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TOPOLOGY OF REAL CUBIC FOURFOLDS

S. Finashin, V. Kharlamov

Abstract. A solution of the problem of topological classification of real cubic fourfolds is
given. It is proven that the real locus of a real non-singular cubic fourfold is diffeomorphic
either to a connected sum RP4#i(S2 × S2)#j(S1 × S3), or to a disjoint union RP4 ⊔ S4.

La voie la plus courte et la meilleure entre deux vérités de

domaine réel passe souvent par le domaine imaginaire.

J.S. Hadamard, Essai sur la psychologie de l’invention
dans le domaine mathématique, Edition Gaithier-Villars,
1975, p. 114

1. Introduction

1.1. The subject. Studying the topology of cubic hypersurfaces is a classical task in
real algebraic geometry. It has a long history going back to Newton, who undertook
a systematic study of real plane cubics (first published in 1704 as an appendix to his
book Opticks), and to Schläfli, Cayley, and Klein, who in a series of treatises (dating
from 1858 to 1873 and certainly strongly motivated by Cayley-Salmon discovery of 27
straight lines on nonsingular cubic surfaces) classified the shapes of real cubic surfaces.
Cubic surfaces (as well as cubic curves and higher dimensional cubic hypersurfaces) can
be classified in different manners. As far as we know, it was Klein who first clearly
addressed the problem of deformation and topological classifications. He solved it for
nonsingular cubic surfaces and specially emphasized that for nonsingular cubic surfaces
the deformation classification coincides with the topological one: two real nonsingular
cubic surfaces in P 3 are deformation equivalent if and only if their real point sets are
homeomorphic. Namely, there are 5 deformation classes of nonsingular cubic surfaces
respectively to 5 topological types: RP2 ⊔ S2, RP2, #3RP

2, #5RP
2, and #7RP

2 (#
stands for the connected sum and ⊔, for the disjoint sum). Recall, that the situation
with the real plane cubics is similar: there are 2 deformation classes of nonsingular
cubic curves and they are distinguished by their topological types, S1 ⊔ S1 and S1 (or
one may like to write more instructively, RP1 ⊔ S1 and RP1).

Only recently a deformation classification of real cubic threefolds was completed by
V. Krasnov [Kr1] who proved that there are 9 classes of real nonsingular cubic threefolds
X ⊂ P 4. It turned out that these 9 classes of cubics X are distinguished by the Betti
numbers of the real point set X(R) plus vanishing or non-vanishing of the homology
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class realized by X(R) in the middle homology group H3(X ;Z/2) of the complex point
set (we denote the complex point set by the same letter as the variety itself). In a
subsequent paper [Kr2] Krasnov determined the topological type of X(R) for 8 of the
9 deformation classes: for 1 class it is RP3 ⊔ S3 and for 7 others it is RP3#k(S

1 × S2),
k = 0, . . . , 6.

In [FK1, FK2] we have undertaken a systematic study of deformations classes of
real cubic fourfolds. At the first step, in [FK1] we obtained a coarse deformation
classification (that is a classification up to deformations combined with the projective
equivalence) of real cubic fourfolds. There we did not only enumerate the deformation
classes (their number is 75), but also described them in terms of simple homological
invariants, and, in addition, provided the adjacency graph (which we call the K4-graph)
of the deformation classes. This graph essentially coincides with the adjacency graph
for non-polarized real K3-surfaces (the K3-graph), which was a somewhat unexpected
outcome of our research, even though cubic fourfolds are well-known to be related to
the K3 surfaces in many ways.

The difference between the coarse and ordinary deformation classifications is encoded
in the chirality phenomena: we say that a real nonsingular cubic X ⊂ P 5 and its coarse
deformation class are chiral if X and its image under a mirror reflection, X ′, belong to
different connected components of the space of real nonsingular cubics. Thus, each chiral
coarse deformation class gives two ordinary deformation classes, and each achiral coarse
deformation class gives only one ordinary deformation class. In [FK2] we analyzed the
chirality of the deformation classes of real nonsingular cubic fourfolds. We reduced
the chirality problem to a specific problem of the arithmetics of lattices and used this
reduction to show that certain real cubic fourfolds are chiral, while certain other real
cubic fourfolds are achiral. The crucial role in the reduction to the arithmetics of lattices
is played by the period map and the corresponding surjectivity statement (which was
established in the complex setting by R. Laza [La] and E. Looijenga [Lo] shortly before
our work).

1.2. The main result. Despite such a detailed understanding of the deformation
classes, the topology of the real locus for real nonsingular cubic fourfolds being too
much beyond the control under indicated above approaches remained far from being
understood. The topological classification required additional tools.

In the present paper we introduce two such ingredients. One of them is based on
detecting cuspidal cubics on the boundary of deformation components and analyzing
the surgeries provided by perturbations of a cuspidal cubic. Another essential ingredient
is a technique of ramified connected sums. Combining these tools with the results and
certain methods from [FK1, FK2], we solve the problem of topological classification of
real cubic fourfolds. Our main result is the following (more detailed statements are
given in Section 5).

1.2.1. Theorem. The real locus of a real non-singular cubic fourfold is diffeomorphic
either to a connected sum RP4#i(S2 × S2)#j(S1 × S3) (the connected case), or to a
disjoint union of RP4 with S4 (disconnected case).

In addition, we complete the topological description of real nonsingular cubic three-
folds, X ⊂ P 4, by applying our technique to the deformation class which was not
analyzed by Krasnov. In this case the real locus, X(R), turns out to be a Seifert
manifold described in Section 6 (Theorem 6.1.1).

1.3. Structure of the paper. The paper is organized as follows.
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In Section 2 we review some basic facts about real cubic fourfolds. In particular,
in Subsection 2.2 we describe the K4-graph, whose vertices Ci,j and Ci,j

I represent
the deformation classes of real cubic fourfolds and whose edges describe adjacency of
these classes. The first step towards proving Theorem 1.2.1 is made in Subsection 2.3,
where using elementary arguments, we deduce that vertices C0,0 and C1,0

I represent
cubic fourfolds X whose real locus X(R) is RP4 and RP4⊔S4 respectively. Subsections
2.6—2.7 contain basic definitions and facts related to the period map for cubic fourfolds.
This techniques (which played a crucial role in [FK2]) is involved here only in one place:
in the proof of Lemma 3.3.2 (this Lemma provides an arithmetical criterion of existence
of cuspidal cubics on the boundary of a given deformation component).

In Section 3 we analyze the Morse modifications experienced by X(R) as we move
down the K4-graph. This technique allows us to use some kind of inductive scheme for
proving Theorem 1.2.1 with C0,0 as the basis of induction. However it turns out that
in two cases, C2,1

I and C10,1, such Morse theory inductive arguments do not work, and
we need to apply a more involved technique. Such a technique of ”ramified connected
sums” is developed in Section 4.

In Section 5 we apply the results and the technique of the previous sections to prove
Theorem 1.2.1. In Section 6 we make some concluding remarks. In particular, we apply
the technique of ramified connected sums to complete the topological classification of
real cubic threefolds (Theorem 6.1.1). We discuss also certain perspectives in studying
higher dimensional cubics.

1.4. Conventions. When in a subsection all or most of the material is a recollection
of already known results, the appropriate references are given in brackets after the
subsection title (some results may be not explicitly mentioned in those cited papers, in
such a case we provide their proof). As usual, symbol ‘�’ after a statement means that
no proof will follow: either the proof is straightforward, or it has already been explained,
or a reference is given (in the statement, or at the beginning of the subsection).

Notation X(R) refers always to the real locus of a variety X defined over R. However
we write RPn instead of Pn(R) in the topological context. In Section 4, we also diverge
from algebro-geometric notation style by using single letters (P , Q, V , L) for certain
real loci as soon as they are involved in topological constructions.

1.5. Acknowledgements. The principal ideas of this paper were developed by the
authors during their visit to Centre Interfacultaire Bernoulli in EPFL (Lausanne). The
text was finalized during the first author’s visit to Université de Strasbourg. The last
touch was made during RIP-stay in Mathematiches Forschungsinstitut Oberwolfach.
We thank these institutions for hospitality.

2. Deformation chambers and the period map

2.1. Discriminant hypersurface and deformation chambers ([FK1]). The com-
plex projective cubic fourfolds form the complex projective space P4,3 = P (Sym3(C6)∗)

of dimension
(
5+3
3

)
−1 = 55 and the singular ones form in it the, so called, discriminant

hypersurface ∆ ⊂ P4,3. The real cubic fourfolds, that is cubic fourfolds defined by
real polynomials, form the real projective space P4,3(R), so that the real singular cubic
fourfolds form the real discriminant hypersurface ∆(R) ⊂ P4,3(R).

We study the non-singular real cubics, so the space of our interest is nothing but the
complement C = P4,3(R) r∆(R) of the discriminant hypersurface. We say that non-
singular real cubic fourfolds X1 and X2 are deformation equivalent if they belong to the
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same component of C . The connected components of C will be called the deformation
components, or the deformation chambers.

Remark. In our definition we consider a real cubic as a singular one, even if it has only imaginary

singular points. Thus, it may be worth mentioning that the real cubics with real singular points form

a real semi-algebraic subset ∆′ ⊂ ∆, such that the difference ∆r∆′ has codimension 2 in P4,3(R).
Because of this phenomenon the imbedding of P4,3(R) r∆ into P4,3(R) r∆′ induces a bijection

at the level of connected components and the two corresponding deformation classifications coincide.

The smooth part ∆1 of ∆ is formed by cubics with a node (A1-singularity) and no
other singular points. The connected components of ∆1(R) are called facets. Two facets
can be adjacent through a stratum formed by cubics with a cusp (A2-singularity), in
such a case the two facets are called cuspidally adjacent. The union of the facets and
the strata formed by cubics with a cusp is a topological codimension-one submanifold of
P4,3(R). We denote this union by ∆2(R) and call its connected components the walls.
If two deformation components C and C′ have a common wall, we say that they are
adjacent.

A cubic X ∈ C is called achiral if it is deformation equivalent to its image ρ(X) under
the mirror reflection ρ : P 5(R) → P 5(R) against some hyperplane in P 5(R); otherwise
the cubic X is called chiral.

The relation of coarse deformation equivalence is a combination of deformation and
projective equivalences. Namely, cubics X1 and X2 are coarse deformation equivalent
if X1 is deformation equivalent to the image of X2 under a projective transformation
(that is either to X2 or to ρ(X2)).

In accord with this, by the coarse deformation component we mean a connected

component of the quotient-space C̃ = C /PGL(6,R) with respect to the action of the
projective group PGL(6,R) in P4,3(R) induced by the action in P 5(R).

It is obvious that one coarse deformation component of chiral cubics corresponds to
two ordinary deformation components, and that for achiral cubics the deformation and
the coarse deformation components are in one-to-one correspondence.

A pair of coarse deformation components are called adjacent if there is a pair of
adjacent deformation components representing these coarse components.

2.2. K4- and K3-graphs([FK1]). Presenting the coarse deformation components of
cubic fourfolds as vertices and their adjacency as edges, we obtain a graph. We call it
the K4-graph and denote it by ΓK4. This name is essentially to reflect its remarkable
similarity to the better known K3-graph which describes similarly the set of deformation
components of real non-polarized K3-surfaces and their adjacency.

