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1 Introduction

Rare B meson decays, induced by flavor–changing neutral current (FCNC) b → s(d) transi-
tions, is one of the most promising research area in particle physics. Theoretical interest to
the B meson decays lies in their role as a potential precision testing ground for the standard
model (SM) at loop level. Experimentally, these decays will provide quantitative informa-
tion about the Cabibbo–Kobayashi–Maskawa (CKM) elements Vtd, Vts and Vtb. Besides
these rare decay have the potential for establishing new physics beyond SM, such as two
Higgs doublet model (2HDM), minimal supersymmetric extension of the SM (MSSM) [1].

Firstly the most reliable quantitative test of FCNC processes in B decays is expected to
be measured in inclusive channels. In particular, the decays B → Xs,dℓ

+ℓ− are important
probes of the effective Hamiltonian governing the FCNC transition b→ s(d)ℓ+ℓ−. The hope
that B → Xsℓ

+ℓ− decay will be measurable in experiments in the near future, encourage
extensive investigation of this process in the SM, 2HDM and MSSM [2]–[15]. The matrix
element of the b→ sℓ+ℓ− contains terms describing the virtual effects induced by tt̄, cc̄ and
uū loops which are proportional to Vtb V

∗
ts, Vbc V

∗
cs and Vbu V

∗
su, respectively. Using unitarity

of the CKM matrix and neglecting Vbu V
∗
su in comparison to Vtb V

∗
ts and Vbc V

∗
cs, it is obvious

that the matrix element for the b → sℓ+ℓ− involves only one independent CKM factor
Vtb V

∗
ts so that CP–violation in this channel is strongly suppressed in the SM.
The situation is totally different for the b → dℓ+ℓ− decay, since all three CKM factors

Vtb V
∗
td, Vcb V

∗
cd and Vub V

∗
ud, are all of the same order (in SM) and therefore can induce

considerable CP–violating difference between the decay rates of the reactions b → dℓ+ℓ−

and b̄→ d̄ℓ+ℓ−.
It should be noted here that in presence of a much stronger decay b → sℓ+ℓ−, the

detection of the b→ dℓ+ℓ− decay seems to be more problematic. For this reason, in search
of CP violation the corresponding exclusive decay channels B → πℓ+ℓ− and B → ρ ℓ+ℓ−

are more preferable. In general, the inclusive decays are rather difficult to measure in
comparison to the exclusive ones. CP–violating effects in inclusive b→ dℓ+ℓ− and exclusive
B → πℓ+ℓ−, B → ρ ℓ+ℓ− channels were studied within the framework of the SM in [15, 16].

The aim of the present work is to derive quantitative predictions for the CP violation
in the exclusive B → πℓ+ℓ− and B → ρ ℓ+ℓ− decays, in context of the general two Higgs
doublet model, in which a new source for CP violation is present (see below). 2HDM model
is one of the simplest extension of the SM, which contains two complex Higgs doublets,
while the SM contains only one. In general, in 2HDM the flavor changing neutral currents
(FCNC) that appear at tree level, are avoided by imposing an ad hoc discrete symmetry [18].
One possible approach to avoid these unwanted FCNC at tree level is to couple all fermions
to only one of the above–mentioned Higgs doublets (model I). The other possibility is the
coupling of the up and down quarks to the first and second Higgs doublets, with the vacuum
expectation values v2 and v1, respectively (model II). Model II is more attractive since its
Higgs sector coincides with the ones in the supersymmetric model. In this model there
exist five physical Higgs fields: neutral scalars H0, h0, neutral pseudoscalar A and charged
Higgs bosons H±. The interaction vertex of fermions with Higgs fields depends on tanβ =
v2/v1, which is the free parameter of the model. The new experimental results of CLEO
and ALEPH Collaborations [19, 20] on the branching ratio b → sγ decay impose strict
restrictions on the charged Higgs boson mass and tanβ. Recently, the lower bound on these
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parameters were determined from the analysis of the b → sγ decay, including NLO QCD
corrections [21, 22]. Other indirect bound on the ratio mH±/tanβ come from B → Dτν̄τ
decay, where mH± ≥ 2.2tanβ GeV [23], and from the τ lepton decays mH± ≥ 1.5 tanβ GeV
[24]. The consequence of an analysis without discrete symmetry has been investigated in
a more general model in 2HDM, namely, model III [25, 26]. In this model FCNC appears
naturally at tree level. However, the FCNC’s involving the first two generations are highly
suppressed, as is observed in the low energy experiments, and those involving the the third
generation is not as severely suppressed as the first two generations, which are restricted
by the existing experimental results.

