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Abstract. We propose a two-level nested preconditioned iterative scheme for solving sparse
linear systems of equations in which the coefficient matrix is symmetric and indefinite with relatively
small number of negative eigenvalues. The proposed scheme consists of an outer Minimum Residual
(MINRES) iteration, preconditioned by an inner Conjugate Gradient (CG) iteration in which CG can
be further preconditioned. The robustness of the proposed scheme is illustrated by solving indefinite
linear systems that arise in the solution of quadratic eigenvalue problems in the context of model
reduction methods for finite element models of disk brakes as well as on other problems that arise
in a variety of applications.
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1. Introduction. Symmetric indefinite linear systems

(1) Ax = b,

arise in many applications ranging from optimization problems to problems in com-
putational physics, see e.g. [2, 24]. In this paper we assume that A ∈ Rn×n is a
sparse, full-rank, symmetric and indefinite matrix with only few negative eigenval-
ues. Our motivation to develop a new preconditioned iterative method arises from
an application in the automotive industry. In order to control brake squeal, large
scale eigenvalue problems are solved via a shift-and-invert Arnoldi method to obtain
a reduced model that can be used for parameter studies and optimization, see [15]
and Section 3.1. We propose the use of a two-level preconditioned iterative method
with a positive definite preconditioner for the solution of the arising linear systems.
The basic idea of such a preconditioned iteration is well-known. In the context of
optimization problems, see [14], a sparse Bunch-Parlett factorization

(2) PAPT = LDLT

is suggested as a solver for the systems involving the indefinite blocks of various
preconditioners. Here P is a permutation matrix (with PPT = I), L is a sparse lower
triangular matrix (typically with some fill-in compared to the sparsity pattern of A),
and D is a block-diagonal matrix that contains either 1×1 or 2×2 blocks. Given such
a factorization, one can modify the diagonal matrix D to obtain a positive definite D̃
such that the eigenvalues of D̃ are the absolute values of the eigenvalues of D, so that
also M := LD̃LT is positive definite. If a diagonal block of D is 1× 1 and negative,
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then one replaces it with its absolute value. Otherwise, it is a symmetric 2× 2 block,

(3)

[
α β
β γ

]
.

and one computes the spectral decomposition

(4)

[
α β
β γ

]
=

[
c s
s −c

] [
λ1

λ2

] [
c s
s −c

]
where c, s ∈ R satisfy c2 + s2 = 1, and one replaces the 2× 2 block with

(5)

[
α̃ β̃

β̃ γ̃

]
=

[
c s
s −c

] [
|λ1| 0
0 |λ2|

] [
c s
s −c

]
.

The matrix M , if easily available, is a good preconditioner for a preconditioned Krylov
subspace method, such as the Minimum Residual method (MINRES) [20], since due
to the fact that the spectrum of M−1A has only the values +1,−1, it would converge
in at most 2 iterations in exact arithmetic if the factorization is exact. However, this
preconditioner is, in general, not practical for large problems due to fill-in and large
storage requirements. In [16], therefore, an incomplete LDLT factorization based
preconditioner for MINRES is proposed.

Another suggestion for a preconditioner of MINRES, proposed in [28], is the
positive definite absolute value of A, defined as |A| := V |Λ|V T in which A = V ΛV T is
the spectral decomposition ofA. However, to avoid the high computational complexity
of the spectral decomposition, in [28] it is suggested to use a geometric multigrid
method instead of the absolute value preconditioner and it is illustrated via a model
problem that this approach is very effective when the system matrix arises from elliptic
partial differential equations.

In our motivating problem, the indefinite matrix arises from a perturbed wave
equation where the resulting linear system depends on parameters and has the extra
property that the number of negative eigenvalues is much smaller than the number of
positive eigenvalues. For this class of problems we propose a new two-level iterative
scheme that combines the absolute value preconditioner approach with a deflation
procedure and we show that this method is also very effective for a large class of
indefinite problems arising in other applications.