2.2.1. Theorem. The graphs ΓK4 and ΓK3 are the graphs shown respectively on Fig-
ures 1 and 2. �

The coordinates r and d on the Figures characterize the action of the complex
conjugation in the corresponding lattices. Namely, in the case of a real cubic four-
fold X , we consider the involution cX : M → M induced in M = H4(X) by the
complex conjugation, and denote by d the rank of the 2-periodic discriminant group
M/(M+ +M−) = M∗

±/M±, where M± = {x ∈ M | cX(x) = ±x}. By well known Smith

theory arguments, d = 1
2

(
b∗(X) − b∗(X(R))

)
= 1

2

(
27 − b∗(X(R))

)
where b∗ =

∑
i>0 bi

is the total Betti number with Z/2-coefficients. In the case of a real K3-surface Y ,
there is a similar involution cY : L → L in L = H2(Y ) and d denotes the rank of the
discriminant group L/(L+ + L−) = L∗

±/L±, where L± = {x ∈ L | cY (x) = ±x}. If
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Figure 1. The K4-graph ΓK4
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Figure 2. The K3-graph ΓK3
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Y (R) 6= ∅, then we have similarly d = 1
2

(
b∗(Y )− b∗(Y (R))

)
= 1

2

(
22− b∗(Y (R))

)
, and

in the exceptional case Y (R) = ∅, we have d = 10.
The coordinate r is the rank of M− in the case of cubic fourfolds and the rank of L+

in the case of K3-surfaces. Respectively, as it follows from the Lefschetz trace formula,
r is equal to 1

2

(
χ(X) − χ(X(R)) − 4

)
= 11 + 1

2

(
1 − χ(X(R))

)
in the first case, and

1
2

(
χ(Y ) + χ(Y (R))− 4

)
= 10 + 1

2χ(Y (R)) in the second.
In ΓK4 as well as in ΓK3 there are 10 pairs of vertices-twins having the same coor-

dinates (r, d), and on Figures 1 and 2 we place one of the vertices in each pair slightly
above the other vertex (one may consider this as introducing a third coordinate).

The vertices in ΓK4 and in ΓK3 which are marked by • have lattices of the type I. The
other vertices are marked by ◦ and have lattices of the type II (we recall the definition
of the types in 2.4). Note that in a pair of vertices-twins with the same coordinates
(r, d) one vertex belongs to the type I and the other to type II. Among the vertices
which are completely determined by (r, d) the majority belong to the type II, but the
five bottom “local minima” vertices belong to the type I.

It will be convenient for us to introduce, instead of (r, d), a new coordinate system
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(i, j) centered at the top vertex, namely, the system where i = 1
2 (22 − r − d) is the

number of down-left and j = 1
2 (r− d) of down-right moves along edges needed to reach

a given vertex from the top. We will call such down-left moves L-moves and the down-
right moves R-moves. The moves in the opposite directions will be called respectively
L−1-moves and R−1-moves. A vertex with coordinates (i, j) will be denoted Ci,j (in
the case of the K3-graph as well as for the K4-graph) if it is the only vertex with such

coordinates. In the case of two vertices with coordinates (i, j) we use notation Ci,j
I for

the vertex of type I and Ci,j for the other vertex. The set formed by the vertices Ci,j

will be called the principal series of vertices, and the vertices Ci,j
I will be called the

special vertices. We say that a vertex of the K3-graph and a vertex of the K4-graph
correspond to each other if they are of the same type and have the same (i, j) coordinates

(i.e., the both have the same notation, either Ci,j or Ci,j
I ).

The walls (the facets) between the deformation chambers are divided into L-walls
and R-walls (L-facets and R-facets), depending on the edges they represent in ΓK4.

2.3. Immediate topological consequences of deformation classification. It is
easy to construct in any dimension n a non-singular real cubic hypersurface X ⊂ Pn+1

whose real locusX(R) is diffeomorphic to RPn, as well as a cubic withX(R) = RPn⊔Sn.
Namely, it is sufficient to perturb a singular cubic which splits into a hyperplane and a
quadric; if the quadric has an empty real locus, then we obtain X(R) = RPn, and if it
has a real locus disjoint from the hyperplane, then X(R) = RPn ⊔ Sn. Clearly, in each
of these two cases the models constructed in such a way are deformation equivalent to
each other.

2.3.1. Lemma. If the real locus X(R) of a non-singular real cubic n-fold X, n > 1,
is disconnected then X(R) is diffeomorphic to a disjoint union of RPn and Sn. Such
cubics form a single deformation component.

Proof. As it follows from Bézout theorem, X(R) realizes a non-trivial class in the ho-
mology group Hn(RP

n+1;Z/2). So does also one of its connected components, C1. Any
other connected component, C2, should realize a trivial class since C1 ∩ C2 = ∅. The
complement RPn+1rC2 splits in two connected components one of which contains C1,
and we choose a point p in the other component. Any real line through p intersects
C1 at least once and C2 at least twice. So (again by Bézout theorem) X(R) cannot
have other components and the central projection X(R) → RPn from p gives a 1-1 map
C1 → RPn and a double covering C2 → RPn. This proves the first statement of the
Lemma.

The same arguments show that if a real cubic (n − 1)-fold (in a real projective n-
space) is disconnected and has a real singular point, then its real locus is the union of
this point and a real projective hyperplane disjoint from it. Therefore, at any point
of C2 the hyperplane tangent to C2 intersects C2 exclusively by this tangency point.
Let us shift the tangency hyperplane to make it a real hyperplane H disjoint from C2,
pick up a small ellipsoid E inside C2 and consider the cubic X ′ which is a small real
perturbation of H ∪E. Such a cubic X ′ is deformation equivalent to X , since they can
be joined by a straight deformation path, tf + (1 − t)g, where the degree 3 defining
equations f = 0 and g = 0 of X and X ′, respectively, are chosen in such a way that
fg > 0 at the solid ellipsoid bounded by E in Pn+1(R): under this sign convention the
cubics tf + (1− t)g = 0, t ∈ [0, 1], remain disconnected and, hence, non-singular. Now,
the second statement of the Lemma follows from the mutual deformation equivalence
of all the model disconnected cubics. �
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2.3.2. Corollary. (a) If a non-singular real cubic fourfold has real part X(R) = RP4,
then it represents the vertex C0,0. (b) If a non-singular real cubic fourfold has real part

X(R) = RP4 ∪ S4, then it represents the vertex C1,0
I .

Proof. In the case (a), the relations r = 11 + 1
2

(
1 − χ(X(R))

)
= 11, d = 1

2

(
27 −

b∗(X(R))
)
= 11 give i = 1

2 (22− 11− 11) = 0, j = 1
2 (11− 11) = 0, and we see from the

graph ΓK4 that C0,0 is the unique suitable vertex. Similarly, in the case (b) we obtain
i = 1, j = 0 and then notice in addition that the only connected four-manifold that
can be obtained from RP4 ∪ S4 by a single Morse modification is RP4, while as is seen
on the graph ΓK4 the vertex C1,0 is adjacent to two vertices. Thus, the corresponding
vertex is C1,0

I . �

2.4. Markings and eigenlattices ([FK1,FK2]). By the lattice M(X) of a non-
singular cubic fourfold X we mean the middle cohomology group H4(X ;Z) endowed
with the intersection form. This is an odd unimodular lattice of signature (21, 2).
The polarization class hX ∈ M(X) (which is realized by the intersection of X with a
projective 3-space) has square h2X = 3 and is characteristic which means as usual that
xhX = x2 mod 2 for all x ∈ M(X). This implies that there exists a lattice isomorphism
between M(X) and M = 3I +2U +2E8 such that hX is mapped into h = (1, 1, 1) ∈ 3I;
in particular, the primitive sublattice M0 = {x ∈ M |xh = 0} becomes identified with
A2 + 2U + 2E8. Such a choice of a lattice isomorphism φ : M(X) → M will be called a
marking of X , and a pair (X,φ) will be called a marked cubic fourfold.

If a cubic X is defined over reals, then the complex conjugation induces a lattice
involution cX : M(X) → M(X) such that cX(hX) = hX . This involution gives rise to the
eigenlattices M±(X) = {x ∈ M(X) | cX(x) = ±x} and M0

±(X) = {x ∈ M0(X) | cX(x) =
±x}. Here, M0

−(X) = M−(X) since hX ∈ M+(X). A marking φ : M(X) → M

transforms the involution cX and its eigenlattices M±(X), M0
±(X) into an involution

on M and the eigenlattices of this induced involution.
An involution c : M → M is induced by cX for some marked real cubic fourfold (X,φ)

if and only if the involution c is geometric, where the latter means that c(h) = h and each
of the eigenlattices M± = {x ∈ M | c(x) = ±x} and M0

± = {x ∈ M | c(x) = ±x, xh = 0}
is of negative inertia index equal to 1. In fact, the isomorphism class of the pair
(M(X), cX) is an invariant which allows to distinguish the coarse deformation classes of
real cubic fourfolds X . Moreover, the isomorphism class of (M(X), cX) is determined
by the isomorphism class of any of the eigenlattices M0

+(X) and M−(X).

The isomorphism classes of lattices M0
+ and M− corresponding to geometric involu-

tions are listed in the following tables 1—3.
We say that a real cubic X is of type I if the involution cX : M(X) → M(X) is even,

that is if x · cX(x) + x2 = 0 mod 2Z for any x ∈ M(X). As is known, it happens if and
only if X(R) realizes the class hX in the middle (Z/2)-homology of X .

The above definition of type I is not specific to cubics, but is applied to any non-
singular real algebraic variety. In particular, if Y is a K3-surface, it is of type I if and
only if Y (R) realizes zero in the middle (Z/2)-homology of Y .

2.5. Central projection K3-K4 correspondence [FK1]. The edges of the K4-
graph can be interpreted as coarse deformation classes of 6-polarized K3-surfaces via the
following central projection correspondence. Let X0 denote a nodal real cubic fourfold
representing an edge. In an affine chart centered at the node, the cubic X0 is defined
as {f2 + f3 = 0} ⊂ R

5 where f2 and f3 are some quadratic and, respectively, cubic
homogeneous polynomials in x0, . . . , x4. Non-degeneracy of the node means that the
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Table 1.
M0

+ for cubic fourfolds of type Ci,j

C0,j −A1 + (9− j)A1+〈6〉
C1,j −A1 + (9− j)A1+A2

C2,j U + (9− j)A1+A2

C3,j U + (6− j)A1+A2 +D4

C4,j −A1 + (5− j)A1+〈6〉+ E8

C5,j −A1 + (5− j)A1+A2 + E8

C6,j U + (5− j)A1+A2 + E8

C7,j U + (2− j)A1+A2 +D4 + E8

C8,j −A1 + (1− j)A1+〈6〉+ 2E8

C9,j −A1 + (1− j)A1+A2 + 2E8

C10,j U + (1− j)A1+A2 + 2E8

Table 2.
M− for cubic fourfolds of type Ci,j

Ci,0 −A1 + (10− i)A1

Ci,1 U + (10− i)A1

Ci,2 U + (7 − i)A1+D4

Ci,3 −A1 + (6 − i)A1+E7

Ci,4 −A1 + (6 − i)A1+E8

Ci,5 U + (6 − i)A1+E8

Ci,6 U + (3 − i)A1+D4 + E8

Ci,7 −A1 + (2 − i)A1+E7 + E8

Ci,8 −A1 + (2 − i)A1+2E8

Ci,9 U + (2 − i)A1+2E8

Table 3.
M0

+ and M− for cubic fourfolds of type Ci,j
I

Ci,j
I M0

+ M−

—– ———————– ——————
C0,3

I U(2) + E6(2) U(2) + 3D4

C1,8
I U(2) +A2 U(2) + 2E8

C1,4
I U + E6(2) U + 3D4

C2,5
I U(2) +A2 +D4 U(2) +D4 + E8

C3,2
I U(2) +A2 + 2D4 U(2) + 2D4

C4,3
I U +A2 + 2D4 U + 2D4

C5,4
I U(2) +A2 + E8 U(2) + E8

C6,1
I U(2) +A2 +D4 + E8 U(2) +D4

C9,0
I U(2) +A2 + 2E8 U(2)

C2,1
I U +A2 + E8(2) U + E8(2)

C1,0
I U(2) +A2 + E8(2) U(2) + E8(2)

quadric {f2 = 0} ⊂ RP4 is non-singular and absence of other singularities in X0 is
equivalent to transversality of the intersection {f2 = f3 = 0} ⊂ RP4, which is therefore
a non-singular real 6-polarized K3-surface.

