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Abstract

Taking into account the Λ baryon distribution amplitudes and the most general

form of the interpolating current of the Λb, the semileptonic Λb → Λℓ+ℓ− transition

is investigated in the framework of the light cone QCD sum rules. Sum rules for

all twelve form factors responsible for the Λb → Λℓ+ℓ− decay are constructed. The

obtained results for the form factors are used to compute the branching fraction. A

comparison of the obtained results with the existing predictions of the heavy quark

effective theory is presented. The results of the branching ratio shows the detectability

of this channel at the LHCb in the near future is quite high.
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1 Introduction

Experimentally, the detection and isolation of the heavy baryons is simple comparing to the
light systems since having the heavy quark makes their beam narrow. In the recent years,
considerable experimental progress has been made in the identification and spectroscopy
of the heavy baryons containing a heavy bottom or charm quark [1–8]. These evidences
can be considered as a good signal to search also the decay channels of the heavy baryons
like, Λb → Λℓ+ℓ− at LHCb. This rare channel, induced by the flavor changing neutral
currents (FCNC) of b→ s transition, serves testing ground for the standard model at loop
level and is very sensitive to the new physics effects [9], such as supersymmetric particles
[10], light dark matter [11] and also fourth generation of the quarks and extra dimensions,
etc. Moreover, this channel can be inspected as a useful tool in exact determination of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements, Vtb and Vts, CP and T violations,
polarization asymmetries.

Theoretically, there are some works devoted to the analysis of the heavy baryon decays,
where practically in all of them the predictions of the heavy quark effective theory (HQET)
for form factors have been used. Transition form factors of the Λb → Λc and Λc → Λ decays
have been studied in three points QCD sum rules in [12], the Λb → plν transition form
factors have also been calculated via three point QCD sum rules in the context of the heavy
quark effective theory (HQET) in [13] and in the framework of the SU(3) symmetry and
HQET in [14]. In the present work, using the most general form of the interpolating current
for the Λb and also the distribution amplitudes of Λ baryon, all form factors related to the
electroweak penguin and weak box diagrams describing the Λb → Λℓ+ℓ− are calculated in
the frame work of the light cone QCD sum rules in full theory. The obtained results for
the form factors are used to estimate the decay rate and branching ratio. Regard that this
transition has been investigated in [15] and [16] also in the context of the HQET but the
same frame work using the distribution amplitudes of the Λ and Λb, respectively. Moreover,
form factors, branching ratio and di–lepton forward–backward asymmetries are studied in
[17–19] also within the context of the HQET. In [20–22], Σb,c and Λb,c to nucleon transitions
are also evaluated using the nucleon wave functions in light cone QCD sum rules approach.

The plan of the paper is as follows: in section II, the light cone QCD sum rules for the
form factors are obtained using the Λ DA’s. The HQET relations among all form factors
are also discussed in this section. Section III is dedicated to the numerical analysis of the
sum rules for the form factors as well as numerical results of the decay rate and branching
ratio.

2 Theoretical Framework

The Λb → Λℓ+ℓ− channel proceeds via FCNC b→ s transition at quark level. The effective
Hamiltonian describing the electroweak penguin and weak box diagrams related to this
transition can be written as :

Heff =
GF αemVtb V

∗

ts

2
√
2 π

{

Ceff
9 s̄γµ(1− γ5)bl̄γ

µl + C10 s̄γµ(1− γ5)bl̄γ
µγ5l

1



− 2mb C7

1

q2
s̄iσµνq

ν(1 + γ5)bl̄γ
µl

}

. (1)

To find the amplitude, we need to sandwich this effective Hamiltonian between the initial
and final baryon states, i.e., 〈Λb(p+ q)|Heff |Λ(p)〉. From Eq. (1) we see that in calculation
of the Λb → Λℓ+ℓ− decay amplitude, the matrix elements, 〈Λb(p+q)|b̄γµ(1−γ5)s|Λ(p)〉 and
〈Λb(p+q)|b̄iσµνqν(1+γ5)s|Λ(p)〉 are appeared. These matrix elements can be parametrized
in terms of the twelve form factors, fi, gi, f

T
i and gTi in the following manner:

〈Λ(p) | s̄γµ(1− γ5)b | Λb(p+ q)〉 = ūΛ(p)
[

γµf1(Q
2) + iσµνq

νf2(Q
2) + qµf3(Q

2)