2. A two-level iterative scheme. In this section we describe a new two-level
preconditioned iterative scheme for symmetric indefinite linear systems where the
coefficient matrix has only very few negative eigenvalues. The method employs MIN-
RES together with a modified absolute value preconditioner that is constructed via a
deflation procedure which, however, is not carried out explicitly. The linear systems
involving the preconditioner are solved again iteratively via the preconditioned Con-
jugate Gradient (CG) [11] which can be preconditioned via an incomplete LU (ILU)
decomposition, see e.g. [24], of the original coefficient matrix A or any other precondi-
tioner obtained from the original coefficient matrix . These include but are not limited
to Sparse Approximate Inverse [4, 17], Algebraic Multigrid [30, 5], and banded [19]
preconditioners. We note that just like any iterative method for symmetric linear sys-
tems, the proposed scheme would benefit from symmetric permutations and scaling
to enhance the numerical stability of the preconditioner as well. Alternatively, one
can use nonsymmetric permutation and scaling [9] to further improve the numerical
stability of the preconditioner [3]. However, this would destroy the symmetry and
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have the disadvantage that robust Krylov subspace methods with short term recur-
rences are no longer applicable. In this work, we show the robustness of the proposed
iterative scheme with classical preconditioners. We illustrate that this MINRES-CG
iterative scheme is very effective and more robust than other preconditioned gen-
eral Krylov subspace methods, such as the restarted Generalized Minimum Residual
(GMRES) [25], the stabilized Bi-Conjugate Gradient method (BiCGStab) [27], inner-
outer FGMRES-GMRES [23] using the same (ILU) preconditioner or just modified
incomplete LDLT preconditioned MINRES.

As an approximation to the absolute value preconditioner we use

(6) Mmr := A+ 2V̂ |Λ̂|V̂ T .

where V̂ is an approximate invariant subspace ofA associated with the (say k) negative
eigenvalues and |Λ̂| is the corresponding absolute value of the diagonal matrix of
negative eigenvalues. Since we have assumed that k is much smaller than n, the
modification (or as it is sometimes called deflation) is of small rank. In each iteration
of MINRES applied to (1) a system of the form

(7) Mmrz = y

has to be solved, and again the preconditioned matrix M−1
mrA has only eigenvalues +1

or −1 so that MINRES with the exact preconditioner converges theoretically again
in at most 2 iterations. However, since Mmr is symmetric and positive definite, we
propose to use a preconditioned CG iteration for solving system (7) approximately
with an indefinite preconditioner, Mcg, which is an approximation of the original
coefficient matrix itself. Note that the eigenvalues of the preconditioned matrix for
CG, M−1

cg Mmr, would again be either +1 or −1 if the exact matrix A−1 was used.
Indefinite preconditioning for symmetric positive definite systems is studied in [12]

where the preconditioned system is solved via a Krylov subspace method other than
CG that does not require positive definiteness of the coefficient matrix. Indefinite
preconditioning for the CG method is, however, rarely applied with the exception
of [22], where CG for indefinite systems with indefinite preconditioner is used but it
is assumed that the preconditioned matrix is positive definite. In our case, however,
this will not be the case.

The first level preconditioner (Mmr) is symmetric and positive definite, but dense,
so it should not be formed explicitly. On the other hand, the second level precondi-
tioner (Mcg) is sparse and symmetric but not positive definite. However, the precon-
ditioned CG is still guaranteed not to break down (see [24, p. 277]) using an indefinite
preconditioner which can be seen as follows. It is well-known, see e.g. [24, p. 279],
that preconditioned CG with a preconditioner M applied to a system Wx = b with
symmetric positive definite W can be expressed in an indefinite M -scalar product
by replacing the Euclidean inner products in CG by the M -inner products. If W is
symmetric positive definite, and M is symmetric indefinite (but invertible), then we
can define the indefinite M -inner product as (x, y)M = (Mx, y) = yTMx = xTMy =
(y, x)M , so M−1W is positive definite with respect to the M -inner product, since
(M−1Wx, x)M > 0 for all x 6= 0.

Given the system Wx = z, an initial guess x0, and a preconditioner M , as
CG is a projection based Krylov subspace method, the vectors xm must satisfy the
orthogonality condition

(8) (M−1(z −Wxm), v)M = 0 for all v ∈ K̂m,
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where K̂m = span{r̂0,M
−1Wr̂0, ..., (M

−1W )(m−1)r̂0} and r̂0 = M−1r0 with r0 =
z −Wx0. Note that (8) is equivalent to the orthogonality condition of CG without
preconditioning

