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ABSTRACT

DOUBLE NETWORK SUPERRESOLUTION

Tarhan, Cem
Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Gözde Bozdağı Akar

June 2019, 110 pages

As the social platforms became widespread, the image and video based materials are

being shared continuously and increasingly each day. This not only brings an issue of

storage but also internet bandwidth usage. In order for a user to effectively run a su-

perresolution (SR) algorithm on a mobile device, a light-weight but good performing

algorithm must be designed. In recent years, convolutional neural networks (CNNs)

have been widely used for SR. Although their indisputable success, CNNs lack proper

mathematical background on how and what they learn. In the first part of the thesis

we prove that CNN elements act as inverse problem solvers that are optimal for the

purpose. We show that the learned coefficients of a network obey a concept namely

Representation-Dictionary Duality. We show the necessity of skip connections for

convergence of the network.

The demand for high computational load for state of the art algorithms renders them

unusable on a mobile platform. In the second part of the thesis, we propose a novel

double network superresolution (DNSR) algorithm that requires dramatically low

number of parameters. We propose the usage of two networks, trained with disjunct

data. One network is responsible from reconstructing sharp transitions in an image
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where the other network is specialized for texture reconstruction. DNSR is not only

able to learn SR solution with practically feasible number of operations but also able

to obtain superior performance on the reconstruction of high frequency details with

high fidelity.

Finally, we propose a Detail Fusion Interpolator (DFI), that combines optical flow

estimation and motion compensation blocks within a small network. By extending

DNSR to multi-frame approaches we compare its performance to state of the art

Video SR algorithms and to single frame DNSR. We show that DFI is indeed able

to compensate for motion and combined system performs better than single frame

approach.

Keywords: Superresolution, Deep Neural Networks, Convolutional Neural Networks,

Deep Learning, Inverse Problems, Sparse Representation, Optical Flow Estimation,

Motion Compensation, Video Superresolution

vi



ÖZ

ÇİFT AĞLI SÜPERÇÖZÜNÜRLÜK

Tarhan, Cem
Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar

Haziran 2019 , 110 sayfa

Sosyal platformların yaygınlaşmasıyla beraber günlük olarak paylaşılan video ve re-

sim materyali hızla artmaktadır. Bu hem depolama hem de internet bantgenişliği ko-

nusunda sorunlara yol açmaktadır. Bir kullanıcının mobil cihazında bir SÇ algorit-

ması kullanabilmesi için iyi sonuçlar üreten ve hafif bir algoritmaya ihtiyaç duyul-

maktadır. Son yıllarda Evrişimli Sinir Ağları (ESA) SÇ alanında sıkça kullanılmıştır.

Tartışılmaz başarılarına rağmen ESA’ların matematiksel anlaşılırlığı çok düşük sevi-

yededir. Bu tezin ilk kısmında ESA elementlerinin esasında tersine sorunlara çözüm

üreten optimum elementler olduğunu gösterdik. Öğrenilen ağ katsayılarının Temsil-

Kütüphane İkililiği konseptine uyduğunu gösterdik. ESA eğitiminin yakınsaması için

atlama bağlantılarının gerekliliğini gösterdik.

İhtiyaç duyulan yüksek işlem gücü gereksinimi güncel algoritmaları mobil sistem-

lerde kullanılamaz hale getirmektedir. Tezin ikinci kısmında özgün Çift Ağlı Süper-

çözünürlük (ÇASÇ) algoritmasını önererek bir ağın öğrenme kapasitesini düşürme-

den ihtiyaç duyulan katsayı miktarını büyük ölçüde düşürmeyi başardık. Kullanılan

iki ayrı ağ iki ayrılmış veri ile eğitilmektedir. Ağların bir tanesi resimlerdeki sert ge-
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çişleri yeniden kurmakla görevliyken diğer ağ desen içeren tüm yamaları yeniden

kurmakla görevlendirilmiştir. ÇASÇ sadece çok az sayıda parametre ile SÇ proble-

mine çözüm üretmekle kalmıyor aynı zamanda yüksek hata performansı gösterirken

yüksek frekans detayları başarı ile yeniden yapılandırabiliyor. Son olarak Detay Kay-

natma İnterpolasyon (DKI) isimli optik akış ve hareket telafisini birleştiren küçük

boyutta bir ağ önerdik. Bu sayede çok kare işlemeye esnetilmiş olan ÇASÇ algorit-

masını diğer Video SÇ algoritmalarıyla ve tek kare ÇASÇ ile kıyasladık. DKI’nin

hareket tahmini ve telafisini başarıyla yerine getirdiğini ve birleştirilmiş sistemin tek

kare uygulamalardan iyi sonuçlar ürettiğini gösterdik.

Anahtar Kelimeler: Süperçözünürlük, Derin Sinir Ağları, Evrişimli Sinir Ağları, De-

rin Öğrenme, Tersine Sorunlar, Seyrek Temsil, Optik Akış Tahmini, Hareket Dü-

zeltme, Video Süperçözünürlük
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Images and videos become the most time consuming media as social platforms are

evolving. Each user is reaching for thousands of content daily and they are also creat-

ing content that will be seen by thousands of people. Not only the amount of storage

utilized for social platforms and required internet bandwidth increase everyday, as

smart phones become more widespread this rise is exponentially accelerating. One

of many methods to address this issue is to reduce the resolution of the media on

the storage side. To present the media to the user as similar to the original as pos-

sible, the resolution must be re-scaled to the original value. This step, which is also

known as superresolution, should also be carried out on a mobile phone among many

other actions. Not only image superresolution but also denoising, inpainting and re-

construction may be needed as examples are not limited by social platform usage.

Military, medical, automotive and surveillance usage of imaging, requires more or

less all of the aforementioned method to be utilized into their applications. Most of

these areas are also limited in terms of hardware such as storage and computation

capacity.

The broad term for the family of image reconstruction methods is inverse problems.

An image is required to be reconstructed from a cascade of effects such as blurring,

noise, downsampling, pixel loss. The inversion of such problems is almost always ill

conditioned, which means that the procedure of reconstruction requires some regu-

larizations and modelling assumptions.

The literature of inverse problem solutions reach back to decades ago. There are
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still new methods and algorithms that solve problems defined many years ago. Be-

sides analytic methods that use mathematical approach, there is another method that

is trending in all areas of imaging: the convolutional neural networks (CNNs). In

the last decade, due to advancing technology, usage of CNNs is exploded in the lit-

erature, mostly overshadowing analytic methods. Although their undisputed success,

the knowledge over CNNs is quite limited and lacking. Proposed methods are mostly

emerging from experimentation rather than careful mathematical foundation.

In the intersection of emerging CNN technology and requirement of good and fast

performing inverse problem solutions, specifically superresolution, we submit this

thesis work.

1.2 Proposed Methods and Contributions

Our contributions are as follows:

• We show that CNN elements, i.e. neuron filters, solve for an inverse problem

during training. The operator of the inverse problem is taken as a dictionary

matrix constructed from input training data. The solution of the problem are

the neuron filter coefficients. These coefficients are representation vectors of

the target, which act similarly as described in manifold theory [16] where each

neuron filter acts as a point in high dimensional space to form a manifold for

a solution. Differently from the argument in the literature [17] [18] [19] that

trained networks resemble or become inverse problem solvers, we claim that

the training process is carried out in this fashion.

• By proposing Representation Dictionary Duality (RDD) we relate sparse rep-

resentation and convolutional sparse coding [20] to the evolution of CNNs and

provide a mathematical basis for necessity of skip connections [21] and residual

learning [4].

• We propose a double network super resolution (DNSR) structure where the

training set is separated according to texturedness measure. This enables sepa-

rate networks to better adapt and learn presented information with dramatically
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lower parameter set.

• In order to decrease complexity even further, we propose different depths and

interpolation methods for separate networks.

• Proposed double network topology handles high frequency detail reconstruc-

tion superior to state-of-the-art methods as compared in Figure 5.5

• We have proposed detail fusion interpolation (DFI) that incorporates a 3D CNN’s

ability to infer motion information from neighboring video frames. This is pro-

posed against more complex motion compensation blocks [2][14][15]. DFI is

used to extend our DNSR into video superresolution.

• In order to propose DNSR, we have carried extensive experiments and in the

process we have introduced new concepts such as separate channel interpola-

tion (SCHI) instead of sub-pixel accuracy interpolation [5]

1.3 The Outline of the Thesis

In the Chapter 2 a background on inverse problem solutions is given. In Chapter 3

mathematical properties of CNNs are analyzed. Mathematical proofs regarding CNN

training and testing are given in this chapter. In Chapter 4 focus of the thesis is

narrowed down to application of superresolution. The details of our proposed model

DNSR are described in this section. In Chapter 5 experimental validations are carried

out for mathematical assertions and our DNSR model. DNSR is compared to SotA

methods and its superiority in pixelwise error, noise performance and high frequency

reconstruction quality is given quantitatively. In Chapter 6 the extension of our DNSR

to video superresolution is described. Theoretical and experimental results are given

in this chapter. In Chapter 7 our thesis work is summarized, future works are listed

and the thesis is concluded.
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CHAPTER 2

BACKGROUND ON INVERSE PROBLEMS

The broad class of inverse problems in image processing contains problems that deal

with recovery of a lost data within an observational system. The solution of such

problems vary vastly in literature ranging from purely mathematical approaches [22]

to almost completely experimental methods [4]. In this chapter, the problem is formu-

lated and related solution methods are explained in two categories, namely analytic

methods and data driven approaches.

2.1 Introduction

In many image processing applications, an observational system model is the initial

step to a solution. An observation g can be modeled as an output of a system K(.)

when stimulated by an input t. Finding the variable t for an observation g and system

K is named as an inverse problem. Due to the nature of observation modelling in

imaging applications, the inversion of system K is ill-conditioned. Small variations

in the observed value causes huge swings in estimated input value. This perturbation

is caused by the noise in the system which is denoted by n.

g = Kt+ n (21)

System K could be divided into multiple categories such as sampling, motion arti-

facts, blurring and downsampling. Figure 2.1 displays the observation process of a

continuous scenery. Many areas of research deal with inverse problems under the

name of denoising, deblurring, deconvolution, enhancement, restoration, single im-
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Figure 2.1: Image observation model

age superresolution, MRI and CT reconstruction from projections etc. These prob-

lems can be classified as inverse problems that are defined with convolution opera-

tions. For decades, analytic methods have been utilized for solving these problems.