− γµγ5g1(Q
2)− iσµνγ5q

νg2(Q
2)− qµγ5g3(Q

2)
]

uΛb
(p+ q) , (2)

and

〈Λ(p) | s̄iσµνqν(1 + γ5)b | Λb(p+ q)〉 = ūΛ(p)
[

γµf
T
1 (Q

2) + iσµνq
νfT

2 (Q
2) + qµfT

3 (Q
2)

+ γµγ5g
T
1 (Q

2) + iσµνγ5q
νgT2 (Q

2) + qµγ5g
T
3 (Q

2)
]

uΛb
(p+ q) , (3)

where Q2 = −q2. For calculation of these form factors we use the QCD sum rules approach.
To obtain the sum rules for the form factors in this approach, the following correlation
functions, the main objects in this approach, are considered:

ΠI
µ(p, q) = i

∫

d4xe−iqx〈0 | T{JΛb(0), b̄(x)γµ(1− γ5)s(x))} | Λ(p)〉 ,

ΠII
µ (p, q) = i

∫

d4xe−iqx〈0 | T{JΛb(0), b̄(x)iσµνq
ν(1 + γ5)s(x)} | Λ(p)〉 , (4)

where, p represents the Λ’s momentum and q is the transferred momentum and the JΛb

is interpolating current of Λb. The most general form of the interpolating current of Λb

baryon can be written as:

JΛb(x) =
1√
6
ǫabc

{

2
[

(qaT1 (x)Cqb2(x))γ5b
c(x) + β(qaT1 (x)Cγ5q

b
2(x))b

c(x)
]

+ (qaT1 (x)Cbb(x))γ5q
c
2(x) + β(qaT1 (x)Cγ5b

b(x))qc2(x)

+ (baT (x)Cqb2(x))γ5q
c
1(x) + β(baT (x)Cγ5q

b
2(x))q

c
1(x)

}

, (5)

where q1 and q2 are the u and d quarks, respectively, a, b and c are color indexes and C is the
charge conjugation operator. The β is an arbitrary parameter with β = −1 corresponding
to the Ioffe current.

In order to obtain the sum rules for the transition form factors, we will calculate the
aforementioned correlation functions in two different ways, namely, physical (phenomeno-
logical) and theoretical (QCD) sides and equate these two representations isolating the
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ground state through the dispersion relation. Finally, to suppress the contribution of the
higher states and continuum, we will apply the Borel transformation and continuum sub-
traction to both sides of the correlation function and impose the quark hadron duality
assumption.

The first step is to calculate the physical side of the correlation functions. Saturating the
correlation functions with complete set of the intermediate states with the same quantum
numbers as the initial state, for the physical part of the correlation function we obtain,

ΠI
µ(p, q) =

∑

s

〈0 | JΛb(0) | Λb(p+ q, s)〉〈Λb(p+ q, s) | b̄γµ(1− γ5)s | Λ(p)〉
m2

Λb
− (p + q)2

+ · · · , (6)

ΠII
µ (p, q) =

∑

s

〈0 | JΛb(0) | Λb(p+ q, s)〉〈Λb(p+ q, s) | b̄iσµνqν(1 + γ5)s | Λ(p)〉
m2

Λb
− (p+ q)2

+ · · · , (7)

where the dots · · · represent the contribution of the higher states and continuum. The
vacuum to the baryon matrix element of the interpolating current, 〈0 | JΛb(0) | Λb(p+q, s)〉
is written in terms of the residue, λΛb

as:

〈0 | JΛb(0) | Λb(p+ q, s)〉 = λΛQ
ūΛQ

(p+ q, s) . (8)

Putting Eqs. (2), (3) and (8) in Eqs. (6) and (7) and performing summation over spins of
the Λb baryon using

∑

s

uΛb
(p+ q, s)uΛb

(p+ q, s) = 6p+ 6q +mΛb
, (9)

we get the following expressions for the correlation functions

ΠI
µ(p, q) = λΛb

6p+ 6q +mΛb

m2
Λb

− (p+ q)2

{

γµf1 − iσµνq
νf2 + qµf3

− γµγ5g1 − iσµνq
νγ5g2 + qµγ5g3

}

uΛ(p) , (10)

ΠII
µ (p, q) = λΛb

6p+ 6q +mΛb

m2
Λb

− (p+ q)2

{

γµf
T
1 − iσµνq

νfT
2 + qµfT

3

+ γµγ5g
T
1 + iσµνγ5q

νgT2 − qµγ5g
T
3

}

uΛ(p) . (11)

