively. For the 3+/2 → 3−/2 transition the matrix element such as given in Eq. (7)
should contain γ5 matrix before the Rarita-Schwinger spinor uβ(p), which follows from the
parity consideration. Note that for the real photons the terms multiplying f3 and g3 can
be neglected since ερq

ρ = 0. Summation over spin-3/2 states is performed according to the
following formula:

∑

s

uµ(p, s)ūα(p, s) = −(/p+m)

[

gµα − 1

3
γµγα − 2pµpα

3m2
+

pµγα − pαγµ
3m

]

. (8)

It should be remembered again that the terms proportional to γµ on the left and those to
γα on the right; as well as to p1α and p2µ contain contributions from spin-1/2 states (see
Eqs. (4) and (5)), and therefore can be neglected. After elimination of the spin-1/2 states,
the only structure that contains contributions from spin-3/2 states is gµα. As a result,
the hadronic part of the correlation function containing only spin-3/2 contributions can be
written as,

Πµν =
λ2

3
2

+

(m2
3
2

+ − p21)(m
2
3
2

+ − p22)
(/p2 +m 3

2

+)gµαερ

{

− gαβ
[

γρ(f+

1 + f+

2 ) +
(p1 + p2)

ρ

2m 3
2

+

f+

2

]

− qαqβ

2m2
3
2

+

[

γρ(g+1 + g+2 ) +
(p1 + p2)

ρ

2m 3
2

+

g+2

]}

(/p1 +m 3
2

+)gνβ

−
λ 3

2

+λ 3
2

−

(m2
3
2

−
− p21)(m

2
3
2

+ − p22)
(/p2 +m 3

2

+)gµαερ

{

− gαβ
[

γρ(f tr
1 + f tr

2 ) +
(p1 + p2)

ρ

m 3
2

+ +m 3
2

−

f tr
2

]

− qαqβ

2m2
3
2

+

[

γρ(gtr1 + gtr2 ) +
(p1 + p2)

ρ

m 3
2

+ +m 3
2

−

gtr2

]}

γ5(/p1 +m 3
2

−)γ5gνβ

+
λ 3

2

−λ 3
2

+

(m2
3
2

+ − p21)(m
2
3
2

−
− p22)

γ5(/p2 +m 3
2

−)gµαερ

{

− gαβ
[

γρ(f tr∗

1 + f tr∗

2 ) +
(p1 + p2)

ρ

m 3
2

+ +m 3
2

−

f tr∗

2

]

− qαqβ

m2
3
2

+

[

γρ(gtr
∗

1 + gtr
∗

2 ) +
(p1 + p2)

ρ

m 3
2

+ +m 3
2

−

gtr
∗

2

]}

γ5(/p1 +m 3
2

+)gνβ

3



−
λ2

3
2

−

(m2
3
2

−
− p21)(m

2
3
2

−
− p22)

γ5(/p2 +m 3
2

−)gµαερ

{

− gαβ
[

γρ(f−
1 + f−

2 ) +
(p1 + p2)

ρ

2m 3
2

−

f−
2

]

− qαqβ

2m2
3
2

−

[

γρ(g−1 + g−2 ) +
(p1 + p2)

ρ

2m 3
2

−

g+2

]}

(/p1 +m 3
2

−)γ5gνβ . (9)

It is shown in [14] that, in the nonrelativistic limit, in the presence of external uniform
magnetic field the maximum energy of the baryon is equal to 3(f1 + f2)B, where B is the
magnitude of the field. In other words, 3(f1 + f2) is equal to the magnetic moment at
q2 = 0. Therefore, among many structures we chose the one which multiply the coefficient
(f1+f2). Using this fact, the hadronic part of the correlation function given in Eq.(9) takes
the following form:

Πµν =
λ2

3
2

+

(m2
3
2

+ − p21)(m
2
3
2

+ − p22)
(/p2 +m 3

2

+)
[

− gµν/ε(f
+

1 + f+

2 )
]

(/p1 +m 3
2

+)

+
λ 3

2

+λ 3
2

−

(m2
3
2

−
− p21)(m

2
3
2

+ − p22)
(/p2 +m 3

2

+)
[

− gµν/ε(f
tr
1 + f tr

2 )
]

(/p1 −m 3
2

−)

+
λ 3

2

−λ 3
2

+

(m2
3
2

+ − p21)(m
2
3
2

−
− p22)

