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Abstract

We analyze the charge-parity (CP) asymmetry in the charged Higgs boson decays to chargino-

neutralino pairs, H± → χ±
i χ

0
j , i = 1, 2, j = 1, . . . 4. We show first that these modes have a

large branching ratio for mH± & 600 GeV. We use Cutkosky rules to obtain the analytical for-

mulas needed for the evaluation of the asymmetry under consideration. We then calculate the

CP asymmetry in chargino-neutralino decays by including supersymmetric mass bounds, as well

as constraints from b → sγ, (g − 2)µ, ∆ρ and electric dipole moments. Finally, we discuss ob-

servability of the asymmetry at the LHC by calculating the number of required charged Higgs

events to observe the asymmetry for each decay channel. We show that the inclusion of constraints

considerably reduces the projected CP asymmetry, and that the optimal channel for observing the

asymmetry is H± → χ±
1 χ

0
2.
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I. INTRODUCTION

The Large Hadron Collider (LHC) at CERN is expected to unravel the mysteries of

electroweak symmetry breaking as well as provide signals of physics beyond the Standard

Model (SM). One would hope that in the first instance, the Higgs boson would be found. In

the SM, there is only one physical (neutral) Higgs boson. Should a charged scalar particle

be found, one would have to unravel the underlying physics, as most frameworks beyond SM

predict charged Higgs bosons. The simplest and the most popular of such models are the

two Higgs doublet model(s) and supersymmetric models. One could distinguish among the

“new Higgs” by testing their charge-parity (CP) properties. In the (SM) the CP breaking

occurs through only one weak phase in Cabibbo-Kobayashi-Maskawa (CKM) matrix. The

observed direct CP violations in K [1] and B [2] decays can be accommodated via the CKM

matrix in the SM. Models beyond the SM contain several new sources of CP violation, some

of which could affect Higgs boson decays. The minimal supersymmetric standard model

(MSSM) contains many parameters which can in principle be complex, even after making

all allowed rotations to get rid of unphysical phases.

Such new sources of flavor and CP violation give rise to enhanced CP violation, some

of which could provide distinguishing signs for MSSM at present and future colliders. In

a previous work [3], we discussed the CP asymmetry in charged Higgs decays H− → ūidj

in the framework of the MSSM, where ūidj = c̄b, c̄s, t̄b, t̄s. We showed that, although the

channels t̄s and c̄s have sizable CP asymmetry with respect to the channels t̄b and c̄b, this

result has to be taken with caution since the formers have very small branching ratios (Br’s)

which makes them harder to observe. We calculated (A2
CP ×Br)−1 [4] for each decay mode,

which is proportional to the number of required charged Higgs bosons produced at colliders1

to observe an asymmetry for a given channel [4, 5, 6]. Based on this analysis, we concluded

that H− → c̄b and H− → t̄b are the the optimal channels which could reveal a measurable

CP asymmetry at the order of 10− 15%.

In this study, we calculate the CP asymmetry in charged Higgs decays in the purely

supersymmetric mode H± → χ±
i χ

0
j , i = 1, 2, j = 1, . . . 4, compare the size of the CP

1 (A2

CP × Br)−1 is closely related to the total number of events N required to establish a measurable CP

violation for a particular mode. The exact formula is N = s2(A2

CP × Br ǫ)−1. Here s is the standard

deviation and ǫ is the detection efficiency.
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asymmetry for each i and j, and evaluate the number of charged Higgs needed to observe each

asymmetry. We show that the asymmetry can be very large if we include only constraints

requiring supersymmetric particles to have masses consistent with experimental bounds.

However, if we also include low energy phenomenology constraints coming from b → sγ, (g−
2)µ, ∆ρ and electric dipole moments, the predicted asymmetry and the allowed parameter

space are considerably reduced.

The outline of the paper is as follows. In the next section, we briefly review the CP

structure of the MSSM. The processes and the method of calculation are outlined in Section

III and the numerical analysis of the decays under consideration are presented in the Section

IV. Finally, we conclude in Section V, and give the relevant analytical expressions in the

Appendix.