(9) (z −Wxm, v) = 0 for all v ∈ K̂m

Therefore, indefinitely preconditioned CG minimizes the error

(10) ||xm − x∗||W = inf
x∈x0+K̂m

||x− x∗||W ,

in the energy norm defined by the positive definite matrix W .
In summary, the proposed scheme consists of three stages. First, an initial precon-

ditioner is obtained from the coefficient matrix A, e.g. using the ILU factorization).
Second, we compute approximations to the negative eigenvalues and the corresponding
invariant subspace. This computation itself may be very expensive even if the invari-
ant subspace has small dimension. However, in our motivating application many linear
systems with the same coefficient matrix (or closely related coefficient matrices) need
to be solved. Hence, this potentially expensive initial cost is quickly amortized. This
is typical when solving eigenvalue problems with the shift-and-invert Arnoldi method
as in [15]. The third stage is the iterative solution stage consisting of nested MINRES
and CG iterations (Algorithm 1). Note that while the outer MINRES iterations re-
quire matrix-vector multiplications with the original sparse coefficient matrix A, the
inner CG iterations require matrix-vector multiplications of the form v = Mmru which
are efficiently performed by using sparse matrix-vector multiplications and together
with dense matrix-vector operations (BLAS Level 2) and vector-vector operations
(BLAS Level 1) in the following procedure

(11) Mmru = Au+ 2(V̂ (|Λ̂|(V̂ Tu)))

The total cost of each such matrix multiplication operation is O(nnz+kn) arithmetic
operations where nnz, k and n are the number of nonzeros, negative eigenvalues
and rows of A, respectively. We note that this extra operation is much more cache
friendly than constructing an orthonormal basis in GMRES which relies on inner
products (BLAS Level 1). Alternatively, to further speed up the convergence, the
proposed scheme can be implemented using RMINRES [13, 29], i.e. recycled and
deflated MINRES, as the outer solver instead of plain MINRES. The trade-off would
be increased storage and computation requirements due to the necessary orthogonal-
ization against the recycled subspace and the updates of the recycled subspace [29].
Furthermore, finding subspaces that lead to improved convergence is considered to be
a highly challenging task and application specific [13].

2.1. Improvement via Sherman-Morrison-Woodbury Formula. The pre-
conditioner Mmr in MINRES-CG is a k-rank update of A. Therefore, one can use the
Sherman-Morrison-Woodbery formula to express M−1

mr . Given,

(12) Mmr := A+ 2V̂ |Λ̂|V̂ T

after applying the Sherman-Morrison-Woodbury formula and some algebraic manip-
ulations, we obtain,

(13) M−1
mr := A−1 − 2V̂ Λ̂−1V̂ T .
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Algorithm 1 Iterative solution stage of MINRES-CG

Function MINRES-CG(A,b,x0,Λ̂,V̂ ):

Solve Ax = b via MINRES using the preconditioner Mmr = A+2V̂ |Λ̂|V̂ T , the
major operations required by each MINRES iteration are:

• Compute matrix-vector products with A.
• Solve Mmrz = y via preconditioned CG using as preconditioner Mcg = Ã an

approximation of A, the major operations required by each CG iteration are:
– Compute matrix-vector products: v = Mmru
– Solve the system Mcgt = g

return x

Note that since we do not have the exact A−1, but use an approximation of it, M−1
mr is

not positive definite. Still, we can use it as the preconditioner for the CG iterations.
In other words, we apply the preconditioner for CG, M−1

cg = Ã−1−2V̂ Λ̂−1V̂ T in which

the action of Ã−1 is approximated, such as by an incomplete factorization of A. In the
improved scheme, application of the preconditioner involves additional dense matrix-
vector multiplications (BLAS Level 2) with a cost of O(kn) arithmetic operations but
no additional storage requirement. Hereafter, we refer to this improved version as
MINRES-CG∗.

3. Application of the two-level method. In this section we describe the
applications to which we apply the proposed two-level procedure.

3.1. Finite Element Models of Disk Brakes. In the context of noise reduc-
tion in disk brakes, reduced order models are determined from the finite element model
[15] by computing the eigenvalues in the right half plane and close to the imaginary
axis of a parametric Quadratic Eigenvalue Problem (QEP)

(14) (λ2M+ λDΩ +KΩ)x = 0

in which

(15) DΩ = DM +

(
Ωref

Ω
− 1

)
DR +

(
Ω

Ωref

)
DG

and

(16) KΩ = KE +KR +

((
Ω

Ωref

)2

− 1

)
Kg,

whereM and KE are symmetric positive definite, DG is skew-symmetric, DM , DR,Kg

are symmetric indefinite, and KR is general [15]. Here Ω denotes the angular velocity
of the disk (2π < Ω < 4× 2π) and Ωref is the reference angular velocity.