A deterministic approach is to minimize a data fidelity term

t̂ = argmin
t
{∆(Kt, g)} (22)

The ∆(.) can be ||g −Kt||2 to obtain a Least Squares (LS) solution. Bold characters

indicate a vector. Other methods include LP norm solution, Kullback Liebler (KL)

distance solution. Since this problem is ill-conditioned a regularization term can be

added to the data fidelity term. Regularization, r(t), adds a mismatched function to

the cost function that will balance the solution.

argmin
t
{∆(Kt, g) + r(t)} (23)

Statistical inversion methods are another approach for an inverse problem. The ob-

servation vector g is assumed to be drawn from a probabilistic distribution p(g). For

this approach, the cost function will become ∆(t, g) = p(g|t) for a maximum likeli-

hood approach. Stochastic approaches are out of scope for this work, therefore related

literature is not included.

Analytic methods seek to successfully formulate the system model and find the op-

timum solution strategy with proper regularization. These methods require careful

mathematical analysis and costly solutions.

Another class of methods that has been successfully used in inverse problem solu-

tions is neural network approach, specifically convolutional neural networks (CNNs)
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for image processing applications. CNNs are trained by a set of images to learn a

mapping from g to t. The structure of the network; number of layers and elements in

each layer, interconnections between layers, special layers such as pooling or normal-

ization changes depending on the specific application. However the learning process

is generally based on stochastic gradient descent type coefficient updates. In most

cases the cost function is chosen as mean square error (MSE). In some cases, such as

generative adversarial networks and variational autoencoders, instead of end to end

mapping from g to t, some feature discrimination is applied before calculating an

MSE value together with a cross entropy loss function.

Recent advances on technology enabled training of bigger networks therefore provid-

ing better results [17][18][19]. A sample of methods available in literature show that

CNN performance surpasses that of analytic methods in all aspects. This indicates

that the research effort should be directed to using neural networks for the solution of

the problem. CNN properties should be understood well in order to utilize its effec-

tiveness with academic confidence. The learning process of CNNs should be clarified.

After the learning is completed, the activation of the network for given novel input

should also be understood clearly. The former work is about the training phase of

the CNN and the latter is about the testing phase. The testing phase, also known as

the forward pass, can be shown to be satisfying a set of equations for application spe-

cific cases and setups. Unfolded iterative shrinkage thresholding (IST) iterations [23],

alternating direction method of multipliers (ADMM) iterations are calculated by net-

work layers [24] and layer outputs are visualized as sparse representation vectors [3]

or higher dimension manifold projections [16]. The training phase is not addressed

as often in the literature to answer what a CNN actually solves during backpropaga-

tion. CNN related equations and explanations are going to be given in next chapter.

This chapter includes solution approaches to inverse problems that will be crucial in

explaining how CNNs operate in following chapters.

2.2 Analytic Solution Approaches

The analytic approach for solving the inverse problem involves minimizing a non-

smooth convex cost function with additional regularizations that are impinged on the
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optimization to statistically tie the solution to the observations. Mathematically, most

imaging problems such as debluring, denoising, SR are most appropriately formu-

lated with variational equations. The objective of these equations is to incorporate

a priori information and enforces coherency with the observations. Equation 23 is

an example of a variational equation where r(t) term is continuous and differentiable

function.

Pseudo inverse solution uses the inverse of the operator KTK which is well defined

if KTK is a strictly positive operator. Regularization is used to stabilize the inverse

problem solution, the functional in equation 23 to be minimized can be chosen as

∆(Kt, g) + r(t) = ||Kt− g||2 + λ||t||2 (24)

where λ is the regularization parameter. The minimizer can be found by

t̂ = (KTK + λI)−1KTg (25)

where I is identity matrix and λ is the regularization parameter that is chosen accord-

ing to the application. Although derivation of quadratic functions is easier especially

for gradient descent type solvers, they are known to stuck to local minima occasion-

ally which is a major problem for imaging applications where the cost function is

almost always multimodal.

For this reason there are also nonquadratic constraints for regularizations, lp-norm of

t where 1 ≤ p ≤ 2. For a given set of orthonormal basis functions ϕl of Hilbert space

and set of weights b, a new functional, according to [25], can be defined as

Φb,p(t, g) = ∆(t, g) + r(t)

= ||Kt− g||2 +
∑
∀l

bl|〈t, ϕl〉|p (26)

For the case where p is 2 and bl = λ1, where 1 is a vector of all ones, this equation

reduces to the function minimized by equation 25. If p value is decreased towards

1 for this special case, then penalization of small (|〈t, ϕl〉| < 1) coefficients will be

increased and penalization of larger (|〈t, ϕl〉| > 1) coefficients will be decreased.

Therefore differently from the classical minimization in equation 25, there will be

higher penalty for t with more but small elements in ϕl directions and there will be
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lower penalty for t with few nonzero components. When p is taken closer to 1, then

the minimization of equation 22 promotes sparsity of the expansion of t w.r.t. ϕl.

The minimization of equation 22 is, for example, used for denoising Guassian or

Laplacian modelled noise since such r(t) is known to promote sparsity.

Daubechies [25] proposed the usage of Surrogate Functionals instead of function-

als in equation 26. The presence of KTKt in the minimization makes the solution

problematic. Usage of surrogate functionals is proposed to cancel out the effects of

KTKt in the solution. For that purpose initial step is to choose a constant k where

||KTK|| ≤ k and a new operator is defined as Σ(t,a) = k||t− a|| − ||Kt−Ka||2

which evolves with auxiliary variable a of Hilbert space. Similar solution strategies

have been followed by many in literature [22] [26]. Since by definition kI − KTK

is strictly positive, Σ(t,a) is strictly convex for all a. Without loss of generality as-

suming k = 1, two functionals Σ(t,a) and Φ(t, g) are added together, as explained in

[25]

ΦSUR
b,p (t, g,a) = Φb,p(t, g) + Σ(t,a) (27)

= ||Kt− g||2 +
∑
∀l

bl|〈t, ϕl〉|p − ||Kt−Ka||2 + ||t− a|| (28)

= ||t||2 − 2〈t,a +KTg −KTKa〉

+
∑
∀l

bl|〈t, ϕl〉|p + ||g||2 + ||a||2 − ||Ka||2 (29)

The variational function is transformed into an iterative solution if auxillary variable

a is taken as the previous value of t in an iterative scheme. If we take b=0, the

functional becomes

ΦSUR
0,p (tn, g, tn−1) = ||tn||2 − 2〈tn, tn−1 +KT (g −Ktn−1)〉 (210)

+ ||g||2 + ||tn−1||2 − ||Ktn−1||2

which yields the Landweber solution, whose convergence to solution of equation 21

is proven [25].

tn = tn−1 +KT (g −Ktn−1) (211)

9



If b is taken as a constant vector and p=2 then the surrogate functional becomes

ΦSUR
b,p (tn, g, tn−1) = (1 + λ)||tn||2 − 2〈tn, tn−1 +KT (g −Ktn−1)〉 (212)

+ ||g||2 + ||tn−1||2 − ||Ktn−1||2 (213)

the solution is obtained from regularized Landweber iterations.

tn =
1

1 + λ
(tn−1 +KT (g −Ktn−1))

For the case when p=1 which is more of interest to inverse problem solutions, specif-

ically superresolution, the equation 27 is differentiable in 〈t, ϕl〉 if 〈t, ϕl〉 is nonzero,

then the variational equation becomes

2〈t, ϕl〉+ blsign(〈t, ϕl〉) = 2(〈a, ϕl〉+ 〈(KT (g −Ka)), ϕl〉) (214)

Equation 214 can be transformed into equation 215

〈t, ϕl〉 = Sb(〈a, ϕl〉+ 〈(KT (g −Ka)), ϕl〉) (215)

where the function Sb is defined as

Sb(x) =


x− b if x ≥ b

0 if |x| < b

x+ b if x ≤ −b

(216)

As we shall see later symmetrical soft thresholding has an inherent connection to

non-negative soft thresholding used in neural networks. The thresholding function is

depicted in Figure 2.2 for b=0.5. Notice that KT (g−Ktn−1) is the negative gradient

of data fidelity term ∆(t, g) in the original formulation 23. For the case when p =

1, a straightforward variational equation can be obtained in an iterative if previous

iterations are plugged into the auxiliary variable a. The class of these equations are

also known as iterative shrinkage thresholding (IST) in the literature [22]

〈tn, ϕl〉 = Sb(〈tn−1, ϕl〉+ 〈KT (g −Ktn−1), ϕl〉) (217)

Daubechies proposed [25] that the iterations over the set of basis functions can be

carried out in one formula

tn = Zb(t
n−1 +KT (g −Ktn−1)) (218)
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Figure 2.2: Symmetrical Soft Thresholding

where

Zb(x)
.
=

∑
l∈Γ

Sb(〈x, ϕl〉)ϕl (219)

which can be seen as a method to erode the elements of x in the direction of ϕl.

Daubechies et. al. have proven that the solution obtained by iterating t reaches the

global minimum of the solution space and solution method is stable. The solution

will reach to an optimum point if K is a bounded operator satisfying ||Kt|| ≤ k||t||
for any vector t and some constant k [25].

Although more research has been put into regularization methods later starting with

Combettes & Wajs [22], the method of Daubechies et. al. is suitable for us to explain

training of CNNs later in Chapter 3.
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2.3 Data Driven Approaches and CNNs

Instead of approaching the inverse problem to directly invert an observation model,

Data Driven Approaches (DDA) learn mappings from input and target training im-

ages. Methods either learn a compact dictionary [27][28][29][30] or train a model

that fits the problem and learn parameters for the model [31][32].

Dictionary based DDA jointly solve for a compact dictionary and a representation

vector. Sparse representation has been applied to the dictionary learning based SR

problem where an input image is sparsely represented by a dictionary. The represen-

tation vector is applied to another library for reconstruction of output image. These

algorithms both solve for creating dictionary and solve for a representation vector for

any input.

The K-SVD algorithm [33] is one of the keystones of dictionary learning for the

purpose of sparse representation. Aharon et. al. have proposed the usage of a compact

dictionary D, from which a set of atoms (columns or dictionary elements) are to be

selected via a vector f and the combination of these atoms is constrained to be similar

to an observation patch (or image) g via ||g−Df ||p ≤ ε. If the dimension of g is less

than that of columns of matrix D and if D is full-rank matrix then there are infinitely

many solutions to the problem therefore a sparsity constraint is introduced [33].

min
f
||f ||0 s.t. ||g −Df ||2 ≤ ε (220)

The L0 norm gives the number of entries in f that are non-zero.

The usage of compact dictionaries for SR problem is introduced in [27]. The authors

have used the approach of K-SVD to learn representation vectors and dictionaries.

Instead of using an L0 normed regularization and L1 normed regularization is used

which still guaranties sparsity for the formulated problem. Such a problem is formu-

lated using Lagrange multipliers [27].

min
f
λ||f ||1 +

1

2
||g −Df ||22 (221)

During learning phase the library D is initialized by random gaussian noise and an

iterative algorithm between a batch representation matrix Z and dictionary D refines
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the dictionary while maintaining sparsity for representation vectors of training set.