In this work we assume that all tree level FCNC couplings are negligible. It should be
noted however that, even with this assumption, the couplings of fermions to Higgs bosons
may have a complex phase eiθ. In other words, in this model there exists a new source of
CP violation that is absent in the SM, model I and model II. The effects of such an extra
phase in the b→ sγ decay were discussed in [27, 28]. The constraints on the phase angle θ
in the product λttλbb of Higgs–fermion coupling (see below) imposed by the neutron electric
dipole moment, B0 − B̄0 mixing. ρ 0 parameter and Rb is discussed in [28].

The paper is organized as follows: In Section 2 we present the necessary theoretical
framework. The branching ratios, CP–violating effects in the partial widths and forward–
backward asymmetry for the above–mentioned exclusive decay channels are studied in sec-
tion 3. Section 4 is devoted to the numerical analysis and concluding remarks.

2 Theoretical framework

Before presenting the necessary theoretical background, let us go through the main essential
points of the general Higgs doublet model (model III). In this model, both Higgs doublets
can couple to up and down quarks. Without loss of generality we can work in a basis such
that the first doublet generates all the fermion and gauge boson masses, whose vacuum
expectation values are

〈φ1〉 =











0

v√
2











, 〈φ2〉 .

In this basis the first doublet φ1 is the same as in the SM, and all new Higgs bosons result
from the second doublet φ2, which can be written in the following form

φ1 =
1√
2







√
2G+

v + χ0
1 + iG0





 , φ2 =
1√
2







√
2H+

χ0
2 + iA0





 ,

where G+ and G0 are the Goldstone bosons. The neutral χ0
1 and χ0

2 are not the physical
mass eigenstate, but their linear combinations give the neutral H0 and h0 Higgs bosons:

χ0
1 = H0cosα− h0sinα ,

χ0
2 = H0sinα + h0cosα .
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The general Yukawa Lagrangian can be written as

LY = ηUijQ̄iLφ̃1UjR + ηDijQ̄iLφ1DjR + ξUijQ̄iLφ̃2UjR + ξDij Q̄iLφ2DjR + h.c. , (1)

where i, j are the generation indices, φ̃ = iσ2φ, η
U,D
ij and ξU ,Dij , in general, are the non–

diagonal coupling matrices, L = (1−γ5)/2 and R = (1+γ5)/2 are the left– and right–handed
projection operators. In Eq. (1) all states are weak states, that can be transformed to the
mass eigenstates by rotation. After performing this rotation on the Yukawa Lagrangian,
we get

LY = −H+Ū
[

VCKM ξ̂
DR− ξ̂U

+

VCKML
]

D , (2)

where U(D) represents the mass eigenstates of u, c, t (d, s, b) quarks. In the present
analysis, we will use a simple ansatz for ξ̂U

+,D [25],

ξ̂U
+,D = λij

g
√
mimj√
2mW

. (3)

Also it assumed that λij is complex, i.e., λij = |λij| eiθ, and for simplicity we choose ξU,D to
be diagonal to suppress all tree level FCNC couplings, and as a result λij are also diagonal
but remain complex. Note that the results for model I and model II can be obtained from
model III by the following substitutions:

λtt = cotβ λbb = − cotβ for model I ,

λtt = cotβ λbb = + tanβ for model II , (4)

and θ = 0.
After this brief introduction about the general Higgs doublet model, let us return our

attention to the b → dℓ+ℓ− decay. The powerful framework into which the perturbative
QCD corrections to the physical decay amplitude incorporated in a systematic way, is
the effective Hamiltonian method. In this approach, the heavy degrees of freedom in the
present case, i.e., t quark, W±, H±, h0, H0 are integrated out. The procedure is to match
the full theory with the effective theory at high scale µ = mW , and then calculate the
Wilson coefficients at lower µ ∼ O(mb) using the renormalization group equations. In our
calculations we choose the higher scale as µ = mW , since the charged Higgs boson is heavy
enough (mH± ≥ 210 GeV see [21]) to neglect the evolution from mH± to mW .

In the version of the 2HDM we consider in this work, the charged Higgs boson exchange
diagrams do not produce new operators and the operator basis is the same as the one used
for the b → dℓ+ℓ− decay in the SM. For this reason in the model under consideration, the
charged Higgs boson contributions to leading order change only the value of the Wilson
coefficients at mW scale, i.e.,

C2HDM
7 (mW ) = CSM

7 (mW ) + CH±

7 (mW )

C2HDM
9 (mW ) = CSM

9 (mW ) + CH±

9 (mW )

C2HDM
10 (mW ) = CSM

10 (mW ) + CH±

10 (mW ) .