Using the equation of motion and Eqs. (10) and (11), we get the following final expressions
for the phenomenological sides of the correlation functions:

ΠI
µ(p, q) =

λΛb

m2
Λb

− (p + q)2

{

2f1(Q
2)pµ + 2f2(Q

2)pµ 6q +
[

f2(Q
2) + f3(Q

2)
]

qµ 6q

− 2g1(Q
2)pµγ5 + 2g2(Q

2)pµ 6qγ5 +
[

g2(Q
2) + g3(Q

2)
]

qµ 6qγ5

+ other structures
}

uΛ(p) , (12)

3



ΠII
µ (p, q) =

λΛb

m2
Λb

− (p + q)2

{

2fT
1 (Q

2)pµ + 2fT
2 (Q

2)pµ 6q +
[

fT
2 (Q

2) + fT
3 (Q

2)
]

qµ 6q

+ 2gT1 (Q
2)pµγ5 − 2gT2 (Q

2)pµ 6qγ5 −
[

gT2 (Q
2) + gT3 (Q

2)
]

qµ 6qγ5

+ other structures
}

uΛ(p) . (13)

To compute the form factors or their combinations, f1, f2, f2 + f3, g1, g2 and g2 + g3,
we will choose the independent structures pµ, pµ/q, qµ/q, pµγ5, pµ/qγ5, and qµ/qγ5 from Eq.
(12), respectively. The same structures are selected to calculate the form factors or their
combinations labeled by T in the second correlation function, Eq. (13).

The next step is to calculate the correlation functions from QCD side in deep Euclidean
region where (p + q)2 ≪ 0. For this aim, we expend the time ordering products of the
interpolating current of the Λb and transition currents in the correlation functions (see
Eq. (4)) near the light cone, x2 ≃ 0 via operator product expansion, where the short
and long distance effects are separated. The former is calculated using QCD perturbation
theory, whereas the latter are parameterized in terms of the Λ DA’s. Mathematically, this
is equivalent to contract out all quark pairs in the time ordering product of the JΛb and
transition currents via the Wick’s theorem. As a result of this procedure, we obtain the
following representations of the correlation functions in QCD side:

ΠI
µ =

−i√
6
ǫabc

∫

d4xeiqx
{[

2(C)ηφ(γ5)ρβ + (C)ηβ(γ5)ρφ + (C)βφ(γ5)ηρ

]

+ β
[

2(Cγ5)ηφ(I)ρβ + (Cγ5)ηβ(I)ρφ + (Cγ5)βφ(I)ηρ

]}[

γµ(1− γ5)
]

σθ

× Sb(−x)βσ〈0|uaη(0)sbθ(x)dcφ(0)|Λ(p)〉 , (14)

ΠII
µ =

−i√
6
ǫabc

∫

d4xeiqx
{[

2(C)ηφ(γ5)ρβ + (C)ηβ(γ5)ρφ + (C)βφ(γ5)ηρ

]

+ β
[

2(Cγ5)ηφ(I)ρβ + (Cγ5)ηβ(I)ρφ + (Cγ5)βφ(I)ηρ

]}[

iqνσµν(1 + γ5)
]

σθ

× Sb(−x)βσ〈0|uaη(0)sbθ(x)dcφ(0)|Λ(p)〉 , (15)

The heavy quark propagator, Sb(x) is calculated in [23]:

Sb(x) = Sfree
b (x)− igs

∫

d4k

(2π)4
e−ikx

∫ 1

0

dv

[ 6k +mQ

(m2
Q − k2)2

Gµν(vx)σµν

+
1

m2
Q − k2

vxµG
µνγν

]

. (16)

where,

Sfree
b =

m2
b

4π2

K1(mb

√
−x2)√

−x2
− i

m2
b 6x

4π2x2
K2(mb

√
−x2) , (17)

4



and Ki are the Bessel functions. The terms proportional to the gluon field strength are
contributed mainly to the four and five particle distribution functions [23–27] and expected
to be very small in our case, hence when doing calculations, these terms are ignored. The
matrix element ǫabc〈0|uaη(0)dbθ(0)scφ(x)|Λ(p)〉 appearing in Eqs. (14,15) represents the Λ’s
wave functions, which are calculated in [27] and we list them out for the completeness of
this paper in the Appendix. Using the Λ wave functions and the expression of the heavy
quark propagator, and after performing the Fourier transformation, the final expressions
of the correlation functions for both vertexes are found in terms of the Λ DA’s in QCD or
theoretical side.

