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Abstract

We propose a new method for precise determination of
∣

∣

∣

Vtd

Vub

∣

∣

∣ from the ratios of branching

ratios B(B→ρνν̄)
B(B→ρlν) and B(B→πνν̄)

B(B→πlν) . These ratios depend only on the ratio of the Cabibbo-

Kobayashi-Maskawa (CKM) elements
∣

∣

∣

Vtd

Vub

∣

∣

∣ with little theoretical uncertainty, when

very small isospin breaking effects are neglected. As is well known,
∣

∣

∣

Vtd

Vub

∣

∣

∣ equals to
(

sinγ
sinβ

)

for the CKM version of CP-violation within the Standard Model. We also give in

detail analytical and numerical results on the differential decay width dΓ(B→K∗νν̄)
dq2 and

the ratio of the differential rates dB(B→ρνν̄)/dq2

dB(B→K∗νν̄)/dq2 as well as B(B→ρνν̄)
B(B→K∗νν̄) and B(B→πνν̄)

B(B→Kνν̄) .

1taliev@rorqual.cc.metu.edu.tr
2kim@cskim.yonsei.ac.kr, cskim@kekvax.kek.jp, http://phya.yonsei.ac.kr/˜cskim/

1

http://arxiv.org/abs/hep-ph/9710428v2
http://arxiv.org/abs/hep-ph/9710428
http://phya.yonsei.ac.kr/~cskim/


1 Introduction

The determination of the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix is one

of the most important issues of quark flavor physics. The precise determination of Vtd and

Vub elements has principal meaning, since they are solely responsible for the origin of CP

violation in the CKM version of CP-violation within the Standard Model (SM). Furthermore,

the accurate knowledge of these matrix elements can be useful in relating them to the fermion

masses and also in searches for hints of new physics beyond the SM. Therefore, strategies for

the accurate determination of Vtd and Vub are urgently required. In the existing literature,

we can find proposals of different methods for precise determination of Vub and Vtd from

inclusive and exclusive, semileptonic and non leptonic decays of B meson (see [1] for a recent

review).

The quantity |Vub/Vcb| has been historically measured by looking at the endpoint of the

inclusive lepton spectrum in semileptonic B decays, or from the exclusive semileptonic decays

B → ρlν. It has been suggested that the measurements of hadronic invariant mass spectrum

[2, 3] as well as hadronic energy spectrum [4] in the inclusive B → Xc(u)lν decays can be

useful in extracting |Vub| with better theoretical understanding. The measurement of the

ratio |Vub/Vts| from the differential decay widths of the processes B → ρlν and B → K∗ll̄ by

using SU(3)-flavor symmetry and heavy quark symmetry has also been proposed [5]. There

has also been recent theoretical progress on the exclusive b → u semileptonic decay form

factors using HQET-based scaling laws to extrapolate the form factors from semileptonic

D meson decays [6]. The element Vtd can be extracted indirectly from Bd − Bd mixing.

However, in Bd −Bd mixing the large uncertainty of hadronic matrix elements prevents one

from extracting Vtd with good accuracy. A better extraction of |Vtd/Vts| can be made if

Bs − Bs mixing is measured as well, since the ratio (f 2
Bd
BBd

)/(f 2
Bs
BBs

) can be determined

much better. Another method to determine |Vtd/Vts| comes from the analysis of the invariant

dilepton mass distributions of B → Xd,sl
+l− decays [7]. An interesting strategy for measuring

|Vtd/Vus| was proposed in [8], which uses isospin symmetry to relate the decay K+ → π+νν̄

to the well measured decay K+ → π0lν.

In this work we propose a new method to determine the ratio |Vtd/Vub| from an analysis

of exclusive B→Mνν decays, where M means pseudoscalar π,K and vector ρ,K∗ mesons.

The inclusive B → Xqνν decay is theoretically very clean because of the absence of any long

distance effects and very small QCD corrections (∼ 3%) [1, 9], and is therefore practically

free from the scale (µ) dependence. However, in spite of such theoretical advantages, it

would be very difficult to detect this inclusive decay in experiments because the final state
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contains two missing neutrinos and (many) hadrons.

This paper is organized as follows. In Section 2 we give the necessary theoretical frame-

work to describe B →Mνν̄ decays. In Section 3 we study the ratios of branching fractions

B(B → ρνν̄)/B(B → ρlν) and B(B → πνν̄)/B(B → πlν).