II. THE CP STRUCTURE IN THE CHARGINO AND NEUTRALINO SECTORS

OF THE MSSM

In addition to the CP violation induced by the CKM matrix in the quark charged current,

CP phases can be introduced explicitly in the MSSM, by complex Yukawa couplings of Higgs

bosons to quarks and squarks. New supersymmetric-only sources of CP violation in MSSM

are: the soft supersymmetry breaking gaugino masses Mα, α = 1, 2, 3; the bilinear Higgsino

coupling parameter µ; and the soft supersymmetry breaking trilinear scalar coupling of the

Higgs bosons with scalar fermions f , Af , f = u, d, c, s, t, b, e, µ, τ . In principle, each of these

parameters can have independent CP-phases, making a general analysis of CP violation or

asymmetry very complicated. We make several simplifying assumptions. First, we assume

that at the unification scale the gaugino masses have a common phase and the trilinear

couplings are all equal and have another common phase. In order to avoid known problems

with the Electric Dipole Moments (EDMs) [7], one could deviate from exact universality

and consider Af to be diagonal in flavour space with vanishing first and second generation

couplings. This leaves independent phases in µ,Mα and Af . However, the symmetries of the

MSSM can be used to re-phase one of the Higgs doublet fields and the gaugino fields such

that Mα are real [8, 9]. In addition, the CP-violating phases associated with the sfermions

of the first and second generations are severely constrained by bounds on the EDMs of the

electron, neutron and muon [10] and this limits arg(µ), which cannot exceed values of the
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order of 10−2 − 10−3.

There have been several proposals [11]–[13] to evade these constraints without suppressing

the CP-violating phases. One possibility is to arrange for partial cancellations among various

contributions to the EDMs [13]. Another option is to make the first two generations of

scalar fermions rather heavy, of order 3 TeV, so that the one-loop EDM constraints are

automatically avoided. One could invoke the effective SUSY models [12] where decoupling

of the first and second generation sfermions are used to solve the SUSY Flavour Changing

Neutral Current (FCNC) and CP problems without spoiling the naturalness condition. We

adopt the latter version of a CP-violating MSSM for our analysis, along with Af = 0 for the

first two generation sfermions. We also simply neglect arg(µ) and consider µ real. Thus,

we assume that the only non-zero phases emerge from the trilinear couplings At,b,τ and we

assume a common phase2 arg(At) = arg(Ab) = arg(Aτ ) ≡ arg(A) unless otherwise stated.

The superpotential W of the MSSM Lagrangian and the relevant part of the soft breaking

Lagrangian Lsquark
soft are respectively

W = µH1H2 + Y ij
l H1LiejR + Y ij

d H1QidjR + Y ij
u H2Qiuj

R (2.1)

Lsquark
soft =−Q̃i†(M2

Q̃
)ijQ̃

j − ũi†(M2
Ũ
)ij ũ

j − d̃i†(M2
D̃
)ijd̃

j + Y i
uA

ij
u Q̃iH

2ũj + Y i
dA

ij
d Q̃iH

1d̃j,(2.2)

where H1, and H2 are the Higgs doublets with vacuum expectation values v1 and v2 re-

spectively, Q is the SU(2) scalar doublet, u, d are the up- and down-quark SU(2) singlets,

respectively, Q̃, ũ, d̃ represent scalar quarks, Yu,d are the Yukawa couplings and i, j are gen-

eration indices. Here Aij represent the trilinear scalar couplings.

The CP violation effects enter the Higgs decays to chargino and neutralino at one loop

only through loops containing scalar quarks. For simplicity, and to avoid introducing new

parameters, we neglect flavor mixing in the scalar quark mass matrix. The scalar quark

mass is taken as:

M2
t̃{b̃}

=





M2
L̃t{b}

mt{b}At{b}

mt{b}A∗
t{b} M2

R̃t{b}



 (2.3)

2 The CP-violating phases arg(µ) and arg(At,b) could in principle be measured directly in the production

cross sections and decay widths of (s)particles in high energy colliders [8], [14]- [16] or indirectly via their

radiative effects on the Higgs sector [8, 15].
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with

M2
L̃q

= M2
Q̃,q

+m2
q + cos 2β(Tq −Qqs

2
W )M2

Z ,

At = At − µ cotβ , Ab = Ab − µ tanβ . (2.4)

The mass squared matrix for the scalar τ lepton is similar to the one for b-squark, with the

appropriate substitutions. Here we assume µ real and a common phase for At and Ab. Note

that we neglect the effects of Ac,s since they are multiplied by the charm or strange quark

mass. Here tanβ is the ratio of the vacuum expectation values of the two neutral Higgs

bosons.

We summarize the basic properties of the charginos and neutralinos entering in the cal-

culation of the CP asymmetries, as well as give the basic couplings between them and the

scalar quarks entering the loop calculations. For more information, see [17].