3



The coefficients C2HDM
i (mW ) to the leading order are given by

C2HDM
7 (mW ) = x

(7− 5x− 8x2)

24(x− 1)3
+
x2(3x− 2)

4(x− 1)4
ℓnx

+ |λtt|2
(

y(7− 5y − 8y2)

72(y − 1)3
+
y2(3y − 2)

12(y − 1)4
ℓny

)

+ λttλbb

(

y(3− 5y)

12(y − 1)2
+
y(3y − 2)

6(y − 1)3
ℓny

)

, (5)

C2HDM
9 (mW ) = − 1

sin2θW
B(mW ) +

1− 4sin2θW
sin2θW

C(mW )

+
−19x3 + 25x2

36(x− 1)3
+

−3x4 + 30x3 − 54x2 + 32x− 8

18(x− 1)4
ℓnx+

4

9

+ |λtt|2
[

1− 4sin2θW
sin2θW

xy

8

(

1

y − 1
− 1

(y − 1)2
ℓny

)

− y

(

47y2 − 79y + 38

108(y − 1)3
− 3y3 − 6y3 + 4

18(y − 1)4
ℓny

)]

, (6)

C2HDM
10 (mW ) =

1

sin2θW

(

B(mW )− C(mW )
)

+ |λtt|2
1

sin2θW

xy

8

(

− 1

y − 1
+

1

(y − 1)2
ℓny

)

, (7)

where

B(x) = − x

4(x− 1)
+

x

4(x− 1)2
ℓnx ,

C(x) = −x
4

(

x− 6

3(x− 1)
+

3x+ 2

2(x− 1)2
ℓnx

)

,

x =
m2
t

m2
W

,

y =
m2
H±

m2
W

. (8)

and sin2θW = 0.23 is the Weinberg angle. It follows from Eqs. (5–7) that among all
the Wilson coefficients, only C7 involves the new phase angle θ. We have neglected the
neutral Higgs boson exchange diagram contributions, since Higgs boson–fermion interaction
is proportional to the lepton mass.

The effective Hamiltonian for the b → dℓ+ℓ− decay is [29–32]

H = −4
GF

2
√
2
VtbV

∗
td

{

10
∑

i=0

Ci(µ)Oi(µ) + λu
2
∑

i=1

Ci(µ) [Oi(µ)− Ou
i (µ)]

}

,
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where

λu =
VubV

∗
ud

VtbV ∗
td

,

and Ci are the Wilson coefficients. The explicit form of all operators Oi can be found in
[29–32].

The evolution of the Wilson coefficients from the higher scale µ = mW down to the low
energy scale µ = mb is described by the renormalization group equation

µ
d

dµ
C
eff(µ)
i = Ceff

i (µ)γeffµ (µ) ,

where γ is the anomalous dimension matrix. The coefficient Ceff
7 (µ) at the scale O(mb) in

NLO is calculated in [21, 22]:

Ceff
7 (mb) = C0

7 (mb) +
αs(mb)

4π
C1,eff

7 (mb) ,

where C0
7(mb) is the leading order (LO) term and C1,eff

7 (mb) describes the NLO terms,
whose explicit forms can be found in [21]. In our case, the expressions for these coefficients
can be obtained from the results of [21] by making the following replacements:

|Y |2 → |λtt|2 and XY ∗ → |λttλbb| eiθ .

In the SM, the QCD corrected Wilson coefficient C9(mb), which enters to the decay am-
plitude up to the next leading order has been calculated in [29–32]. The Wilson coefficient
C10 does not receive any new corrections at all, i.e., C10(mb) ≡ C2HDM

10 (mW ). As we have
already noted, in the version of the 2HDM we consider in this work, there does not appear
any new operator other than those that exist in the SM, therefore it is enough to make
the replacement CSM

9 (mW ) → C2HDM
9 (mW ) in [29–32], in order to calculate C2HDM

9 at mb

scale. Hence, including the NLO QCD corrections, C9(mb) can be written as:

C9(µ) = C2HDM
9 (µ)

[

1 +
αs(µ)

π
ω(ŝ)

]

+ g(m̂c, ŝ)
[

3C1(µ) + C2(µ) + 3C3(µ) + C4(µ) + 3C5(µ) + C6(µ)
]

+ λu
[

g(m̂c, ŝ)− g(0, ŝ)
](

3C1(µ) + C2(µ)
)

− 1

2
g(0, ŝ) (C3(µ) + 3C4(µ))

− 1

2
g (1, ŝ) (4C3 + 4C4 + 3C5 + C6)−

1

2
g (0, ŝ) (C3 + 3C4)

+
2

9
(3C3 + C4 + 3C5 + C6) , (9)

where mc = mc/mb , ŝ = p2/m2
b , and

ω (ŝ) = −2

9
π2 − 4

3
Li2 (ŝ)−

2

3
ℓn (ŝ) ℓn (1− ŝ)

− 5 + 4ŝ

3 (1 + 2ŝ)
ℓn (1− ŝ)− 2ŝ (1 + ŝ) (1− 2ŝ)