We also study the q2 dependence of the differential decay rate of B → K∗νν̄, and the ratio

of the differential decay rates

dΓ(B → ρνν̄)

dq2
/
dΓ(B → K∗νν̄)

dq2
,

as well as

B(B → ρνν̄)/B(B → K∗νν̄) and B(B → πνν̄)/B(B → Kνν̄).

Section 4 is devoted to a discussion of our results and conclusion.

2 Theory of B →Mνν̄ (M = π,K, ρ,K∗) decays

In the Standard Model (SM), the process B → Mνν̄ is described at quark level by the

b → qνν̄ transition, and receives contributions from Z-penguin and box diagrams, where

dominant contributions come from intermediate top quarks. The effective Hamiltonian re-

sponsible for b → qνν̄ decays is described by only one Wilson coefficient, namely Cν
10, and

its explicit form is

Heff =
G

F
α

2π
√
2
Cν

10 (VtbV
∗
tq) qγ

µ(1− γ5)b νγµ(1− γ5)ν, (1)

where G
F
is the Fermi constant, α is the fine structure constant (at the Z mass scale), and

Vij are elements of the CKM matrix. In Eq. (1), the Wilson coefficient Cν
10 has the following

form, including O(αs) corrections:

Cν
10 =

X(xt)

sin2 θw
, (2)

where

X(xt) = X0(xt) +
αs

4π
X1(xt). (3)

In Eq. (3),

X0(xt) =
xt
8

[

xt + 2

xt − 1
+

3xt − 6

(xt − 1)2
ln(xt)

]
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is the Inami-Lim function [10], and

X1(xt) =
4x3t − 5x2t − 23xt

3(xt − 1)2
− x4t + x3t − 11x2t + xt

(xt − 1)3
ln(xt)

+
x4t − x3t − 4x2t − 8xt

2(xt − 1)3
ln2(xt) +

x3t − 4xt
(xt − 1)2

Li2(1− xt) + 8xt
∂X0(xt)

∂xt
ln(xµ),

where

Li2(1− xt) =
∫ xt

1
dt

ln(t)

1− t
,

is the Spence function, and

xt =
mt

2

m2
W

, and xµ =
µ2

m2
W

.

Here µ describes the scale dependence when leading QCD corrections are taken into account.

The term X1(xt) is calculated in Ref. [9]. The presence of only one operator in the effective

Hamiltonian makes the process b → qνν̄ very attractive, because the estimated theoretical

uncertainty is related only to the value of the Wilson coefficient Cν
10 (i.e. the uncertainty

due to the top quark mass), contrary to the b → ql+l− decay, where the uncertainties are

described by three independent Wilson coefficients, C7, C9 and C10. Another favorable

property of this decay is the absence of any long distance effects, which make the b→ ql+l−

process considerably more complicated. In spite of such theoretical advantages, in practice

the inclusive channel B → Xqνν̄ would be very difficult to detect in experiments. Only

exclusive channels, namely B →Mνν̄, may be studied experimentally.

At this point we consider the problem of computing the matrix elements of the effective

Hamiltonian (1) between B and M states. This problem is related to the non-perturbative

sector of QCD, and it can be solved only by using non-perturbative methods. The matrix

element < M |Heff |B > has been investigated through different approaches, such as chiral

perturbation theory [11], three point QCD sum rules [12], relativistic quark model by the

light front formalism [13], effective heavy quark theory [14], light-cone QCD sum rules [15]-

[17], etc.

The hadronic matrix elements for B → Pνν̄ (P is a pseudoscalar meson, π or K) decays

can be parametrized in terms of the form-factors fP
+ (q

2) and fP
− (q

2) in the following way;

< P (p2)|qγµ(1− γ5)b|B(p1) >= pµf
P
+ (q

2) + qµf
P
− (q

2), (4)

where p = p1 + p2 and q = p1 − p2. For B → V νν (V is the vector ρ or K∗ meson) decays,

the hadronic matrix element can be written in terms of five form-factors:

< V (p2, ε)|qγµ(1 − γ5)b|B(p1) >= −εµναβε∗νpα2 qβ
2V (q2)

m
B
+m

V

− i[ε∗µ(mB
+m

V
)A1(q

2)
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− (ε∗q)(p1 + p2)µ
A2(q

2)

m
B
+m

V

− qµ(ε
∗q)

2m
V

q2
(A3(q

2)−A0(q
2))] (5)

with condition

A3(q
2 = 0) = A0(q

2 = 0). (6)

Note that after using the equations of motion the form-factor A3(q
2) can be written as a

linear combination of the form-factors A1 and A2 (for more details see the first reference in

[12]):

A3(q
2) =

1

2m
V

[(m
B
+m

V
)A1(q

2)− (m
B
−m

V
)A2(q

2)]. (7)