The QEP is solved by first rewriting it as a linear eigenvalue problem, using a
companion linearization of (14) given by

(17)

([
0 I
−KΩ −DΩ

]
− λ

[
I 0
0 M

])[
x
λx

]
= 0.

Audible brake squeal is associated with eigenvalues in the right half plane. For this
reason we are interested in those eigenvalues that lie in a rectangular domain in the
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complex plane given by −50 < Re(λ) < 1, 000 and −1 < Im(λ) < 20, 000 correspond-
ing to the audible range.

Solving the eigenvalue problem (17) via an eigensolver such as the shift-and-
invert Arnoldi method [18] or Contour Integration based methods [21, 26], requires
the solution of a shifted linear system of equations in each iteration, see [15] for
details of the eigensolver. To apply our two-level linear system solver, we consider
the solution of the following shifted linear system with complex shifts (γ inside the
rectangular domain of interest),

(18) C(x+ iy) = f + ig

where i =
√
−1, C = γB −A, and

(19) B =

[
I 0
0 M

]
, A =

[
0 I
−KΩ −DΩ

]
.

In [15] this complex linear system is solved with a sparse complex direct solver. To
solve the problem iteratively, we follow [1] and map the complex system (18) to an
equivalent double-size real system.

Splitting into real and imaginary parts C = Â + iB̂ and γ = γr + iγi with
γr = Re(γ) and γi = Im(γ), we obtain

(20) Â =

[
γrI −I
KΩ γrM+DΩ

]
, B̂ =

[
γiI 0
0 γiM

]
,

for the real and complex parts of C, respectively. This leads to the real system

(21)

[
B̂ −Â
Â B̂

] [
x
−y

]
=

[
g
f

]
.

which we then solve via a preconditioned Krylov subspace method with preconditioner

(22) M =

[
B̃ −Ã
Ã B̃

]
where

(23) Ã =

[
γrI −I
KE γrM

]
and B̃ = B̂. Note that both M and KE are symmetric and positive definite. The
preconditioner can be block LU factorized as

(24)

[
B̃ −Ã
Ã B̃

]
=

[
B̃ 0

Ã B̃ + ÃB̃−1Ã

] [
I −B̃−1Ã
0 I

]
.

Hence, the major cost in solving systems involving the preconditionerM is the solution
of two linear systems where the coefficient matrix is (i) B̃ and (ii) S = (B̃+ ÃB̃−1Ã),
namely the Schur complement. Since the solution of (i) is quite trivial, we only discuss
how to solve systems involving the Schur complement matrix, which typically is dense
see [2], but in our case it has the factorization

(25) B̃ + ÃB̃−1Ã︸ ︷︷ ︸
S

=

[
M−1 0

0 I

]
︸ ︷︷ ︸

S1

(γi +
γ2
r

γi

)
M− 1

γi
KE −2γrγiM

2γrγiKE

(
γi +

γ2
r

γi

)
M− 1

γi
KE


︸ ︷︷ ︸

S2

.
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Solving systems involving the Schur complement matrix, therefore, requires two steps:
(i) scaling the right hand side vector with S−1

1 and (ii) solving systems where the
coefficient matrix is S2. Step (i) is again trivial, hence we now look into (ii) which we
solve iteratively using a Krylov subspace method where the preconditioner is

(26) S̃2 =

(γi +
γ2
r

γi

)
M− 1

γi
KE 0

2γrγiKE

(
γi +

γ2
r

γi

)
M− 1

γi
KE

 ,
since in our case ||M||F � ||KE ||F . Hence, the main cost in solving the block
triangular systems lies in the solution of

(27)

[(
γi +

γ2
r

γi

)
M− 1

γi
KE

]
u = v,

or after multiplying both sides of the system by −γi we obtain

(28) [KE − |γ|2M]u = −γiv,

where |γ|2 = γ2
i + γ2

r . Even though M and KE are symmetric and positive definite,
there is no guarantee that the symmetric coefficient matrix KE − |γ|2M is positive
definite. However, system (28) is perfectly suitable for the proposed MINRES-CG
scheme, since in our application it only has few negative eigenvalues and they need to
be computed only once. Furthermore, the preconditioner (22) is completely indepen-
dent of the parameters Ω and Ωref , and the coefficient matrix of inner systems that
have to be solved (28) are the same for a given |γ|. This means that a factorization
(incomplete or exact) or an approximation for the coefficient matrix KE − |γ|2M can
be computed once and re-used for all values of γ of the same absolute value and for
all corresponding Ω values.