The estimation of sparse representation vectors are done by using basis pursuit meth-

ods. [27] uses two dictionaries, one for low resolution (LR) representation, one for

high resolution (HR) reconstruction.

Timofte et. al. [29] have proposed the usage of L2 norm instead of L1 norm for

even faster computations. Although usage of L2 norm eliminated the sparsity con-

straint from the equation, it will play a role in understanding how CNNs work in later

sections.

Trainable models are also used for inverse problems. A method, trainable nonlinear

reaction diffusion (TNRD) [32], uses a training set to learn a set of filters and non-

linearities that are applied in a cascaded fashion to the input image. The resulting

algorithm uses stochastic gradient descent type of learning. The minimized objec-

tive function uses a suitable proximal mapping function among previously inspected

functions [22]. In [32], input image is filtered by a number of trained filters. Filtered

images are then applied to a non-linear proximal function and then the output of non-

linearities are further filtered by the same number of filters. The result is obtained by

summing all the result. The approach of TNRD is quite similar to how a CNN oper-

ates although the model is not weaved in a network fashion since it lacks the hidden

layers which give CNNs its power to learn highly nonlinear surfaces (manifolds).

Another trainable model type method is proposed by Romano et. al. rapid and ac-

curate image super resolution (RAISR) [31]. The algorithm learns a set of filters for

training patches that are composed of differently oriented edges with various strength

and coherencies. Separation of different content patches is carried out according to

gradient information of input images. Even though RAISR uses a set of filters in a

convolutional structure, the algorithm does not constitute a network structure.

In the last decade the usage of CNNs for inverse problems have dramatically in-

creased, mainly due to advancing technology.

One of the first applications of inverse problems on CNNs was proposed by Gregor

& LeCun [23] as learned iterative shrinkage thresholding algorithm (LISTA). The

method deals with sparse coding problem that is formulated by 221. Each layer of
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neural network type model of LISTA represents an unfolded iteration of IST type of

solver that was inspected by Combettes et. al. as iterative soft-thresholding [22]. The

forward pass of the algorithm approximates iterations of an IST algorithm. Training

of LISTA is carried out in gradient descent type learning. Later Bronstein et. al. [34]

have addressed the same algorithm and showed that the resulting layers of LISTA are

not mere approximations to an IST algorithm but fully functional sparse encoders in

their own right.

In [16] authors have described representation learning as a manifold learning for

which a higher dimensional data is represented compactly in a lower dimensional

manifold. They have discussed that the variations in the input space is captured by

the representations and each element of a network represents a higher dimensional

coordinate point of the manifold. In the same paper authors have discussed the chal-

lenge of training deep networks; learning dynamics, convergence to good minimas of

the cost function. The training of neural networks is not mathematically understood

in current literature [16].

Schuler et. al. [35] have proposed to unroll the recovery steps required for a deblur-

ring operations with a neural network such as estimation of the blur kernel and estima-

tion of deblurred image. The blur kernel is estimated by using a separate network and

then it is used in an other network to reconstruct the latent image. Two networks have

been trained separately with different heuristics that the authors empirically found

useful. The training set was composed of sharp and blurred image patches. Flat im-

age patches that are distinguished by small gradient content was taken out from the

training set. The reasons for formation of specific network structure with different

activation functions was not discussed in the paper.

Xu et. al. [36] have proposed to improve end result by initializing the network pa-

rameters using information from estimated blur kernels. This was done using psuedo-

inversion of separable kernels which is obtained by singular value decomposition.

The network architecture is composed of two separate steps, deconvolution and out-

lier elimination, which are trained separately. The authors have shown that proper

initialization of network parameters provided better results compared to random ini-

tializations.
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Mao et. al. [21] have proposed the usage of symmetric convolutional-deconvolutional

layers, hoping that the convolutional layers will encode the important features of the

image while rejecting defects and deconvolutional layers will reconstruct the image

without the defects. Their experiments have shown that proposed architecture yields

better results compared to sole convolutional architectures. The authors have also

used skip connections between convolutional and deconvolutional layers, expecting

that it will cope with gradient vanishing problem for deeper networks.

Zhang et. al. [37] have proposed a denoising network by exploiting the similarities of

execution of denoising CNNs to TNRD equations. The proximal function have been

replaced with rectified linear unit (RELU) [38]. Also hidden layers have been added

in between two-layer structure of TNRDs and batch normalizations at every second

layer. Although the effects of additional operations to the mathematical justification

of the network is not clear, the experimental results showed improvement compared

to previous methods.

Yang et. al. [24] have proposed a network called ADMM-Net for optimizing a com-

pressive sensing reconstruction problem, taking on from the iterative steps of ADMM

algorithm [26]. Each step of the network is weaved accoring to split augmented la-

grangian solver approach. This approach separates the method from many methods in

literature where a CNN structure is used for various inverse problem solutions with-

out mathematical reasoning. Training of cascaded stages are done end-to-end using

a type of gradient descent method and the end result becomes unrolled iterations of

ADMM algorithm.

The mapping between the high resolution (HR) and low resoultion (LR) images can

also be found by convolutional networks for SR problem ([3], [4]).

The activation function plays an important role in neural network training. In many

state-of-the-art algorithms major functions such as tanh and softmax have been re-

placed by rectified linear units (RELU) [38] that are linear approximations of math-

ematically complex and computationally heavy functions. Glorot et. al. [39] have

empirically shown that by using rectified activations, the network can learn sparse

representations easier. For a given input, only a subset of hidden neurons are acti-

vated as in Figure 2.3, leading to better gradient backpropagation for learning and
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Figure 2.3: Sparse activation of neurons inside a neural network

better representations during forward pass. Especially sparse representation has been

shown to be useful [39]. Sparsity constraint provides information disentagling which

allows the representation vectors to be robust against small changes in input data.

The equation for RELU, or nonnegative soft thresholding, is given in equation 222

and depicted in Figure 2.4

softb(x) =

 x− b if x ≥ b

0 o.w.
(222)

Dong et. al. [3] have provided the earliest relation of CNNs to Sparse Representa-

tion. In their view outputs of the first layer of neurons constitute a representation vec-

tor for a patch around each pixel in LR image, second layer maps LR representations

to HR representation vectors and the last layer reconstructs HR image using 5x5 sized

filters (or atoms if we have used the jargon of sparse representations). Although this

idea qualitatively maps CNNs as a solution method for sparse representation prob-

lem, in Chapter 3 we will show a more complete understanding with mathematical

background.

Bruna et. al. [40] have used CNN for extraction of LR representation which would be

used to reconstruct a proper HR image that is picked according to a gibbs distribution.
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Figure 2.4: Nonnegative Soft Thresholding
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Kim et. al. [4] have proposed usage of deep networks for SR problem and their

unique approach of using residual learning helped the large network to converge in

a reasonable time. Detailed literature survey on SR problem is going to be given in

Chapter 4.

In a recent paper, Papyan et. al. [20] have discussed the connection of convolutional

sparse coding and CNNs. By inspecting the activation of each layer of a trained

network, it is proven that CNN layers become sparse representation dictionaries.

There is a clear distinction between analytic methods and data driven methods, which

is the mathematical basis from which the algorithms have evolved. The inspected

literature on inverse problems with CNNs contain no mathematical discussions or

mostly qualitative discussions. For this reason on the next chapter, we are going

to provide mathematical understanding over how CNNs learn, we will prove that

CNN elements are optimum elements in solving inverse problems and explain the

limitations of structure of CNN with guides on how to overcome the limitations.
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CHAPTER 3

MATHEMATICAL PROPERTIES OF CNNS

It is as important to understand how a CNN learns as much as what a trained CNN

represents or resembles. The latter is discussed in literature for many different areas

of application, the former is lacking proper explanation and mathematical discussion.

The main reason is that a mathematical model for a CNN cannot be obtained explic-

itly, the fastest method to analyze how a CNN learns is to let it learn. For this reason

we start from the very beginning and formulate CNN operations for simplified cases.

We show the optimality of CNN elements and conditions for optimality.

3.1 Convolutional Neural Networks

CNNs are different from fully connected neural networks (FCN). In a conventional

FCN each neuron from any layer is connected to all the outputs from previous layer

neurons. A connection diagram is depicted in figure 3.1 where there is a coefficient

for each input to the neuron unit. In a CNN, neuron units are grouped to form a 2D

filters and consequently their receptive field from an input is limited by their group

size, such as 3x3 or 5x5. Differently from FCN, groups of neurons in a CNN are

convolving the entire image as if they are filters.

To understand how an image is evolved through a CNN we can explain the operation

of one of earliest algorithms, SRCNN [3]. The algorithm has three layers. First

layer contains 64 filters of size 9x9. Second layer consists of 32 filters of size 1x1.

Third layer consists of 32 filters of size 5x5. The hidden layers have to be considered

differently from input and output layers. There will be 64 outputs presented at the

output of the first layer. Third layer requires 32 inputs. The hidden layer in between
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Figure 3.1: A Neuron depiction: three inputs (x), three coefficients (f), an activation

function (tanh), a bias value (b).

needs to harbor 32 sets of filters, each set has to contain 64 filters in them. To explain

filters and their operation, a detailed depiction in figure 3.2 is presented. Activation

functions are omitted from the figure for simplicity.

With a different perspective, one can inspect the progression of one pixel inside the

network. Convolutive nature of filters is going to cause the dispersion of information

from one pixel to a larger area. By omitting activation functions for simplicity, Figure

3.3 displays the are where one pixel is dispersed through the network. The total

amount of area where one output pixel is affected is named as receptive field of a

network in the literature. Having a larger receptive field means that the reconstructed

pixels are utilizing more input data to be reformed.

3.2 Training (Learning) Phase

For the training phase of CNNs, input images are fed into the network for forward

pass. The resulting image from the network is compared against a ground truth (GT)

image and the error is backpropagated. Since the input image is convolved by the

neuron filter, its size should be larger than the size of the output to prevent boundary
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Figure 3.2: Path of an input image through a CNN. Based on the architecture of

SRCNN [3].

Figure 3.3: Path of an input pixel through a CNN. Based on the architecture of SR-

CNN [3].
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Figure 3.4: Operators: a) W(.) operator for lexicographical dictionary creation from

a patch, b) X(.) operator for equivalent operation for an order swapping of cascaded

convolutions

conditions. It is reported that boundary conditions do not cause a trouble in a residual

learning environment [4].

Before moving on to explaining CNN operations we have to define a few operators.

