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DYNAMICAL ESTIMATES ON A CLASS OF QUADRATIC

POLYNOMIAL AUTOMORPHISMS OF C3

OZCAN YAZICI

Abstract. Quadratic automorphisms of C3 are classified up to affine con-
jugacy into seven classes by Fornæss and Wu. Five of them contain irregular
maps with interesting dynamics. In this paper, we focus on the maps in
the fifth class and make some dynamical estimates for these maps.

1. Introduction

A polynomial automorphism f of Cn and its inverse f−1 define meromorphic
maps of Pn which are well-defined away from the indeterminacy set I+ (resp.
I−). An automorphism f of Cn is called regular if the indeterminacy sets I+

and I− of f and f−1 are disjoint. This assumption on the indeterminacy sets
gives a relation between the degree of f and the degree of f−1 which allows
the construction of an invariant measure. An extensive study of regular maps
can be found in [S].
The more general class of weakly regular automorphisms of Cn was studied

by Guedj and Sibony in [GS]. Roughly speaking, these are the maps for which
I+ and X+ = f({t = 0} \ I+) are disjoint where {t = 0} is the hyperplane at
infinity in Pn.
In [FW], the quadratic polynomial automorphisms of C3 are classified up

to affine conjugacy into 7 classes, 5 of which are dynamically interesting as
they are non-linear. In [CF], Coman and Fornæss studied these classes by
estimating the rates of escape of orbits to infinity and by describing the subsets
of C3 where such orbits occur. Using these estimates, they construct invariant
measures for the maps in some of the classes. The maps in 2 of these classes
are the most complicated. They have the form

H4(x, y, z) = (P (x, y) + az,Q(y) + x, y),

H5(x, y, z) = (P (x, y) + az,Q(x) + by, x),

where max{deg(P ), deg(Q)} = 2 and a 6= 0 6= b. The complication is due
to their strange behavior at infinity. They both map {t = 0} \ I+ onto I−.
For H5, the extended indeterminacy set I+∞ consists of union of two lines,
{t = x = 0} ∪ {t = y = 0} and there are two points, {[1 : 0 : 0 : 0], [0 : 1 :
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0 : 0]} = I+∞ ∩ I−, where the orbits that tend to infinity with a slow rate may
accumulate.
The dynamics of H4 is explained in detail by Coman in [C]. We focus on

the class H5 and work on the maps

H : (x, y, z) → (xy + az, x2 + by, x), ab 6= 0,

for simplicity. The iterates of H will be denoted by Hn(w) = wn = (xn, yn, zn)
where w = (x, y, z) ∈ C3. The induced map H : P3 → P3 is defined by

H [x : y : z : t] = [xy + azt : x2 + byt : xt : t2].

Then H is not (weakly) regular since I+ = {t = x = 0}, X+ = I− = {t = z =
0} and X+ ∩ I+ = [0 : 1 : 0 : 0].
The paper is organized as follows. In Section 2, we define the invariant sets

K− and U− for H−1. [CF, Lemma 6.1] implies that the orbits H−n(w) of
points in U− escape to [0 : 0 : 1 : 0] with a super-exponential rate (const)3

n

.
It was known by [CF, Lemma 6.2] that the orbits H−n(w) of points in K−

have at most exponential growth. In Proposition 2.1, we show that if the
coefficient b of H has modulus |b| > 1, then the orbits H−n(w) are bounded
for all w ∈ K−.
In Section 3, the H-invariant sets U+ and K+ = C

3 \ U+ are defined. It
was known by [CF, Proposition 6.4] that on U+, the orbits Hn(w) escape to
infinity at the super-exponential rate (const)2

n

, while on K+ the orbits escape
to infinity at a much slower rate. We give shorter proof of these facts for our
simplified map in Theorem 3.1 and Lemma 3.2. Points of K+ accumulates on
two lines at infinity, namely I+ = {t = x = 0} and {t = y = 0}. This implies
that unbounded H-orbits of points in K+ may accumulate at two different
points [1 : 0 : 0 : 0] ∪ [0 : 1 : 0 : 0] (see Theorem 3.5). This fact causes a
complicated behavior of the automorphism at infinity.
We construct an H−1 invariant current σ of bidimension (1, 1) on P