Numerical experiments for this class of problems are presented in section 4.

3.2. Other applications. As further applications we consider all symmetric
indefinite problems in the SuiteSparse Matrix Collection [8] of sizes between n = 1, 000
and n = 50, 000 and with at most 100 negative eigenvalues. Since this includes 7
matrices from the PARSEC group [6], we exclude the 3 smallest matrices from this
group. Furthermore, since shifts around the so-called Fermi level are also of interest
in the PARSEC group of matrices, we shift the largest matrix (SiO) by A− σI. For
σ, we chose three values (0.25, 0.5 and 0.75) which approximately correspond to the
gaps in the spectrum of A. The properties of these 11 matrices are given in Table 1.
Note that we include two examples (*) that arise in finite element discretization of
structural problems. These are not full eigenvalue problems but just mass matrices;
solving these linear systems is useful if eigenvalues in the inverse mass matrix inner
product space are computed.

4. Numerical results. In this section, we study the robustness of the proposed
two-level scheme for indefinite linear systems described in the previous section. All
experiments are performed using MATLAB R2018a.

In MINRES-CG, we use the MATLAB eigs function to compute negative eigen-
values and the corresponding eigenvectors. We use an indefinite preconditioner (Mcg)
obtained either by an incomplete LDLT or LU factorization of the coefficient matrix
for inner CG iterations. Former is the only suitable preconditioner available in MAT-
LAB which we refer to as ILU . Hence, even though it does not exploit symmetry,
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Table 1: Matrices from the SuiteSparse Matrix Collection with application domains
and properties (n is matrix dimension, nnz is number of nonzeros and k is number of
negative eigenvalues).

Matrix n nnz k Application
Bcsstm10∗ 1, 086 22, 092 54 Structural Engineering
Bcsstm27∗ 1, 224 56, 126 31 Structural Engineering
Nasa1824 1, 824 39, 208 20 Structural Engineering
Meg4 5, 860 25, 258 54 RAM Simulation
Benzene 8, 219 242, 669 2 Real-space pseudopotential method
Si10H16 17, 077 875, 923 41 Real-space pseudopotential method
Si5H12 19, 898 738, 598 6 Real-space pseudopotential method
SiO 33, 401 1, 317, 655 8 Real-space pseudopotential method
SiO(σ = 0.25) 33, 401 1, 317, 655 16 Real-space pseudopotential method
SiO(σ = 0.5) 33, 401 1, 317, 655 26 Real-space pseudopotential method
SiO(σ = 0.75) 33, 401 1, 317, 655 41 Real-space pseudopotential method

we use it to show the robustness of the proposed scheme in Section 4.2.1. For the
latter, on the other hand, we use symm-ildl which is an external package [16] that
has an interface for MATLAB and is robust. Hereafter, we refer to this precondi-
tioner as ILDLT . We use it to show that the proposed scheme is competitive against
other solvers in terms of number of iterations even when a much more robust pre-
conditioner is used in Sections 4.1 and 4.2.2. For a fair comparison, exactly the same
preconditioner is used for BiCGStab, GMRES(m) (m = 20, 40, 60 and 120) as well
as another outer-inner scheme with Flexible GMRES (FGMRES) as the outer solver
and GMRES as the inner solver [23]. In Sections 4.2.2 and 4.1, we also use a MIN-
RES preconditioner with the modified ILDLT factorization. After computing the
ILDLT factorization, the D matrix is modified as described in [14] in order to obtain
a positive definite preconditioner to be used with MINRES. For FGMRES-GMRES
we use a restart value of 120 for both inner and outer iterations. Iterative solvers,
except FGMRES, are the implementations that are available in MATLAB. We note
that MATLAB’s BiCGStab implementation terminates early before completing a full
iteration if the relative residual is already small enough. This counts as a half itera-
tion. We modified GMRES to stop the iteration based on the true relative residual
rather than the preconditioned relative residual. Storage requirements for MINRES,
CG, BiCGStab, FGMRES and GMRES are given in [7, 23, 24, 25, 27], respectively.
In Table 2, we illustrate the storage requirement of each of the iterative solvers via
the number of vectors in addition to the coefficient matrix, the preconditioner (i.e.
incomplete factors) and the right hand side vector which are common for all solvers.

Table 2: Total additional memory requirements (number of vectors) of various itera-
tive solver (not counting A , M and b) where m is the restart and k is the number of
negative eigenvectors.