These operators will be useful in describing convolutional operations with algebraic

equations. Take a filter, f, of size axa; an input patch, xk−1, of size cxc. The valid part

of the output, xk, of convolution of f and xk−1 will have a size of (c−a+1)x(c−a+1).

xk = xk−1 ∗ f

where ∗ is convolution operation. To show these operations algebraically we define

a new operator Wc,a(.) which takes smaller patches (subpatches) from a larger patch

(superpatch), orders them in lexicographical order then concatenates all vectors into
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Figure 3.5: (left) Single neuron filter (right) Two cascaded neuron filters

a matrix. This operator is depicted in Figure 3.4 a. Subscripts indicate the sizes of

xk−1 and f respectively as cxc and axa. The resulting matrix from Wc,a(.) operator

will have a size of (c− a+ 1)2 x a2.

xk−1 ∗ f = Wc,a(xk−1).f (31)

We denote lexicographically vectorized 2-D patches with bold characters. Notice in

this case result of convolution xk−1 ∗ f is also vectorized. We also define an Xe,a(.)

operator to denote an order swapping between two cascaded convolutions as shown

in Figure 3.4 b. The index a indicates the size of the filter, axa, that is given as input

to the operator. The index e indicates the size of the image patch, exe, with which the

input filter is going to be convolved. Take an input xk−2 as in Figure 3.5 b, with size

exe, and two filters f k−2 and f k−1 with sizes axa the resulting operations will be as

follows

xk−2 ∗ fk−2 ∗ fk−1 = xk−2 ∗ fk−1 ∗ fk−2 (32)

= Xe,a(fk−1).We,a(xk−2).fk−2

To start analyzing a CNN we are going to take one CNN element, a neuron filter into

consideration depicted in Figure 3.5 a.

xk = softb(xk−1 ∗ f) (33)

where softb, nonnegative soft threshdoling, is defined for each scalar input as in

equation 34. For vector inputs same operations are applied to each element in the

vector. The output of a neuron filter is outcome of nonnegative soft thresholding
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applied to the convolution result. Soft thresholding is formulized as in Equation 34

or equivalently 222.

softb(x)
.
= max(x− b, 0) (34)

During training a target image, t, is used to calculate an error. The mean square error

is used for gradient calculation and parameter updates. We define a dictionary for

learning (training) phase as

DL,k−1
.
= Wc,a(xk−1) (35)

xk = softb(DL,k−1f) (36)

error = t− softb(DL,k−1f) (37)

mse =
1

2
||t− softb(DL,k−1f)||2 (38)

∂mse

∂f
= −(DT

L,k−1(t− softb(DL,k−1f))) (39)

Moving forward with CNN learning operations, parameter updates are carried out by

adding negative gradient on top of old value.

fn = fn−1 − ∂mse

∂fn−1 (310)

= fn−1 +DT
L,k−1(t− softb(DL,k−1f

n−1)) (311)

where n is the iteration number. In Daubechies et. al. [25] (Remark 2.4) the learning

rate was introduced with a matrix, G, that is diagonal in ϕl basis as Gϕl = ηlϕl. The

term ηl modifies equation 311 as

fn = fn−1 +
1

ηl
DT
L,k−1(t− softb(DL,k−1f

n−1)) (312)

Daubechies et. al. have commented that the solution can be followed by this equation

but they have omitted it for simplicity of equations. It will affect the convergence

speed in general but it was proven that the solution reaches to optimum point either

way. Since we show that CNN gradient descent based learning yields the same solu-

tion as Daubechies’ solution we also omit this term in equation 312 and use equation

311.
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The fn can be defined piece-wise as

fn =


fn−1 +DT

L,k−1(t−DL,k−1f
n−1 + b)

if DL,k−1f
n−1 > b

fn−1 +DT
L,k−1t

if DL,k−1f
n−1 ≤ b

(313)

We want to collect the iterations inside the soft thresholding to modify equations

towards Daubechies’ solution.

fn = softb′(f
n−1 +DT

L,k−1(t−DL,k−1f
n−1)) (314)

To have fn definitions be equal, we would have to describe b’ as

b′ =

 −DT
L,k−1b DL,k−1f

n−1 > b

−DT
L,k−1DL,k−1f

n−1 DL,k−1f
n−1 ≤ b

(315)

Although the split seems to describe four zoned thresholding function, this is not the

case. Since we are dealing with natural images DL,k−1 and t have positive values,

which reduces the thresholding function to two zones again. Also it is important to

emphasize that we are not proposing new functions for the training of a neuron. We

are changing the equations to make them tractable.

For simplicity define

en
.
= fn−1 +DT

L,k−1(t−DL,k−1f
n−1) (316)

Introduce {ϕl} a CON basis vector set of Hilbert space.

〈fn, ϕl〉 = 〈softb′(en), ϕl〉 (317)

Now define

hn
.
= softbl(〈en, ϕl〉) (318)

Explicitly

〈fn, ϕl〉 = fn[1]ϕl[1] + ...+ fn[M ]ϕl[M ] (319)

hn = en[1]ϕl[1] + ...+ en[M ]ϕl[M ]− bl (320)
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where M is the length of vector f. Since we actively control b′ values for each

computation, we know that softb′ is active all times, only b′ will change. Thus

fn[i] = en[i] − b′[i] at all times. Therefore to have hn equal to 〈fn, ϕl〉 we should

have bl = 〈b′, ϕl〉.

fn =
∑
∀l

〈fn, ϕl〉ϕl =
∑
∀l

softbl(〈en, ϕl〉)ϕl

=
∑
∀l

Sbl(〈f
n−1 +DT

L,k−1(t−DL,k−1f
n−1), ϕl〉)ϕl (321)

where Sbl is defined in equation 216. Since the basis vectors can be chosen with

two different directions without loss of generality we can choose ϕl such that the

innerproduct (or projection) always yields a nonnegative result. By doing so, we

can use symmetric soft thresholding (Sb) instead of nonnegative soft thresholding

(softb). Usage of symmetric thresholding enables CNN learning equations to become

exact inverse problem solutions. We will replace operator K in equation 218 with

DL,k−1 in equation 321. From previous discussion we know that the operator needs

to be bounded for the solution to exist for equation 218. In this case DL,k−1 matrix

which is composed of image patches is bounded. Therefore equation 321 shows that

a neuron filter solves an inverse problem during training and that it is optimal and

stable solution.

A neuron filter solves a system as in equation 322

t = DLf + n′ (322)

where t is the target image as before, DL is the dictionary matrix constructed from

input data and f is the neuron filter to be learned, n’ is noise. The solution of such a

system is given by equation 321. Notice that the training step is an intermediary step

of using a CNN for the actual inverse problem of equation 21. As we will discuss in

section 3.3, learned filters will change roles during testing.

The generalization of a single CNN element (neuron filter) to the entire network is

mathematically cumbersome. We can make analysis on a subset of a network and then
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use generalized methods and theorems to understand what and how CNN learns. For

that we analyze two neuron filters cascaded and show that how they learn is similar to

a single unit. Two units are depicted in Figure 3.5. We use S(.) for soft thresholding

in following equations for simplicity without denoting biases. Take a patch xk−2 with

size exe; xk−1 with size cxc; fk−2 and fk−1, with size axa.

xk−1 = S1(xk−2 ∗ fk−2)

xk = S1(xk−1 ∗ fk−1) = S1(S2(xk−2 ∗ fk−2) ∗ fk−1) (323)

Update of fk−1 follows the same steps as discussed before. The update of fk−2 re-

quires derivation of mse w.r.t. fk−2 where we will utilize the Xe,a operator.

mse =
1

2
||t− S1(DL,k−1fk−1)||2 (324)

=
1

2
||t− S1(Xe,a(fk−1)S2(DL,k−2fk−2))||2 (325)

To calculate gradient, define a modified dictionary

P
.
= Xe,a(fk−1)DL,k−2 (326)

Then we can calculate gradient of MSE. For readability issues we will stop using bold

letters for vectors.
∂mse

∂fk−2

= −(P T t− P TS1(Xe,a(fk−1)S2(DL,k−2fk−2))) =


−(P T (t− Pfk−2 +Xe,a(fk−1)bk−2 + bk−1))

if DL,k−2fk−2 > bk−2

and if Xe,a(fk−1)(DL,k−2fk−2 − bk−2) > bk−1

−(P T t) o.w.

(327)

Then we calculate

fnewk−2 = fk−2 −
∂mse

∂fk−2

=


fk−2 + P T (t− Pfk−2 +Xe,a(fk−1)bk−2 + bk−1)

if DL,k−2fk−2 > bk−2

and if Xe,a(fk−1)(DL,k−2fk−2 − bk−2) > bk−1

fk−2 + P T t o.w.

(328)
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We can also define a new equivalent function as in previous case, by choosing bias

value as given in equation 330.

fnewk−2
.
= Sb′(fk−2 + P T (t− Pfk−2)) (329)

b′ =


−Xe,a(fk−1)bk−2 − bk−1

if DL,k−2fk−2 > bk−2

and if Xe,a(fk−1)(DL,k−2fk−2 − bk−2) > bk−1

= −Pfk−2 o.w.

(330)

Equation 329 leads to the same equation as we have reached before in equation 314.

From this point we can generalize that a CNN can solve for an inverse problem during

training by an IST algorithm. The aim of a neuron filter, or the entire network, is to

match its output to a target image to minimize error in equation 37. The estimation

of neuron filters in this way is analogous to basis pursuit of K-SVD algorithm for

sparse representation estimation. Therefore the vector f is a representation vector in

equation 37. The dictionary, DL, upon which representation of target, t, is found is

constructed out of subpatches from low resolution image (superpatch), this is only

convenient because during testing (forward pass) the only information, from which

the inverse problem is solved, is the input image itself.

3.3 Testing (Reconstruction) Phase

For the testing phase, a new representation - dictionary duality (RDD) concept is pro-

posed. RDD concept states that the representation vectors learned during the training

phase can be used as atoms of a dictionary for the testing phase. The cost function that

is minimized by CNN training (learning) yields a representation vector as the neuron

filter. During testing (scoring, reconstruction) phase, resulting representation vectors

(filters) from a layer of neurons turn into a dictionary (later named asDR) upon which

the reconstruction of output image is carried out. We propose the idea that dictionar-

ies and representations swap roles during training and testing. Also during training,

inputs to each layer is perceived as a dictionary for the next layer. Following the

idea of RDD, the neuron filter can be viewed as an atom of a dictionary consisting of
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Figure 3.6: Formation of Reconstruction Dictionary (DR)

many other neuron filters among the network layer. During testing period, the neuron

filters are vectorized and concatenated to form the reconstruction dictionary matrix

DR = [f1;f2;f3...]. A layer’s output will be the representation vector of input image

in terms of the dictionary atoms, i.e. the neuron filters. This is illustrated in Figure

3.6

In order to explain the representation problem analogy better we use ideas from two

papers by Papyan et. al. [20][41]. The authors have described a convolutional sparse

coding problem where an observation is represented by a dictionary and its represen-

tation vector is further represented by another dictionary for a number of layers. They

have proven, in Theorem 1, that layered representations can be estimated by a CNN

based forward pass where mentioned layered dictionaries are filters of each layer of

CNN. (Theorem 10 in original text [20])

Theorem 1 Suppose g = y + n where n is noise whose the power of noise is bounded

by ε0 and y is a noiseless signal. Considering a convolutional sparse coding (CSC)

structure where DR,l is the dictionary, constructed from lth layer filters

y = DR,1x1

x1 = DR,2x2

.