In order to obtain the sum rules for the form factors, f1, f2, f3, g1, g2, g3, f
T
1 , f

T
2 , f

T
3 ,

gT1 , g
T
2 and gT3 , we equate the coefficients of the corresponding structures from both sides of

the correlation functions through the dispersion relations and apply Borel transformation
with respect to (p + q)2 to suppress the contribution of the higher states and continuum.
The expressions for the sum rules of the form factors are very lengthy, so we will give only
extrapolation formulas to explore their dependency on the transferred momentum squared
q2.

The explicit expressions of the sum rules for the form factors depict that to calculate
the values of the form factors, we need also the expression of the residue, λΛb

. This residue
is calculated in [28].

Few words about the relations among the form factors in HQET are in order. In HQET,
the number of independent form factors is reduced to two, F1 and F2, so the transition
matrix element can be parameterized in terms of these two form factors as [28, 29]:

〈Λ(p) | s̄Γb | Λb(p+ q)〉 = ūΛ(p)[F1(Q
2)+ 6vF2(Q

2)]ΓuΛb
(p+ q), (18)

Here, Γ refers to any Dirac matrices and 6v = ( 6p+ 6q)/mΛb
. Comparing this matrix element

with definitions of the form factors in Eqs. (2) and (3), the following relations among the
form factors are obtained (see also [30, 31]):

f1 = g1 = fT
2 = gT2 = F1 +

mΛ

mΛb

F2 ,

f2 = g2 = f3 = g3 =
F2

mΛb

,

fT
1 = gT1 =

F2

mΛb

q2 ,

fT
3 = − F2

mΛb

(mΛb
−mΛ) ,

gT3 =
F2

mΛb

(mΛb
+mΛ) . (19)

3 Numerical Analysis

This section is devoted to the numerical analysis of the form factors, their extrapolation
in terms of the momentum transferred square and calculation of the total decay rate and
branching ratio for rare Λb → Λℓ+ℓ− transition in QCD.
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Some input parameters used in the numerical calculations are: 〈ūu〉(1GeV ) = 〈d̄d〉(1GeV ) =
−(0.243±0.01)3 GeV 3, m2

0(1 GeV ) = (0.8±0.2) GeV 2 [32], mΛ = (1115.683±0.006)MeV ,
mΛb

= (5620.2± 1.6) MeV and mb = (4.7± 0.1) GeV . Sum rules for the form factors de-
pict that the Λ DA’s are the main input parameters (see the Appendix). They contain 4
independent parameters which are given as [27]:

fΛ = (6.0± 0.3)× 10−3 GeV2 , λ1 = (1.0± 0.3)× 10−2 GeV2 ,

|λ2| = (0.83± 0.05)× 10−2 GeV2 , |λ3| = (0.83± 0.05)× 10−2 GeV2 . (20)

It is well known that, the Wilson coefficient Ceff
9 receives long distance contributions

from J/ψ family, in addition to short distance contributions. In the present work, we do
not take into account the long distance effects. From the explicit expressions for the form
factors, it is clear that they depend on three auxiliary parameters, continuum threshold
s0, Borel mass parameter M2

B and the parameter β entering the most general form of the
interpolating current of the Λb. The form factors should be independent of these auxiliary
parameters. Therefore, we look for working regions for these parameters, where the form
factors are practically independent of them. To determine the working region for the Borel
mass parameter the procedure is as follows: the lower limit is obtained requiring that the
higher states and continuum contributions constitute a small percent of the total dispersion
integral. The upper limit of M2

B is chosen demanding that the series of the light cone
expansion with increasing twist should be convergent. As a result, the common working
region of M2

B is found to be 15 GeV 2 ≤ M2
B ≤ 30 GeV 2. As an example, we present the

dependence of the form factor f1 on Borel mass parameter, M2
B at two fixed values of q2

in Fig. 1. From this figure it follows that the form factor f1 exhibits a good stability with
respect to the variations ofM2

B. The continuum threshold s0 is correlated to the first exited
state with quantum numbers of the interpolating current of the Λb and is not completely
arbitrary. Numerical analysis leads to the interval, (mΛb

+0.3)2 ≤ s0 ≤ (mΛb
+0.5)2, where

the form factors weakly depend on the continuum threshold. In order to attain the working
region for the parameter, β, we look for the variation of the form factors with respect to
cos θ, where β = tanθ. After performing numerical calculations, we obtained that in the
interval −0.6 ≤ cos θ ≤ 0.3 all form factors weakly depend on β. As an example, we
show the dependence of the form factor, f1 on cos θ at two fixed values of the q2 and at
M2

B = 22 GeV 2 in Fig. 2 . From this figure indeed we see that in the aforementioned region
of cos θ, the form factor f1 weakly depends on β.