MINRES MINRES-CG GMRES FGMRES-GMRES BiCGStab
7 11 + k m+ 2 3m+ 4 6
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4.1. Disk brake example. In the following we solve (28) for the small and
large test problems of [15] of sizes n = 4, 669 and n = 842, 638, respectively, with
Ωref = 5. Note again that (28) is independent of Ω. For the first set of experiments
we fix the shift γ to be the largest value in the range of values of interest, namely
1, 000 + 20, 000j. This also happens to be the most challenging case since the number
of negative eigenvalues is also the largest, with k = 18 and k = 60, respectively.

For the proposed scheme, an ILDLT factorization of the coefficient matrix is used
as the preconditioner (Mcg) of the inner CG iteration. We use the same precondi-
tioner for BiCGStab, GMRES(m), FGMRES-GMRES and the modified ILDLT for
MINRES. For the smaller problem, we also use the ILU factorization with no fill-in
(i.e. ILU(0)) preconditioner of MATLAB.

For all experiments a moderate outer stopping tolerance of relative residual norm
less than or equal to 10−3 is used. For the MINRES-CG and FGMRES-GMRES
schemes the inner stopping tolerance is 10−2. For all methods, the maximum (total)
number of iterations are 2, 000 and 15, 000 for small and large problems, respectively.
In all experiments, the right hand side vector is a random vector of size n.

The required number of iterations for the proposed scheme as well as for base-
line algorithms are given in Table 3 for solving the small problem using ILU(0),
ILDLT (1, 10−2) and ILDLT (1, 10−3) preconditioners. GMRES(20) reaches the max-
imum number of iterations without converging (†) irrespective of the preconditioner.
When the preconditioner is ILU(0), BiCGStab converges but it requires twice as
many iterations as MINRES-CG, while all other solvers reach the maximum number
of iterations without converging. Using ILDLT (1, 10−2) and ILDLT (1, 10−3) as the
preconditioners, BiCGStab , MINRES and GMRES(m) converge for m = 120 and
m = 40, 60, 120, respectively.

In Table 4, results are presented for solving the large problem using the seven
iterative methods with the preconditioners ILDLT (4, 10−4), ILDLT (5, 10−5) as well
as ILDLT (5, 10−6). Note that a much smaller dropping tolerance is required for
the large problem. Incomplete factors contain 117.1 , 144.5, and 146.8 nonzeros
per row, respectively, which is relatively small considering that the complete LDLT

factorization would produce 558.4 nonzeros per row. In fact, incomplete factorization
may not be an efficient preconditioner for this problem. However, we still include
these results here only to show the robustness of the proposed scheme in terms of
number of iterations. While for all preconditioners GMRES(m), FGMRES-GMRES,
BiCGStab and MINRES reach the maximum number of iterations without converging,
MINRES-CG still converges in 4 outer iterations albeit with a large number of inner
iterations.

In Figure 1, the relative residual history is given when the ILU(0) preconditioner
is used for three algorithms for the small test problem. Note that for MINRES-CG
the relative residual is only available at each outer iteration. Hence, only those are
presented in the figure.

As second application we fix the preconditioner to be ILU(0) and vary the shift
γ in the complex domain of interest for the small test problem. Here γ is a parameter
that we change in the context of the eigenvalue problem. It is of interest to see how
the method behaves as γ is varied. In Figure 2, the total number of iterations is
presented. Preconditioned BiCGStab fails to converge for some values of γ (shown as
the white area in the figure) while MINRES-CG converges for all γ values. Figure 3
depicts the number of outer iterations and the average number of inner iterations for
MINRES-CG.
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Table 3: Required number of iterations using various preconditioners and iterative
methods for the small system (†: maximum number of iterations is reached without
convergence)

Preconditioner Solver Outer its. Inner its. (Avg.) Total its.