2.5.1. Theorem.

(1) A vertex vK3 of the K3-graph corresponds to a vertex vK4 of the K4-graph if
and only if the eigenlattice M−(X) of a cubic fourfold X representing vK4 is
isomorphic to the eigenlattice −L+(Y ) of a K3-surface Y representing vK3.

(2) The edges of the K4-graph are in one-to-one correspondence with the coarse de-
formation classes of 6-polarized K3 surfaces Y . Namely, edges with the leftmost
vertex vK4 correspond to the classes of (Y, l), such that Y represent vK3 and
l ∈ L−(Y ), l2 = 6.

2.6. The period map ([La], [Lo], [Vo]). The non-zero Hodge numbers in dimension
four for any non-singular cubic fourfold X ⊂ P 5 are h3,1 = h1,3 = 1 and h2,2 = 21.
Given a marking φ : (M(X), hX) → (M, h), the complex line φ(H3,1(X)) ⊂ M

0 ⊗ C

is isotropic and has negative pairing with the conjugate (and thus, also isotropic) line

φ(H1,3(X)) = φ(H3,1(X)), that is to say, w2 = 0, and ww < 0, (and thus w2 = 0) for all
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w ∈ φ(H3,1(X)). Writing w = u+iv, u, v ∈ M0⊗R, we can reformulate it as u2 = v2 < 0
and uv = 0, which implies that the real plane 〈u, v〉 ⊂ M0 ⊗ R spanned by u and v is
negative definite and bears a natural orientation given by u = Rew, v = Imw. Note
that the orientation determined similarly by the complex line φ(H1,3(X)) ⊂ M0 ⊗C is
the opposite one.

The line φ(H3,1(X)) ⊂ M0 ⊗ C specifies a point Ω(X) ∈ P (M0 ⊗ C) (as usual,
P states for the projectivization) called the period point of (X,φ). This period point
belongs to the quadric Q = {w2 = 0} ⊂ P (M0 ⊗ C), and more precisely, to its open

subset, D̂ = {w ∈ Q |ww < 0}. This subset has two connected components, which
are exchanged by the complex conjugation (this reflects also switching from the given
complex structure on X to the complex conjugate one).

The orthogonal projection of a negative definite real plane in M0 ⊗ R to another
such one is non-degenerate. Thus, to select one of the two connected components of

D̂ we fix an orientation of negative definite real planes in M
0 ⊗R which is constrained

to be preserved by the orthogonal projection. We call it the prescribed orientation and
restrict the choice of markings to those for which the orientation of φ(H3,1(X)) defined
by the pairs u = Rew, v = Imw for w ∈ φ(H3,1(X)) is the prescribed one. We denote
this component by D and call it the period domain. By Aut+(M0) we denote the
group of those automorphisms of M0 which preserve the prescribed orientation (and
thus preserve D). We put Aut−(M0) = Aut(M0) \ Aut+(M0). This complementary

coset consists of automorphisms exchanging the connected components of D̂ .

On the other hand we have the projective space P4,3 formed by all cubic fourfolds,
which splits into the discriminant hypersurface ∆4,3 formed by singular cubics and its
complement, C = P4,3 \∆4,3. Let C

♯ denote the space of marked non-singular cubics.
The natural projection C ♯ → C is obviously a Galois covering with the deck transfor-
mation group Aut+(M0). The above conventions define the period map per : C ♯ → D ,
(X,φ) 7→ φ(H3,1(X)).

The above definitions extend naturally to cubic fourfolds with simple singularities.
In particular, the lattice H4(X) of a cubic fourfold with simple singularities is torsion
free and admits an isometric embedding H4(X) → M whose orthogonal complement is
isometric to

⊕
i Mxi

(X), the sum of the Milnor latticesMxi
over all singular points xi of

X . On the other hand, H4(X)⊗C carries a pure Hodge structure with h3,1 = h1,3 = 1.
By Riemann extension theorem and the finiteness of the monodromy groups of simple
singularities, the Galois covering C ♯ → C extends (in an unique way) to a ramified
Galois covering C ♯

s → Cs where Cs ⊂ P4,3 is the space of cubic fourfolds with simple
singularities. The covering space C ♯

s is non-singular. It is the space of marked cubic
fourfolds with simple singularities, where by a marking of X ∈ Cs we understand, in
accordance with the previous definitions, a respecting the prescribed orientation (of
negative definite planes) isometric embedding (H4(X), hX) → (M, h) whose orthogonal
complement is isometric to the sum of the Milnor lattices over all singular points of X .
The extended period map per : C ♯

s → D , (X,φ) 7→ φ(H3,1(X)), is holomophic due to
the corresponding Griffiths theorem.

Consider, on the period space side, the reflection Rv in M0 ⊗ C across the mirror-
hyperplane Hv = {x ∈ M0 ⊗ C |xv = 0} defined as x 7→ x − 2xv

v2 v, and note that it

preserves the lattice M0 invariant if v ∈ M0 is such that v2 = 2, or such that v2 = 6 and
xv is divisible by 3 for all x ∈ M0. We call these two types of lattice elements 2-roots
and 6-roots respectively, and denote their sets by V2 and V6. Note that Rv ∈ Aut+(M0)
for any v ∈ V2∪V6. If v ∈ V2, then the reflection Rv extends (as a reflection) to M and h



10 S. FINASHIN, V. KHARLAMOV

is preserved by this extension. By contrary if v ∈ V6, the reflection Rv does not extend
to a reflection in M, and moreover, the unique extension of Rv to M maps h to −h.
On the other hand, if v ∈ V6 then the anti-reflection −Rv extends to an isometry of M
preserving h. This extension is the anti-reflection with respect to the 2-plane generated
by h and v. In particular, it represent also an element of Aut+(M0).

The union of the mirrors Hv for all v ∈ V2 gives after projectivization a union
H∆ ⊂ P (M0⊗C) of hyperplanes, and a similar union of Hv for all v ∈ V6 gives another
union of hyperplanes, H∞ ⊂ P (M0 ⊗ C).

2.6.1. ”Surjectivity” of the period map. The image of the period map per : C ♯
s →

D is the complement of H∞, and the fibers of per are PGL(6,C) orbits. For a given
p ∈ D \ H∞, the 2-roots δ ∈ V2 such that Hδ contains p form an elliptic root system,
whose irreducible components are of types A,D, and E. These components generate the
Milnor lattices of the singular points of a cubic with the period p. �

Remark. The description of the fibers given in the first part of the statement is equivalent to what is

called usually the injectivity of the period map (here, at the level of cubics with simple singularities).

The second part of the statement includes an intermediate, in some sense, statement that the variations

of a singular cubic fourfold contain a simultaneous versal deformation of the singularities if all of them

are simple.

2.7. The period map in a real setting ([FK2]). Let us fix a geometric involution
c : M → M, see 2.4. A real c-marked nonsingular cubic fourfold (respectively, cubic
fourfold with simple singularities) is, by definition, a real non-singular cubic fourfold
(respectively, cubic fourfold with simple singularities) equipped with a marking φ such
that φ ◦ conj∗ = c ◦ φ. If such a c-marking exists, the cubic fourfold is said to be of
homological type c.

We denote by C c
R
⊂ CR (respectively, C c

s,R ⊂ Cs,R) the set of real nonsingular cubic

fourfolds (respectively, cubic fourfolds with simple singularities) of homological type c,

and by C
c♯
R
,C c♯

s,R the respective sets of c-marked real cubic fourfolds. The two latter

sets can be seen as the real parts of C ♯ and C ♯
s with respect to the involution which

sends (X,φ) ∈ C ♯ to (conj(X), c ◦ φ ◦ conj∗).
Let us extend c to a complex linear involution on M ⊗ C and denote also by c the

induced involutions on M0 ⊗C, P = P (M0 ⊗C), and D̂ . Note that c permutes the two

components D and D of D̂ , and thus, c(D) = D , where c : M0 ⊗ C → M0 ⊗ C is the
composition of c with the complex conjugation in M0 ⊗ C.

Let D̂c
R
and Dc

R
denote the fixed point set of c restricted to D̂ and D . The second

set, Dc
R
, consists of the lines generated by w = u+ + iu− such that u± ∈ M0

±(c) ⊗ R,

u2+ = u2− < 0, and the orientation u+, u− is the prescribed one. Since c is geometric,

both Dc
R
and its (trivial) double covering D̂c

R
are nonempty.

As it follows from definitions, the period point of a c-marked real cubic fourfold
belongs to Dc

R
= {x ∈ D | c(x) = x}. Therefore, we may speak of a real period map

per
R
: C

c♯
s,R → Dc

R
and call Dc

R
the real period domain of real c-marked cubic fourfolds.

2.7.1. ”Surjectivity” of the period map in a real setting. The image of the real

period map per
R
: C

c♯
s,R → Dc

R
is the complement of H∞ ∩ Dc

R
, and the fibers of per

R

are PGL(6,R) orbits. For a given p ∈ Dc
R
\ H∞, the 2-roots δ such that Hδ contains p

form an elliptic root system invariant under c-action. Its irreducible components which
are invariant under c-action generate the Milnor lattices of the real singular points of
a cubic with the period p.
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As usual, such a real statement can be deduced from the corresponding complex
statement, which means here from Theorem 2.6.1. To do it we use the approach applied
in [ACT] in a similar situation.

Proof. The action of PGL(6,C) on C ♯
s and the map C ♯

s /PGL(6,C) → D \H∞ induced
by the period map are proper. Therefore, there is a complete Riemannian metric on C ♯

s

which is invariant under the action of PGL(6,C) and descends to a complete Riemann-
ian metric on D \H∞. Taking the average, one can make these metrics invariant under

the complex conjugation. Then, the induced Riemannian metric on C
c♯
s,R is complete and

invariant under the action of PGL(6,R). Since, in addition, the action of PGL(6,C)

has finite stabilizers, the map C
c♯
s,R/PGL(6,R) → Dc

R
(induced by the period map) is

proper, which (together with the local Torelli theorem) implies its surjectivity. Its in-
jectivity follows from the local Torelli and the injectivity on the subspace of (marked
real) nonsingular cubics.

The second statement is a straightforward consequence of the second statement of
Theorem 2.6.1. �

3. Arithmetics and topology under wall crossings

3.1. Indices of the Morse modifications under the facet crossing. Consider
non-singular real cubic fourfolds X and X ′ representing adjacent deformation com-
ponents C and C′. As we connect X with X ′ by a continuous path which crosses
(once) some facet, F , the real locus X(R) experiences a Morse modification of index
0 6 q 6 5. If we follow this path in the opposite direction, then we observe that
X(R) is obtained from X ′(R) by a Morse modification of index p = 5− q. In particular,
χ(X ′(R))−χ(X(R)) is 2 if q is even and −2 if odd. We have also d(X ′)−d(X) = ±1 (see
Figure 1 or subsection 3.3 below), where d as before denote the discriminant rank of the
eigenlattice M−. If d(X ′) < d(X), then we define the index of facet F as ind(F) = q;
in the case d(X ′) > d(X) we obtain respectively ind(F) = p = 5− q.