The analysis of the sum rules, as has already been explained above, is based on, so
called, the standard procedure, i.e., the continuum threshold s0 is independent of M2

B and
q2. However, in [33], instead of the standard procedure, namely, independence of the s0
from M2

B and q2, it is assumed that the continuum threshold depends on M2
B and q2 and

this leads to large realistic errors. Following [33], in the present work the systematic error
is taken to be around 15%.

In calculating the branching ratio of the Λb → Λℓ+ℓ− decay, the dependence of the form
factors fi(q

2), gi(q
2), fT

i (q
2), and gTi (q

2) on q2 in the physical region 4m2
ℓ ≤ q2 ≤ (mΛb

−mΛ)
2

are needed. But unfortunately, sum rules predictions for the form factors are not reliable
in the whole physical region. Therefore, in order to obtain the q2 dependence of the form
factors from sum rules we consider a range of q2 where the correlation function can reliably
be calculated. For this aim we choose a region which is approximately 1 GeV below the

6



QCD sum rules

a b m2
fit

f1 −0.046 0.368 39.10

f2 0.0046 −0.017 26.37

f3 0.006 −0.021 22.99

g1 −0.220 0.538 48.70

g2 0.005 −0.018 26.93

g3 0.035 −0.050 24.26

fT
2 −0.131 0.426 45.70

fT
3 −0.046 0.102 28.31

gT2 −0.369 0.664 59.37

gT3 −0.026 −0.075 23.73

Table 1: Parameters appearing in the fit function of the form factors, f1, f2, f3, g1, g2, g3,
fT
2 , f

T
3 , g

T
2 and gT3 in full theory for Λb → Λℓ+ℓ−. In this Table only central values of the

parameters are presented.

perturbative cut, i.e., up to q2 ≃ 12 GeV 2. To be able to extend the results for the form
factors to the whole physical region, we look for a parameterization of the form factors in
such a way that, in the region 4m2

ℓ ≤ q2 ≤ 12 GeV 2 this parameterization coincides with
the sum rules predictions.

The next step is to present the q2 dependency of the form factors. Our numerical
calculations show that the best parameterization for the dependence of the form factors f1,
f2, f3, g1, g2, g3, f

T
2 , f

T
3 , g

T
2 and gT3 on q2 is as follows:

fi(q
2)[gi(q

2)] =
a

(

1− q2

m2
fit

) +
b

(

1− q2

m2
fit

)2
, (21)

where the fit parameters a, b and m2
fit in full theory are given in Table 1. On the other

hand, we find that the best fit for the form factors fT
1 and gT1 is of the following form,

fT
1 (q

2)[gT1 (q
2)] =

c
(

1− q2

m
′2
fit

) − c
(

1− q2

m
′′2
fit

)2
. (22)

The results for the parameters c, m
′2
fit andm

′′2
fit are presented in Table 2. In extraction of the

values of the fit parameters presented in both Tables 1 and 2, the values of the continuum
threshold, s0 = 35 GeV 2, Borel mass parameter, M2

B = 22 GeV 2 and cos θ = 0.2 have been
used.
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QCD sum rules

c m
′2
fit m

′′2
fit

fT
1 −1.191 23.81 59.96

gT1 −0.653 24.15 48.52

Table 2: Parameters appearing in the fit function of the form factors fT
1 and gT1 in full

theory for Λb → Λℓ+ℓ−.

The values of form factors at q2 = 0 are also presented in Table 3. In this table we also
present the numerical results obtained from HQET, using the values for the form factors
F1(0) = 0.462 and F2 = −0.077 predicted in [17], and relations in Eq. (19) at HQET
limit. The errors in the values of the form factors at q2 = 0 are due to the uncertainties
coming from M2

B, s0, the parameter β, errors in the input parameters, as well as from the
systematic errors. From this Table we see that, the predictions of the HQET on the form
factors are changed more than 40% for the form factors f1(0), g1(0), f

T
2 (0), and g

T
1 (0), while

the results of both approaches are very close to each other for the remaining form factors.