3 which
is supported on ∂K− (see Theorem 4.1). This may allow us to construct a
non trivial H−1-invariant measure in C3 by wedging with the Green’s current
T+. We note that it is impossible to construct an invariant measure by using
the Green’s currents only as in the case of regular maps since T+ ∧ T+ =
T− ∧ T− = 0 in C

3 (see Section 4).
Theorem 3.1 (iv) shows that the orbits Hn(w) of points inK+ may escape to

infinity with at most the super-exponential growth rate (const)(
√
3)n . However,

it is not clear that if there is any orbit of a point in K+ which has this sharp
growth rate. In the case of a = 0, H becomes a map of C2 and there are
some lines in K+ ⊂ C2 on which the orbits have the sharp growth rate of

(const)(
√
3)n (see Section 5).

Acknowledgments. This paper is part of the author’s Ph.D. thesis and he
is grateful to his advisor Prof. Dan Coman for his guidance and support.
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2. Dynamics of H−1

H−1 is given by

H−1(x, y, z) =

(

z,
y − z2

b
,
1

a

(

x− z
y − z2

b

))

.

We will denote the iterates of H−1 by H−n(w) = (xn, yn, zn), where w =
(x, y, z) ∈ C3. Let us define the sets

V + = {w ∈ C
3 : |z| > max{R, |x|, (1 + δ)|y|1/2}},

U− = ∪∞
n=0H

n(V +),

K− = C
3 \ U−,

where δ > 0 and R is sufficiently big. In [CF, Lemma 6.1, Lemma 6.2], it
was shown that the H−1-orbits of points in U− converge locally uniformly
on U− to [0 : 0 : 1 : 0] with super-exponential rate (const)3

n

, and for w ∈
K−, ||H−n(w)|| ≤ CnM(w) where C > 1 and M(w) > 0 depends on w
continuously. We will show that when |b| > 1, the H−1-orbits of points in K−

are actually bounded. Let’s assume that |b| = 1 + δ, δ > 0.

Proposition 2.1. (i) There exists R0 > 1 such that for all R > R0, we have
H−1(V +) ⊂ V + and if w = (x, y, z) ∈ V + then

C1|z|3 < |z1| < C2|z|3

where C1 and C2 depend on δ.
(ii) ||H−n(w)|| is bounded when w ∈ K−.

Proof. Let α > 0 be a constant satisfying α + 1
(1+δ)2

< 1 and R0 =
(

|b|
α

)
1
2
.

First we note that on V +,

|x| < |z|, |y| < |z|2
(1 + δ)2

and |z| > R > R0 =

( |b|
α

)
1
2

.(1)

It follows from (1) that on V + we have

∣

∣

∣

∣

z1 −
z3

ab

∣

∣

∣

∣

=
∣

∣

∣

x

a
− zy

ab

∣

∣

∣
<

|z|
|a| +

|z|3
(1 + δ)2|ab|

<

( |b|
|z|2 +

1

(1 + δ)2

) |z|3
|ab| ≤

(

α +
1

(1 + δ)2

) |z|3
|ab| ,

which implies the estimate in part (i).
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On V +, R < |z|, |x1| = |z| and

(1 + δ)|y1|1/2 ≤ (1 + δ)

|b|1/2 |y − z2|1/2 ≤ (1 + δ)

|b|1/2
( |z|2
(1 + δ)2

+ |z|2
)1/2

=
(1 + δ)

|b|1/2
(

1 +
1

(1 + δ)2

)1/2

|z|.

Since |z1| > C1|z|3, these estimates imply that H−1(V +) ⊂ V + when R is big
enough.
We will show part (ii) now. By definition, on K− we have that

|zn| ≤ max{R, |xn|, (1 + δ)|yn|
1
2} =: Mn

for all n ≥ 0 and |xn+1| = |zn| ≤ Mn.
Let us consider the case when |zn| ≤ 1. Then

(1 + δ)|yn+1|
1
2 ≤ (1 + δ)

( |yn|
|b| +

1

|b|

)
1
2

< (1 + δ)

(

M2
n

(1 + δ)2|b| +
1

|b|

)
1
2

=

(

M2
n

|b| +
(1 + δ)2

|b|

)
1
2

≤ Mn

(

1

|b| +
(1 + δ)2

|b|R2

)
1
2

< Mn.