3 (1− ŝ)2 (1 + 2ŝ)
ℓn (ŝ) +

5 + 9ŝ− 6ŝ2

3 (1− ŝ) (1 + 2ŝ)
(10)
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represents the O (αs) correction from the one gluon exchange in the matrix element of O9,
while the function g (m̂c, ŝ) arises from one loop contributions of the four–quark operators
O1–O6, whose form is

g (m̂c, ŝ) = −8

9
ℓn (m̂i) +

8

27
+

4

9
yi −

2

9
(2 + yi)

+
√

|1− yi|
{

Θ (1− yi)

(

ℓn
1 +

√

|1− yi|
1−

√

|1− yi|
− i π

)

+Θ (yi − 1) 2arctan
1√
yi − 1

}

,(11)

where yi = 4m̂2
i /p̂

2.
The Wilson coefficients C9 receives also long distance contributions, which have their

origin in the real uū, dd̄ and cc̄ intermediate states, i.e., ρ, ω and J/ψ, ψ′, · · ·. In the case
of the J/ψ family this usually accomplished by introducing a Breit–Wigner distribution for
the resonance through the replacement ([4–7,33])

g (m̂c, ŝ) → g (m̂c, ŝ)−
3π

α2
em

κ
∑

Vi=J/ψi,ψ′,···

mViΓ(Vi → ℓ+ℓ−)

(p2 −m2
Vi
) + imViΓVi

, (12)

where the phenomenological parameter κ = 2.3 is chosen in order to reproduce correctly
the experimental value of the branching ratio (see for example [16])

B(B → J/ψX → Xℓ+ℓ−) = B(B → J/ψX)B(J/ψ → Xℓ+ℓ−) .

In order to avoid the double counting, in this work, as an alternative to the functions
g (m̂u, ŝ) and g (m̂c, ŝ) that describe the effects of uū and cc̄ loops, we have used a dif-
ferent procedure, in which these functions are expressed through the normalized vacuum
polarization Πγ

had(ŝ) that is related to the experimentally measurable quantity

Rhad(ŝ) =
σtot(e

+e− → hadrons)

σ(e+e− → µ+µ−)
, (13)

via the dispersion relation ( see [16, 17] for more detail). In this way it is possible to include
the ρ, ω, J/ψ, ψ′, · · · resonances into the differential cross section in an approximate way,
consistent with the idea of global duality. In this approach the ω and J/ψ family resonances
are well described through the Breit–Wigner form and ρ resonance is introduced by

Rρ
res =

1

4

(

1− 4
m̂2
π

ŝ

)3/2

|Fπ(ŝ)|2 , (14)

where Fπ(ŝ) is the pion form factor that is represented by a modified Gounaris–Sakurai
formula (see [34, 35]).

The effective short–distance Hamiltonian for b→ dℓ+ℓ− decay [29–32] leads to the QCD
corrected matrix element (when the d quark mass is neglected)

M =
GFα

2
√
2π
VtdV

∗
tb

{

Ceff
9 d̄γµ(1− γ5)b ℓ̄γ

µℓ+ C10d̄γµ(1− γ5)b ℓ̄γ
µγ5ℓ

− 2C7
mb

p2
d̄iσµνp

ν(1 + γ5)b ℓ̄γ
µℓ , (15)

where p2 is the invariant dilepton mass. In Eq. (12) all Wilson coefficients are evaluated
at the µ = mb scale.
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3 The exclusive B → πℓ+ℓ− and B → ρ ℓ+ℓ− decays

In this section, we proceed to calculate the branching ratio and CP violating asymmetry
in the B → πℓ+ℓ− and B → ρ ℓ+ℓ− decays. It follows from the matrix element of the
b → dℓ+ℓ− that in order to be able to calculate the matrix element of the exclusive decay
B →Mℓ+ℓ−, the matrix elements 〈M |d̄γµ(1+γ5)b|B〉 and 〈M |d̄i σµνpν(1+γ5)b|B〉 (M = π
or ρ) have to be calculated. These matrix elements can be parametrized in the following
way:

〈

π (pπ)
∣

∣

∣d̄γµ(1− γ5)b
∣

∣

∣B (pB)
〉

= f+(p2) (pB + pπ)µ + f−(p2)pµ , (16)

〈

π (pπ)
∣

∣

∣d̄i σµνpν(1 + γ5)b
∣

∣

∣B (pB)
〉

=
[

(pB + pπ)µ p
2 − pµ

(

m2
B −m2

π

)] fT (p
2)

mB +mπ
, (17)

〈

ρ(pρ, ε)
∣

∣

∣d̄γµ(1− γ5)b
∣

∣

∣B(pB)
〉

= −ǫµνλσε∗νpλρpσB
2V (p2)

mB +mρ

− iε∗µ(mB +mρ)A1(p
2) + i(pB + pρ)µ(ε

∗p)
A2(p

2)

mB +mρ

+ ipµ(ε
∗p)