3.1.1. Lemma.

(1) L-facets have even index and R-facets have odd index.
(2) The core sphere of the Morse modification for L-moves and for R-moves are

null-homologous in Hq−1(X(R);Z/2).
(3) The core spheres of the Morse modification for L−1-moves and for R−1-moves

are homologically non-trivial in Hp−1(X(R);Z/2).

Proof. L-moves increase and R-moves decrease the Euler characteristic χ(X(R)), since
r = rank(M−) plays the role of the horizontal coordinate on Figure 1 (see 2.2). This
implies (1). After L-moves and R-moves the discriminant rank (i.e., the vertical coor-
dinate) d(X) = 1

2

(
b∗(X) − b∗(X(R))

)
is decreasing and thus b∗(X(R)) is increasing.

Conversely, after L−1-moves and R−1-moves b∗(X(R)) is decreasing. This implies (2)
and (3). �

3.1.2. Lemma.

(1) An R-facet has either index 1, or 3;

(2) the L-facets between C0,0 and C1,0
I have either index 0, or 4;

(3) all other L-facets have index 2.
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Proof. R-facets cannot have index 5, as follows from the the K4-graph and connected-
ness of X(R) for X /∈ C1,0

I . This implies (1). A spherical component of x ∈ C1,0
I may

be only obtained by a Morse modification of index 0 or 4, which implies (2).
To prove (3), we observe that if L-facet has index 4, then by 3.1.1(2) its core sphere

should be homologically trivial (mod 2) and thus the Morse modification increases the
number of components of X(R), like in the case of an index 0 modification. �

3.2. Cuspidal cubics and their perturbations. In this section we examine cubics
of arbitrary dimension n.

Assume that a wall separating two deformation components contains two facets ad-
jacent through a cuspidal stratum. Consider a generic point, α ∈ ∆(R), of this stratum,
which represents a real cubic Xα with a cusp and no other singular points. Near the
cusp, in a suitable affine chart, the equation of Xα is z3 + f2 + zg2 + f3 = 0, where
f2 = f2(x, y) =

∑p
i=1 x

2
i −

∑q
j=1 y

2
j , p+ q = n, and g2 = g2(x, y), f3 = f3(x, y) are some

homogeneous polynomial of degree 2 and 3, respectively. Let us include Xα in a two-
dimensional linear system of cubics Xb,c = {fb,c = 0}, fb,c = z3+ bz+ c+ f2+ zg2+ f3,
b, c ∈ R. This linear system yields a versal deformation of the cusp singularity, more-
over, there exists a local change of (x, y)-coordinates reducing, without change of z-
coordinate, the polynomials fb,c to z3 + bz + c + f2. It implies that near α our lin-
ear system intersects with the discriminant ∆ transversally along a cuspidal curve
∆b,c = {4b3 + 27c2 = 0}. In particular, near α the hypersurface ∆(R) is a topo-
logical manifold which is split by the cuspidal stratum (corresponding to b = c = 0)
into a union of two adjacent facets: one corresponding to c > 0 and the other to c < 0.

To treat below the cubics of any dimension we have to extend the notion of index
of facets in accordance with our definition for n = 4. We do it via the following
”coorientation” convention: the total Z/2-Betti number b∗(Xα(R)) of the real locus of
the cubic representing a generic point, α ∈ Pn,3(R), in the space of real cubics should
increase as α crosses a facet in the positive direction.

This convention does coorient the facets adjacent to the cuspidal strata as it is
shown on Figure 3: the normal vectors looks into the “thinner” region bounded by
the cusp-shaped discriminant. This is a part of Lemma 3.2.1 below, where we show
that such crossing a facet adds a handle to Xα. For this aim, we look at the part
Bb,c = Xb,c(R)∩Bε ofXb,c inside a Milnor ball Bε (of radius ε), where |b|, |c| << ε << 1.

3.2.1. Lemma.

(1) The facet c > 0 of the discriminant ∆b,c = {4b3 + 27c2 = 0}, has index q, and
its facet c < 0 has index p.

(2) If 4b3+27c2 < 0, then Bb,c is a smooth n-ball properly embedded in the (n+1)-
ball Bε.

(3) If 4(b′)3 + 27(c′)2 > 0, then Bb′,c′ is isotopic to Bb,c#(Sp × Sq), i.e., ambient
connected sum of the above Bb,c with an unknotted handle.

Proof. Let us check the base of induction, n = 0, that is the case of one variable
polynomial z3 (in this case, p = q = 0). It is sufficient to examine the behavior of
z3− 3t2z+2t3− τ . For τ = 0 this polynomial has a double real root z = t and a simple
real root z = −2t. If t > 0, then this double root disappears for τ < 0 and turns into
two real roots for τ > 0, hence, the index of this facet is equal to 0 (= q). If t < 0, then
the double root disappears for τ > 0 and turns into two real roots for τ < 0; therefore,
to get an increase of the total Betti number (here it is the number of real roots) with
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Figure 3. Indices of facets adjacent
through a cuspidal stratum

b

c

facet    t>0

facet   t
<0

τ<0
τ>0

τ>0
τ<0

one root
three roots

q

p

p+1

q+1

greater  b*

The base case is on the left-hand side figure. Its stabilization is on right-hand side figure,

where the arrows show the direction of crossing the facets, and next to the arrow stand

the indices of the corresponding Morse modifications.

respect to growing τ we alternate the sign of the equation, and thus find that the index
of this facet is equal to 0 (= p).

Since the stabilization of the equation (i.e., adding or subtracting the square of a
new variable) does not change the total Betti number of its locus in the Milnor ball, it
is now straightforward to complete the proof of (1) by induction.

Parts (2) and (3) are also proved by induction. Namely, consider regions B±

b,c =

{(x, y, z) ∈ Bε | ± fb,c > 0} separated by Bb,c. After we increase p or q, we get a new
locus Bb,c, which is obtained by a suspension, that is can be identified with the “double”

of the corresponding region B±

b,c (the “double” in this context is obtained from two

copies ofB±

b,c glued alongBb,c). This immediately implies (2). For proving (3) we should

additionally notice that a handle in the ambient connected sum Bb′,c′ = Bb,c#(Sp×Sq)
is not knotted provided that the spheres Sp × pt and pt× Sq (which are the vanishing
cycles corresponding to the facets c > 0 and c < 0 respectively) bound disjoint balls
(each in the corresponding region B±

b′,c′). One can easily see that the suspension (which

is increasing p or q) preserves this property of the spheres. �

Returning to dimension n = 4 we get the following result.

3.2.2. Corollary.

(1) In a pair of cuspidally adjacent R-facets one has always index 1 and another
index 3.

(2) In a pair of cuspidally adjacent L-facets separating C0,0 and C1,0
I one has index

0 and another index 4. �

3.3. Arithmetics of the wall-crossing ([FK1, FK2]). Before sticking to the case
of cubic fourfolds, let us make a somewhat general remark concerning real non-singular
projective hypersurfaces X of any dimension n, and their involutions c : Hn(X) →
Hn(X) induced by the complex conjugation. It is a well known (and simple) fact
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that adjacency of the deformation components of a pair of such hypersurfaces, X± ∈
Pn,d(R) \∆(R), implies that their involutions, c±, are related by the Picard-Lefschetz
transformation. Namely, we can connect X± by a family Xt of non-singular hypersur-
faces, Xt ∈ Pn,d \ ∆, which follows a path in the real parameter space Pn,d(R) with
exception of an arc, γ, in the complex domain, Pn,d \ Pn,d(R). Then the composition
c− ◦ c+ turns out to be the monodromy along the loop γ̄−1 ∗ γ. If γ is a small arc
which turns around the obstructing facet F counterclockwise this monodromy is, by
definition, the Picard-Lefschetz transformation.

In even dimensions n, the Picard-Lefschetz transformation maps x ∈ Hn(X+) to
Rv(x) = x − (−1)

n

2 (v · x)v where v is the vanishing (co)-cycle. Therefore, the two
involutions c± coincide in the orthogonal complement of v, while v jumps from ±1-
eigenspace of c+ to the opposite ∓1-eigenspace of c−. Thus, by the Lefschetz trace
formula, χ(X+(R))−χ(X−(R)) equals 2 if v belongs to the (+1)-eigenspace, and −2 if
v belongs to the (−1)-eigenspace. It is also well-known (and straightforward) that the
discriminants, d(X+) and d(X−), of X± should differ by 1. Namely, d(c+)− d(c−) = 1
if v · x is even for all x in the both eigenlattices of Hn(X+), and d(c+) − d(c−) = −1
otherwise.

In the case of cubic fourfolds, we have shown the converse: the relation c− ◦ c+ = Rv

turns out to be a sufficient criterion for (coarse) adjacency of the deformation com-
ponents (our original argument in [FK1] was greatly simplified in [FK2], after Theo-
rem 2.6.1 appeared and Theorem 2.7.1 was derived from it). This can be summarized
as follows.

3.3.1. Lemma. Real cubic fourfolds X+ and X− represent adjacent coarse deforma-
tion components if and only if there exists a lattice isomorphism M(X+) → M(X−)
which preserves the polarization classes hX±

∈ M(X±) and identifies the involution c−
with the composition Rv ◦ c+ = c+ ◦ Rv for some 2-root v ∈ M±(X+). Moreover, the
move leading from the deformation component of X+ to that of X− is

(1) R-move, if v ∈ M+(X+) and v · x = 0 mod 2 for all x ∈ M+(X+),
(2) L-move, if v ∈ M−(X+), and v · x = 0 mod 2 for all x ∈ M−(X+),
(3) L−1-move if v ∈ M+(X+) and v · x = 1 mod 2 for some x ∈ M+(X+),
(4) R−1-move if v ∈ M−(X+) and v · x = 1 mod 2 for some x ∈ M−(X+).

�

Now let us apply Theorem 2.7.1 to the cuspidal cubics similarly.
As it follows from analysis of the local model performed in 3.2, there exist two ways of

perturbation of a real cuspidal hypersurface X0 (of any dimension n): one perturbation
does not change topologically its real locus, i.e., yieldsX+ withX+(R) homeomorphic to
X0(R), and the other perturbation adds a handle (of an appropriate index) to X0(R) ∼=
X+(R), and in particular, yields X− with b∗(X−(R)) = b∗(X+(R))+ 2 (or equivalently,
d(X−) = d(X+) − 1). We explained also that the latter perturbation shifts X0 from a
cuspidal stratum of ∆(R) ⊂ Pn,d(R) inside the thin region of the cuspidal slice of ∆(R)
shown on Figure 3.

Analysis of the same local model
∑p

i=1 x
2
i −

∑q
j=1 y

2
j + z3 + bz + c of a cuspidal

perturbation shows that for even n = p+q, the involution c− : Hn(X−) → Hn(X−) acts
in the Milnor lattice A2 of the cusp as (−1)q. In the other words, A2 is embedded into
the corresponding eigenlattice. (Note that the involution c+ in Hn(X+) interchanges
some pair of roots, v1, v2, generating A2.) As it follows from Theorem 2.7.1, such
A2-sublattice should not contain 6-roots (since otherwise the corresponding periods,
namely the intersection of mirrors Hδ over generating 2-roots of A2, would lie in H∞).
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In the case of cubic fourfolds, existence of such appropriate A2-sublattice yields an
arithmetical criterion allowing to detect cuspidal strata on the boundary of a deforma-
tion component of real cubic fourfolds.