ILU(0)

BiCGStab 1, 421.5 - 1, 421.5
GMRES(20) † - †
GMRES(40) † - †
GMRES(60) † - †
GMRES(120) † - †
FGMRES-GMRES † † †
MINRES-CG 4 177.75 711

ILDLT (1, 10−2)

BiCGStab 1, 337.5 - 1, 337.5
GMRES(20) † - †
GMRES(40) † - †
GMRES(60) † - †
GMRES(120) 7(103) - 823
MINRES 591 - 591
FGMRES-GMRES 1(3) 259.3 778
MINRES-CG 4 199.5 798

ILDLT (1, 10−3)

BiCGStab 143 - 143
GMRES(20) † - †
GMRES(40) 8(40) - 200
GMRES(60) 2(7) - 67
GMRES(120) 1(62) - 62
MINRES 164 - 164
FGMRES-GMRES 1(4) 46.3 185
MINRES-CG 4 32.8 131

4.2. Test cases from the SuiteSparse matrix collection. In this subsection,
the results are presented for systems that are obtained from the SuiteSparse Matrix
Collection. In the first set we compare the proposed method against the classical
general iterative schemes GMRES(m) and BiCGStab as well as a nested FGMRES-
GMRES scheme using an incomplete LU factorization based preconditioner. In the
second set, we compare the proposed method against the same iterative methods as
in the first set but using the ILDLT preconditioner, and MINRES with the modified
ILDLT preconditioner.

4.2.1. Comparison against ILU preconditioner. We use ILU(0) for all
cases except Meg4 where incomplete LU factorization fails due to a zero pivot. There-
fore, we use the modified incomplete LU factorization in MATLAB with 10−2 dropping
tolerance (i.e. MILU(10−2)) for this case only. Since in practice GMRES is always
used with a value for the restart (m) we choose a restart value of m = 20, 40, 60 and
120. In FGMRES-GMRES, we use a restart of 120 for both inner and outer itera-
tions. We stop the iterations when the relative residual norm is less than 10−5 for
all cases. The inner iteration stops when the relative residual norm is less than 10−3

for CG and GMRES, in MINRES-CG and FGMRES-GMRES, respectively. Both in
MINRES-CG and BiCGStab iterations stop when the true relative residual is less
than the tolerance. For preconditioned GMRES the available residual is only the
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Table 4: Required number of iterations using various preconditioners and iterative
methods for the large system (†: maximum number of iterations is reached without
convergence)

Preconditioner Solver Outer its. Inner its. (Avg.) Total its.

ILDLT (4, 10−4)

BiCGStab † - †
GMRES(20) † - †
GMRES(40) † - †
GMRES(60) † - †
GMRES(120) † - †
MINRES † - †
FGMRES-GMRES † † †
MINRES-CG 4 3, 032 12, 128

ILDLT (5, 10−5)

BiCGStab † - †
GMRES(20) † - †
GMRES(40) † - †
GMRES(60) † - †
GMRES(120) † - †
MINRES † - †
FGMRES-GMRES † † †
MINRES-CG 4 2, 221 8, 884

ILDLT (5, 10−6)

BiCGStab † - †
GMRES(20) † - †
GMRES(40) † - †
GMRES(60) † - †
GMRES(120) † - †
MINRES † - †
FGMRES-GMRES † † †
MINRES-CG 4 2, 242.8 8, 971

preconditioned residual. In order to have a fair comparison, we explicitly compute
the true residual at each GMRES iteration and stop the iteration based on the true
relative residual norm. For all methods, the maximum (total) number of iterations is
20, 000.

In Table 6, the detailed number of iterations for ILU preconditioned MINRES-
CG, GMRES(m), FGMRES-GMRES and BiCGStab are given. GMRES(20) fails
in 6 cases out of 11. For bcsstm10, GMRES(20) stagnates (‡), while for 5 other
cases (namely bcsstm27, nasa1824, Si10H16, SiO(σ = 0.25) and Sio(σ = 0.75)),
the maximum number of iterations is reached without convergence (†). If the restart
is increased to 40, 60 and 120, GMRES(m), fails in 4, 3 and 2 cases, respectively.
BiCGStab fails for bcsstm27 and Meg4 due to the maximum of iterations being
reached without convergence (†) and a scalar quantity became too large or too small
during the iteration (∗), respectively. FGMRES-GMRES fails in 3 cases due to
the maximum of iterations being reached without convergence (†). The proposed
MINRES-CG method does not fail in any of the test problems. Although the cost per
iteration is different for each method, the total number of iterations are presented in
Table 7. For the cases they do not fail, GMRES(120) and FGMRES-GMRES require
fewer number of iterations than MINRES-CG but they also require more storage. In
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Fig. 1: The relative residual history for MINRES-CG, BiCGStab and GMRES(20).

(a) BiCGStab (b) MINRES-CG

Fig. 2: Total number of iterations for BiCGStab and MINRES-CG using the precondi-
tioner ILU(0). White color indicates that the method failed to converge. GMRES(20)
fails for all shifts.