When |zn| > 1

(1 + δ)|yn+1|
1
2 = (1 + δ)

∣

∣

∣

∣

xn

zn
− azn+1

zn

∣

∣

∣

∣

1
2

< (1 + δ) (Mn + |a|Mn+1)
1
2 .

We also have that |xn+1| = |zn| ≤ Mn. Hence

Mn+1 ≤ max{Mn, (1 + δ)(Mn + |a|Mn+1)
1/2}.

If the right hand side of the above inequality is equal to Mn then Mn+1 ≤ Mn

and we are done. Hence we can assume that M2
n+1 ≤ (1 + δ)2(Mn + |a|Mn+1).

Choosing R big enough we obtain that

Mn+1 <
M2

n+1 − (1 + δ)2|a|Mn+1

(1 + δ)2
< Mn.

Therefore ||Hn(w)|| is bounded for w ∈ K−. �

We now construct the Green’s function of H−1. Note that degH−n = 3n.
We let

Gn(w) =
1

3n
log+ ||H−n(w)|| and G̃n(w) =

1

3n
log+ |zn|.

The estimates in [CF, Lemma 6.1, Lemma 6.2] imply that Gn and G̃n converge
locally uniformly to the same Green’s function G−. Hence the Green’s function
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G− is pluriharmonic on U−, K− = {G− = 0} and G− ◦H−1 = 3G−. We define
the Green’s current by µ− = ddcG−. Then H∗µ− = 1

3
µ− and supp µ− = ∂K−.

3. Dynamics of H

We will denote the nth iteration of H by Hn(w) = wn = (xn, yn, zn). For
ǫ > 0 and R big enough, we define the sets

V − =

{

(x, y, z) ∈ C
3 : |xy| > max

{

R, 2|az|, |x|3/2, 1
ǫ
|y|3/2

}}

,

U+ = ∪∞
n=0H

−n(V −),(2)

K+ = C
3 \ U+.

In [CF], they showed that the orbitsHn(w) of points in U+ escape to infinity
with super-exponential growth rate (const)2

n

. For the sake of completeness,
we give a short proof of this fact for our simplified map.

Theorem 3.1. There exists ǫ > 0 and R0 > 1/ǫ10 such that for all R > R0,
we have H(V −) ⊂ V − and

|xy|
2

< |x1| <
3|xy|
2

(3)

(1− |b|ǫ2)|x|2 < |y1| < (1 + |b|ǫ2)|x|2.

Hence on U+, Hn(w) escape to infinity with the super-exponential growth
(const)2

n

.

Proof. For the points in V −, we have that |2az| < |xy|. Hence |x1 − xy| =
|az| < |xy|/2 which proves the first inequality above. On V −, |xy| > 1

ǫ
|y| 32

which implies that |y| < ǫ2|x|2. Thus

|y1 − x2| = |by| ≤ |b|ǫ2|x|2

and this implies the second inequality above. We now prove that V − is in-
variant under H . On V −, |xy| > |x| 32 which implies that |x| < |y|2. Since
ǫ2|x|3 > |xy| > R > 1/ǫ10,

|x| > 1

ǫ4
and |y| > 1

ǫ2
(4)

on V −. Using this with the first inequality in (3), we obtain that

|x1y1| > |x|3|y|1− |b|ǫ2
2

= 2|a||z1||x|2|y|
1− |b|ǫ2
4|a|

≥ 2|a||z1|
1− |b|ǫ2
ǫ104|a| > 2|az1|.
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(3) and (4) with the inequality |y| < ǫ2|x|2 imply that

max

{

|x1|
3
2 ,
1

ǫ
|y1|

3
2

}

≤ max

{

(

3|xy|
2

)
3
2

,
1

ǫ

(

1 + |b|ǫ2
)

3
2 |x|3

}

≤ max

{

ǫ

(

3

2

)3/2

|x|5/2|y|, 1
ǫ
(1 + |b|ǫ2)3/2|x|3

}

≤ |x|3|y|max

{

ǫ3
(

3

2

)3/2

, ǫ
(

1 + |b|ǫ2
)

3
2

}

≤ |x|3|y|1− |b|ǫ2
2

< |x1y1|.