3.3.2. Lemma. Consider the wall W separating a pair of adjacent components rep-
resented by cubics X±. Assume that d(X+) > d(X−). Then W contains a cuspidal
stratum if and only if

(1) there exist 2-roots v1, v2 ∈ M−(X−) such that

v1 · v2 = −1 and (v1 − v2) ·M−(X−) 6= 0 mod 3, if W is R-wall;

(2) there exist 2-roots v1, v2 ∈ M0
+(X−) such that

v1 · v2 = −1 and (v1 − v2) ·M
0
+(X−) 6= 0 mod 3, if W is L-wall.

Proof. Any A2-lattice contains precisely six elements of square six, namely, ±(v1 − v2),
±(2v1 + v2), and ±(v1 + 2v2), where v1, v2 are 2-roots forming a basis. The two latter
pairs of vectors are congruent modulo 3 to the first pair (since, (2v1 + v2) + (v1 − v2) =
3v1, etc.). Therefore, under the hypothesis that (v1 − v2) · M

0(X−) 6= 0 mod 3, a
sublattice A2 does not contain 6-roots and so, by Theorem 2.7.1 a generic point in
D ∩ {w |w · v1 = w · v2 = 0} (and, as a consequence, a generic real point in this
intersection) does not belong to H∞. Since A2 is a sublattice of M−(X−) (of M

0
+(X−))

in the case of an R-move (respectively, L-move), the condition (v1 − v2) ·M
0(X−) 6= 0

mod 3 can be equally stated as is done in the Lemma. �

3.3.3. Corollary. Each of the R-walls, except the ones which lead to C10,1 or C2,1
I ,

has a cuspidal stratum.

Proof. To apply Lemma 3.3.2 we need to embed suitably A2 to M−(X−). According
to Tables 2 and 3, in each of the corresponding cases the lattice M−(X−) contains as a
direct summand either 〈2〉 ⊕ U , or D4, or E7, or E8. In D4, E7, and E8 we may take
any standard embedding of A2. In 〈2〉⊕U we pick v1 = e−u1 and v2 = u1+u2, where
e is a generator of 〈2〉 and u1, u2 are standard generators of U . �

4. Ramified connected sums

4.1. Double ramified coverings and their Morse modifications. Assume that
U is a compact n-manifold and L a codimension two submanifold coming transversely

to ∂U along its boundary ∂L ⊂ ∂U . Recall that double coverings π : Ũ → U ramified
along L are classified up to isomorphism by the characteristic class w1 ∈ H1(UrL;Z/2)
of the restriction of π over UrL (that is of the unramified part of π). Given an element
w ∈ H1(UrL;Z/2), there exist a covering ramified along L with the characteristic class
w1 = w if and only if the coboundary map H1(U rL;Z/2) → H2(U,U rL;Z/2) sends
w to the Thom class of the normal bundle of L. As is known, the latter condition is
equivalent to a possibility to realize the class dual to w1 in Hn−1(U, ∂U ∪ L;Z/2) by a
codimension one compact submanifold F ⊂ U whose boundary splits as ∂F = L ∪ F ∂ ,
where F ∂ = ∂F ∩ ∂U , so that ∂L = ∂F ∂ and F is transversal to ∂U along F ∂ . In
constructions we allow F and F ∩ ∂U to have real algebraic singularities outside L
(then still by duality, F defines a class w1 as above; in fact, Morse singularities are
sufficient for our purposes) and call such F a characteristic hypersurface of the ramified
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covering π or a characteristic membrane bounding L. For simplicity, we suppose from

now on that L and F ∂ are disjoint parts of ∂F .

It may be worth recalling that given a non-singular characteristic hypersurface F ,

a representative, π : ŨF → U , of the associated class of ramified covering is obtained
from a disjoint union U ⊔U of two copies of U by cutting them along F and then gluing
together along F in a cross-like fashion, so that each side of F in one copy of U is
identified with the opposite side of F in the other copy. Note that F does not need to
be orientable, and it is sufficient that “the sides” are just locally defined.

We need to treat the coverings in one-parameter families. More precisely, to compare
coverings of U with coverings of U• = U× [0, 1], and vice versa. To include a covering of
U into a covering of U• it is necessary and sufficient to extend L to a proper codimension
two submanifold L• of U• and w1 to a proper class of its complement. It is for this task
that characteristic hypersurfaces are especially convenient: given an extension L• of L
it is sufficient to extend F to a characteristic membrane F• bounding L•.

In what follows we are concerned exclusively with a particular situation where the
projection to [0, 1] restricted to L• is a Morse function, so that we may consider L•

as a special family Lt, L• = ∪t∈[0,1]Lt × t, such that Lt is a smooth isotopy which
experiences ambient Morse modifications at finitely many points. As to F•, we restrict
ourselves to continuous families, F• = ∪tFt, where Ft is a characteristic membrane of
Lt for each noncritical value of t. (Recall that smoothness of F• is not required, and
moreover, it can be even not a topological submanifold: it is enough that it gives a
homology cycle.)

It is transparent that such a construction leads to diffeomorphisms ŨF0 → ŨFt , if Lt

is an isotopy. It is also a well-known fact in the knot theory, that a Morse modification
of index q performed on Lt yields a Morse modification of index q+1 on UFt . Still, we
sketch the proof below, since we could not find a reference suitable for our needs.

4.1.1. Lemma. (1) If Lt is an isotopy, then the family Ft yields a continuous family

of diffeomorphisms φ̃t : Ũ
F0 → ŨFt . If F ∂

t = ∅ for all t ∈ [0, 1], then such a family φ̃t
is identical on ∂ŨFt = ∂U ⊔ ∂U .

(2) Assume that there is only one critical value t ∈ (0, 1), so that L1 is obtained from

L0 by a Morse modification of index q. Then ŨF1 is obtained from ŨF0 by a Morse
modification of index q + 1.

Proof. An isotopy of the branching locus Lt in (1) can be extended to an ambient

isotopy φt : U → U . The latter lifts to a family of diffeomorphisms φ̃t : ŨF0 → ŨFt ,
since the characteristic classes w1 of all the coverings do match. If F ∂

t = ∅, then we

may choose φt identical on ∂U and its lifting φ̃t identical on ∂U ⊔ ∂U .
To prove (2), it is sufficient to analyze a local model of an elementary cobordism

of index q. Namely, it is enough to consider the case of U = Dn (n-ball), where L ⊂
U×[0, 1] is (n−1)-ball, and Lt represent a Morse modification of index q inside U×[0, 1].
Such elementary cobordism connects standard framed spheres, L0 = Dp×Sq−1 ⊂ U×0
and L1 = Sp−1×Dq, p+q = n−1, on the bottom and the top of the cylinder U × [0, 1],
and is restricted to ∂U × [0, 1] as a product-cobordism, ∂Lt = Sp−1 × Sq−1 ⊂ ∂U × t.
Passing to the double covers over U × t ramified along Lt, we observe an index q + 1
model cobordism between Dp × Sq ×D1 and Sp ×Dq ×D1. �

4.2. Ramified connected sums. Assume that F ∂ = ∅ and U is embedded into each
of two closed n-manifolds X1 and X2. Then we can remove U from each of Xi and glue

instead ŨF via the identity map of the boundary ∂ŨF = ∂U⊔∂U ⊂ (X1rU)∪(X2rU).
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The new manifold will be denoted X1#
FX2 and called the ramified connected sum of

X1 and X2. It is easy to see that X1#
FX2 depends only on the embedding of F into

X1 and X2, but not on the particular choice of its neighborhoods U . Moreover, if we
consider a continuous family Ft like in Lemma 4.1.1, then we can apply it to obtain the
following.

4.2.1. Corollary. (1) If Lt = ∂Ft is an isotopy, then there is a continuous family of
diffeomorphisms ψt : X1#

F0X2 → X1#
FtX2.

(2) Assume that there is only one critical value t ∈ (0, 1), so that L1 is obtained from
L0 by a Morse modification of index q. Then X1#

F1X2 is obtained from X1#
F0X2 by

a Morse modification of index q + 1. �

In what follows we will need the following particular example. Assume that F ′ =
F ∪ T , where T is a “solid torus” Dp × Sq−1 embedded into some n-ball Dn ⊂ U r F ,
p+ q = n.

4.2.2. Lemma. If T is unknotted in Dn, then X1#
F ′

X2 is diffeomorphic to a con-
nected sum of X1#

FX2 with (S1 × Sn−1)#(Sp × Sq).

Proof. The double covering over Sn ramified along an unknotted Sp−1 × Sq−1 is well-
known to be Sp ×Sq. Note that X1#

F ′

X2 is obtained from X1#
FX2 after removing a

pair of balls (pull-back of Dn) and gluing instead the double covering over Dn ramified
along ∂T , which is diffeomorphic to Sp × Sq with a pair of balls removed. The one-
handle involved is orientable (since ramified coverings preserve orientability), and thus
we just take a connected sum of X1#

FX2 with (S1 × Sn−1)#(Sp × Sq). �

4.3. Perturbation of the union of a quadric with a hyperplane. Here we de-
scribe topologically the result of perturbation of the union P ∪ Q ⊂ RPn+1 of a real
hyperplane P and a real quadric Q.

Let [x0 : . . . xn : y] denote homogeneous coordinates in RPn+1 and P = RPn be
defined by y = 0. We assume that Q is defined by equation f2 − εy2 = 0 where
f2 = f2(x0, . . . , xn) is a non-degenerate quadratic form and ε > 0 is a fixed parameter.
The intersection V = P ∩ Q = {f2(x) = 0} gives a splitting P = P+ ∪ P−, where
P± = {[x] ∈ P | ± f2(x) > 0}. If f2 has signature (p, q), p + q = n + 1, then P+ is a
tubular neighborhood of RPp−1 and P− the tubular neighborhood of a complementary
RPq−1. Forgetting the coordinate y gives the projection p : Q → P+ which is obtained

from the orientation double covering p̃ : P̃+ → P+ by identifying the pairs of points
p̃−1(x) along the boundary.

4.3.1. Lemma. The locus F+ = P+ ∩ {f = 0} of any non-singular polynomial f of

odd degree is a characteristic hypersurface of the double covering p̃ : P̃+ → P+.

Proof. An odd degree hypersurface {f = 0} in P is dual to the generator of H1(P ;Z/2)

and so is characteristic for the orientation covering P̃ → P . Restricting the latter over

P+ we conclude that F+ is characteristic for P̃+ → P+. �

By a perturbation of P ∪ Q via f3 = f3(x0, . . . , xn, y) we will mean a real cubic Z
defined by y(f2 − εy2) + δf3 = 0, where 0 < δ << ε. Such a cubic is non-singular
provided that P , Q and f3 = 0 (or equivalently, f2(x) = 0 and f3(x, 0) = 0 inside P )
intersect transversally.

Denote this intersection by L and assume the above transversality. Then, the inter-
section of {f3 = 0} with P+ is a characteristic membrane bounding L.
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Consider the double D(P+) of P+, which is obtained from two copies of P+ by gluing
them together along the boundary V . Let U denote a neighborhood of P+ obtained
by adding to it a collar V × [0, 1) of its boundary, so that F ⊂ P+ ⊂ Int(U). Note
that P+ lies both in P and in D(P+), and we may extend these embeddings of P+ to
embeddings U ⊂ P and U ⊂ D(P+).

Our next target is the following proposition, which will play a key role in the forth-
coming analysis of cubic fourfolds.