4 cases MINRES-CG requires fewer iterations than BiCGStab. It is possible to im-
prove the total number of iterations of MINRES-CG via using the algorithm described
in Section 2.1, Table 5 shows the improved number of iterations which is significant
especially for the cases where the inner or outer number of iterations are high.

In order to study the effect of the inner stopping tolerance on the eigenvalues
of the preconditioned matrix, we explicitly compute M−1

mrA using preconditioend CG
iterations with stopping tolerances of 10−2, 10−3 and 10−4. In Figure 5, a clear
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(a) Outer (b) Inner

Fig. 3: Number of outer (MINRES) iterations and average number of inner (CG)
iterations for MINRES-CG using the preconditioner ILU(0).

clustering of eigenvalues of the preconditioned matrix M−1
mrA is visible around +1

and −1 for bcsstm10, while the unpreconditioned coefficient matrix had no clustering
of eigenvalues (see Figure 4). As expected, the clustering around −1 and +1 improves
as the stopping tolerance for the inner CG iterations is decreased.

Table 5: Comparison of MINRES-CG and MINRES-CG∗, the improvement via the
Sherman-Morrison-Woodbury formula is given in the second column, both are using
the same ILU preconditioner.

MINRES-CG MINRES-CG∗

Name MINRES CG (Avg.) MINRES CG (Avg.)
Bcsstm10 4 650.5 4 470
Bcsstm27 5 3, 186.4 4 1, 339.5
Nasa1824 4 455.3 4 309.3
Meg4 16 18.6 4 1.5
Benzene 3 24.3 3 22.7
Si10H16 4 831 4 893.5
Si5H12 4 53.8 4 47.3
SiO 4 50.5 4 48.8
SiO(σ = 0.25) 4 259 4 141.8
SiO(σ = 0.5) 4 94.3 4 80
SiO(σ = 0.75) 4 179.5 4 184
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Fig. 4: Eigenvalues of A (bccstm10)

4.2.2. Comparisons using incomplete LDLT . In this subsection, we com-
pare the proposed scheme against a robust incomplete LDLT (Bunch-Parlett) factor-
ization [10].

We use the ILDLT implementation of [16] in MATLAB which computes the
incomplete Bunch-Parlett factorization of the coefficient matrix. The default param-
eters are 3 and 10−3 for the level of fill-in and the dropping tolerance, respectively.
Furthermore, it uses the Approximate Minimum Degree reordering, Rook pivoting
and scaling to improve the numerical stability of the incomplete factors by default.
Note that all of those enhancements that are implemented in ILDLT make the pre-
conditioner much more robust than the ILU(0) preconditioner. In the following ex-
periments all methods are applied to the permuted and scaled linear systems. We
use the modified ILDLT factorization as a preconditioner for MINRES. To have a
fair comparison, the same ILDLT factorization (without the modification) is used as
the preconditioner for GMRES(m), FGMRES-GMRES, BiCGStab and as the inner
preconditioner for MINRES-CG. Stopping tolerances and the maximum number of
iterations allowed are set exactly the same as in Section 4.2.

In Table 8 the total number of iterations for all methods are given. Even though
it is a much more robust preconditioner, MINRES preconditioned with the modified
ILDLT preconditioner stagnates (‡) for bcsstm27. For the same problem BiCGStab,
FGMRES-GMRES and GMRES(m) (for all restart values m = 20, 40, 60, 120) reach
the maximum number of iterations without converging (†). On the other hand,
MINRES-CG converges in all problems which confirms the robustness of the pro-
posed scheme. In Table 9, the total number of iterations for all methods are given.
GMRES(m) with larger restart values and BiCGStab require the fewest number of
iterations. FGMRES-GMRES requires fewer iterations than MINRES-CG. On the
other hand, MINRES requires more iterations than MINRES-CG in 4 cases, and the
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Fig. 5: Eigenvalues of M−1
mrA (εcg = 10−2, 10−3 and 10−4) (bccstm10)

required number of iterations are marginally better than that of MINRES-CG for 3
other cases.

5. Conclusions. A two-level nested iterative scheme is proposed for solving
sparse linear systems of equations where the coefficient matrix is symmetric indefinite
with few negative eigenvalues. The first level is MINRES preconditioned via CG. The
inner level CG is preconditioned via the original indefinite coefficient matrix. The
robustness of the proposed scheme is illustrated for linear systems that arise in disk
brake squeal as well as systems that arise in a variety of test cases from the SuiteSparse
Matrix Collection.
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