In Eq. (5), εµ, p2 and m
V
are the polarization 4–vector, 4–momentum and mass of the

vector particle, respectively. Using Eqs. (1), (4) and (5), and after performing summation

over vector meson polarization and taking into account the number of light neutrinos Nν = 3,

we have:
dΓ

dq2
(B± → P±νν̄) =

G2
F
α2

28π5
|VtqV ∗

tb|2λ3/2(1, rP , s)m3
B
|Cν

10|2|f+
p (q

2)|2 (8)

and

dΓ

dq2
(B± → V ±νν̄) =

G2
F
α2

210π5
|VtqV ∗

tb|2λ1/2(1, rV , s)m3
B
|Cν

10|2 (9)

×
(

8λs
V 2

(1 +
√
r
V
)2

+
1

r
V

[

λ2
A2

2

(1 +
√
r
V
)2

+ (1 +
√
r
V
)2(λ+ 12r

V
s)A2

1 − 2λ(1− r
V
− s)Re(A1A2)

]

)

..

In Eqs. (8) and (9), λ(1, r
M
, s) is the usual triangle function

λ(1, r
M
, s) = 1 + r2

M
+ s2 − 2r

M
− 2s− 2r

M
s with r

M
=
m2

M

m2
B

, s =
q2

m2
B

.

Similarly, calculations for the B± → M0e±ν decay lead to the following results:

dΓ

dq2
(B± → P 0e±ν) =

G2
F

192 π3
|Vqb|2λ3/2(1, rP , s)m3

B
|f+

p (q
2)|2, (10)

and

dΓ

dq2
(B± → V 0e±ν) =

G2
F
|Vqb|2λ1/2m3

B

768π3

(

8λs
V 2

(1 +
√
r
V
)2

+
1

r
V

[

λ2
A2

2

(1 +
√
r
V
)2

+ (1 +
√
r
V
)2(λ+ 12r

V
s)A2

1 − 2λ(1− r
V
− s)Re(A1A2)

]

)

. (11)
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3 Numerical analysis

In deriving Eqs.(8)–(11), we set the masses of M+ and M0 equal and the electron mass

is neglected. Using isospin symmetry the branching ratio for B± → ρ±νν can be related

to that for B± → ρ0eν. It is clear that their ratio is independent of form-factors, i.e. free

of hadronic long–distance uncertainties in the limit mρ± = mρ0 . Corrections to the strict

isospin symmetry, which come from phase space factors due to the difference of masses of ρ±

and ρ0, isospin violation in the B → ρ form-factors and electromagnetic radiative corrections

to the b → qeν transition, are all small. In the following discussions we shall neglect these

small isospin violation effects. Also note that these corrections for K → π transition have

been calculated in [18] and found to be small, ∼ 5%.

Now we relate the branching ratio B(B± → ρ±ν̄ν) with B(B± → ρ0e±ν). From Eqs. (9)

and (11), we have
B(B± → ρ±νν)

B(B± → ρ0e±ν)
= 6

α2

4π2
|Cν

10|2
∣

∣

∣

∣

Vtd
Vub

∣

∣

∣

∣

2

. (12)

Here the numerical factor 6 comes from the number of light neutrinos, and isospin symmetry

relation between the form-factors of B± → ρ± and B± → ρ0. In Eq. (12), we also put

|Vtb| = 1. From Eq. (12), we get

∣

∣

∣

∣

Vtd
Vub

∣

∣

∣

∣

2

=
1

6C

Bexp(B
± → ρ±νν̄)

Bexp(B± → ρ0e±ν)
=

(

sin γ

sin β

)2

, (13)

where

C =
α2

4π2
|Cν

10|2 .

The second relation in (13) holds only for the CKM version of CP-violation within the SM.

From Eq. (13), we can see that measurements of the ratio of the branching fractions allow

to determine the ratio of sin γ and sin β. Up to now3, various methods for measuring each

angle separately have been proposed, e.g.., the angle β will be measured from B → J/ψKs

decay with high accuracy, and angle γ is from the charged B decay B± → DK± with larger

uncertainty. As follows from Eq. (13), one can measure the angle γ with small theoretical

uncertainty, if sin β is measured independently with high accuracy. The following relations

will also be useful for extracting the phase angle γ precisely:

B(B0 → ρ0νν̄)

B(B0 → ρ±e∓ν)
=

3

2

(

sin γ

sin β

)2

C, (14)

3 See also the recent work [19] on the simultaneous determination of sinα and sin γ from B0

d,s → K,π

decays.
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Figure 1: Differential decay width dΓ
ds
(B → K∗νν̄) as a function of the normalized momentum

transfer square, s ≡ q2/m2
B
, in units of



8.84× 10−18

(

|VtbV ∗
ts|

0.045

)2


 GeV. Dotted and dash-

dotted curves correspond to the cases when the uncertainty is added and subtracted from the

central values of all form-factors, respectively.