4.3.2. Proposition. If the quadratic form f2(x) is non-degenerate and the intersection
of f2(x) = 0 and f3(x, 0) = 0 in P is transversal, then for any 0 < δ << ε the real locus
Z(R) of the cubic Z = {y(f2 − εy2) + δf3 = 0} is diffeomorphic to P#FD(P+).

4.4. The perturbation neck. We start proving Proposition 4.3.2 with checking cer-
tain properties of the perturbations of P ∪ Q ⊂ RPn+1 in a somewhat more general
setting, assuming that P and Q are transverse real non-singular hypersurfaces defined
by polynomials f and g of degrees ℓ and m. As before, we let V = P ∩ Q and de-
note by Z ⊂ RPn+1 the result of a perturbation described by a polynomial fg + δh,
0 < δ << 1, assuming in addition that P,Q, and h = 0 intersect transversally. Thus,
their intersection, which we denote L, is non-singular.

It is well known (and trivial) that topologically a small perturbation of P ∪Q is local-
ized in a tubular neighborhood N ⊂ RPn+1 of V . Namely, the tubular neighborhoods
NP = N ∩ P and NQ = N ∩ Q of V are removed from P and Q and are replaced by
a certain perturbation neck NP,Q ⊂ N , which has also a projection pP,Q : NP,Q → V .
Namely, the fibers IPv and IQv of the projections NP → V and NQ → V over v ∈ V look
topologically like line segments intersecting in the middle points. The cross-like fiber
IPv ∪ IQv of (P ∪Q) → V is perturbed into a fiber of pP,Q, which looks generically as a
pair of arcs I⊔I connecting the two endpoints ∂IPs with the two endpoints ∂IQs , and the
two possible ways of such connection alternate as we cross the locus L = V ∩ {h = 0}.
Over L the fibers of pP,Q are non-generic, namely, they remain IPv ∪ IQv .

Figure 4. Factorization of a perturbation neck

P

Q

V
P

Q P

Q P Q P Q

PQ

P

Q

P

Q

P

Q

PQ

Fibers

Quotients

a)

b)

c)

d)Perturbation neck

Transversal  hypersurfaces

a) Hypersurfaces P ∪Q, where L ⊂ V = P ∩Q is marked by dots. b) The corresponding

perturbation neck NP,Q. c) Fibers of pP,Q : NP,Q → V . The central singular fiber IPv ∪I
Q
v

is over v ∈ L; it is perturbed in two ways as v shifts from L. d) Passing to the quotient

by τ (central symmetry) makes all the fibers homeomorphic to I.
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Next we observe existence of an involution τ : NP,Q → NP,Q which preserves the
fibers and act on each fiber as the central symmetry. The quotient space NP,Q/τ is
fibred over V trivially with a fiber I, and so can be identified with V × [−1, 1]. This
implies that the quotient map q : NP,Q → V × [−1, 1] has to be a ramified covering.

4.4.1. Lemma. The quotient map q : NP,Q → V × [−1, 1] is a double covering ramified
along L× 0. �

Let us choose the identification NP,Q/τ = V × [−1, 1] so that ∂NP/τ and ∂NQ/τ
are identified with V ×−1 and V × 1 respectively.

The lemma below describes the characteristic hypersurface F of the double covering
q under an additional assumption that one of the degrees, m = deg(Q), is even. This
assumption implies that V is co-orientable in P and thus its tubular neighborhood NP

can be identified with NP,Q/τ = V × [−1, 1].

4.4.2. Lemma. Assume that m is even. Then the intersection F = (V × [0, 1]) ∩
{h = 0} is the characteristic hypersurface of the ramified covering q, with respect to the
identification of the quotient space NP,Q/τ with NP = V × [−1, 1], as described above.

Proof. Note that q has the ramification locus L = F ∩ (V × 0) = {f = g = h = 0}, as
required by Lemma 4.4.1. The restriction of q over V ×−1 is trivial which corresponds
to the characteristic cycle ∅ = F ∩ (V ×−1). This implies that V × [0, 1] ∩ {h = 0} is
the characteristic cycle of q because H1(V × [−1, 1], V ×−1;Z/2) = 0. �

Now, fixing f and g let us assume that h varies continuously so that L experiences
a single Morse modification.

4.4.3. Corollary. If h varies so that L experiences a Morse modification of index q,
then Z experiences a Morse modification of index q + 1.

Proof. The pieces P rNP and QrNQ do not change in process of variation of Z, and
the perturbation neck NP,Q experiences a Morse modification of index q+1, as follows
from Lemmas 4.4.2 and 4.1.1. �

4.5. Proof of Proposition 4.3.2. According to 4.4, a perturbation of P ∪ Q gives

Z = (P rNP )∪ (QrNQ)∪NP,Q, whereas P#
FD(P+) = (P rU)∪ (D(P+)rU)∪ ŨF .

Note that P r NP splits into a pair of components, namely, P r U and D(P+) r U ,
which are diffeomorphic to P− and P+ respectively. So, the proof of Proposition 4.3.2
is reduced to the following statement.

4.5.1. Lemma. The part (Q rNQ) ∪NP,Q ⊂ Z is diffeomorphic to ŨF .

Proof. Recall that U is P+ enlarged with a collar in P−, so we can take U = (P+ r

NP ) ∪NP .

Then ŨF splits into a union of two pieces, one of which is the pull-back of NP and
the pull-back of Cl(P+ rNP ). Lemma 4.4.2 says that the first piece is just NP,Q. The
other piece is obviously diffeomorphic to the pull-back of P+. It can be identified with

P̃+, because of Lemma 4.3.1. To complete the proof it is left to recall that Q rNQ is

diffeomorphic to P̃+. �

4.6. Perturbation of nodal cubics. Like in 4.3, let us consider a hyperplane P =
{y = 0} and a quadric Q = {f2(x) = εy2} in RPn+1 with coordinates x = (x0, . . . , xn)
and y, where f2 is a real non-degenerate quadratic form. But now let us choose a
cubic form f3 = f3(x) independent of y. Suppose like before that the intersection
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Y = {f2 = f3 = 0} is transversal (then Y is a non-singular (n − 1)-fold), and denote
by Xε,δ the cubic n-fold {y(f2 − εy2) + δf3 = 0}. In 4.3, under the assumption that
0 < δ << ε, we treated Xε,δ(R) as a perturbation of P ∪Q. One can also view Xε,δ as a
perturbation of a nodal cubic {yf2+δf3 = 0} supposing that 0 < ε << δ. The following
Lemma shows, in particular, that both perturbations yield the same deformation type.

4.6.1. Lemma. For any f2(x), f3(x) like above, there exists κ > 0 such that for any
choice of positive ε, δ < κ the locus Xε,δ = {y(f2(x) − εy2) + δf3(x) = 0} in RPn+1 is
non-singular.

Proof. Under the quasi-homogeneous change of variables (x, y) 7→ (tx, t−2y) the poly-
nomial y(f2(x)− εy2) + δf3(x) is transformed into

t−2y(f2(tx)− ε(t−2y)2) + δf3(tx) = y(f2(x)− εt−4y2) + δt3f3(x),

so that the plane of parameters ε, δ becomes foliated by curves ε3δ4 =const each rep-
resenting projectively equivalent Xε,δ. Hence, the statement follows from the non-
singularity of X1,δ for small δ > 0. �

From now on we stick to the case of our interest, n = 4.

4.6.2. Proposition. Consider a vertex vK3 of the K3-graph and a vertex vK4 of the
K4-graph which correspond to each other. Assume that a non-degenerate quadric {f2 =
0} and a cubic {f3 = 0} intersect transversally, their intersection {f2 = f3 = 0}
represents the vertex vK3, and the sign of f2 is chosen so that χ(P+) = 1, where
P+ = {x ∈ P | f2(X) > 0}. Then there exists κ > 0 such that for any choice of positive
ε, δ < κ the cubic fourfold Xε,δ = {y(f2− εy

2)+ δf3 = 0} is non-singular and represent
vertex vK4.

Proof. The nodal cubic fourfolds X0,δ defined by yf2 + δf3 are in central projection
correspondence with Y and represent an edge in the K4-graph. By theorem 2.5.1, it
is the leftmost endpoint (providing a smaller value of the coordinate r) of the edge
which corresponds to the vertex vK3 representing Y . The two endpoints are given by
two perturbations, {y(f2 − εy2) + δf3} and {y(f2 + εy2) + δf3}, of X0,δ. The relation
2r = b∗(X) − χ(X(R)) − 4 (see 2.2) implies that the vertex vK4 is represented by
that perturbation which yields a cubic fourfold with a greater value of χ(X(R)). As it
follows from Proposition 4.3.2, χ(Xε,δ(R)) = χ(P ) + 2χ(P+) − χ(L), which is greater
than the Euler characteristic for another perturbation, χ(P )+ 2χ(P−)−χ(L), since by
our assumption χ(P+) = 1 and thus χ(P−) = 0.

Finally, we apply Lemma 4.6.1. �

4.6.3. Corollary. Under the assumption of Proposition 4.6.2, the real locus of a cubic
fourfold of the type vK4 is diffeomorphic to P#FD(P+), where F = {x ∈ P+ | f3(x) =
0}.

Proof. Choosing δ << ε we can view Yε,δ as a perturbation of {y(f2 − εy2)} and apply
Proposition 4.3.2. �

Let us fix f2 and continuously vary f3, so that the real K3-surfaces Yt, defined by
f3,t = f2 = 0, t ∈ [−1, 1], are non-singular for t 6= 0, and Y0 is nodal, so that Y±t,

where t > 0, represent a pair of adjacent vertices v±K3 of the K3-graph. Let X± be cubic

fourfolds representing the corresponding vertices v±K4 of the K4-graph.
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4.6.4. Proposition. If Yt(R), t < 0, experiences at t = 0 a Morse modification of
index q, then X+(R) is obtained from X−(R) by a Morse modification of index q + 1.

Proof. According to Corollary 4.6.3, we have X±(R) = P#F±D(P+), where F± =
P+ ∩ {f3,±1 = 0}. Now it remains to apply Corollary 4.2.1. �

5. Proof of the main theorem

5.1. The proof in the general case. We have already proved Theorem 1.2.1 in the
cases C1,0

I and C0,0, see 2.3. As the next step, let us consider the real cubic fourfolds,
X , representing the vertices of ΓK4 which are obtained from C0,0 by L-moves (i.e., lying
on the upper-left side of ΓK4).

5.1.1. Lemma. If a cubic X represents Ci,0, i > 0, or Ci,0
I , i > 1, then X(R) is

diffeomorphic to RP4#i(S2 × S2).

Proof. We prove this lemma by induction in i. The base case, i = 0, is already es-
tablished in Corollary 2.3.2. Consider a cubic fourfold X ′ representing Ci−1,0, i > 0,
and assume that X represents either Ci,0 or Ci,0

I 6= C1,0
I . By Lemma 3.1.2(3), X(R) is

obtained from X ′(R) by attaching a 2-handle, and by Lemma 3.1.1(2) the core circles of
this handle is null-homologous. By inductive assumption, X ′(R) = RP4#(i−1)(S2×S2)
has π1 = Z/2, and thus the core circle is contractible. Attaching of a 2-handle along a
contractible circle is equivalent to taking a connected sum either with S2 × S2, or with
CP2#CP2, depending on the framing of the 2-handle. The second option is impossible
because all cubic fourfolds have w2(X(R)) = 0, and thus, the orientation covering space
of XR must have even intersection form. �

Our next aim is to apply R-moves to the cubics treated above.