The charginos χ+
i (i = 1, 2) are four component Dirac fermions. The mass eigenstates

are mixtures of the winos W̃± and the charged higgsinos H̃−
1 , H̃

+
2 . The chargino masses are

eigenvalues of the diagonalized mass matrix, X, given by

X =





M2

√
2MW sin β

√
2MW cos β µ



 , (2.5)

where M2 is the soft SUSY-breaking SU(2)L gaugino mass parameter and µ is the Hig-

gsino mass parameter. The relevant Lagrangian terms for the quark-down squark-chargino

interaction are given by

Lud̃χ+=

2
∑

σ=1

3
∑

i,j=1

{

ūi [V
∗
σ2 (Y

diag
u KCKM)ij ]PL χ

+
σ (ΓD)

ja d̃a − ūi [g Uσ1 (KCKM)ij]PR χ+
σ (ΓD)

ja d̃a

+ ūi [Uσ2 (KCKM Y diag
d )ij]PR χ+

σ (ΓD)
(j+3)a d̃a

}

+H.c. , (2.6)

where the index σ refers to chargino mass eigenstates. Y diag
u,d are the diagonal up- and down-

quark Yukawa couplings, and V , U the chargino rotation matrices defined by U∗X V −1 =

diag(mχ+

1
, mχ+

2
).

Neutralinos χ0
i (i = 1, 2, 3, 4) are four-component Majorana fermions. The mass eigen-

states are mixtures of the photino, γ̃, the zino, Z̃, and the neutral higgsinos, H̃0
1 and H̃0

2 .

5



Their mass matrix Y is given by

Y =





















M1 0 −MZ sin θW cos β MZ sin θW sin β

0 M2 MZ cos θW cos β −MZ cos θW sin β

−MZ sin θW cos β MZ cos θW cos β 0 −µ

MZ sin θW sin β −MZ cos θW sin β −µ 0





















. (2.7)

The relevant Lagrangian terms for the quark-up squark neutralino interaction are

Luũχ0 =

4
∑

n=1

3
∑

i=1

{

ūi N
∗
n1

4

3

g√
2
tan θW PL χ

0
n (ΓU)

(i+3)a ũa − ūiN
∗
n4 Y

diag
u PL χ

0
n (ΓU)

ia ũa

− ūi

g√
2

(

Nn2 +
1

3
Nn1 tan θW

)

PR χ0
n (ΓU)

ia ũa − ūiNn4 Y
diag
u PR χ0

n (ΓU)
(i+3)a ũa

}

,

(2.8)

where N is the rotation matrix which diagonalizes the neutralino mass matrix Mχ0 ,

N∗YN−1 = diag(mχ0
1
, mχ0

2
, mχ0

3
, mχ0

4
).

In all of the above interactions, CP violation arise from arg(At,b). Though we include

squark contributions only for simplification, sleptons contribute too in an analogous manner.

We check the sensitivity of the CP asymmetry to arg(Aτ ) as well.

III. CHARGED HIGGS DECAYS H± → χ±
i χ

0
j AND CP ASYMMETRY

The relevant Feynman diagrams for calculating the CP asymmetry in charged Higgs

decays to chargino-neutralino pairs are shown in Fig. 1. There are indeed more than 120

Feynman diagrams contributing at one-loop level but based on our choice of the CP phases

the list goes down to eleven diagrams given in Fig. 1.

The CP asymmetry is defined as:

ACP =
Γ(H− → χ−

i χ
0
j)− Γ(H+ → χ+

i χ
0
j)

Γ(H− → χ−
i χ

0
j) + Γ(H+ → χ+

i χ
0
j)
, (3.1)

For simplicity, in the denominator of Eq. (3.1), we approximate the decays width of the

charged Higgs by their tree-level contribution since only the real part of the decay width is

needed, and including one-loop contributions is not essential.

The CP-odd observable ACP requires a nontrivial phase from Feynman diagrams (called

absorptive or strong phase), in addition to the weak phase from arg(At,b,τ ) mentioned
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in the previous section. This way, the imaginary part of the amplitude is non-zero,

Im(Amplitude) 6= 0. One way of introducing such a phase is through one-loop Feynman

diagrams, where some of the intermediate particles go on-shell. As tree-level contributions

do not generate a CP asymmetry by themselves, we estimate the CP asymmetry from the

interference of tree and one-loop diagrams, which dominate over corresponding contributions

from loop-loop terms. We show in Fig. 1 the tree level and the one-loop graphs which only

contribute to the asymmetry (i.e., the ones with scalar fermions in the loop).

One convenient way of calculating CP asymmetry is to extract the absorptive part of the

loop diagrams by applying the Cutkosky rules [18]. For self-energy type diagrams there is

one possible cut, but for the vertex diagrams there are three types of cuts depending on the

masses of the external particles. So, in Fig. 2, we show possible cuts where the internal-cut

states represent all possibilities in each case. For the details of the method of calculation,