(/p2 −m 3
2

−)
[

− gµν/ε(f
tr∗

1 + f tr∗

2 )
]

(/p1 +m 3
2

+)

+
λ2

3
2

−

(m2
3
2

−
− p21)(m

2
3
2

−
− p22)

(/p2 −m 3
2

−)
[

− gµν/ε(f
−
1 + f−

2 )
]

(/p1 −m 3
2

−) . (10)

It follows from Eq.(10) that only the last term describes the magnetic moment of the
negative parity baryons. Denoting by,

A =
λ2

3
2

+(f+

1 + f+

2 )

(m2
3
2

+ − p21)(m
2
3
2

+ − p22)

B =
λ 3

2

+λ 3
2

−(f tr
1 + f tr

2 )

(m2
3
2

−
− p21)(m

2
3
2

+ − p22)

C =
λ 3

2

−λ 3
2

+(f tr∗

1 + f tr∗

2 )

(m2
3
2

+ − p21)(m
2
3
2

−
− p22)

D =
λ2

3
2

−
(f−

1 + f−
2 )

(m2
3
2

−
− p21)(m

2
3
2

−
− p22)

. (11)

On the hadronic side, for the invariant function with the structure gµν , we have

[

A(/p2 +m 3
2

+)(−/ε)(/p1 +m 3
2

+) +B(/p2 +m 3
2

+)(/ε)(/p1 −m 3
2

−)

+ C(/p2 −m 3
2

−)(/ε)(/p1 +m 3
2

+) +D(/p2 −m 3
2

−)(/ε)(/p1 −m 3
2

−)
]

, (12)

where p2 = p and p1 = p+ q. Note that in determination of the magnetic moments we need
the values of the form factors only at q2 = 0.
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Now let us turn our attention to the calculation of the correlator function from the
QCD side. For this goal, as has already been noted, we need the form of the interpolating
currents of the excited state baryons. The interpolating currents for the spin-3/2, positive
parity baryons are given as [15],

ηp∗µ = εabc
[(

uaTCσρλd
b
)

σρλγµu
c −

(

uaTCσρλu
b
)

σρλγµd
c
]

,

ηn∗µ = ηp∗µ (u ↔ d) ,

ηΣ
∗+

µ = εabc
[(

uaTCσρλs
b
)

σρλγµu
c −

(

uaTCσρλu
b
)

σρλγµs
c
]

,

ηΣ
∗−

µ = Σ∗+(u ↔ d) ,

ηΣ
∗0

µ =
εabc√
2

[(

uaTCσρλs
b
)

σρλγµd
c −

(

uaTCσρλd
b
)

σρλγµs
c

+
(

daTCσρλs
b
)

σρλγµu
c −

(

daTCσρλu
b
)

σρλγµs
c
]

ηΞ
∗0

µ = εabc
[(

saTCσρλu
b
)

σρλγµs
c −

(

saTCσρλs
b
)

σρλγµu
c
]

,

ηΞ
∗−

µ = ηΞ
∗0

µ (u ↔ d) . (13)

As an example we present the result for the correlation function for the Σ∗+ baryon
from the QCD side, which can be written as:

ΠΣ∗+

µν =

∫

d4xeipx
〈

γ(q)
∣

∣

∣
ηΣ

∗+

µ (x)η̄Σ
∗+

ν (0)
∣

∣

∣
0
〉

, (14)

where a, b, c, a′, b′, c′ are the color indices, Sq is the light quark propagator. In further
numerical calculations involving excited baryons containing strange quark, we take into
account only linear terms in strange quark mass ms. The results for the Σ∗−, Σ∗0, Ξ∗0

and Ξ∗− excited baryons can be obtained from Eq. (14) with the help of the following
replacements,

ΠΣ∗−

µν = ΠΣ∗+

µν (u ↔ d) ,

ΠΣ∗0

µν =
1

2

(

ΠΣ∗+

µν +ΠΣ∗−

µν

)

,

ΠΞ∗0

µν = ΠΣ∗+

µν (u ↔ s) ,

ΠΞ∗−

µν = ΠΞ∗0

µν (u ↔ d) . (15)

In order to calculate the correlation function from the QCD side, we need to know explicit
expression of the light quark propagators, which has the following form:

Sq(x) =
i/x

2π2x4
− mq

4π2x2
− 〈q̄q〉

12

(

1− imq

4
/x

)

− x2

192
m2

0〈q̄q〉
(

1− imq

6
/x

)

− igs

∫ 1

0

dv

[

/x

16π2x2
Gµν(vx)σ

µν − vxµGµν(vx)γ
ν i

4π2x2

− imq

32π2
Gµν(vx)σ

µν

(

ln
−x2Λ2

4
+ 2γE

)]

, (16)
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where Λ is the energy scale in order to separate the perturbative and nonperturbative
sectors. We should note that in numerical calculations two-gluon and four-quark operators
are neglected due to their small contributions.