5.1.2. Lemma. If the R-wall separating the cubics X ′ of type Ci,j−1, j > 1, from the
cubics X of type Ci,j or Ci,j

I contains a cuspidal stratum, then XR is diffeomorphic to
X ′

R
#(S1 × S3).

Proof. By corollary 3.2.2(1), one of the facet-strata adjacent to the cuspidal stratum
has index 1, and so X(R) is obtained by adding a 1-handle to X ′(R). The latter is
connected by Lemma 2.3.1 and Corollary 2.3.2. It is also non-orientable, so, adding
1-handle means taking a connected sum with S1 × S3. �

This allows us to deduce the main theorem 1.2.1 in all but a few cases.

5.1.3. Corollary. If a cubic X belongs to the type Ci,j or Ci,j
I different from C1,0

I ,

C10,1, and C2,1
I , then XR is diffeomorphic to RP4#i(S2 × S2)#j(S1 × S3).

Proof. Lemma 5.1.1 covers the cases with j = 0. Vertices Ci,j and Ci,j
I , j > 0 can be

reached from Ci,0 by R-moves. According to Corollary 3.3.3, the assumption of Lemma
5.1.2 is satisfied unless X belongs to the type C10,1, or C2,1

I . So, applying Lemma 5.1.2
j times we obtain the given description of X(R). (Note that the exceptional vertices
are terminal and thus are not obstacles in the sequence of R-moves.) �

5.2. The case of C2,1
I . Like in 4.3, we start with a perturbation of a reducible real

cubic fourfold P ∪ Q, where quadric Q is defined by f2 − εy2. Now we specify f2 so
that the region P+ is a tubular neighborhood of P 2(R) = {[x0 : x1 : x2 : 0 : 0]} ⊂ P , for
example, we may take f2 = x20 + x21 + x22 − x23 − x24. As a perturbation term f3 we pick
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a degree 3 homogeneous polynomial in three variables x0, x1, x2 (thus, independent of
x3, x4, y) such that the curve defined in P 2(R) by equation f3 = 0 is non-singular, which
insures in particular the transversality of intersection between f3 = 0 and f2 = 0 in
P 5(R).

Note that F = P+ ∩ {f3 = 0} is the pull-back of this curve under the tubular neigh-
borhood projection q : P+ → P 2(R) (that is the projection which forgets the coordinates
x3, x4). Therefore, under above choices, F is diffeomorphic to the product of the curve
by D2.

A real plane cubic curve may have one or two connected components, and we need to

consider the both possibilities. Let us denote by f
(k)
3 , k = 1, 2, a polynomial defining a

real nonsingular cubic curve with k component. Then, F (k) = P+∩{f
(k)
3 = 0} becomes

a solid torus for k = 1 and a pair of solid tori for k = 2.
Following Section 4.3, consider real cubic fourfoldsX(k)(k = 1, 2) defined by equation

y(f2 − εy2) + δf
(k)
3 = 0, where we pick positive ε and δ to be smaller than the constant

κ provided by Lemma 4.6.1.

5.2.1. Lemma. X(1) and X(2) belong to the types C1,0 and C2,1
I respectively.

Proof. The real locus of the K3-surface f2 = f
(k)
3 = 0 is ∂F (k), that is k copies of a

torus. Such a K3-surface is known to be of type C1,0 if k = 1 and C2,1
I if k = 2 (see for

example the survey [DK]). Since χ(P+) = 1, Proposition 4.6.2 implies that the cubic
fourfold X(k) belongs to the corresponding type, as is stated. �

5.2.2. Lemma. X(2)(R) = X(1)(R)#(S2 × S2)#(S1 × S3).

Proof. One of the real components of the two-component cubic curve f
(2)
3 = 0 is non

contractible and isotopic to a real line; the other component bounds a disc, D ⊂ P 2(R).
Let T∞, T0 denote the corresponding solid torus components of F (2). The component
T0 is an unknotted torus contained in the 4-disc q−1(D) disjoint from T∞. On the

other hand, the only real component of the curve f
(1)
3 = 0 is isotopic in P 2(R) to a real

line, and therefore F (1) is isotopic to T∞. So, we can apply Lemma 4.2.2 to compare

X(2) = P#F (2)

D(Q+) with X(1) = P#F (1)

D(Q+) and to conclude that X(2)(R) =
X(1)(R)#(S2 × S2)#(S1 × S3). �

5.2.3. Corollary. If a cubic X belongs to the type C2,1
I , then X(R) is diffeomorphic

to RP4#2(S2 × S2)#(S1 × S3).

Proof. According to Lemma 5.2.1 the cubic X(1) belongs to type C1,0. So, by Lemma
5.1.1, its real part X(1)(R) is diffeomorphic to RP4#(S2 × S2). Thus, it remains to
apply Lemma 5.2.2. �

5.3. The case of C10,1.

5.3.1. Lemma. There exist a real non-degenerate homogeneous quadratic polynomial
f2 = f2(x0, . . . , x4) and a continuous family of real cubic homogeneous polynomials
f3,t = f3,t(x0, . . . , x4), t ∈ [−1, 1], such that the complete intersections Yt ⊂ P 4, f2 =
f3,t = 0, are K3-surfaces which are non-singular of type C10,0 for t < 0, and non-
singular of type C10,1 for t > 0, while Y0 has a nodal singularity.

Proof. According to the K3-graph, the 6-polarized K3-surfaces of type C10,0 are adja-
cent to the K3-surfaces of type C10,1. Therefore, we can find a path which leads from
one component to another and intersects the wall between them at its non-singular
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point. Let f2,t = f3,t = 0, t ∈ [−1, 1], be such a path, so that t = 0 corresponds
to a nodal K3-surface. For a generic choice of such a path the quadric f2,0 is non-
singular and, thus, the quadrics f2,t are also non-singular for sufficiently small |t| > 0.
Recall that deformation equivalent real quadrics are actually projective equivalent, so,
applying suitable projective transformations we can turn f2,t into a constant family of
quadrics, f2. �

The topological types of X(R) for K3-surfaces X are well known (see, for example,
the survey [DK]). In particular, in the case of K3-surfaces of types C10,0 and C10,1,
the locus X(R) is homeomorphic respectively to S10 and S10 ⊔ S2, where S10 stands
for an orientable surface of genus 10. Note also that a Morse modification of a surface
which brings about a new component S2 can be either of index 0 (a birth of sphere),
or 2 (splitting off a sphere from another component). Let us show that in our case the
second possibility is not realizable.

5.3.2. Lemma. Assume that Yt, t ∈ [−1, 1] is a family of real K3-surfaces which
represent type C10,0 for t < 0, type C10,1 for t > 0, and experience a Morse modification
at t = 0. Then the Morse modification is of index 0.

Proof. The component S2 of Y1(R) represents a class s in the K3-lattice L = H2(Y1).
This class belongs to the eigen-sublattice L+ since S2 is c-invariant, and it has square
s2 = −2 since the normal bundle to the real locus is isomorphic to the cotangent bundle.
The vanishing cycle v ∈ L of the degeneration Y1 → Y0 also has square v2 = −2
and, since the Morse index is even, the vanishing cycle also belongs to L+. If Yt(R)
experiences a Morse modification of index 2, then s · v = ±1, so that s and v span a
sublattice A2 in L+. On the other hand, the lattice L+ is isomorphic to U and, hence,
does not contain A2. �

5.3.3. Corollary. The wall separating the deformation components C10,0 and C10,1

in the space of real cubic fourfolds contains a facet of index 1.

Proof. Consider a family of real cubic fourfolds Xt obtained by perturbation of P ∪Q,
where P = P 4(R) and Q = {f2−y

2 = 0}, with a perturbation term f3,t given by Lemma
5.3.1. Namely, the family defined by y(f2 − y2) + δf3,t for a suitable 0 < δ << 1. By
Lemma 5.3.2, the family Yt(R) experiences a Morse modification of index 0 at t = 0.
Proposition 4.6.4 implies that Xt(R) experiences a Morse modification of index 1. �

5.3.4. Corollary. If a cubic X belongs to type C10,1, then X(R) is diffeomorphic to
RP4#10(S2 × S2)#(S1 × S3).

Proof. The class C10,0 has a representative X ′ with X ′(R) = RP4#10(S2 × S2) as we
know from Corollary 5.1.3. By Corollary 5.3.3, our X(R) can be obtained from X ′(R)
by adding 1-handle, i.e., by taking connected sum with S1 × S3. �

6. Concluding remarks

6.1. Topology of cubic threefolds. For non-singular real cubic threefolds X repre-
senting seven deformation classes among the eight existing classes with connected real
part X(R), the topological type of X(R) was determined by V. Krasnov [Kr2]. He
proved that for all of them the real part is diffeomorphic to a connected sum of RP3

with some number of S1 × S2. Here, we show that the situation is different for the
remaining deformation class, that is B(1)′I in Krasnov’s notation.
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To describe the topological type of X(R) for cubic threefolds of class B(1)′I , we start
with a construction of X(R) following the lines of Section 4.3. Namely, we consider
the cubics X = Xε,δ = {y(f2 − εy2) + δf3 = 0} obtained by a perturbation of P ∪ Q,
where P = RP3 is a hyperplane y = 0 in RP4 with coordinates [x0 :x1 :x2 :x3 : y], and
Q ⊂ RP4 is a real non-singular quadric threefold, {f2− εy

2 = 0}, such that intersection
V = P ∩Q is transversal. In addition, we suppose that the quadric surface V ⊂ RP3 is
a hyperboloid and denote by ℓ1, ℓ2 two real lines representing the two families of real
generators of this hyperboloid. Topologically, V is a torus which splits P into a pair of
solid tori P± = {±f2 > 0} with the meridians m± homologous to [ℓ1] ± [ℓ2] ∈ H1(V ).
Let us orient V and ℓi so that ℓ1 ◦ ℓ2 = 1 and consider the curve L = {f2 = f3 = 0}
on torus V (as in Section 4.3, we suppose that the quadric f2 = 0 and the cubic
f3 = 0 are transversal to each other). Bézout theorem implies that L is homologous
to p[ℓ1] + q[ℓ2] ∈ H1(V ) with p, q ∈ {±1,±3}, and one can easily realize all such pairs
of p and q by suitable choices of f3. In particular, we may consider [L] = [ℓ2] − 3[ℓ1],
represented by a spiral-shaped single-component curve L.

6.1.1. Theorem. Let V and L be as above. Assume that L is homologous to [ℓ2] −
3[ℓ1] ∈ H1(V ). Then X = {y(f2 − εy2) + δf3 = 0} represents the deformation class
B(1)′I and its real part X(R) is the Seifert manifold whose link diagram is the rightmost
diagram on Figure 6.

In the Figures and in the proof, we follow traditional Kirby calculus notation and
terminology, see [Ki].

Proof. Let T1 denote an abstract solid torus bounded by V with the meridian ℓ1. Since
m+ ◦ ℓ1 = −1, the union P+∪T1 (with the common boundary V ) forms a 3-sphere. We
orient S3 so that the inherited orientation on P+ restricts to the given one on V .

Figure 5. Ramified covering along L

L

K L

K
K K

1 2

a b c

On Figure 5a the core circle of T1 is presented by the dotted unknot K. The exterior
of K presents P+, where L looks like a (4, 1)-torus knot, because a positive basis of V
is formed by classes [m+] and −[ℓ1], and [L] = [ℓ2]− 3[ℓ1] = [m+]− 4[ℓ1].

Note that m− can be seen as a (2, 1)-torus knot, since [m−] = −[m+] + 2[ℓ1]. The
latter gives framing (−2) to K, which means that P is obtained from our 3-sphere by a
Dehn (−2)-surgery along K. Note also that the double D(P+) is obtained by 0-surgery
along K.