1

H

χc˜

χn
0˜

2

H

χc˜

χn
0˜

χ i˜

di

uj
s˜

3

H

χc˜

χn
0˜

χ i˜

ui

dj
s˜

4

H

χc˜

χn
0˜

G
ui

s˜

dj
t˜

5

H

χc˜

χn
0˜

W
ui

s˜

dj
t˜

6

H

χc˜

χn
0˜

ν i

ei

ei
s˜

7

H

χc˜

χn
0˜

di

uj

uj
s˜

8

H

χc˜

χn
0˜

ui

dj

dj
s˜

9

H

χc˜

χn
0˜

ei
s˜

ν i˜

ν i

10

H

χc˜

χn
0˜

ν i˜

ei
s˜

ei

11

H

χc˜

χn
0˜

di
s˜

uj
t˜

uj

12

H

χc˜

χn
0˜

ui
s˜

dj
t˜

dj

FIG. 1: The tree and relevant one-loop diagrams contributing CP asymmetry in t’ Hooft-Feynman

gauge for the decays H− → χ−
c χ

0
n.
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p3

k3

(a) (b)

p1 p1 p1

p2
k1

k2

k2

k1

FIG. 2: The unitarity cuts for self energy (a) and vertex type (b) generic diagrams.

see Ref. [3].

For self-energy diagrams the vertical one can be: a cut through scalar top - down quark,

scalar bottom - up quark, or scalar top - scalar bottom loop. They contribute if mχ−
c
>

mt̃ +mdj , mχ−
c
> mb̃ +muj

, or mH− > mt̃ +mb̃, respectively. Here χ−
c represents the final

state chargino with c = 1, 2.

For the vertex diagrams, as seen from Fig. 2, there are three possible cuts: one vertical,

two horizontal ones. The vertical cuts through τ − ντ , b− t, and t− b always contribute if

a non-zero phase for Aτ , At, and Ab is assumed, respectively, and for charged Higgs masses

mH± > mt. The other vertical cuts through τ̃ − ν̃τ and t̃ − b̃ depend on the chosen Higgs

mass as well as the phases of At,b,τ . The situation is quite similar for the other two horizontal

cuts, but this time the mass of the chargino or neutralino has to be greater than the sum

of the masses of the internal particles where we cut through. Some analytical formulas are

given in Appendix for the horizontal and vertical cuts in a generic way, rather than giving

lengthy analytical results for the imaginary parts.

We generate the amplitudes using FeynArts [19] and proceed with our own code for the

rest of the calculation. In the numerical calculation we checked our results for the imaginary

parts of the two-point and three point diagrams with the package program LoopTools [19]

and found close agreement. Also, for the numerical diagonalizations of chargino, neutralino

and scalar quark mass matrices, we cross checked our routines with the Hahn’s routines

Diag [20].
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IV. NUMERICAL ANALYSIS

In this section we present a comparative numerical analysis of the CP asymmetry in

charged Higgs decays into all possible pairs of chargino and neutralino states. Our aim is

two-fold: the first is to predict the CP asymmetry and indicate the optimal channel as well

as estimate the number of charged Higgs needed to probe it. The second is to analyze the

effect of various experimental constraints such as b → sγ, (g − 2)µ, ∆ρ and EDMs and

determine their significance.

As we approximate the partial decay widths of the channels by their tree level contribution

in the denominator of Eq. (3.1), the denominator becomes 2 Γ0(H− → χ−
i χ

0
j ) where Γ0

represents the tree level partial width. The partial decay widths of the decay into all possible

eight channels of chargino-neutralino pairs with tree level approximation are shown in Fig. 3

as a function of the Higgs mass mH− , for some values of the free parameters of MSSM (the

common scalar mass scaleMSUSY, the gaugino mass parameterM2, the trilinear coupling Af ,

µ, and tanβ). The decay widths are plotted on the left for intermediate tan β value, while the

ones on the right are for large tan β. For the calculation of the rest of charged Higgs channels,

the FeynHiggs program [21] is used. Among these, there are fermion channels; H− → fiνf

among which τντ is the main decay mode for low Higgs mass region (mH− ≤ 140 GeV)

and t̄b is for intermediate Higgs mass values (mH− ≥ mt), the Higgs-vector boson channels

H± → h0W, H0W, A0W , and the sfermion channels H± → f̃if̃j i, j = 1...3 where they are

usually significant for heavy Higgs mass region.

As seen from Fig. 3, at intermediate tanβ, some of chargino-neutralino channels start

being competitive and dominant with respect to the sum of the other open channels for a

Higgs mass around mH− > 600 GeV. This is not the case at large tan β (the case for low

tan β is similar to the case for high tan β and we do not graph it separately). In these cases,

in the heavy Higgs mass region, the eight chargino-neutralino channels split into two groups;

H− → χ−
1 χ

0
2, H

− → χ−
2 χ

0
1, and H− → χ−

2 χ
0
4 with the branching ratios less than 0.006 and

the other five channels with the Br′s around 0.1-0.3. Since usually a smaller branching ratio

is an indication of larger observable CP asymmetries [6], we could expect that H− → χ−
1 χ