.

xN−1 = DR,NxN

Let x̂i be a set of solutions obtained by running a convolutional neural network, or lay-

ered soft thresholding algorithm with biases bi as x̂i = softi{DT
R,ix̂i−1}where x̂0 =

g. Denote |xmaxi | and |xmini | as absolute maximum and minimum entries of xi. Then
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assuming for ∀1 ≤ i ≤ N

||xi||0 < 1
2
(1 + 1

µ(DR,i)

|xmin
i |
|xmax

i |)−
1

µ(DR,i)
εi−1

|xmax
i |

where µ(DR,i) is the mutual coherence of the dictionary then

1. The support of the solution x̂i is equal to the support of xi

2. ||xi − x̂i||2 ≤ εi

where εi =
√
||xi||0(εi−1 + µ(DR,i)(||xi||0 − 1)|xmaxi |+ bi)

The mutual coherence µ(DR,i) is defined as min
n6=m
|dTR,i,ndR,i,m| where dR,i,n is nth col-

umn ofDR,i [20]. Although as stated by the Papyan et. al. there are tighter conditions

for mutual coherence calculation. Later in this section we are going to analyze a dif-

ferent approach to the proving condition of this theorem.

Using Theorem 1, we can relate sparse representation problem with CNN forward

pass. Although image spatial coherency and dictionary (neuron filters’) mutual co-

herence are two distinct measures they are correlated. Theorem 1 is used to show the

stability of CNNs for data representation. There are two different stability concepts

that are proven by this theorem, one is having bounded response for small perturba-

tions in the input data which is trivial in context of CNNs, the other more important

concept of stability is the accuracy of the results given an input data. The theorem is

valid, depending on mutual coherence of dictionary elements. The condition is given

as

||xi||0 <
1

2
+

1

µ(DR,i)

1

2|xmaxi |
(|xmini | − 2εi−1) (331)

In this condition, at first glance it looks as µ(DR,i) is required to be as low as possible

and |xmin
i |
|xmax

i | as close to 1 as possible. But further analysis reveals that µ(DR,i) and

xmini , xmaxi values are interdependent, therefore a straightforward upper bound may

not be defined. If mutual coherence decreases, min
i 6=j
|dTR,i,ndR,i,m| decreases. It means

the eigenvalue spread of DT
R,iDR,i increases. Given enough number of elements in

a dictionary this means maximum and minimum values of x̂i are also pushed apart.

Assuming a stable solution exists, this means an increase in |xmaxi | and a decrease

in |xmini |, since difference of estimation and true value is bounded by the power of

noise. The existence of a solution for noisy case CSC (Theorem 1) is not proven in
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Papyan et. al. [20]. Therefore we have to look for conditions that would contradict

with the existence of a non-trivial solution. For equation 331 to be valid for non-

trivial solution, 1
µ(DR,i)

1
2|xmax

i |(|x
min
i |−2εi−1) should be greater than 1

2
. We can define

a looser but easier bound:

|xmini | > 2εi−1 (332)

If we assume the existence of a stable solution we would have ||xi− x̂i||2 ≤ εi where

x̂i = softi{DT
R,ix̂i−1} then

|xmini | = min
n
|xi[n]| ≤ min

n
|x̂i[n]|+

√
εi (333)

≤ min
n
|dTR,i,nx̂i−1|+

√
εi (334)

≤ min
n
|dTR,i,nxi−1|+

√
εi +
√
εi−1 (335)

= min
n
|dTR,i,nDR,ixi|+

√
εi +
√
εi−1 (336)

≤ min
n6=m
|dTR,i,ndR,i,m|.||x1||2 +

√
εi +
√
εi−1 (337)

= µ(DR,i)||x1||2 +
√
εi +
√
εi−1 (338)

To satisfy equation 332

µ(DR,i) >
2εi−1 −

√
εi−1 −

√
εi

||xi||2
(339)

If mutual coherence is not above a certain value (equation 339) then the theorem does

not hold. Notice as a side note that right hand side in equation 339 cannot be nega-

tive. The iterative formulation of ε starts with noise power, in a system where pixel

values range from 1 to 255 and each iteration multiplies that value with sqrt||xi||0
and |xmaxi | which makes it always greater than 1. When conditions are not satisfied,

||xi − x̂i||2 < εi statement is no longer valid. Starting from x̂0 = g, The estimate x̂1

will be perturbed beyond the power of noise of the input. Recall that we have defined

the noiseless signal y as y = DR,1DR,2..DR,NxN where N is the number of layers,

or stages. As the estimate of each stage drifts further from the original representa-

tion values, in MSE sense, the end result of N layered CNN becomes an inaccurate

representation of the original data.

ŷ = DR,1DR,2..DR,N x̂N (340)
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Although estimating y, in forward problem that is defined as g=y+n, is a denoising

problem, which is an example of an inverse problem nonetheless, the stability discus-

sion can be applied to generalized inverse problem for imaging as g = Kt+ n. Then

the equation in the theorem changes as Kt = DR,1DR,2..DR,NxN and as CNN learns

to invert the observation system K, equation becomes xN = t.

Skip connections relay information from previous layers to deeper layers. One must

consider both training and testing to understand the effect of skip connections on

mutual coherence of layer elements and the stability of CNN overall. During for-

ward pass (testing), information from previous layers are added on deeper layers’

outputs. As prior layers’ information is more similar to the original data compared

to deeper layers’ information, Because of less perturbation caused by equation 340.

Skip connections help preserving the accuracy of the end result. During backprop-

agation (training), the total error is carried, via skip connections, to deeper layers.

Bypassing the chain rule of gradient calculation enables the true gradient to influence

deeper filter coefficients. The initialization of CNN coefficients are done via Gaussian

noise. Initial coefficients has the lowest mutual coherence possible. Backpropagating

an error that is calculated from difference of target data and input data that is lost

within initial coefficients (as in modified dictionary in equation 326), without los-

ing fidelity becomes almost impossible for deeper networks. This is the reason why

the middle layers always have lowest mutual coherence (see Table 5.1 in Chapter 5).

Skip connections bypasses effect of many layers on the true gradient therefore skip

connections help updating deeper layers with more accurate gradients. Consider the

modified dictionary in equation 326. With skip connections the gradient descent will

use direct input information DL,k−2 instead of Xe,a(fk−1)DL,k−2 that is dictionary

modified with potentially unreliable fk−1 at the initial stages of training. (To be more

precise, with skip connection, gradient descent will use a mixture of DL,k−2 and P ).

Thus with skip connections filter coefficients become more accurate in representing

noiseless input data Kt, then output of CNN becomes more accurate in representing

the target data t. Therefore we have shown the benefit of skip connections between

hidden layers or input-output layers as in residual learning [4] which provide the net-

work with necessary mutual coherence. Mao et. al. [21] have proposed the usage

of skip connections between convolution and deconvolution layers to prevent input
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information to be lost inside the encoder-decoder structure where an image is down-

scaled and upscaled by multiple stride convolution operators. Differently our reason-

ing for the usage of skip connections is to keep mutual coherence of filter coefficients

high. This will provide the trained network to produce accurate results according to

the error criterion used. During training, each layer’s output is used as a dictionary for

the next layer. The mathematical analysis of the learning process revealed in equation

327 that initial filters are updated with modified dictionaries P that carry information

of all the layers beyond it. Skip connections will reduce the variance of filters in

different layers by carrying information across the network during forward and back-

ward passes of training process. Although we have shown that CNNs benefit from

skip connections exact structure is still subject to experimental refinement depending

on the application.

This discussion is also in favor of residual learning which is a skip connection be-

tween input and output layers. It is proposed [4] that residual learning quickened

training for deep networks. We can show few reasons for its usefulness. First reason

is that the initial filters are not going to be updated by data that is backpropagated

through many layers and modifications but directly from the output MSE. Secondly,

RDD supports the explicit updating of initial layers that will help construction of a

more definite filter set which is going to be used as feature selectors for the rest of

the network during testing. Lastly, input data is added to the last layer’s output which

will become a last dictionary for the training of reconstruction filters for output stage.
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CHAPTER 4

SUPERRESOLUTION USING CNNS

Single Image Superresolution (SISR), i.e. reconstructing a high resolution (HR) im-

age from a given low resolution (LR) image, is an ill-conditioned inverse problem. In

the last decade the usage of CNNs for inverse problems have dramatically increased,

mainly due to advancing technology.

With the introduction of more complex structures, the pixel-wise error performance

of the networks increased. As error performance increased, the computation and

training time of the networks also increased. Parameter count for networks reached

to as high as 43 Million [42] and training time reached to the order of weeks [43] for

the best performing networks. As usage of shared parameters became wide-spread

[44][45][46] the number of operations per output pixel (ops/op) has also become an

important measure determining the true size and speed of a network.

Mobile systems and real-time operating commercial or military equipment consists

of lower memory and lower processing power compared to high-end lab equipment

such as multiple GPUs and CPUs. Considering that there are multiple algorithms and

software running simultaneously within a system, an algorithm should perform well

within a feasible number of operations and parameters.

4.1 Superresolution Literature with CNNs

Before the "era" of convolutional neural networks (CNNs), superresolution (SR) prob-

lem was addressed by a plethora of different methods. The most related method to

the scope of this paper was dictionary based methods [27]. It is discussed in literature

35



Figure 4.1: SRCNN [3] block diagram

that the CNN based SR algorithms mimic the dictionary based algorithms [41] [47].

Super Resolution CNN (SRCNN) [3] was the first method to use CNNs for SR prob-

lem. The method visualized layers of a network as mapping functions of low res-

olution (LR) image to feature space and back from feature space to high resolution

(HR) image as depicted in Figure 4.1 taken from respective paper. SRCNN had 57K

parameters to be learned and it surpassed all previous Non-CNN methods up to date,

in terms of PSNR. Later, an improvement on parameter number was proposed by Fast

SRCNN (FSRCNN) [48] to reduce parameter count up to 12K and slightly increase

error performance. On a later contribution based on FSRCNN, a discriminative learn-

ing based algorithm FSRGAN [49] improved over visual quality by using generative

type networks. This was the lowest number of parameters proposed for a CNN based

SR algorithm. Since then the number of parameters have increased at each generation

of breakthroughs.