B(B± → π±νν̄)

B(B± → π0e±ν̄)
= 6

(

sin γ

sin β

)2

C, (15)

B(B0 → π0νν̄)

B(B0 → π±e∓ν)
=

3

2

(

sin γ

sin β

)2

C, (16)

and
B(B± → K∗±νν̄)

B(B± → ρ0e±ν)
≈ 6

∣

∣

∣

∣

Vts
Vub

∣

∣

∣

∣

2

C. (17)

In derivation (14)-(17), we assumed that the mass of charged and neutral final states mesons

are equal.

Now we consider the differential decay widths, dΓ
dq2

(B → ρ,K∗+ ν + ν̄). For the hadronic

form-factors we have used the results of the works [15]-[17], i.e. the monopole type form-

factors based on light cone QCD sum rules. The values of the form-factors at q2 = 0 are (see

also Ref. [20]):

AB→K∗

1 (0) = 0.36± 0.05,

AB→K∗

2 (0) = 0.40± 0.05,

V B→K∗

(0) = 0.55± 0.08,

AB→ρ
1 (0) = 0.30± 0.05,
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Fig.2
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Figure 2: Ratio of the differential decay rates B → ρνν̄ and B → K∗νν̄, in units of
∣

∣

∣

Vtd

Vts

∣

∣

∣

2
,

as a function of the normalized momentum transfer square, s ≡ q2/m2
B
.

AB→ρ
2 (0) = 0.325± 0.05,

V B→ρ(0) = 0.37± 0.07,

fB→K
+ (0) = 0.29± 0.05,

and fB→π
+ (0) = 0.32± 0.05. (18)

Note that all errors, which come from the uncertainties of the b quark mass, the Borel

parameter variation, wave functions, non-inclusion of higher twists and radiative corrections,

are added in quadrature.

In Fig. 1, we present the differential decay width dΓ/ds(B → K∗νν̄) as a function of the

normalized momentum transfer square, s ≡ q2/m2
B
. In Fig. 2, we show the q2 dependence

of the ratio of the differential decay rates B → ρνν̄ and B → K∗νν̄, normalized to
∣

∣

∣

Vtd

Vts

∣

∣

∣

2
. In

these figures, dotted and dash-dotted curves correspond to the cases when the uncertainty

is added and subtracted from the central values of all form-factors, respectively. For the

central solid curve we use the central values of form-factors. We note that the errors in the

differential decay width of Fig. 1 due to the form-factors uncertainties are about ∼ ±20%.

However, the errors in the ratio of Fig. 2 are reduced to about ∼ ±10%. We conclude that

even though the errors from uncertainties of the form-factors for each channel are substantial,

those in the corresponding ratio are comparatively small, and that for precise determination

of the elements of the CKM matrix the investigation of the corresponding ratio is very

suitable. We also note that the uncertainties for our main results, Eqs. (12)–(16), where we

8



only assume flavor SU(2) (isospin), should be even much smaller than that shown in Fig. 2,

since there we had to assume flavor SU(3) symmetry.

For completeness we present the integrated value for the branching fractions of B →
K∗νν̄ and B → Kνν̄ as well as the value of the ratio B(B → ρνν̄)/B(B → K∗νν̄) and

B(B → πνν̄)/B(B → Kνν̄):

B(B → K∗νν̄) = 1.7× (1± 0.16) · 10−5

∣

∣

∣

∣

VtsVtb
0.045

∣

∣

∣

∣

2

,

B(B → ρνν̄)

B(B → K∗νν̄)
= 0.52× (1± 0.1)

∣

∣

∣

∣

Vtd
Vts

∣

∣

∣

∣

2

,

B(B → Kνν̄) = 7.8× (1± 0.25) · 10−6
∣

∣

∣

∣

VtsVtb
0.045

∣

∣

∣

∣

2

,

and
B(B → πνν̄)

B(B → Kνν̄)
= 1.29× (1± 0.2)

∣

∣

∣

∣

Vtd
Vts

∣

∣

∣

∣

2

. (19)

The values of the main input parameters, which appear in the expressions for the decay

widths are

mb = (4.8± 0.1) GeV, mρ ≈ 0.77 GeV, m
K∗ = 0.892 GeV.