0
2,

H− → χ−
2 χ

0
1, andH− → χ−

2 χ
0
4 may yield observable CP asymmetries. Of course an extensive

numerical analysis is required and in the rest of the section we investigate this by scanning

the parameter space.
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FIG. 3: On the left: MSUSY = 500 GeV, µ = 250 GeV, tan β = 10, M2 = 200 GeV, and |At,b,τ | =

400 GeV. On the right: Same as on the left but for tan β = 30.

We first check the sensitivity of the CP asymmetry to the free parameters and phases

and then scan the sensitive parameters for the maximal asymmetry on a multidimensional

parameter space. At each stage we show both the regions allowed by imposing only su-

persymmetric mass limits, and then show the parameter regions excluded by imposing the

experimental constraints coming from b → sγ, (g − 2)µ, ∆ρ and EDMs. The current exper-

imental mass lower bounds considered are mũ,τ̃ > 96 GeV, md̃ > 89 GeV, mχ0 > 50 GeV,

and mχ+ > 94 GeV [22] .
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FIG. 4: On the left: MSUSY = 1 TeV, µ = 250 GeV, tan β = 10, M2 = 200 GeV, |At,b,τ | = 1.2

TeV, arg(Ab) = arg(Aτ ) = arg(At) = arg(A) and mH− = 1 TeV. On the right: Same as on the left

but arg(A) = π/2. Excluded regions are disfavored by all experimental bounds considered here.

The constraints we included to restrict the CP asymmetry are: (g−2)µ ≤ 40×10−10 [23]

and |∆ρ| ≤ 10−3 [22]; as well as electric dipole moment constraints: |dn| < 6 × 10−26 e.cm

for neutron [22], |dTh| < 1.6× 10−27 e.cm for thallium3 [24], and |dHg| < 2× 10−28 e.cm for

mercury [25]. For b → sγ we use at 3σ [26]

2.53× 10−4 < Br(b → sγ) < 4.34× 10−4. (4.1)

The calculation and inclusion of these bounds have been done with the use of FeynHiggs

[21]. We don’t impose SUSY GUT relations for gaugino masses. Since the b → sγ decay

can be accommodated by a rather heavy gluino mass, and this does not influence our results

for the CP asymmetry, this assumption allows us to keep M2 rather light. So, we assume a

gluino mass of mg̃ = 5 TeV but express M1 in terms of M2 using GUT relations. We find

that inclusion of the experimental constraints not only restricts the parameter space but

also has a significant effect on the CP asymmetry overall.

In Fig. 4, the CP asymmetry is depicted as a function of a common trilinear coupling A

3 The upper bound is indeed the translated one on the electron EDM de.
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FIG. 5: On the left: MSUSY = 1 TeV, tan β = 10, M2 = 200 GeV, |At,b,τ | = 1.2 TeV,

arg(Ab) = arg(Aτ ) = arg(At) = π/2 and mH− = 1 TeV. Excluded region is disfavored by mass

lower bounds. On the right: Same as on the left but µ = 200 GeV. Excluded region is disfavored

by all experimental bounds considered here.

for the third generation lepton and quarks, assuming they share a common phase, arg(A).

The Higgs mass is assumed rather heavy, 1 TeV. The maximal CP asymmetry is obtained at

arg(A) = π/2 which is still allowed after excluding the experimentally disfavored region. The

largest asymmetry is obtained for the channels H− → χ−
2 χ

0
4, H

− → χ−
1 χ

0
2, and H− → χ−

2 χ
0
1.

As expected the larger |A| is, the bigger the asymmetry becomes. In these figures, almost

all the contribution to the asymmetry comes from the interference of the vertex diagram

#7 in Fig. 1 with tree level. The asymmetry at maximum is around 0.1% for H− → χ−
2 χ

0
4

and much smaller for the rest. Although we did not include it in a separate figure, we also

analyzed the CP asymmetry as a function of the phase of Ab by assuming the other phases

zero, and separately for the phase of Aτ and found no significant effect. Assuming no phases

from Ab and Aτ leads to no contributions to ACP from the diagrams #3, 6, 8, 9, and 10.

This has been verified numerically.

In the next figure, Fig. 5, as we vary µ in the (−500, 500) GeV range, the magnitude of

the CP asymmetry becomes as large as (0.3 − 0.5)% for H− → χ−
1 χ

0
2, H

− → χ−
2 χ

0
4, and
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FIG. 6: For the first row: MSUSY = 1 TeV, tan β = 10, |At,b,τ | = 1.2 TeV, arg(Ab) = arg(Aτ ) =

arg(At) = π/2. Left: mH− = 1 TeV. Right: M2 = 200 GeV. For the second row: Same as above

but |At,b,τ | = 1 TeV. Excluded regions are disfavored by all experimental bounds considered here.
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H− → χ−
2 χ

0
3. This time the region excluded violates the experimental lower bounds on the

lightest chargino and neutralino mentioned above4. The asymmetry is sensitive with respect

to variations in tanβ and reaches (3− 4)% in the allowed region for (again) H− → χ−
1 χ

0
2.