Present work HQET ([13])

f1(0) 0.322± 0.112 0.446

f2(0) −0.011± 0.004 −0.013

f3(0) −0.015± 0.005 −0.013

g1(0) 0.318± 0.110 0.446

g2(0) −0.013± 0.004 −0.013

g3(0) −0.014± 0.005 −0.013

fT
1 (0) 0± 0.0 0.0

fT
2 (0) 0.295± 0.105 0.446

fT
3 (0) 0.056± 0.018 0.061

gT1 (0) 0± 0.0 0.0

gT2 (0) 0.294± 0.105 0.446

gT3 (0) −0.101± 0.035 −0.092

Table 3: The values of the form factors at q2 = 0 for Λb → Λℓ+ℓ−.

The final task is to calculate the total decay rate of the Λb → Λℓ+ℓ− transition in the
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whole physical region, 4m2
ℓ ≤ q2 ≤ (mΛb

−mΛ)
2. The differential decay rate is obtained as:

dΓ

ds
=
G2α2

emmΛb

8192π5
|VtbV ∗

ts|2v
√
λ

[

Θ(s) +
1

3
∆(s)

]

, (23)

where s = q2/m2
Λb
, r = m2

Λ/m
2
Λb
, λ = λ(1, r, s) = 1+r2+s2−2r−2s−2rs, GF = 1.17×10−5

GeV−2 is the Fermi coupling constant and v =
√

1− 4m2

ℓ

q2
is the lepton velocity. For the

element of the CKM matrix | VtbV ∗
ts |= 0.041 has been used [34]. The functions Θ(s) and

∆(s) are given as:

Θ(s) = 32m2
ℓm

4
Λb
s(1 + r − s)

(

|D3|2 + |E3|2
)

+ 64m2
ℓm

3
Λb
(1− r − s) Re[D∗

1E3 +D3E
∗
1 ]

+ 64m2
Λb

√
r(6m2

ℓ −m2
Λb
s)Re[D∗

1E1]

+ 64m2
ℓm

3
Λb

√
r
(

2mΛb
sRe[D∗

3E3] + (1− r + s)Re[D∗
1D3 + E∗

1E3]
)

+ 32m2
Λb
(2m2

ℓ +m2
Λb
s)
{

(1− r + s)mΛb

√
rRe[A∗

1A2 +B∗
1B2]

− mΛb
(1− r − s) Re[A∗

1B2 + A∗
2B1]− 2

√
r
(

Re[A∗
1B1] +m2

Λb
sRe[A∗

2B2]
)}

+ 8m2
Λb

{

4m2
ℓ(1 + r − s) +m2

Λb

[

(1− r)2 − s2
]}

(

|A1|2 + |B1|2
)

+ 8m4
Λb

{

4m2
ℓ

[

λ+ (1 + r − s)s
]

+m2
Λb
s
[

(1− r)2 − s2
]}

(

|A2|2 + |B2|2
)

− 8m2
Λb

{

4m2
ℓ(1 + r − s)−m2

Λb

[

(1− r)2 − s2
]}

(

|D1|2 + |E1|2
)

+ 8m5
Λb
sv2

{

− 8mΛb
s
√
rRe[D∗

2E2] + 4(1− r + s)
√
rRe[D∗

1D2 + E∗
1E2]

− 4(1− r − s) Re[D∗
1E2 +D∗

2E1] +mΛb

[

(1− r)2 − s2
]

(

|D2|2 + |E2|2
)

}

, (24)

∆ (s) = −8m4
Λb
v2λ

(

|A1|2 + |B1|2 + |D1|2 + |E1|2
)

+ 8m6
Λb
sv2λ

(

|A2|2 + |B2|2 + |D2|2 + |E2|2
)

, (25)

where

A1 =
1

q2
(

fT
1 + gT1

)

(−2mbC7) + (f1 − g1)C
eff
9

A2 = A1 (1 → 2) ,

A3 = A1 (1 → 3) ,

B1 = A1

(

g1 → −g1; gT1 → −gT1
)

,

B2 = B1 (1 → 2) ,

B3 = B1 (1 → 3) ,

D1 = (f1 − g1)C10 ,

D2 = D1 (1 → 2) , (26)
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D3 = D1 (1 → 3) ,

E1 = D1 (g1 → −g1) ,
E2 = E1 (1 → 2) ,

E3 = E1 (1 → 3) . (27)

Integrating the differential decay rate on s in the whole physical region 4m2
ℓ/m

2
Λb

≤ s ≤
(1 − √

r)2 and using the life time of the Λb baryon, τΛb
= 1.383 × 10−12 s [34], we obtain

the results for the branching ratio which are presented in Table 4.