2mρ

p2

[

A3(p
2)− A0(p

2)
]

, (18)

〈

ρ(p, ε)
∣

∣

∣d̄iσµνp
ν(1 + γ5)b

∣

∣

∣B(pB)
〉

= 4ǫµνλσε
∗νpλpσT1(p

2)

+ 2i
[

ε∗µ(m
2
B −m2

ρ)− (pB + pρ)µ(ε
∗p)
]

T2(p
2)

+ 2i(ε∗p)

[

pµ − (pB + pρ)µ
p2

m2
B −m2

ρ

]

T3(p
2) . (19)

In all of the matrix elements above, p = pB − pM (M = π or ρ) and ε∗ is the four–
polarization vector of the ρ meson. Using Eqs. (15–19) we obtain for the matrix elements
of the B → πℓ+ℓ− and B → ρ ℓ+ℓ− decays:

MB→π =
Gα

2
√
2π

VtbV
∗
td

{

(2Apπµ +Bpµ) ℓ̄γµℓ+ (2Cpπµ +Dpµ) ℓ̄γµγ5ℓ

}

, (20)

MB→ρ =
Gα

2
√
2π
VtbV

∗
td

{

ℓ̄γµℓ
[

2A1ǫµνλσε
∗νpλρp

σ
B + iB1ε

∗
µ − iB2(ε

∗p)(pB + pρ)µ − iB3(ε
∗p)pµ

]

+ ℓ̄γµγ5ℓ
[

2C1ǫµνλσǫ
∗νpλρp

σ
B + iD1ǫ

∗
µ − iD2(ε

∗p)(pB + pρ)µ − iD3(ε
∗p)pµ

]

}

, (21)

where

A = Ceff
9 f+ − C7

2mbfT (p
2)

mB +mπ
,

B = Ceff
9

(

f+ + f−
)

+ C7

(

2mbfT
p2

)(

m2
B −m2

π − p2

mB +mπ

)

,

C = C10f
+ ,

7



D = C10

(

f+ + f−
)

,

A1 = Ceff
9

V

mB +mρ

+ 4C7
mb

p2
T1 ,

B1 = Ceff
9 (mB +mρ)A1 + 4C7

mb

p2
(m2

B −m2
ρ)T2 ,

B2 = Ceff
9

A2

mB +mρ
+ 4C7

mb

p2

(

T2 +
p2

m2
B −m2

ρ

T3

)

,

B3 = −Ceff
9

2mρ

p2
(A3 − A0) + 4C7

mb

p2
T3 , (22)

C1 = C10
V

mB +mρ
,

D1 = C10(mB +mρ)A1 ,

D2 = C10
A2

mB +mρ
,

D3 = C10
2mρ

p2
(A3 − A0) .

Using Eqs. (20) and (21) and performing summation over final lepton and ρ meson polariza-
tion (in the B → ρ ℓ+ℓ− case), we obtained the following results for the double differential
decay rates (the masses of the leptons, in our case electron or muon, are neglected):

dΓB→π

dp2dz
=
G2α2

211π5

|VtbV ∗
ts|2

√
λ

mB

λm4
B(1− z2)

[

(

|A|2 + |C|2
)

]

, (23)

dΓB→ρ

dp2dz
=
G2α2 |VtbV ∗

td|2
√
λ

212π5mB

{

2λm4
B

[

m2
Bs(1 + z2)

(

|A1|2 + |C1|2
)

]

+
1

2r

[

m2
B

(

λ(1− z2) + 8rs
) (

|B1|2 + |D1|2
)

− 2λm4
B(1− r − s)(1− z2)

×
(

Re (B1B
∗
2) +Re (D1D

∗
2)
)

]

+ λ2m6
B(1− z2)

1

2r

(

|B2|2 + |D2|2
)

+8m4
Bsz

√
λ
(

Re (B1C
∗
1) +Re (A1D

∗
1)
)

}

, (24)

where z = cosθ , θ is the angle between the three–momentum of the ℓ+ lepton and that of
the B meson in the center of mass frame of the lepton pair, λ(1, rM , s) = 1 + r2M + s2 −
2rM − 2s − 2rMs, rM =

m2
M

m2
B

, and s = p2

m2
B

(M = π or ρ). The CP violating asymmetry
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between B → Mℓ+ℓ− and B̄ → M̄ℓ+ℓ− decays is defined as

ACP (p
2) =

dΓ

dp2
− dΓ̄

dp2

dΓ

dp2
+
dΓ̄

dp2

. (25)

where

dΓ

dp2
=
dΓ
(

B̄ →Mℓ+ℓ−
)

dp2
and

dΓ̄

dp2
=
dΓ
(

B → M̄ℓ+ℓ−
)

dp2
.