Thus H(V −) ⊂ V −. �

We now discuss the dynamics of H on K+. Let

Mn = Mn(w) := max

{

R, 2|azn|, |xn|3/2,
1

ǫ
|yn|3/2

}

.(5)

Lemma 3.2. On K+, if R is sufficiently large, then we have
(i) |xn| ≤ 3Mn−1

2
,

(ii) Mn ≤ max{(3Mn−1

2
)
3
2 , 1

ǫ
|yn|

3
2},

(iii) Mn ≤ Cmax{M
3
2
n−1, |xn−1|3} for some constant C,

(iv) Mn ≤ M̃(w)(
√
3)n for some continuous function M̃(w). Hence ||Hn(w)|| ≤

C(w)(
√
3)n where C(w) is a continuous function of w.

Proof. (i) Note that on K+, |xnyn| ≤ Mn for all n ≥ 0. It follows from the
definition of map H and the set Mn that

|xn| ≤ |xn−1yn−1|+ |azn−1| ≤ Mn−1 +
Mn−1

2
=

3Mn−1

2
.

(ii) The inequality |zn| = |xn−1| ≤ M
2
3
n−1 with the estimate in (i) implies

that

Mn ≤ max

{

Mn−1, 2|a|M
2
3
n−1,

(

3Mn−1

2

)
3
2

,
1

ǫ
|yn|

3
2

}

= max

{

(

3Mn−1

2

)
3
2

,
1

ǫ
|yn|

3
2

}

.

(iii) By definition of yn

|yn|
3
2 ≤ (|xn−1|2 + |b||yn−1|)

3
2

≤ 2
3
2 max

{

|xn−1|3, |b|
3
2 |yn−1|

3
2

}

.

Then
1

ǫ
|yn|

3
2 ≤ 2

3
2 max

{

1

ǫ
|xn−1|3, |b|

3
2 |Mn−1|

}

.

This estimate with (ii) proves (iii).
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(iv) Since H is a degree two polynomial map, Mn−1 ≤ CM2
n−2 for some

constant C . So by (i) and (iii) we obtain that

Mn ≤ Cmax

{

M3
n−2,

(

3Mn−2

2

)3
}

= C̃M3
n−2.

Hence if n is even then Mn ≤ C̃M3
n−2 ≤ ... ≤ (C̃M0)

(
√
3)n . If n is odd then

Mn ≤ (C̃M1)
3
n−1
2 ≤ ((C̃M1)

2)(
√
3)n . Thus Mn ≤ M̃(w)(

√
3)n where M̃(w) =

max{C̃M0, (C̃M1)
2}.

�

We now define the Green’s function G+ of H by

G+(w) = lim
n→∞

1

2n
log+ ||Hn(w)|| = lim

n→∞

1

2n
log+ |xn| = lim

n→∞

1

2n
log+ |yn|.

Theorem 3.3. [CF] The above limits exist and are equal. G+ is a continuous
psh function in C3 and it is pluriharmonic on U+. Moreover, K+ = {G+ = 0}
and G+ ◦H = 2G+.

The Green’s current of H is defined by µ+ = ddcG+. Then H∗µ+ = 2µ+ and
supp µ+ = ∂K+. Let us consider the induced map H on P3 and the Fubini-
Study form ω on P3. For a more general class of automorphisms, Sibony ([S,
Theorem 1.6.1]) showed that 1

2n
(Hn)∗ω converges to a closed positive current

T+ of bidegree (1, 1) which satisfies H∗T+ = 2T+ on P3. Moreover, by [S,
Theorem 1.8.1], T+ does not charge the hyperplane at infinity and T+|C3 = µ+

has mass one in C3.
Unlike the regular automorphisms (see [S] for regular automorphisms), or-

bits of points inK+ may escape to infinity. For example, H(0, y, 0) = (0, bny, 0) →
[0 : 1 : 0 : 0] if |b| > 1. By Lemma 3.2 (iv), any such orbit may escape

to infinity with a smaller super-exponential rate (const)(
√
3)n . We will show

that unbounded orbits of points in K+ may accumulate only at two points,
P = [0 : 1 : 0 : 0] and Q = [1 : 0 : 0 : 0]. First we show that points in K+

accumulate at infinity on the set I+∞ = I+ ∪ {t = y = 0}.
Theorem 3.4. K+ = K+ ∪ I∞