The next figure, Fig. 6, presents the asymmetry as a function of M2, mH−, and MSUSY.

The asymmetry vanishes for all channels except H− → χ−
1 χ

0
1 and H− → χ−

1 χ
0
2 for larger M2

values for kinematical reasons (the heavier channels cannot be produced in the decay). As

a function of the Higgs mass, the CP asymmetries for H− → χ−
1 χ

0
2 and H− → χ−

2 χ
0
4 are the

most sensitive. The EDM constraints especially allow neither MSUSY nor mH− to be light.

Choosing a smaller A value with a smaller phase would relax this restriction significantly,

but would also decrease the CP asymmetry.

The final part of the numerical analysis is devoted to the scan for maximal CP asymmetry

among the four of eight channels (two light from Fig. 7 and two heavy ones from Fig. 8)

over sensitive variables of the parameter space (MSUSY, mH−,M2, µ, tanβ). We choose the

following four channels; H− → χ−
1 χ

0
2, H

− → χ−
2 χ

0
1, H

− → χ−
2 χ

0
3, and H− → χ−

2 χ
0
4, which

seem most promising to yield larger asymmetries. For the sake of efficiency, we included

some of the results of the previous parameter dependence. Since we verified that the effect

of the phases arg(Ab) and arg(Aτ ) are negligible, we set them to zero, while keeping the

absolute value of Ab, since there are diagrams with scalar-up/scalar-down quark loops which

are not negligible. We also fix the phase of At as π/2, as we know that it maximizes the

CP asymmetry. The absolute values of At and Ab are chosen as 1.2 TeV, which appear

to be values in the region which maximizes the asymmetry. Then we vary the rest of the

parameters in the following ranges; MSUSY ∈ (600, 1200) GeV, mH− ∈ (600, 1500)GeV,

M2 ∈ (200, 1000) GeV, µ ∈ (−500, 500) GeV and tanβ ∈ (2, 50).

In Figs. 7 and 8, we present the scatter plots of the modes H− → χ−
1 χ

0
2, H

− → χ−
2 χ

0
1,

H− → χ−
2 χ

0
3, and H− → χ−

2 χ
0
4 in the (A2

CP ×Br)−1−ACP plane. As before [3], we introduce

here the quantity (A2
CP×Br)−1 as a measure of the number of required charged Higgs bosons

for the observibility of the asymmetry. This is an order of magnitude estimation and the

exact value can be obtained by multiplying it with the factor s2/ǫ where s is the standard

deviation and ǫ is the detection efficiency. There are two types of points on the scan, color-

4 The boundary points of the excluded region vary with respect to each decay mode. In Fig. 5, we consider

some average values for all of them.
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FIG. 7: The scatter plot for the charged Higgs decays H− → χ−
1(2)χ

0
2(1) in the (A2

CP ×Br)−1−ACP

plane. These are obtained by scanning the sensitive parameters A ∈ (0, 1400)GeV, mH− ∈

(600, 1500)GeV, tan β ∈ (1, 50), M2 ∈ (200, 1000)GeV, µ ∈ (−500, 500)GeV, and MSUSY ∈

(600, 1200)GeV. The phase is fixed, arg(At) = π/2. The blue points satisfy only the mass bounds

and the green ones satisfy all constraints. The x-axes are in the logarithmic scale. The small

graphs inside each graph represent the positive asymmetry ACP in the logarithmic scale.

coded as blue and green. The blue dots only obey the basic mass lower bounds. As one can

see, under these requirements only, each decay mode can generate a CP asymmetry as large

as 30%5. Of course the input set for the parameters is different for each channel. These are

listed for the maximal asymmetry points in Table I. The number of charged Higgs bosons

needed to observe the predicted CP asymmetries is in the range of (105 − 109) × s2/ǫ. In

the small panels in Figs. 7 and 8 we also showed the distribution of points in logarithmic

ACP scale.