For the B meson life time, we take τ(Bd) = 1.56 · 10−12 sec [21].

4 Discussions and conclusions

We proposed a new method for the precise determination of
∣

∣

∣

Vtd

Vub

∣

∣

∣ from the ratios of the

branching fractions

Rρ =
B(B → ρνν̄)

B(B → ρνe)
and Rπ =

B(B → πνν̄)

B(B → πeν)
.

As is well known, each partial decay width depends very strongly on hadronic form-factors.

However, as also shown in Eqs. (9)–(13), these ratios, Rρ,Rπ, are free of any hadronic

uncertainties, if small isospin breaking effects are neglected. Measurements of Rρ,π allow

to determine
∣

∣

∣

Vtd

Vub

∣

∣

∣ with little theoretical error, which equals ( sin γ
sinβ

) for the CKM version of

CP-violation within the Standard Model. Therefore, Rρ,π measures a relation between two

different phases angles, which can be measured separately by experiments. We also found

that each exclusive channel B → (K,K∗, ρ, π)νν̄ has rather large theoretical uncertainties

due to the unknown hadronic form-factors, as shown in Fig. 1. In order to reduce these

uncertainties we have considered the ratio of the corresponding exclusive channels, e.g. (B →
ρνν̄)/(B → K∗νν̄), as shown in Fig. 2.
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A few words about experimental statistics for detecting the B → ρνν̄ decay follow:

Future symmetric and asymmetric B factories should produce much more than ∼ 109 B−B
mesons by the year 2010. With 109 B mesons effectively reconstructed, the number of

expected events for B± → ρ±νν̄ channel is

N ≡ B(B → ρνν̄)× 109 ∼ 100 (and N(B → K∗νν̄) ∼ 2× 104).

And the statistically estimated error for B → ρνν̄ decay is approximately

1√
N

≈ 1

10
= 10%.

We argue that within the next decade the decay channel B± → ρ±νν̄ has a good chance for

being detected in future B factories.

Note that the inclusive channels B → Xd,sνν̄ are also free of any theoretical uncertainties.

However, measuring inclusive channels in experiments would be very difficult because of the

two missing neutrinos and (many) hadrons. For completeness, we give here the summarized

results for the inclusive decays in the lowest order:

B(B → Xνν̄)

B(B → Xe−ν)
≈ B(B → Xsνν̄)

B(B → Xce−ν)
= 3

∣

∣

∣

∣

Vts
Vcb

∣

∣

∣

∣

2

C, (20)

B(B → Xdνν̄)

B(B → Xue−ν)
= 3

(

sin γ

sin β

)2

C,

and

B(B → Xsνν̄) ∼ 3× 10−5,

B(B → Xdνν̄) ∼ 5× 10−7.

In derivation of Eq. (20) we have neglected the charm quark mass.

Acknowledgements

One of the authors (T.M.A.) sincerely thanks Mustafa Savcı for helpful discussions and

for his assistance in numerical calculations. We thank M. Drees for careful reading of the

manuscript and his valuable comments. The work of CSK was supported in part by the CTP

of SNU, in part by the BSRI Program BSRI-97-2425, in part by Non-Directed-Research-Fund

of 1997, in part by Yonsei University Faculty Research Fund of 1997, and in part by the

KOSEF-DFG, Project No. 96-0702-01-01-2.

10



References

[1] G. Buchalla, A. Buras and M. Lautenbacher, Rev. Mod. Phys. 65 (1996) 1125.

[2] V. Barger, C.S. Kim and R.J.N. Phillips, Phys. Lett. B235, 187 (1990); ibid. B251

(1990) 629; C.S. Kim, D.S. Hwang, P. Ko and W. Namgung, Nucl. Phys. B (Proc.

Suppl.) 37A (1994) 69; Phys. Rev. D50 (1994) 5762.

[3] C.S. Kim, hep-ph/9605201 (Phys. Lett. B, in press); C.S. Kim, hep-ph/9701316, talk

given at 4th KEK Topical Conference on Flavor Physics, Tsukuba, Japan, (Oct 1996);

A.F. Falk, Z. Ligeti and M.B. Wise, Phys. Lett. B406 (1997) 225; I. Bigi, R.D. Dikeman

and N. Uraltsev, hep-ph/9706520, presented at 3rd BaBar Physics Workshop, Orsay,

France (Jun 1997); P. Ball, hep-ph/9709407, talk given at 7th International Symposium

on Heavy Flavor Physics, Santa Barbara, CA (Jul 1997).
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