One breakthrough happened with Kim et. al. [4], when very deep networks with

residual learning was proposed. It was discovered that the depth of the network had

direct correlation with error performance. VDSR had 20 layers, with 64 filters at

each layer with the size of 3x3. This amounted to 664K parameters to be trained.

PSNR performance was dramatically increased with the cost of execution time. The

proposed algorithms use bicubically upsampled LR images to obtain HR result. The

training was completed within 4 hours on Nvidia Titan Z GPU. The algorithm was

presented as in Figure 4.2.
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Figure 4.2: VDSR [4] block diagram

Figure 4.3: ESPCN [5] block diagram

Kim et al. [50] also proposed Deeply Recursive networks for SR problem (DRCN).

DRCN had similar performance results compared to VDSR with 1.7M parameters to

be learned. The training of DRCN took 6 days on Nvidia Titan X GPU.

ESPCN [5] was an exceptions in the timeline of ever-increasing number of parame-

ters. The SRCNN topology is constructed with 3 layers, but with a novel sub-pixel

interpolation block in the end. The LR image itself was propagated through the net-

work until the last layer, where resulting n2 images were used to generate HR image

of upsampling ratio of n as depicted in Figure 4.3. Sub-pixel interpolation has not

only increased the speed of the algorithm but also helped the network to learn its own

interpolation filters. Training of ESPCN took 7 days on Nvidia K2 GPU.

In another method, namely LapSRN [51], a cascaded upsampling structure was pro-

posed. For scaling ratios of 4 and 8, 2 and 3 cascades were used respectively. It is
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reported that their algorithm has 27 layers, which would amount to 922K parame-

ters for 64 filters on each layer. LapSRN was trained in 3 days on Nvidia Titan X

GPU. Shared coefficients are introduced to LapSRN algorithm for proposing MS-

LapSRN [44]. Due to the introduction of shared parameters, the number of used

parameters for following SotA algorithms have dropped. Even though shared algo-

rithms are good for memory issues the number of operations required to obtain one

output pixel, hence operations per output pixel (ops/op) is the true measure of an al-

gorithm’s size. Although independent parameter count of MS-LapSRN is reported to

be 222K for D5R8 sub-method, its operations per input pixel is calculated to be 3M

in total. The calculation of ops/op for an algorithm that recursively upscales an image

is rather difficult. The ops/op for MS-LapSRN for upscaling ratio 2 is 3.3M/(2x2)

that is 825K. The algorithm is used twice in cascade to obtain 4x upscaling and then

bicubic downsampling is applied for 3x upscaling ratio in total. Therefore the ops/op

for MS-LapSRN is calculated to be 825K/4 + 825K = 1M. Further division by 4 is

due to pyramid structure of cascaded upscaling framework. The ops/op is a direct

measure to compare running times of algorithms rather than the parameter count.

With ResNet [52], residual blocks consisting of two convolution layers and skip con-

nections between its input and output was proposed. Later Ledig et. al. [43] have

used this idea for a superresolution algorithm named SRResNet. The topology of

residual blocks was changed by Lim et. al. in [42]. Enhanced Deep Residual Net-

work (EDSR) was another breakthrough of error performance which used 32 residual

blocks (or layers) with 256 filters of size 3x3 at each layer. This amounted to 43M

parameters to be learned. Training of EDSR took 8 days on two Nvidia Titan X GPUs.

Same year, another method attempted to reduce the number of parameters in a net-

work. Deep Recursive Residual Network (DRRN) [45] have utilized two layered

residual blocks of ResNet [52], but instead of forwards progressing, DRRN carried

initial information to be added at every two layers’ output. Ops/op for B1U25 and

B1U9 sub-methods is calculated. With 128 filters of size 3x3 at each layer, B1U9

method (with 9 residual blocks, amounting to 18 layers plus two layers for the be-

ginning and ending) contains 2.6M ops/op and B1U25 method (25 residual blocks)

contains 7.3M ops/op. DRRN was trained in 4 days with two Nvidia Titan X GPUs.
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Tai et. al. have proposed a memory network (MemNet) for SR problem [46]. Mem-

Net used recursive blocks called memory blocks to learn multi-level dependencies

inside a single image. The base algorithm with 80 layers and 64 filters of size 3x3

per layer (M6R6) is trained in 5 days on Nvidia Tesla P40 GPU. It has 2.9M ops/op.

Their advanced sub-method M10R10 has 212 layers and 7.7M ops/op.

Another method that reduced number of parameters for a performance increase was

IDN [1]. The authors have sliced and split layer outputs to be added on further lay-

ers, similar to skip connections. They have achieved good PSNR results for 663K

parameters. Their model was trained in 1 day on Nvidia Titan X GPU. Total ops/op is

calculated to be 73K for IDN since it processes LR data until the end of the network,

where it is upsampled.

Two latest methods for SR problem are Deep Back-Projection Networks (DBPN)

[53] and Residual Dense Network (RDN) [54]. DBPN used up-projection and down-

projection blocks to preserve dependencies of HR estimate and LR input throughout

the network while providing a solution for SR. There are 10M parameters to be trained

that resulted slightly higher PSNR results compared to that of EDSR. Similarly RDN

uses dense networks with 4.7M parameters (1.5M ops/op, since algorithm processes

LR data and outputs 3 channels for RGB) to provide slight improvement over EDSR

in terms of PSNR. RDN was trained for 1 day on Nvidia Titan Xp GPU.

Scaling of these algorithms to mobile applications, TV and industrial applications

is more than necessary. It is evident that storing hundreds of thousands and even

millions of parameters inside an embedded system and running these algorithms on

real-time applications is impossible.

4.2 Analysis of Network Topology

To understand mechanism of CNN with simplified equations, in addition to discussion

on Chapter 3, we can inspect cases where mathematical proving is easier. Let us

now recall the psuedo-inverse solution, applied for CNN context fE = (DT
LDL +

λI)−1DT
Lt. Although psuedo-inverse solution is the estimator of a system with L2

norm regularization, it is not going to effect our analysis after following assumptions.
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Figure 4.4: Computation of filter from given LR and HR image patches.

In order to be able to use insights from this equation assume that all neurons in the

network are activated for the inputs. The network filters can be convolved among

themselves to produce an end point filter, fE , for the unrealistic case. Creating an fE

is feasible because when all neurons are activated, their linear unit outputs are going

to be the convolution results minus a bias that can be added up at the end, simply

enabling the convolution of all filters to be applied in a single instant. Figure 4.4

further elaborates on this analysis. A similar work is done by Mallat et. al. [55] to

analyze linearization, projection and separability properties of sparse representations

for deep neural networks.

The vector fE is going to be a normalized projection of t onto input image domain.

Considering the rows of DT
L matrix, each row is a vectorized subpatch, thus each

multiplication result from DT
Lt is going to be 〈subpatch, t〉 meaning the projection

of target patch onto an input subpatch. DT
LDL matrix have elements of inner prod-

ucts of subpatches such as 〈subpatchi, subpatchj〉. The diagonals of DT
LDL matrix,

therefore, are normed square of each subpatch. The inverted matrix is going to be

mostly composed of diagonals that are inverted normed square values of subpatches.

This means that the entire equation calculates the projection of target patch, t, onto

the input image domain. In other words, the result, fE , consists of scores which mea-

sure how similar t vector is to each subpatch from the entire superpatch. If the target

image has content that cannot be recovered by using certain region of input image,
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Figure 4.5: Illustating the Equivalent Filter fE
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the reconstructed image is going to be inferior. This is due to the fact that the inverse

problem operates solely on an input image. Selection of a larger area for the re-

construction of certain target patches proves useful because of increased information

included into the system.

The insight from discussion on extreme examples provides a method for determining

how deep a network should be for certain features. For example when the super-

patch and corresponding target region contains only irregular texture, which can be

modeled as gaussian noise, the DL matrix becomes linearly independent, meaning

easily invertible. Consequently when the training set consists solely of textured im-

ages, shallow networks will perform as good as deep networks. Then for the testing

phase, same filters are used to construct the DL matrix and the result of the network is

obtained by the same equation without normalization (without the inverse term) this

time (since it is already normalized) i.e. projecting input image onto filters’ domain.

Notice that the error is generally not completely orthogonal to the input images be-

cause of iterative nature of equations. Therefore this is not going to be a meaningless

operation. The representations that are learned during training can only be called

complete if the data can be completely recovered using them [56].

In general the training set contains various features with different variances. There-

fore the generalization of the new concepts that are introduced here are difficult.

Training with different structures enables the constant evolution of neuron filters dur-

ing training. However to have an activating branch for each feature either the network

should have increased number of filters or the network will not converge which can

be explained by the manifold hypothesis, as representations not covering the high

dimensional input space [16].

We propose separating a CNN into two separate networks that will be trained with

different data. The separation must be carried out according to texture information

within training patches. Also the separation must be done in such a way that the

disjunct training sets should present different informations to a network that is to be

trained. Different metrics that can be used for the separation of data is inspected in

section 4.3.1.1 in detail.

The verdict of this analysis is that the network depth should be different depending on
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Figure 4.6: Framework for a double-network superresolution

the training data. Also the CNN becomes a high dimensional manifold upon which

the input is projected [16]. Considering such complicated space, increased variety

of features from the training set will increase training times and convergence speed

greatly. Combining these ideas, we propose separation of the network into two or

more networks which is carefully inspected in the next section.

4.3 Double Network Superresolution

To design a double network superresolution framework following questions must be

answered:

• How to separate the training set?

• What interpolation method to use?

• How to merge the outputs of networks?

• How many layers and parameters to use?
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Figure 4.7: Comparison of the effect of different data set separation methods on the

convergence of a network with a fixed data.

4.3.1 Experiments on Double Network Topology

To determine appropriate algorithm parameters, four different experiments are con-

ducted all of which are done for 3x upsampling ratio and the results are also going

to be given in the same ratio. 3x upsampling is chosen because it is a greater chal-

lenge to carry out a non-dyadic (not multiple of two) upsampling. The final test setup

details are given in Chapter 5.

4.3.1.1 Experiments on Separation of the Networks

A single image superresolution algorithm can extract useful information from few

cues such as color, edges and textures. Since this work is carried out on intensity level

and not in color, utilization of texture and edge (gradient) information for separation

of the training set is going to provide useful information for separate networks. For

this reason three different methods are tested to separate training set according to its

texturedness: Homogeneity and Uniformity measures obtained from a co-occurrence

matrix [57] and a spatial coherency measure used by Romano et. al. [3] One of the

most used measures for texturedness is co-occurrence matrices proposed by Haralick

et. al. in 1973 [57]. Homogeneity measures the closeness of distribution of elements
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in a patch within small neighborhoods. Uniformity measures the energy of overall

variation in a patch. The values for the entire set is calculated and the median value

for two measures are chosen to be the value to separate training set. We have also

used another method that was used by a similar purpose by Romano et. al. [31].