In order to obtain perturbative contributions it is enough to replace one of the free
quark operators (the first two terms in Eq. (16) ) by,

S = −1

2

∫

dyyνFµνSfree(x− y)γµS
free(y) , (17)

where Aµ = 1
2
Fµνyν satisfying xµAµ = 0 in the Schwinger gauge, and Fµν is the elec-

tromagnetic field strength tensor, Sfree is the free quark propagator. The remaining two
propagators are taken as are given in Eq. (16). The nonperturbative contribution describ-
ing the case when a photon interacts with a quark field nonperturbatively can again be
obtained by replacing one of the propagators by,

Sab
ρσ = −1

4

[

q̄aΓjq
bΓj

]

ρσ
,

where Γj are the full set of Dirac matrices, and the remaining two propagators are taken
from Eq. (16).

These contributions, obviously, are described by the matrix elements of the nonlocal
operators q̄Γjq and q̄GµνΓjq between the vacuum and photon states. These matrix ele-
ments are described in terms of the photon distribution amplitudes (DAs), whose explicit
expressions are given in [16].

Using Eq. (14) and the explicit expression for the light quark operator given in Eq.
(16), and the definitions of the nonlocal quark operators between the photon and vacuum
states in terms of the photon DAs, we can perform the calculation for the theoretical part of
the correlation function. It follows from Eq. (12) that, in order to determine the coefficient
D, which contain the magnetic moment of the negative parity, spin-3/2 baryons, we need
four equations. For this aim we choose the structures gµν(εp), (εp)/pgµν , /ε/pgµν and /εgµν .
Denoting the invariant functions of these structures by Π1, Π2, Π3 and Π4, respectively, we
get the following four equations,

−2m+(A+B) + 2m−(C +D) = Π1

−2(A+B + C +D) = Π2

(B − C)(m+ +m−) = Π3

(Cm− +Bm+)(m+ +m−) = Π4 . (18)

Solving these equations for D, we get

D =
1

2(m+ +m−)2

[

(m+ +m−)Π1 −m+Π2 + 2m+Π3 − 2Π4

]

. (19)

The final step for obtaining the sum rules for the magnetic moments is performing double
Borel transformation with respect to the variables −(p+q)2 and−p2, and subtracting higher
states and continuum contributions. Performing all these operations in the appropriate
order, for the magnetic moment of negative parity baryons we get,

µ

3
=

em
2
−
/M2

λ2
−

1

2(m+ +m−)2

[

(m+ +m−)Π
B
1 −m+Π

B
2 + 2m+Π

B
3 − 2ΠB

4

]

, (20)
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where we take M2
1 = 2M2, M2

2 = 2M2, with M2 is being the Borel mass parameter; and
ΠB

i are the expressions of the corresponding invariant functions after performing the Borel
transformation. The expressions of ΠB

i quite lengthy, and for this reason we do not present
their explicit expressions.

Having obtained the final result for determination of the magnetic moment of the neg-
ative parity, spin-3/2 baryons, which is given in Eq. (19), we now need to calculate their
overlap amplitudes (residues). These residues are determined from from the two-point
correlation function given as,

Πµν(p
2) = i

∫

d4xeipx
〈

0
∣

∣

∣
T
{

ηBµ (x)η̄
B
ν (0)

}
∣

∣

∣
0
〉

.
(21)

Saturating this correlation function with positive and negative baryons, and choosing the
structures gµν/p and gµν that contain only spin-3/2 baryons, we get,

λ2
+

m2
+ − p2

+
λ2
−

m2
− − p2

= T1

λ2
+m+

m2
+ − p2

+
λ2
−m−

m2
− − p2

= T2 , (22)

where T1 and T2 are the invariant functions on the theoretical side, multiplying the struc-
tures gµν/p and gµν , respectively. Performing Borel transformation over the variable −p2,
and continuum subtraction procedure, for the mass and residues of the negative parity
baryons we get,

m2
− =

d
d(1/M2)

[

m+T
B
1 − TB

2

]

m+TB
1 − TB

2

,

λ2

− =
em

2
−
/M2

m+ +m−

[

m+T
B
1 − TB

2

]

.