Present work HQET([19])

Br(Λb → Λe+e−) (4.6± 1.6)× 10−6 (2.23÷ 3.34)× 10−6

Br(Λb → Λµ+µ−) (4.0± 1.2)× 10−6 (2.08÷ 3.19)× 10−6

Br(Λb → Λτ+τ−) (0.8± 0.3)× 10−6 (0.179÷ 0.276)× 10−6

Table 4: Values of the Branching ratio for Λb → Λ ℓ+ℓ− in full theory and HQET for
different leptons .

In this Table we also present the values of the branching ratio obtained in HQET [19].
Comparing the results of both approaches, we see that our predictions on the branching
ratios for the Λb → Λe+e−, Λb → Λµ+µ− channels are larger approximately by a factor
of two than the ones predicted by the HQET, while for the Λb → Λτ+τ− channel our
prediction is four times larger than the result of the HQET. Since 1010 ÷ 1011 pairs are
expected to be produced per year at LHCb [35], the results presented in Table–4 show that
detectability of Λb → Λℓ+ℓ− (ℓ = e, µ, τ) decays in this machine is quite high.

In conclusion, we calculate all twelve form factors responsible for the Λb → Λℓ+ℓ− decay
within light cone sum rules. It is obtained the maximum difference between our results and
HQET predictions on the form factors is about 40%. Using the parametrization for the
form factors, the branching ratio of the Λb → Λℓ+ℓ− decay is estimated, and the result we
obtain allows us to conclude that the delectability of this decay at LHCb is quite high.
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Appendix

In this Appendix, the general decomposition of the matrix element, ǫabc〈0|uaη(0)sbθ(x)dcφ(0)|Λ(p)〉
entering Eqs. (14,15) as well as the Λ DA’s are given [27]:

4〈0|ǫabcuaα(a1x)sbβ(a2x)dcγ(a3x)|Λ(p)〉
= S1mΛCαβ(γ5Λ)γ + S2m

2
ΛCαβ(/xγ5Λ)γ

+ P1mΛ(γ5C)αβΛγ + P2m
2
Λ(γ5C)αβ(/xΛ)γ + (V1 +

x2m2
Λ

4
VM
1 )(/pC)αβ(γ5Λ)γ

+ V2mΛ(/pC)αβ(/xγ5Λ)γ + V3mΛ(γµC)αβ(γ
µγ5Λ)γ + V4m

2
Λ(/xC)αβ(γ5Λ)γ

+ V5m
2
Λ(γµC)αβ(iσ

µνxνγ5Λ)γ + V6m
3
Λ(/xC)αβ(/xγ5Λ)γ + (A1

+
x2m2

Λ

4
AM

1 )(/pγ5C)αβΛγ +A2mΛ(/pγ5C)αβ(/xΛ)γ +A3mΛ(γµγ5C)αβ(γ
µΛ)γ

+ A4m
2
Λ(/xγ5C)αβΛγ +A5m

2
Λ(γµγ5C)αβ(iσ

µνxνΛ)γ +A6m
3
Λ(/xγ5C)αβ(/xΛ)γ

+ (T1 +
x2m2

Λ

4
T M
1 )(pνiσµνC)αβ(γ

µγ5Λ)γ + T2mΛ(x
µpνiσµνC)αβ(γ5Λ)γ

+ T3mΛ(σµνC)αβ(σ
µνγ5Λ)γ + T4mΛ(p

νσµνC)αβ(σ
µρxργ5Λ)γ

+ T5m
2
Λ(x

νiσµνC)αβ(γ
µγ5Λ)γ + T6m

2
Λ(x

µpνiσµνC)αβ(/xγ5Λ)γ

+ T7m
2
Λ(σµνC)αβ(σ

µν/xγ5Λ)γ + T8m
3
Λ(x

νσµνC)αβ(σ
µρxργ5Λ)γ . (A.1)

The calligraphic functions in the above expression have not definite twists but they can be
written in terms of the Lambda distribution amplitudes (DA’s) with definite and increasing
twists via the scalar product px and the parameters ai, i = 1, 2, 3. The explicit expressions
for scalar, pseudo-scalar, vector, axial vector and tensor DA’s for Lambda are given in
Tables 5, 6, 7, 8 and 9, respectively.