The differential decay widths B → πℓ+ℓ− and B → ρ ℓ+ℓ− can easily be obtained from Eqs.
(23) and (24) by integrating over z. Finally we get the following results for CP violating
asymmetry for the B → πℓ+ℓ− and B → ρ ℓ+ℓ− decays

AB→π
CP (p2) ≃ − 2

(

|A|2 + |C|2
)

{

|f+|2 (Imλu) (Imξ∗1ξ2) (26)

+ f+fT
2mb

mB +mπ

[

(Imξ1) η2 − (Imλu) (Imξ2) η1 + (Reλu) (Imξ2) η2
]

}

,

AB→ρ
CP (p2) ≃ 1

Σρ

{

− 2 (Imλu) (Imξ
∗
1ξ2)

[

16

3
λm6

Bs

∣

∣

∣

∣

∣

V

mB +mρ

∣

∣

∣

∣

∣

2

+
2λ2m6

B

3r

∣

∣

∣

∣

∣

A2

mB +mρ

∣

∣

∣

∣

∣

2

+
1

2r
m2
B

(

4

3
λ+ 16rs

)

(mB +mρ) |A1|2 −
4

3
λm4

B

(1− r − s)

r
A1A2

]

+

[

2 (Imξ1) η2 − 2 (Imλu) (Imξ2) η1 + 2 (Reλu) (Imξ2) η2

]

×
[

64λm6
Bmbs

3p2
T1V

mB +mρ

+
8λ2m6

Bmb

3rp2
A2

mB +mρ

(

T2 +
p2

(m2
B −m2

ρ)
T3

)

+
2m2

Bmb

rp2

(

4

3
λ+ 16rs

)

A1T2(mB +mρ)(m
2
B −m2

ρ)

− 2

3
λm4

B(1− r − s)

(

(mB +mρ)
4mb

p2
A1

(

T2 +
p2

(m2
B −m2

ρ)
T3
)

+
4mb(mB −mρ)

p2
A2T2

)]}

, (27)

where

Σρ =
16

3
λm6

Bs
(

|A|2 + |C|2
)

+
2

3r
λ2m6

B

(

|B2|2 + |D2|2
)

+
1

2r

[

m2
B

(

4

3
λ+ 16rs

)

(

|B1|2 + |D1|2
)

− 8

3
λm4

B(1− r − s)
(

(ReB1B2) + (ReD1D2)
)

]

. (28)
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In deriving these expressions, we have used the following parametrization

Ceff
9 ≡ ξ1 + λuξ2 ,

Ceff
7 ≡ η1 + i η2 , (29)

and assumed that all form factors are positive (see below). Interference of Ceff
9 and Ceff

7

terms gives new contribution to the CP violating asymmetry. The results for the CP
asymmetry in model II can be obtained from Eqs. (26) and (27) by substituting Eq. (3)
(i.e., η2 = 0).

At the end of this section we present forward–backward asymmetry AFB, which involve
different combination of the Wilson coefficients. The analysis of AFB is very useful in
extracting precise information about the sign of the Wilson coefficients and the new physics.
The forward–backward asymmetry is defined as

AFB(p
2) =

∫ 1

0
dz

dΓ

dp2dz
−
∫ 0

−1
dz

dΓ

dp2dz
∫ 1

0
dz

dΓ

dp2dz
+
∫ 0

−1
dz

dΓ

dp2dz

. (30)

The forward–backward asymmetry for the B → πℓ+ℓ− decay is zero, both in SM and 2HDM,
in the limit mℓ → 0. We can explain this fact briefly as follows. The hadronic current for
B → πℓ+ℓ− decay is a pure vector and the lepton current is also conserved when mℓ → 0.
The charge asymmetry (or AFB) is non–zero if there exist C–vilolating terms but such terms
are clearly absent in the B → πℓ+ℓ−. Using Eq. (24), the forward–backward asymmetry
for the B → ρ ℓ+ℓ− takes the following form:

AρFB =
8m4

Bs
√
λ
[

(ReB1C
∗
1 ) + (ReA1D

∗
1)
]

Σρ
. (31)

Finally, we examine the CP–violating difference between AFB and ĀFB, i.e.,

δAFB = AFB − ĀFB ,

with ĀFB being the forward–backward asymmetry in the anti particle channel, which can
be obtained by the replacement

Ceff
9 (λu) → C̄eff

9 (λu → λ∗u) ,

whose explicit can easily be obtained from Eq. (31), with the above mentioned replacement
of Ceff

9 .

4 Numerical analysis

Before presentation of our quantitative calculations and graphics, we would like to note that
we have considered two different versions, namely model II and model III of the 2HDM, in
our analysis. For the free parameters λbb and λtt of model III, we have used the restrictions
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coming from B → Xsγ decay, B0–B̄0 mixing, ρ parameter and neutron electric–dipole
moment [28], that yields |λbb| = 50, |λtt| ≤ 0.03.