Proof. Since

V −c =

{

[x : y : z : t] ∈ P
3 : |xy| ≤ max

{

R|t2|, 2|azt|, |x| 32 |t| 12 , 1
ǫ
|y| 32 |t| 12

}}

we have that

V −c = V −c ∪ {x = t = 0} ∪ {y = t = 0} = V −c ∪ I∞.

Then

K+ ⊂ V −c ⊂ V −c ∪ I+∞

which implies that K+ ⊂ K+ ∪ I+∞.
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Let H̃ be a homogeneous representation of the extension of H to P3 so that
||H̃(w)|| ≤ ||w||2 and T+ be the Green’s current of H in P3. By [S, Theorem
1.6.1], we have on C

4,

1

2n
log ||H̃n(w)|| ց G̃(w) and π∗T+ = ddcG̃,

where π : C4 \ {0} → P3 is the canonical map. Note that for any p ∈ I+∞,
there exists a p̃ ∈ C4 \ {0} such that H̃2(p̃) = 0 and p = π(p̃). Since G̃(w) ≤
1
4
log ||H̃2(w)||, by comparison theorem for Lelong numbers (see [D]) we have

that

ν(G̃, p̃) ≥ ν

(

1

4
log ||H̃2||, p̃

)

> 0.

Hence p̃ ∈ supp π∗T+ ⊂ π−1(supp T+), that is, p ∈ supp T+. [CF, Theorem
6.5] implies that supp T+ ⊂ ∂K+, hence I+∞ ⊂ ∂K+. �

We should note that the above result is true for weakly regular maps by
[GS, Theorem 2.2] with I+∞ replaced by I+. So Theorem 3.4 is of interest since
the similar result holds for maps which are not weakly regular.

Theorem 3.5. Unbounded orbits of points in K+ under H can only cluster
at I+∞ ∩ I− = {[1 : 0 : 0 : 0], [0 : 1 : 0 : 0]}.
Proof. Since K+ is invariant under H , Theorem 3.4 implies that an unbounded
orbit can only cluster on I+∞. Let w ∈ K+ and wni

= Hni(w) → w0. If
w0 /∈ I−, then wni−1 = Hni−1(w) = H−1(wni

) → H−1(w0) = X−. Since
H−1 is weakly regular Hni−1(w) avoids a neighborhood of I− = I−∞. Thus
H−(ni−1) is well-defined. Since H−1 is weakly regular X− is H−1 attracting.
So H−(ni−1)Hni−1(w) = w → X−. This contradicts the fact that w is a fixed
point in Ck. Thus w0 ∈ I+∞ ∩ I− = {[1 : 0 : 0 : 0], [0 : 1 : 0 : 0]}. �

4. Invariant Measures

For regular automorphisms of Cn, Sibony ([S, Theorem 2.5.2]) constructed
an invariant probability measure µ = T+

l ∧ T−
n−l where dim I− = l − 1. It

is impossible to construct an invariant measure for H and H−1 by using the
powers of the Green’s currents since µ+ ∧ µ+ = µ− ∧ µ− = 0 in C3. Indeed,

µǫ = ddcmax{G+, ǫ} ∧ µ+ → µ+ ∧ µ+

as ǫ → 0. We note that K+ = {G+ = 0} and supp µǫ ⊂ ∂K+. Let w ∈
∂K+ and B be a neighborhood of w in C3 such that G+ < ǫ in B. Hence
max{G+, ǫ} = ǫ and µǫ = 0 on B. Thus µǫ = 0 = µ+ ∧ µ+ in C3.
When f−1 is weakly regular and I− is f -attracting, by [GS, Theorem 3.1],

there is an invariant current σs of bidimension (s, s) where the dim X− = s−1.
Then the wedge product µ := σs ∧ T s

− is an f -invariant measure. It is well-

defined since G− is locally bounded near K+.
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In our case, H−1 is weakly regular. If |b| > 1, then I− is H−attracting and
the construction of invariant measure as in [GS] works for H . However, when
|b| ≤ 1, I− is not H−attracting and their construction does not work.
Since H−1 is weakly regular, X− = [0 : 0 : 1 : 0] is an attracting point for

H−1. Using this fact with the estimates on K− and some ideas from [GS], we
construct an H−1− invariant current of bidimension (1, 1) which is supported
on ∂K−.