However, if in addition to the mass bounds, one adds the experimental constraints on

b → sγ, (g−2)µ, ∆ρ and EDMs, only the green points on the graphs survive and the maximal

5 The mode H− → χ−
2
χ0

1 can also have blue points as large as 30% but we restricted the extent of the

vertical axis for better resolution.
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FIG. 8: The scatter plot for the charged Higgs decays H− → χ−
2 χ

0
3(4) in the (A2

CP ×Br)−1 −ACP

plane. These are obtained by scanning the sensitive parameters A ∈ (0, 1400)GeV, mH− ∈

(600, 1500)GeV, tan β ∈ (1, 50), M2 ∈ (200, 1000)GeV, µ ∈ (−500, 500)GeV, and MSUSY ∈

(600, 1200)GeV. The phase is fixed, arg(At) = π/2. The blue points satisfy only the mass bounds

and the green ones satisfy all constraints. The x-axes are in the logarithmic scale. The small

graphs inside each graph represent the positive asymmetry ACP in the logarithmic scale. Thus, in

the small panel for H− → χ−
2 χ

0
3, ACP is multiplied by -1.

asymmetries for each channel go down to few percent level, with the requirement of a larger

number of Higgs to be produced for better statistics. Again, the maximal points and the

corresponding input set and the required Higgs bosons are given in Table I as separate

columns for comparison. As seen from the Table, for maximal asymmetry all four channels

favor a heavy charged Higgs mass greater than 1 TeV and also either large or small tan β. In

the case where we include only the mass bounds, the low MSUSY values in the chosen range

(600, 1200) GeV are favored since in such cases mH− > mũi
+ md̃j

is satisfied, the squarks

can go on-shell in the loop and contribute to ACP significantly6. However, the experimental

6 Lighter charged Higgs contribute dominantly to b → sγ and to satisfy that the constraint within the 3 σ

level one has to consider the non-minimal flavor violating MSSM scenarios. See Ref. [27] for the details.
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TABLE I: The maximal CP asymmetries and the number of required charged Higgs bosons for

the four promising channels, H− → χ−
1 χ

0
2, H

− → χ−
2 χ

0
1, H

− → χ−
2 χ

0
3, and H− → χ−

2 χ
0
4. We also

include the input parameter set for each channel. We show the results by including all experimental

constraints and compare with the results where only mass bounds are consired.

Chan. ACP (%) (A2
CP ×Br)−1(s

2

ǫ
) mH−(GeV) MSUSY(GeV) M2(GeV) µ(GeV) tan β Consts.

12 -36.7 3× 105 1040 -600 680 -500 41 Mass Only

12 7.1 1× 106 1320 1040 840 -100 44 All

21 -24.5 1× 106 1280 640 560 460 29 Mass Only

21 -2.3 1× 108 1440 1000 200 220 38 All

23 -17.5 3× 104 1120 600 240 -460 41 Mass Only

23 -1.2 6× 106 1160 960 200 -500 2 All

24 -57.6 2× 109 1480 760 720 -180 14 Mass Only

24 8.8 5× 1010 1500 960 680 -220 5 All

constraints, especially EDMs, require a heavier SUSY scale, around 1 TeV. Note that we set

the CP phase arg(At) = π/2 for At of 1.2 TeV magnitude. For these values, mass parameters

in the top scalar quark system affect the light quark EDMs (through chargino loops) and

lighter SUSY scales are excluded to satisfy the EDM bounds.

The most promising channel for observing a large asymmetry is H− → χ−
1 χ

0
2, which

could show a maximal CP asymmetry around 7% with approximately 106 × s2/ǫ required

charged Higgs produced at colliders. Even though H− → χ−
2 χ

0
4 can produce a slightly larger

asymmetry, it is not a better channel since it not only requires more Higgs particles, but also

it is a decay channel into much heavier states. The maximal asymmetry for H− → χ−
2 χ

0
4

requires 1011 × s2/ǫ events, much more than for the other three modes. Moreover, its

branching ratio is of the order of 10−9. Thus the CP asymmetry in H− → χ−
1 χ

0
2 has a

better chance to be observed than the other three. Its branching ratio is around 2 × 10−4

which is small, but it is five orders of magnitude bigger than that of H− → χ−
2 χ

0
4. Note

that the distribution of the points with respect to zero axis is not symmetric and the CP

asymmetry is mostly positive especially for the green points which satisfy all constraints

(except H− → χ−
2 χ

0
3). Though the relative sign is a prediction of MSSM, the absolute sign

17



is a result of choosing the phase of At to be positive.

V. SUMMARY AND CONCLUSION

We studied the CP asymmetry of the charged Higgs decays into pairs of charginos and

neutralinos in the framework of the MSSM. We neglected the possibility of flavor violation

in the squark sector. We first analyzed the partial decay widths and the corresponding

branching ratios for these channels. For a region of the parameter space with intermediate

values of tan β and for mH− > 600 GeV some chargino-neutralino channels are competitive

with, and sometimes dominant over, other open channels. We then investigated the size of

the asymmetry for various final decay states and the likelihood of observing it at colliders.