The values of the main input parameteres, which appear in the expressions for the
branching ratios, AFB and ACP are: mb = 4.8 GeV, mc = 1.4 GeV, mτ = 1.78 GeV, mB =
5.28 GeV,mπ = 0.14 GeV . For B meson lifetime we take τ(B) = 1.56−12 s [36]. The
values of the Wilson coefficients are, C1 = −0.249, C2 = 1.108, C3 = 1.112 × 10−2, C4 =
−2.569×10−2, C5 = 7.4×10−3, C6 = −3.144×10−2. Throughout the course of the numerical
analysis, we have used the Wolfenstein parametrization of the CKM matrix elements, i.e.,

λu =
VubV

∗
ud

VtbV
∗
td

=
ρ(1− ρ)− η2 + i η

(1− ρ)2 + η2
+O(λ2) ,

for which we have used the following three different sets of parameters,

(ρ, η) =































(0.3; 0.34)

(−0.07; 0.34)

(−0.3; 0.34) .

Of course the explicit expressions for the form factors are needed in the present numerical
analysis. In the current literature these form factors have been calculated in the framework
of the three point QCD sum rule [37], relativistic quark model [38], and light cone QCD
sum rules [39–41]. In further numerical analysis we have used the light cone QCD sum
rule predictions on the form factors. It should be noted that the light cone QCD sum rule
predictions on the form factors are reliable in the region m2

b − p2 ∼ O(few GeV 2). In order
to extend to the full physical region we have used best fitted expressions by extrapolating
the numerical results with the condition that these approximate formulas reproduce the
light cone QCD sum rule predictions to a good accuracy, in the above–mentioned region.
The form of form factors which satisfy this condition can be written in terms of three
parameters as [39, 40]

F (p2) =
F (0)

1− aF
p2

m2
B

+ bF

(

p2

m2
B

)2 ,

where the values of parameters F (0), aF and bF for the relevant decays, B → π and B → ρ,
are listed in Table 1 (this Table is taken from [39, 40]

Firstly we consider model II for numerical calculations. In Figs. (1) and (2) we present
the dependence of the differential decay widths of the B → πe+e− and B → ρ e+e− on
p2 for (ρ, η) = (0.3; 0.34) at mH± = 250 GeV and tanβ = 1, with and without long
distance contributions, correspondingly. In Figs. (3) and (4) we plot the variation of the
CP–violating asymmetry ACP with respect to p2, with the following set of parameters:
(ρ, η) = (0.3; 0.34) and tanβ = 1. In both figures, the solid line corresponds to the SM
case, dash–dotted and dotted lines represent the CP–violating asymmetry at two different
values of the mass of charged Higgs boson mH± = 250 GeV and 500 GeV , respectively. The
total branching ratios for the B → πe+e− and (B → ρ e+e−) decays at three different sets
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of Wolfenstein parameters and at mH± = 250 GeV are presented in Table 2. From Figs.
1–4 we see that, in model II the dependences of the branching ratio and ACP asymmetry
on p2 are very similar to those predicted by the SM, but their magnitudes different in these
models. These results are expected, since in model II, the charged Higgs contributions
change only the values of the Wilson coefficients C7, C9 and C10. In this version of the
2HDM charged Higgs contributions give rise to constructive interference to the SM result.
Therefore the branching ratio increases and CP asymmetry decreases.

We presented in Table 2, the numerical values of the average values of the CP violating

asymmetry 〈ACP 〉, in the region 1 GeV 2 < p2 <
(

mJ/ψ − 0.02 GeV
)2
, using the same

values of the Wolfenstein parameters used in Figs. 3 and 4.
The dependence of the forward–backward asymmetry on p2 AFB(B → ρ e+e−) is plotted

in Fig. (5) for SM and model II, with the same set of parameters as in Fig. (1). It is
observed that the value of p2 at which AFB becomes zero is shifted in model II. Therefore,
in future experiments, the determination of the value of p2 at which AFB is zero can
give unambiguous information about the presence of new physics. In Fig. (6) we plot
the resulting difference in the forward–backward asymmetry for the values of Wolfenstein
parameters (ρ, η) = (−0.07; 0.2), with and without the long distance effects. From these
figures we observe that, δFAB for the B → ρ e+e− decay is positive in the non resonant
region for all values of p2, both in SM and model II.