The explicit expressions of T1 and T2 for the excited spin-3/2 baryons are calculated in [15].

3 Numerical calculations

This section is devoted to the numerical analysis of the sum rules derived for the negative
parity, spin-3/2 baryons. The values of the input parameters which enter to the sum rules
for the magnetic moments are: 〈ūu〉(µ = 1 GeV ) = 〈d̄d〉(µ = 1 GeV ) = −(0.243)3 GeV 3,
〈s̄s〉(µ = 1 GeV ) = 0.8〈ūu〉(µ = 1 GeV ), f3γ = −0.039 [16], Λ = (0.5 ± 1.0) GeV [17],
ms(µ = 2 GeV ) = 111 ± 6 MeV [18], and the magnetic susceptibility χ(µ = 1 GeV ) =
−2.85± 0.5 GeV −2 [19].

The main ingredient of the light cone sum rules are the DAs. In our problem we need
the photon DAs, whose analytic expressions are presented in [16]. In addition to the above-
presented input parameters and photon DAs, sum rules involve the Borel mass parameter
M2 and continuum threshold s0 as well. Since these two parameters are the auxiliary ones,
the magnetic moments should be independent of them. The continuum threshold is not
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totally arbitrary, and it is correlated to the energy of the first excited states. It is usually
chosen in the region (m− + 0.4)2 ≤ s0 ≤ (m− + 0.5)2 GeV 2. The working region of the
Borel mass parameter M2 is determined in the following way. In order to obtain the upper
bound of M2 we require that the continuum and higher states contributions are less than,
say, 30% of the perturbative contributions. The lower bound of M2 is determined from the
requirement that the contribution of the highest power of 1/M2 terms should be less than
25% of the highest M2 contributions. These two requirements lead the following results for
the working regions of M2:

1 ≤ M2 ≤ 3 GeV 2 for p∗, n∗ and Σ∗,

1.5 ≤ M2 ≤ 3.5 GeV 2 , for Ξ∗. (23)

In these regions of the Borel mass parameter M2, the results for the magnetic moments
of the negative parity, spin-3/2 baryons are very weakly dependent on M2 and s0. As an
example, we present in Fig. (1) the dependence of the magnetic moment for the p∗(3/2)
state on M2, at three fixed values of the continuum threshold s0. We deduce from this
figure that µp∗ = (1.2± 0.2)µN .

The results for the other excited states of negative parity, spin-3/2 baryons are presented
in Table 1.

µp∗ (1.2 ± 0.2)µN

µn∗ (0.9 ± 0.1)µN

µΣ+∗ (1.2 ± 0.2)µN

µΣ−∗ (−1.5± 0.1)µN

µΣ0∗ (−0.22± 0.02)µN

µΞ0∗ (0.36 ± 0.06)µN

µΞ−∗ (−1.8± 0.3)µN

Table 1:

We see from this table that, the value of the magnetic moments of Σ+∗ and p∗, as well
as, Ξ−∗ and Σ−∗ are very close to each other, which follows from the small difference in
magnetic moments due to the SU(3) symmetry breaking effects. Moreover, in exact SU(3)
symmetry, the values of the magnetic moments of Σ0∗ and Ξ0∗ should be equal to zero.
Indeed, our results show that they have quite small values, and these small nonzero values
of the magnetic moments of the relevant baryons can be attributed to the SU(3) symmetry
breaking. It should finally be mentioned here that, in exact SU(3) symmetry limit, the
relation

µΣ0∗ =
1

2

(

µΣ+∗ + µΣ−∗

)

should be satisfied, which is also confirmed by our results. The apparent small deviation
can again be attributed to the SU(3) symmetry breaking effects.

In conclusion, the magnetic moments of the negative parity, spin-3/2 baryons are es-
timated within the LCSR. Checking our predictions in future experiments could be very
useful for understanding the dynamics of the negative parity baryons.
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Figure captions

Fig. (1) The dependence of the magnetic moment for the p∗(3/2) state on M2, at three
fixed values of the continuum threshold s0.
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