A non-zero CP asymmetry requires an absorptive phase, for which we considered possible

interference terms between tree-level and one-loop diagrams. We calculated the imaginary

parts and presented both analytical expressions for the discontinuity in the diagrams with

the help of Cutkosky rules, as well as numerical results. We have shown that the dom-

inant phase is the one describing the left-right mixing the top scalar quark mass matrix

and the asymmetry is maximum for arg(At) = π/2, while arg(Ab) and arg(Aτ ) give negli-

gible contributions. We analyzed the dependence of the asymmetry on the parameters of

MSSM: MSUSY , µ, tanβ, M2, |At,b,τ |, arg(At,b,τ ) and mH− . In each numerical and graphical

investigation we include bounds from b → sγ, (g − 2)µ, ∆ρ and the EDMs.

We then performed a scan of the significant parameter space for maximizing the asym-

metry, and correlate it to the number of charged Higgs needed to see the corresponding

asymmetry shown to be proportional to (A2
CP × Br)−1. In the scan we included the exper-

imental bounds on the masses of supersymmetric particles only, as well as the previously

mentioned low energy bounds. We first note that the inclusion of mass bounds restricts the

asymmetry slightly, while the other bounds pose more severe restrictions on the CP asym-

metries. In particular, the EDMs, thought to restrict parameters in the up and down scalar

quark only, impose severe restrictions even on the masses and mixing of the third family of

scalar quarks, confirming the expectation that the scalar quark mass parameters must be

in the TeV region. Heavy scalar quark masses and heavy gluino masses are also needed to

satisfy the b → sγ constraint, while the bounds on (g−2)µ and ∆ρ are not as stringent. Our

analysis underscores the importance of including these constraints on the parameter space,
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like in the analysis of top quark production and decays [27].

For the allowed regions, the most promising channel appears to be H± → χ±
1 χ

0
2, where

both the asymmetry can reach 7% and the number of charged Higgs required to observe

them is yet the smallest, of order 106 × s2/ǫ. This channel may be competitive with the

quark channels [3]. Of course, this is encouraging, as light charginos and neutralinos are

most likely to be produced in charged Higgs decays in the first place. By comparison,

the other channels are less promising. For instance, for heavy chargino-neutralino channel,

H− → χ−
2 χ

0
4, almost 1011 × s2/ǫ charged Higgs events (with a branching ratio of the order

of 10−9) are required for detecting an asymmetry of (8 - 9)%.
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APPENDIX: THE METHOD - CALCULATION OF THE IMAGINARY PART

We calculate the absorptive part of the loop diagrams by applying the Cutkosky rules.

In general, in the loop integration, we end up with a numerator with scalar, vectorial, or

tensorial structures (and their pseudo counterparts), depending on the types of particles

running in the loop. For a more complete discussion of our method and the cut results for

the two-point (self-energy) case and three-point (vertex-type) scalar case, please see [3]. We

give here only the final formulas for the three-point (vertex-type) vectorial and tensorial

cases with the horizontal cut:

∆Cµ =
2πiΘ(p23 − (m1 +m3)

2)
√

λ(p21, p
2
2, p

2
3)

{

log

(

α3 + β3

α3 − β3

)

pµ1 −
[

(t− α3v) log

(

α3 + β3

α3 − β3

)

+
2β3

α3 − β3

(

t− β3v +
2p23
λ

(α+ 4p21t)

)]

pµ2
2 p23

}
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∆Cµν =
2πiΘ(p23 − (m1 +m3)
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√

λ(p21, p
2
2, p

2
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2p23
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ν
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µ
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+
(pµ1 p

ν
2 + pν1 p

µ
2)

2p23
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pµ3 p
ν
3

2p43
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]

,
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∆C3g =
1

4λ(p21, p
2
2, p

2
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[
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α2
3 − β2

3
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log
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,
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1

4λ(p21, p
2
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{
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, (A.1)

where

t = p23 +m2
1 −m2

3,

v = (p21 − p22 + p23)/λ(p
2
1, p

2
2, p

2
3),

β3 =
√

λ(p21, p
2
2, p

2
3)λ(p

2
3, m

2
1, m

2
3),

α = p21[p
2
1 + 2m2

3 − (p22 + p23 +m2
1 +m2
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1 −m2

2)(p
2
3 − p22),

α3 = p23[3p
2
1 + 3m2

1 + p23 − (p22 +m2
3 + 2m2

2)] + (m2
1 −m2

3)(p
2
1 − p22),

λ ≡ λ(p21, p
2
2, p

2
3)

and gµν = (+,−,−,−) is the metric tensor. Here m1 and m2 represent the masses of the

internal particles where we cut through. The four momenta pµ1 and pµ2/p
µ
3 are the momentum

of the charged Higgs and neutralino/chargino, respectively. The other type of horizontal cut

can be obtained by simply replacing pµ3 ↔ pµ2 , and m1 ↔ m2.

For completeness we include the terms with the vertical cut, evaluated in [3]
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