Note that, the results we have presented for forward–backward asymmetry and its dif-
ference are performed for (ρ, η) = (−0.07; 0.2). However, for sake of completeness, we have
gone through the same analysis for two different sets of the Wolfenstein parameters, namely,
(ρ, η) = (−0.3; 0.34) and (ρ, η) = (−0.07; 0.34), as well as several different choices of tan β.
The numerical results and the relevant graphical presentations have demonstrated that,
no remarkable differences have been observed among these different choices. In Figs. (7)
and (8) we present the dependence of the CP asymmetry ACP , integrated over p2, for the
B → πe+e− and B → ρ e+e− decays on the phase angle θ at mH± = 250 GeV , |λbb| = 50
and |λtt| = 0.03, without the long distance effects in model III. From both figures, especially
from B → ρ e+e− case, we observe that, the average CP asymmetry differs essentially from
the one predicted by model II. In the region π/2 < θ < 3π/2, the change in 〈ACP 〉 is more
than 2.5 times than that predicted by model II. This fact can be explained as, the charged
Higgs and SM contributions interference destructively in the above–mentioned region of θ.
It should be stressed that, depending on the value of the phase angle θ, the charged Higgs
contributions can interfere with the SM results, either constructively or destructively. This
case is absolutely different in model II, where the above–mentioned contributions interfere
only constructively. The values of the branching ratios B → πℓ+ℓ− and B → ρ ℓ+ℓ− decays
at different values of the phase angle θ in model III are presented in Table 4.

In conclusion, the exclusive B → πℓ+ℓ− and B → ρ ℓ+ℓ− decays are analyzed in the
2HDM and it is found that, the CP violating asymmetry in model III differs essentially
from the ones predicted by model II.
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Figure captions

Fig. 1 Invariant mass squared (p2) distribution of the branching ratio of the electron pair
in the B → πe+e− decay. Line 1 corresponds to the mass spectrum including the effects of
ρ, ω and J/Ψ resonances, whereas line 2 corresponds to the non resonant invariant mass
spectrum, in the SM. Analogously, lines 3 and 4 represents the same distributions, respec-
tively, in the model II, at tanβ = 1. In both models the Wolfenstein parameters are chosen
to be (ρ, η) = (0.3, 0.34).

Fig. 2 The same as in Fig. 1, but for the B → ρ e+e− decay.

Fig. 3 CP–violating partial width asymmetry in the B → πe+e− decay as a function
of p2 for the values of the Wolfenstein parameters (ρ, η) = (0.3, 0.34), including ρ, ω and
J/Ψ resonances. Line 1 represents the SM. Lines 2 and 3 correspond to the model II case for
the different choices of the charged Higgs boson mass m±

H = 500 GeV , and m±
H = 250 GeV ,

respectively.

Fig. 4 The same as in Fig. 3, but for the B → ρ e+e− decay.

Fig. 5 The dependence of the forward–backward asymmetry AFB on p2 in the B → ρ e+e−

decay. The Wolfenstein parameters are chosen to be (ρ, η) = (−0.07, 0.2). See Fig. 1 for
the interpretation of the lines 1 to 4.

Fig. 6 The CP–violating partial width asymmetry difference. δFB = AFB − ĀFB in
the B → ρ e+e− decay for (ρ, η) = (−0.07, 0.2). See Fig. 1 for the interpretation of the
lines 1 to 4.

Fig. 7 The dependence of the CP violating asymmetry, integrated over p2, on the phase
angle θ for the B → πe+e− decay, in model III. In this figure the straight line corre-
sponds to model II. The Wolfenstein parameters and the charged Higgs are chosen to be
(ρ, η) = (0.3, 0.34) and m±

H = 250 GeV , respectively.

Fig. 8 The same as in Fig. 7, but for the B → ρ e+e− decay.
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F (0) aF bF

AB→ρ
1 0.26± 0.04 0.29 −0.415

AB→ρ
2 0.22± 0.03 0.93 −0.092

V B→ρ 0.34± 0.05 1.37 0.315

TB→ρ
1 0.15± 0.02 1.41 0.361

TB→ρ
2 0.15± 0.02 0.28 −0.500

TB→ρ
3 0.10± 0.02 1.06 −0.076

fB→π
+ 0.30± 0.04 1.35 0.270

fB→π
T −0.30± 0.04 1.34 0.260

Table 1:

B(B → πe+e−) B(B → ρ e+e−)

(ρ; η) SM THDM SM THDM

(+0.3; 0.34) 3.27× 10−8 4.11× 10−8 5.99× 10−8 8.45× 10−8

(-0.3; 0.34) 3.31× 10−8 4.15× 10−8 6.00× 10−8 8.46× 10−8

(-0.07; 0.34) 3.30× 10−8 4.14× 10−8 6.00× 10−8 8.46× 10−8

Table 2:
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〈ACP 〉(B→π) 〈ACP 〉(B→ρ)

mH± = 250 GeV -0.048 -0.030

mH± = 500 GeV -0.054 -0.031

Table 3:

θ B(B → πe+e−) B(B → ρ e+e−)

0 3.12× 10−8 7.41× 10−8

π/4 3.16× 10−8 7.08× 10−8

π/2 3.26× 10−8 6.34× 10−8

Table 4:
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