S1 = S1

2pxS2 = S1 − S2

Table 5: Relations between the calligraphic functions and Lambda scalar DA’s.

P1 = P1

2pxP2 = P1 − P2

Table 6: Relations between the calligraphic functions and Lambda pseudo-scalar DA’s.

Every distribution amplitude F (aipx)= Si, Pi, Vi, Ai, Ti can be represented as:

F (aipx) =

∫

dx1dx2dx3δ(x1 + x2 + x3 − 1)eipxΣixiaiF (xi) . (A.2)

where, xi with i = 1, 2 and 3 are longitudinal momentum fractions carried by the partici-
pating quarks.
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V1 = V1
2pxV2 = V1 − V2 − V3

2V3 = V3
4pxV4 = −2V1 + V3 + V4 + 2V5

4pxV5 = V4 − V3
4(px)2V6 = −V1 + V2 + V3 + V4 + V5 − V6

Table 7: Relations between the calligraphic functions and Lambda vector DA’s.

A1 = A1

2pxA2 = −A1 + A2 − A3

2A3 = A3

4pxA4 = −2A1 − A3 − A4 + 2A5

4pxA5 = A3 − A4

4(px)2A6 = A1 − A2 + A3 + A4 − A5 + A6

Table 8: Relations between the calligraphic functions and Lambda axial vector DA’s.

The explicit expressions for the Λ DA’s up to twist 6 are given as: twist-3 DA’s:

V1(xi) = 0 , A1(xi) = −120x1x2x3φ
0
3 ,

T1(xi) = 0 . (A.3)

twist-4 DA’s:

S1(xi) = 6x3(1− x3)(ξ
0
4 + ξ

′0
4 ) , P1(xi) = 6(1− x3)(ξ

0
4 − ξ

′0
4 ) ,

V2(xi) = 0 , A2(xi) = −24x1x2φ
0
4 ,

V3(xi) = 12(x1 − x2)x3ψ
0
4 , A3(xi) = −12x3(1− x3)ψ

0
4 ,

T2(xi) = 0 , T3(xi) = 6(x2 − x1)x3(−ξ04 + ξ
′0
4 ) ,

T7(xi) = −6(x1 − x2)x3(ξ
0
4 + ξ

′0
4 ) . (A.4)

Ttwist-5 DA’s:

S2(xi) =
3

2
(x1 + x2)(ξ

0
5 + ξ

′0
5 ) , P2(xi) =

3

2
(x1 + x2)(ξ

0
5 − ξ

′0
5 ) ,

V4(xi) = 3(x2 − x1)ψ
0
5 , A4(xi) = −3(1− x3)ψ

0
5 ,

V5(xi) = 0 , A5(xi) = −6x3φ
0
5 ,

T4(xi) = −3

2
(x1 − x2)(ξ

0
5 + ξ

′0
5 ) , T5(xi) = 0 ,

T8(xi) = −3

2
(x1 − x2)(ξ

0
5 − ξ

′0
5 ) . (A.5)

and twist-6 DA’s:

V6(xi) = 0 , A6(xi) = −2φ0
6 ,

T6(xi) = 0 . (A.6)
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T1 = T1
2pxT2 = T1 + T2 − 2T3

2T3 = T7
2pxT4 = T1 − T2 − 2T7
2pxT5 = −T1 + T5 + 2T8

4(px)2T6 = 2T2 − 2T3 − 2T4 + 2T5 + 2T7 + 2T8
4pxT7 = T7 − T8

4(px)2T8 = −T1 + T2 + T5 − T6 + 2T7 + 2T8

Table 9: Relations between the calligraphic functions and Lambda tensor DA’s.

The following functions are encountered to the above amplitudes and they can be defined
in terms of the 4 independent parameters, namely fΛ, λ1, λ2 and λ3:

φ0
3 = φ0

6 = −fΛ , φ0
4 = φ0

5 = −1

2
(fΛ + λ1) ,

ψ0
4 = ψ0

5 =
1

2
(fΛ − λ1) , ξ04 = ξ05 = λ2 + λ3 ,

ξ
′0
4 = ξ

′0
5 = λ3 − λ2 . (A.7)
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Figure 1: The dependence of form factor, f1 on Borel mass parameter at two fixed values
of the q2, and at s0 = 35 GeV 2 and β = 5.
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Figure 2: The dependence of form factor, f1 on cos θ parameter at two fixed values of the
q2, and at s0 = 35 GeV 2 and M2

B = 22 GeV 2.
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