Eigenanalysis is performed on a patch of image that yields information regarding

gradient angle, strength and spatial coherency. From a patch of size
√
M ×

√
M

gradient values in x and y direction are calculated. Vectorized gradient estimates are

concatenated under a matrix G that has the size 2 by M. M is the number of pixels in

a patch of image.

G =


gx1 gy1

...
...

gxn gyn

 . (41)

Eigenvalues of the matrix GTG are calculated. SC is calculated by the normalized

difference of larger eigenvalue
√
λ1 and smaller eigenvalue

√
λ2. Larger eigenvalue,

λ1, gives information about the strength of gradients in the patch. The difference of

square rooted eigenvalues yields information about the spread of the local gradients.

The SC measure can be calculated as in equation 42, as explained in [31].

µk =

√
λ1 −

√
λ2√

λ1 +
√
λ2

(42)

Performance comparisons are done for each of the separation methods. Low textured

images are prepared to train a 20 layer network with 16 filters at each channel that

are of size 3x3. Figure 4.7 displays that best performance on training is achieved

by separating data according to SC. Samples from real world images are shown on

Figures 4.9 and 4.10 showing properties of low and high texture patches that are

classified according to SC. The histogram of SC is calculated as in Figure 4.11, then

the median value is chosen to separate training set into two.
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Figure 4.8: Examples from mixed set of BSD100 [6], URBAN100 [7], DIV2K [8],[9]

that high and low texture patch examples are shown in Figures 4.9, 4.10

4.3.1.2 Experiments on Interpolation Methods

There are two main approaches for the interpolation method in the literature. One is

to interpolate the image with a known method such as bicubic or bilinear before the

CNN [4][3]. The other method is to let the CNN learn its interpolation kernels [5].

Even though the latter seems to be the better option, there are advantages of using pre-

determined interpolation kernels (functions). For example the bicubic interpolation is

known for its good localization and edge reconstruction. however bicubic interpola-

tion fails to provide high frequency components such as texture details. Considering

that there will separate image patches for training that are high and low textured, we

propose the usage of bicubic pre-interpolation for low texture training set whereas for

highly textured training set usage of learned interpolation is proposed.

To analyze the performance of the interpolation methods, we have used the separation

method based on Spatial Coherency (SC) metric and compared the effect of bicubic

interpolation on low and high texture patches. Figure 4.12 shows that bicubic in-

terpolation creates unwanted high frequency components for textured images. Since

high SC patch contains a single orientation edge and mostly flat regions, the bicubic

interpolated image has less artifacts visible in the Fourier transform. We cannot com-

pare a learned interpolation method with bicubic interpolation directly, because the
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Figure 4.9: Examples of high texture image patches classified according to spatial

coherency measure. High texture patches contain regular and irregular texture com-

ponents.
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Figure 4.10: Examples of low texture image patches classified according to spatial

coherency measure. Low texture patches are mostly comprised of flat regions with

single orientation edges.
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Figure 4.11: Spatial Coherency Histogram

Table 4.1: Comparison of the effect of different interpolation methods on reconstruc-

tion quality of different data sets

PSNR (dB) / Interpolation Learned Bicubic

Low Texture 32.49 33.05

High Texture 31.02 30.77

interpolation kernels are used at the end of a network. Instead of comparing bicubic

versus learned interpolation, we have trained four networks. We have used low versus

high SC data and bicubic versus learned interpolation methods. Low texture (High

SC) image patches have higher PSNR score on a network that is trained with pre-

interpolation. High texture (Low SC) image patches have higher PSNR score on a

network that is trained with learned interpolation. Bicubic interpolation is a straight-

forward method compared to a learned interpolation. However, bicubic interpolation

creates more artifacts for high textured image superresolution. Experiments have also

validated that using learned interpolation for high textured images yields better error

performance. This is the reason why learned interpolation was chosen to be used for

high texture network and bicubic interpolation for low texture images.

The learned interpolation that is first used in ESPCN [5], is applied to the images
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Figure 4.12: Comparison of FFT coefficients of bicubically interpolated low spatial

coherency (high texture) data
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Figure 4.13: Comparison of FFT coefficients of bicubically interpolated high spatial

coherency (low texture) data
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at the end of a network. The network itself evolves coalesced with all sub-images

that will turn into interpolated pixels in HR image. We have conducted an additional

experiment to test out a new structure that was not proposed in the literature before.

The fact that nxn pixels for n times interpolation, evolves inside the same network,

lead us to separate the networks for each sub-pixel. The network structure is depicted

in Figure 4.14. The resulting images from this network contained better texture com-

ponents compared to low texture network on 3x scaling factor. Although apparent

texture generation capability of the network is visualized in Figure 4.15, the conver-

gence of proposed structure to a successful PSNR performance could not be achieved,

within low parameter count limits that we have set. Therefore conventional learned

interpolation method is chosen to be used for high texture training set. This method

is left to be studied in future works.

4.3.1.3 Experiments on Structure of the Network

Following our work [47] we have chosen 10 layered network with skip connections

for high texture data and 20 layered network with no skip connections (only residual

learning) for low texture data. We know that a high spatial coherency (low texture)

training set will yield learned filters of similar information content. This means that

the neuron filters will be composed of mostly flat and singular orientation features

thus filters already have higher mutual coherence. Also using skip connections for

low texture network can introduce additional information that could decrease mu-

tual coherence, thus further deteriorating the performance. For low spatial coherency

(high texture) networks, the learned filters will exhibit textured features reducing the

mutual coherence (reducing similarity) in the process. This is the reason why skip

connections are used for high texture network. 3 and 4 parallel networks are also

tested instead of two networks and the performance increase was found to be negligi-

ble compared to speed loss due to increased number of parameters.

Extensive experiments are conducted on the number of parameters required for the

best performance/speed optimization. It is experimentally shown that low texture net-

work requires less number of parameters where high texture network benefits more

from increasing the number of parameters. This is due to the number of possible
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Figure 4.14: A new CNN structure for high texture set and learned interpolation

namely separate channel interpolation (SCHI). Each pixel to be interpolated into HR

grid is evolved through a different network, giving the network the ability to adapt

recovered pixels in subpixel resolutions.
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Figure 4.15: Comparison of low texture network result (left), separate channel inter-

polation (SCHI) method (middle), original image (right). SCHI method can recover

more high frequency texture components compared to LT network. The fidelity of

generated texture from SCHI is low, causing pixel wise error to increase.

variations on a training patch. Since low texture data set contains only single ori-

ented edges and mostly flat patches, we have concluded that the dimensionality of the

manifold that needs to span the training set was lower. The chosen number of param-

eters are 16 filters per layer for low texture network and 36 filters per layer for high

texture network. This amounts to 93960 parameters for high texture network and

41760 features for low texture network. Considering that the high texture network

processes LR image throughout the network, in terms of required operations per HR

pixel, equivalent number of parameters of the final network becomes 52200.

Another set of experiments have been conducted on reduced number of parameters

and layers for EDSR [42], SRResNet [43]. EDSR structure with 8 residual blocks

and 64 filters per layer is tested. PSNR values for Set14 [11] images was 0.8 dB

below that of high texture network of DNSR alone and the run time has increased

by 6 times due to number of parameters increasing to 590K from 93K. We have

also tested the same number of layers and parameters with SRResNet which contains

extra batch normalization layers inside residual blocks and extra rectified linear unit

(ReLU) layers. The PSNR performance did not improve significantly. DBPN-SS

54



network (with 188K parameters) that is suggested in Haris et. al. [53] could not

be replicated due to DBPN structure not being suitable for interpolation ratio that is

non-dyadic (not multiple of two).

4.3.1.4 Aggregation of Network Outputs

After the training is finished, during testing phase either the input data needs to be

separated for parallel networks or the outputs need to be aggregated. Although the

former seems to be the better approach, it has few problems. Firstly the separation

of input data pixel-wise or patch-wise requires too much processing power. Secondly

CNN structure is not adapted to partially filled inputs and lastly it becomes as hard to

aggregate results as it is to separate input. Therefore the topology to combine outputs

of networks for whole image inputs is chosen.

In order to merge two images, we have trained a thin network with one hidden layer.

Entire training set is passed through low and high texture network, results are used

together with ground truth images to train a network with four layers. Two images

from low and high texture networks are fused by early fusion. Resulting network

is used at the end of our trained double networks. The PSNR score of combined

algorithm was in between the scores of two networks, similar to averaging.

CNN structure, especially deep networks, lose fidelity to the original data. Methods

such as residual learning [4] and skip connections [47] are used to overcome this prob-

lem, but it cannot be prevented nevertheless. To reduce the effect of deviating from the

original information filtered backprojection is used. Only low texture network output

is backprojected because it is deeper and lacks skip connections. Then two images are

averaged. With this method the PSNR score of averaged image was higher than that

of network outputs but also higher than the score of backprojected images alone. We

have empirically found that 15 iterations were enough to increase PSNR performance

by 0.07 dB for Set14[11] images. These operations are not included to parameter

count that we have calculated earlier, because bicubic downsampling or upsampling

uses 3x3 kernels and the error calculation has equivalent computation of a 1x1 filter.

Since we iterate one channel 15 times the computation overhead is equivalent to 150

parameters, which is negligible. The final architecture of DNSR is depicted in Figure
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Figure 4.16: Aggregation Network

4.17.

4.3.2 Ablation Study

Our proposed network is tested with different configurations. For fair comparison we

have obtained four different networks with the same number of operations. Firstly

Two separate networks are trained with entire training data, instead of respective

high/low textured patches. This network was named as DNSR_AA. Secondly Two

networks are trained with conflicting data, meaning high texture network is trained

with low texture data and low texture network is trained with high texture data. This

network was named as DNSR_CONF. Thirdly a single network that comprises the

general structure of low texture network is trained, i.e. bicubic upsampled inputs, 20

layers with residual learning. Training was done with entire training set. The number

of parameters were chosen to be near 52K ops/op therefore, each layer has 18 filters

(18x18 for inner layers) instead of 16 filters. Output is not backprojected to input

LR image because this is a feature of double network framework. This network was

named as LTNSR. Fourth and last ablation test was conducted by training a network

with general structure of high texture network, i.e. 10 layers with skip connections

and learned interpolation at the end of the network. Training is done with the entire
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Figure 4.17: Architecture of proposed DNSR. Low texture network has 20 layers, 16

filters at each layer with size 3x3. High texture network has 10 layers, 36 filters at

each layer with size 3x3. Skip connections are used between layers 1-3, 4-6, 7-9.

training set again. The number of filters per layer is chosen to be 80 instead of 36.