Theorem 4.1. There is a closed positive current σ of bidimension (1, 1) on
P
3 such that (H−1)∗σ = 2σ and supp σ ⊂ ∂K−.

Proof. Let ω be the standard Kähler form in P3 and ω|C3 be the restriction of
ω to C3. We define

RN =
1

N

N
∑

n=1

(H−n)∗ω2|C3

2n
.

We still denote by RN the trivial extension to P3. Then

||RN || =

∫

P3

1

N

N
∑

n=1

(H−n)∗ω2

2n
∧ ω =

∫

C3

1

N

N
∑

n=1

(H−n)∗ω2

2n
∧ ω

=

∫

C3

1

N

N
∑

n=1

(Hn)∗ω

2n
∧ ω2 =

∫

P3

1

N

N
∑

n=1

(Hn)∗ω

2n
∧ ω2 = 1.

Therefore there is a subsequence RNj
which converges to a current σ in the

sense of currents. Since ||RNj
|| = 1, σ has mass 1 in P3 and it is invariant

under the pullback by H|−1
C3 . Indeed,

(H−1)∗RNj
=

2

Nj

Nj
∑

n=1

(H−(n+1))∗ω2

2n+1

=
2

Nj

(

NjRNj
− (H−1)∗ω2

2
+

(H−(Nj+1))∗ω2

2Nj+1

)

→ 2σ,

as || (H
−(Nj+1))∗ω2

2Nj+1 || = 1. On the other hand (H−1)∗ is continuous on currents in

C3. Thus (H−1)∗σ = 2σ on C3.
We first prove that supp σ ⊂ K−. By [GS, Theorem 2.2],

K− = K− ∪ I−.

Let X− = ∩∞
j=1Uj where Uj ’s are decreasing open sets in P3 and ǫ > 0. Since

dim(X−) = 0 and T+ is a current of bidimension (2, 2), T+ ∧ ω2(X−) = 0.
Hence there is a UJ such that T+ ∧ ω2(UJ) < ǫ. Let B ⊂ P

3 \ K− be a ball.
Since H−1 is weakly regular, X− is attracting, with basin U− in C3. Thus
there exists M > 0 such that H−n(B) ⊂ UJ for all n ≥ M. By [S, Theorem



10 OZCAN YAZICI

1.6.1],

(Hn)∗(ω)

2n
→ T+ and

1

N

N
∑

n=1

(Hn)∗(ω)

2n
→ T+.

Also the subsequence

TNj
: =

1

Nj

Nj
∑

n=M

(Hn)∗(ω)

2n

=
1

Nj





Nj
∑

n=1

(Hn)∗(ω)

2n
−

M−1
∑

n=1

(Hn)∗(ω)

2n



 → T+

as Nj → ∞. Hence TNj
∧ ω2 → T+ ∧ ω2 as measures and

lim sup
Nj→∞

TNj
∧ ω2(UJ) ≤ T+ ∧ ω2(UJ ) < ǫ.

This implies that TNj
∧ ω2(UJ) ≤ ǫ for all Nj > N for some N > 0. Since RNj

does not charge the hyperplane at infinity, we have that

∫

B

RNj
∧ ω =

∫

B∩C3

1

Nj

Nj
∑

n=1

(H−n)∗ω2

2n
∧ ω

=
1

Nj

Nj
∑

n=1

∫

H−n(B∩C3)

(Hn)∗(ω)

2n
∧ ω2

≤ 1

Nj





M−1
∑

n=1

∫

H−n(B∩C3)

(Hn)∗(ω)

2n
∧ ω2 +

Nj
∑

n=M

∫

UJ

(Hn)∗(ω)

2n
∧ ω2





≤ M − 1

Nj
+

∫

UJ

TNj
∧ ω2 ≤ 2ǫ,

if Nj is big enough. This shows that σ ∧ ω(B) = 0.