Furthermore, the Seifert surface F = P+∩{f3 = 0} is disjoint from K, which implies

that for a neighborhood U ⊃ P+ chosen like in 4.3, our ramified double covering ŨF →
U can be extended to the (unique) double covering π : ML → S3 ramified along L, where
ML it also a 3-sphere, since L is an unknot. This implies that X(R) = P#FD(P+) is
obtained from ML by a Dehn surgery along the 2-component link K1 ∪K2 = π−1(K)
with certain framings n1, n2 inherited from the framings −2 and 0 of K in S3.
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Note that K and L can be interchanged by an isotopy, and the diagram on Figure 5b
presents the same link K ∪ L. Now K looks like a (4, 1)-torus knot, and its pre-image
in ML = S3 can be seen on Figure 5c as a (4, 2)-torus link, whose components K1, K2

are (2, 1)-torus knots. The pull-back of the torus framing of K gives the torus framing
on each of Ki. Since the torus framing of a (p, q)-torus knot is pq, we see that a framing
n of K gives framings (n− 2) on Ki, and thus n1 = −4 and n2 = −2. So X(R) can be
described by the leftmost link diagram on Figure 6.

Figure 6. Framed link diagrams of X(R)
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The components K1 and K2 can be unlinked by a blowup move (a Kirby move
introducing an additional (−1)-components), as is shown on Figure 6, and we obtain
after another blowup move the rightmost link diagram, which describes a Seifert 3-
manifold.

The 3-manifold X(R) is obviously connected and is not homeomorphic to RP3 with
handles: it can be distinguished for instance by its fundamental group π1(X(R)) =
〈a, b, c | a2 = b4 = c6 = abc〉, and even by its homology H1(X(R)) = Z/2 + Z/2 (see for
example the presentation of π1 given in [O]). So, the deformation class of our cubic X
differs from the ones analyzed in [Kr2], and so has to be the class B(1)′I . �

Remark. Note that Figure 6 describes the link of the singularity xy(x3 + y2) + z2 =
0 known as a weighted homogeneous singularity of type Z12. It is one of Arnold’s
fourteen exceptional singularities of modality one (its Dolgachev numbers (p, q, r) and
the Gabrielov numbers (p′, q′, r′) both are equal to (2, 4, 6)).

6.2. Cubics-handles in higher dimensions. In higher dimensions, to construct
non-singular real n-fold cubics X ⊂ Pn+1 one may follow the same scheme as in the
proof of the main theorem: start with the case X(R) = RPn and then make it “de-
velop” and acquire more and more various handles due to crossing of the facets of the
discriminant by special moves in the parameter space. Here, let us indicate a few first
steps on this way.

According to Lemma 2.3.1, the cubics X with disconnected real part (which implies
X(R) = RPn⊔Sn) form a single deformation component, furthermore, this deformation
component, which we denote below by C0, has only one adjacent component, which is
formed by cubics X with X(R) = RPn. Let us call the latter component root component
and denote it Croot. A special role of the root component is due to the following property.

6.2.1. Lemma. For any n > 0 and any real non-singular homogeneous cubic polyno-
mial f(x) = f(x0, . . . , xn), the real cubic n-fold X ⊂ Pn+1 defined by equation z3 = f(x)
belongs to the deformation component Croot.

Proof. First, note that X(R) is diffeomorphic to RPn, a diffeomorphism being given
by projection Pn+1 → Pn forgetting the z-coordinate. Moreover, the same projection
provides a homeomorphism between X(R) and RPn even if we authorize f = 0 to have
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arbitrary singularities. Combining these observations with Lemma 3.2.1, we conclude
that the cubic z3 = ft(x) does not change the deformation component, when ft crosses
a facet of the discriminant. To see that this unique deformation component is Croot, it
is sufficient to apply Lemma 3.2.1 to, say, f = x0(x

2
1 + · · ·+ x2n) + x31 + · · ·+ x3n; then

one of the two perturbations described in Lemma 3.2.1 gives RPn ⊔Sn, while the other
contains elements from Croot. �

6.2.2. Proposition. The boundary of the component Croot contains certain facets Fq

with 0 6 q 6 n such that: q is the index of the facet Fq; the facet Fq is adjacent to Fp

through a cuspidal stratum if p+ q = n; and the component Cq = Cp adjacent to Croot

through Fq and Fp is formed by cubics X with X(R) diffeomorphic to RPn#(Sp ×Sq).

Proof. If f(x) = 0 is a nodal (n− 1)-fold cubic, the n-fold cubic z3 = f(x) belongs to
a cuspidal stratum of ∆(R) ⊂ Pn,3(R). It remains, therefore, to apply Lemma 3.2.1
selecting a suitable polynomial f for each pair p, q. �

The same argument can be used to construct non-singular real cubic n-folds whose
real part is diffeomorphic to RPn with several handles.

6.2.3. Proposition. For any integer k, 0 6 k < 1
2 (n+ 1), there exists a non-singular

real cubic n-fold X ⊂ Pn+1 with X(R) diffeomorphic to RPn#mk(S
k × Sn−k), where

mk is equal to
(
n+1
k

)
. Such a cubic X can be obtained by perturbation of a certain real

cubic X0 with mk real cusps of index (k, n− k) and with X0(R) = RPn.

Proof. Let us start with a real cubic (n− 1)-fold defined in RPn by a cubic polynomial
ft(x) = t(x30 + · · ·+x3n)− (x0 + · · ·+xn)

3. For t = (n+1− 2k)2 with 0 6 k < 1
2 (n+1),

such a cubic has mk nodes of index (k, n− k).
The real cubic n-fold X0 defined in RPn+1 by the suspension polynomial ft(x) − z3

has cusps at the corresponding points, and X0(R) = RPn. As in Lemma 3.2.1, the
perturbation ft(x) − z3 − bz − c provides, for suitable b and c, a real cubic n-fold X
with X(R) = RPn#mk(S

k × Sn−k). �

A different kind of examples is generated by cubics with two nodes of different indices.
Namely, consider Pn+2 with homogeneous coordinates x = (x0, . . . , xn), y1, y2, and a
cubic V defined by F (x, y) = f(x)+y1g1(x)+y2g2(x)+y1y2h(x), where gi are quadratic
forms and f , h are cubic and linear forms respectively. In the chart y1 6= 0 centered
at (x, y2) = (0, 0), the affine equation of V is y2h + g1 + (f + y2g2), and, thus, we
have a node at the origin if the quadratic form y2h + g1 is non-degenerate. Similarly,
in the chart y2 6= 0 centered at (x, y1) = (0, 0) we have a double point governed by
the quadratic form y1h+ g2. It is easy to choose gi and h so that the two nodes have
arbitrary prescribed indices in the range between 1 and n+1. Then F (x, y)−z3 defines a
cubic with two cusps which can be perturbed into handles of the corresponding indices,
so that we obtain the following result.

6.2.4. Proposition. For any n > 0 and 1 6 a, b 6 n + 1, there exists a real non-
singular cubic (n + 2)-fold, X ⊂ Pn+3, with X(R) diffeomorphic to RPn+2#(Sa ×
Sn+2−a)#(Sb × Sn+2−b). �

6.3. Homological and topological types of higher dimensional cubics. An im-
portant consequence of deformation classification of real cubic fourfolds in [FK1] is their
homological quasi-simplicity. By definition, this means that the triple (M(X), cX , hX)
is a complete invariant of a non-singular cubic fourfold X up to coarse deformation
equivalence. The same is true for n-dimensional cubics X if n < 4. However, in higher
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dimensions it is no longer true. We show it below restricting ourselves to the case of
even n: in this case we do not need to involve any techniques essentially different from
what is already discussed in this paper.

The only new ingredient we use in the proof below is a property of algebraic varieties
of type I known as Klein’s principle (see [Kl]): “varieties of type I do not admit develop-
ment”. According to a modern interpretation (see [R] and [Vi]), this refers to the local
maximality of such varieties, namely: a real algebraic variety of type I cannot increase

its total Betti number b∗ after crossing the wall in the parameter space. In the case of
cubics of even dimension, the proof is easy and can be based on two observations: first,
d = 1

2

(
b∗(X)− b∗(X(R))

)
where, as usual, d is the rank of the 2-periodic discriminant

group M/(M+ + M−) = M∗
±/M±; second, to decrease d the vanishing cycle v of the

wall crossing should be of the form x ± cx, which is incompatible with v2 = ±2 and
x · cx+ x2 = 0 mod 2 (the latter is the definition of type I, see 2.4).

6.3.1. Proposition. For any even n > 6 there exists a pair of real non-singular cu-
bic n-folds X,X ′ ⊂ Pn+1, i = 1, 2, which are homologically equivalent but have non-
homeomorphic real point sets (and thus, X is not coarse deformation equivalent to X ′).

Proof. Consider representatives Xp of the deformation components Cp provided by
Proposition 6.2.2, p = 0, . . . , n. The parity of p determine the rank of each of the
lattices M±, and thus, determine their signature (since one of the inertia indices is
fixed). The discriminant forms have the same rank (it is less by one than the maximal
rank achieved for Croot) and the same Arf-Brown invariant. Calculation shows that
these lattices are indefinite, and thus, according to Nikulin’s results (see [N]), there
may be only two isomorphism classes, which correspond to cubics of type I and II,
respectively.

On the other hand, our construction of X(R) = RPn#m1(S
1 × Sn−1) and X(R) =

RPn#m3(S
3 × Sn−3), where m1 = n + 1 and m3 =

(
n+1
3

)
, shows that the cubics Xp

admit a “development”, so according to Klein’s principle they are all of type II.
Now we may conclude that, for example, the cubics X1 and X3 have isomorphic

eigenlattices, hence they are homologically equivalent. But at the same time, for n > 6,
X1(R) = RPn#(S1 × Sn−1) and X3 = RPn#(S3 × Sn−3) are not homeomorphic. �

6.4. Higher dimensional cubics as ramified connected sums. According to
Lemma 4.6.1, whatever is the dimension, any family of non-singular cubics Xt de-
generating to a nodal cubic X0 can be transformed into a family of cubics X ′

t, such that
Xt is projectively equivalent to Xt, and X

′
t degenerates to a cubic splitting into a union

of a quadric and a hyperplane. This remarkable property of cubics implies that all the
deformation classes of non-singular real cubics can be obtained by small perturbation of
such reducible cubics. More precisely, the following statement holds (and follows easily
from Lemma 4.6.1 and the possibility to degenerate any non-singular cubic to a nodal
one).

6.4.1. Proposition. Any deformation class of non-singular cubic hypersurfaces in
Pn+1, with coordinates x0, . . . , xn, y, admits a representative defined by equation {y(f2−
y2) + δf3 = 0}, where f2 = f2(x) =

∑n
i=0 ±x

2
i (for a certain choices of signs ±),

0 < δ << 1, and f3 = f3(x, y) is some cubic transversal to the quadric f2 in the
hyperplane y = 0. �

Combining this statement with Proposition 4.3.2, we obtain the following description
of topology of real loci.
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6.4.2. Corollary. The real point set X(R) of any non-singular real cubic hypersurface
X ⊂ Pn+1, for any n > 0, is diffeomorphic to a ramified connected sum P#FD(P+),
where P = Pn(R), D(P+) is the double of P+ = {x ∈ P | f2 > 0}, and F = {x ∈
P+ | f3 = 0}. Here f2, f3 are respectively quadratic and cubic forms in P , such that f2
is non-degenerate and has a transverse intersection with f3. �
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