Now we will show that σ has no mass in the interior of K−. Let U ⊂⊂
int K−. Since K− = K−∪I−∞, U is actually contained in K−. By [CF, Lemma
6.3], there is C > 1 such that ||H−n(z)|| ≤ Cn for all z ∈ U and n > 0. In C3,

RNj
=

1

Nj

Nj
∑

n=1

(

(H−n)∗ω

(
√
2)n

)2

≤





1

N
1
2
j

Nj
∑

n=1

(H−n)∗ω

(
√
2)n





2

= (ddcGNj
)2
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where GNj
(z) := 1

N
1
2
j

∑Nj

n=1
log(1+||H−n(z)||2)

1
2

(
√
2)n

.

On U ,

0 ≤ GNj
≤ 1

N
1/2
j

Nj
∑

n=1

n logC

(
√
2)n

.

Thus GNj
converges to 0 locally uniformly on int K− and hence

RNj
≤ (ddcGNj

)2 → 0,

which implies that σ has no mass on int K−. Thus supp σ ⊂ ∂K−.
�

5. A Two Dimensional Model

We will consider the case a = 0. Then H becomes a map of C2,

H(x, y) = (xy, x2 + by).

We note that H is not an automorphism anymore. It determines a map H :
P2 → P2 by H([x : y : t]) = [xy : x2 + byt : t2]. The indeterminacy point
is I = [0 : 1 : 0]. The sets K+ and U+ are defined as in (2) without the z
coordinate. Then all the estimates for the map in C3 in Sections 3 hold for
the reduced map in C2.
In the following examples, when b4 = 1, we have some lines which are

contained in K+ and invariant under the second iterate H2 of H . If w lies on
these lines then Hn(w) ≈ C(w)(

√
3)n , so the maximal growth on K+ given by

the estimates from Section 3 does occur.

Example 5.1. The second iterate of H is

H2(x, y) = H(xy, x2 + by) = (xy(x2 + by), x2(y2 + b) + b2y),

so x2 = xy(x2 + by) and y2 = x2(y2 + b) + b2y.
If b4 = 1 and y2 = −b then y22 = b4y2 = −b5 = −b. We have four choices for

b.
Case 1. If b = 1 then H2(x, y) = (x3y + xy2, x2(y2 + 1) + y). Hence
H2(x, i) = (ix3 − x, i) and H2(x,−i) = (−ix3 − x,−i). So the lines {y = i}
and {y = −i} are invariant under H2.
Case 2. If b = −1 then H2(x, y) = (x3y − xy2, x2(y2 − 1) + y). Hence
H2(x, 1) = (x3 − x, 1) and H2(x,−1) = (−x3 − x,−1). So the lines {y = 1}
and {y = −1} are invariant under H2.
Case 3. If b = i then H2(x, y) = (x3y + ixy2, x2(y2 + i) − y). Hence

H2(x, e
3πi
4 ) = (e

3πi
4 x3 + x,−e

3πi
4 ) and H2(x,−e

3πi
4 ) = (−e

3πi
4 x3 + x, e

3πi
4 ).

Case 4. If b = −i then H2(x, y) = (x3y − ixy2, x2(y2 − i) − y). Hence

H2(x, e
πi
4 ) = (e

πi
4 x3 + x,−e

πi
4 ) and H2(x,−e

πi
4 ) = (−e

πi
4 x3 + x, e

πi
4 ).

In all of the cases above, since b4 = 1 and y2 = −b, we have

H2(x,
√
−b) = (x3

√
−b− b2x, b2

√
−b).
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Thus |y2n| = 1, |x2n| ≈ |x|3n , |x2n+1| = |x2ny2n| ≈ |x|3n and |y2n+1| = |x2
2n +

by2n| ≈ |x|2·3n for all n ≥ 0. Hence Hn(w) ≈ C(w)(
√
3)n if w is contained in

these lines.
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