This amounted to 473K parameters and one ninth of 473K ops/op that is 52K op-

s/op, because the scaling factor is chosen to be 3. This network is named as HTNSR.

PSNR and SSIM scores are obtained for four networks together with original DNSR.

BSD100 [6], Urban100 [7] datasets are used for comparison since they constitute a

large variance of samples. In conclusion, original DNSR topology performed better

than ablative networks as shown in Table 4.2.
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Table 4.2: Ablation Study Results

BSD100 URBAN100

PSNR SSIM PSNR SSIM

DNSR_AA 28.757 0.8482 26.8546 0.8216

DNSR_CONF 28.7126 0.8493 26.7799 0.8206

LTNSR 28.732 0.8479 26.8391 0.8219

HTNSR 28.6931 0.8427 26.7636 0.8197

DNSR 28.831 0.8527 27.1614 0.8293
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CHAPTER 5

EXPERIMENTAL VALIDATIONS

5.1 Introduction

Performance of DNSR is tested with extensive experimentation. PSNR and SSIM

scores of our algorithm has been compared to SotA methods. Also we have tested

our theoretical assertions from Chapter 3 and provided experimental validation.

5.1.1 Dataset

Throughout all the experiments we have used 91 images from Yang et. al. [28]

and 200 images from Berkeley Segmentation Dataset (BSD) [6] as our training im-

ages. Similar to [4] we have additionally scaled our dataset between 0.8 and 0.6

and produced 90, 180, 270 degrees rotated versions of images. We have used only

upsampling ratio 3 because we work on single scale upsampling.

5.2 Validation of Theoretical Assertions

We have validated our assertions with experiments to solidify our results. The exper-

imental findings are summarized as

• Skip connections increase mutual coherence of middle layers, as well as other

layers.

• Skip connections increase PSNR performance of the high texture network
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Table 5.1: Comparison of mutual coherence of two networks. The training set data

values was limited between 0 and 1.

Layer # 1 2 3 4 5 6 7 8 9

Skip MC 0,0034 0,00026 0,0031 0,0034 0,000099 0,00180 0,0026 0,0098 0,0038

NoSkip MC 0,0016 0,00018 0,0026 0,0031 0,000089 0,00099 0,0013 0,0027 0,0030

• Measured increase in values are subjected to T test and they are found statisti-

cally significant.

• Networks that are trained with lower spatial coherency data saturate in per-

formance for shallower networks, while high spatial coherency data requires

deeper network before converging in performance.

Skip connections are used on a 10 layered network with connections between 1st and

3rd layers, 4th and 6th layers, 7th and 9th layers. This network is trained with high

texture data obtained by using SC metrix separation. Another network with same

depth and parameters is trained without skip connections. Training is ended after

both networks converged in their output error performance. Table 5.1 show that us-

age of Skip connection in a 10 layered network helped increasing mutual coherence.

Especially deeper layers become less and less coherent as the information from the

input becomes dispersed and altered due to non-linear activation functions. Skip con-

nections help increase the lost mutual coherence.

Error performance of network with skip connections and without skip connections

are compared. 100,000 patches have been used to test the error performance. The

PSNR of the network without skip connections was averaged on 30.77 dB while skip

connections helped the PSNR to increase to 30.88 dB. Bicubic PSNR average is cal-

culated to be 29.2 dB. We have used the so called T test to measure the significance

of this result. T test is formulated as in equation

T =
meanset1 −meanset2√

varset1
#set1

+ varset2
#set2

(51)
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Figure 5.1: High spatial coherency network number of layers required for perfor-

mance convergence. PSNR values are measured from single network, not the com-

bined DNSR. A potential increase in performance of single network does not neces-

sarily reflect to DNSR performance.

where set1 contains the results of network with skip connection and set2 contains

results from network without skip connection. T value is calculated to be 7.07 which

points that the improvement is quite significant.

We have trained multiple networks for high spatial coherency and low spatial co-

herency data sets. As we have pointed out with our discussion in Chapter 3, High spa-

tial coherency network required deeper networks before converging in performance,

while low spatial coherency networks converged on shallower networks. This is il-

lustrated in Figures 5.1 and 5.2.

5.3 Performance of Proposed DNSR

The performance of DNSR is compared to SotA methods.
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Figure 5.2: Low spatial coherency network number of layers required for perfor-

mance convergence. PSNR values are measured from single network, not the com-

bined DNSR. A potential increase in performance of single network does not neces-

sarily reflect to DNSR performance.
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Table 5.2: Operations per output pixel, training times, relative operating speeds of

algorithms. Training times are calculated according to GFLOP/s capability of GPUs,

projected to Nvidia Titan X level. Algorithms with ops/op less than 2 Million are

compared.

Method Ops/op Params Train time (hrs) Relative Speed

SRCNN [3] 57K 57K - 1.1

ESPCN [5] 1.6K 15K 59 0.03

VDSR [4] 664K 664K 2.8 12.77

DRCN [50] 1700K 1700K 144 32.69

LapSRN [51] 922K 922K 72 17.73

MS-LapSRN [44] 1M 6.6M - 19.8

IDN [1] 73K 656K 24 1.4

RDN [54] 1.5M 4.7M 44 28.85

DNSR 52K 135K 8 1

5.3.1 Implementation Details

Networks are trained with stochastic gradient descent (SGD) based ADAM optimizer

[58] with settings β1=0.9, β2=0.999, ε = 10−8. We have initialized the parameters

with Xavier initialization. A pre-training of 3 epochs has been applied.10 percent

of both training sets are taken as such lowest textured patches from high texture set

and highest texture from low texture set are collected. The pre-training was done

with learning rate 0.001. This was done to reduce the effects of random ordering

of data sets on initial backpropagations. Because we are separating the data set into

low texture and high texture sets there is a small possibility of training the network

with very high texture patches or almost flat patches after initialization. We wanted

to prevent the network converging to a "prison" local minima at lower learning rates.

After pre-training we have set the learning rate at 10−4. For high texture network we

have used 0.001 learning rate at every tenth epoch. We have found, empirically, that

increasing learning rate in this fashion helped against convergence to a local minima.

41x41 sized image patches are used for low texture network. 21x21 and 63x63 sized
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pairs are used for high texture network.

Final architecture of Double Network Superresolution (DNSR) is depicted in Figure

4.17. The low texture network contains 20 layers with 16 features of size 3x3 at

each layer. There is a residual learning connection from the input to the output of

the network, similar to VDSR [4]. The high texture network contains 10 layers with

36 features of size 3x3 at each layer. There are 3 skip connections between every

two layers (1-3,4-6,7-9) using our analysis from [47]. LR image is pre-interpolated

with bicubic upsampling before low texture network. LR sized output of high tex-

ture network is interpolated using learned kernels at the sub-pixel interpolation block

as proposed in ESPCN [5]. Two results from two networks are merged inside the

new backprojected aggregation module. Our network has 135K parameters and 52K

ops/op in total. The comparison of parameters to other methods are given in Table

5.2.

We have used Nvidia GTX760 GPU to display the ease of implementation for the

network we propose. The training of two networks took 1 day. With comparison of

Nvidia Titan X GFLOP/s capability this would amount to a 8 hours of training in to-

tal. Comparison of training times of other algorithms to that of DNS is shown in Table

5.2. We have used Caffe and MATLAB to train Low Texture network. For High Tex-

ture network we required the implementation of sub-pixel interpolation block [5] and

Caffe did not have that library therefore we have used TenorFlow and TensorLayer

to train High Texture network. Low Texture network is not carried onto TensorFlow

framework as well due to the fact that tests on Caffe yielded slightly better PSNR

results on more than one experiments.

5.3.2 Runtime Evaluation

We calculate the amount of floating point operations (FLOPS) required to use our

algorithm. The equivalent parameter count is calculated as 52K at the HR resolution

scale. A 1920x1080 resolution output requires 100 Giga FLOPS. Considering state

of the art mobile platforms such as Nvidia Tegra X2 (2 TFLOPS capable) and Nvidia

AGX Xavier (5 TFLOPS capable), our algorithm can reach 20 FPS and 50 FPS in

these platforms respectively. The runtime comparison of DNSR with other algorithms
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Figure 5.3: Comparison of DNSR and IDN[1] for fidelity in detail reconstruction,

respectively ground truth, DNSR result and IDN[1] result.

are displayed on Table 5.2. DNSR is 1.4 times faster than the closest SotA method

IDN [1]. Only exception is ESPCN [5] which is a very fast but not so well performing

method in terms of PSNR and SSIM as displayed on Table 5.3. Similarly SRCNN [3]

is an old network with low PSNR/SSIM score.

5.3.3 Evaluation of Test Sets

We have tested our results using Set5 [10], Set14 [11], BSD100 [6], Urban100 [7].

Table 5.3 displays numerical results. Details of some results can be seen in the Figure

5.5. Our network competes with SotA methods that have reasonably close running

times (on the order of 10 times more and lower). The only method that is closer in

terms of running speed to DNSR is IDN [1]. IDN performs better on overall PSNR

and SSIM scores. Although PSNR is a widely-used metric for comparing the gen-

eral quality of a proposed algorithm, it tends to favor pixelwise consistency over vi-

sual quality and fidelity of the reconstruction. Our DNSR is able to reconstruct high
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Figure 5.4: Comparison, in conjunction with Figure 5.3, of patches with highest score

difference where IDN [1] is better compared to DNSR. This clearly shows that DNSR

is better around patches where there is meaningful information such as textures and

edges. IDN’s success mainly stem from flat patches with minimal variation.

Table 5.3: Numerical Results and Comparison of DNSR Performance with algorithms

that have ops/op less than 1 Million for scaling factor of 3.

Dataset Result Bicubic SRCNN [3] ESPCN [5] VDSR [4] LapSRN [51] IDN [1] DNSR

Set5 PSNR 30.39 32.75 33.00 33.66 33.81 34.11 33.68

Set14 PSNR 27.55 29.28 29.42 29.77 29.79 29.99 29.83

BSD100 PSNR 27.21 28.41 - 28.82 28.82 28.95 28.83

Urban100 PSNR 24.46 26.24 - 27.14 27.07 27.42 27.16

Set5 SSIM 0.8682 0.9090 - 0.9213 0.9244 0.9253 0.9446

Set14 SSIM 0.7742 0.8209 - 0.8314 0.8325 0.8354 0.8319

BSD100 SSIM 0.7835 0.7863 - 0.7976 0.7980 0.8013 0.8527

Urban100 SSIM 0.7973 0.7989 - 0.8279 0.8275 0.8359 0.8293
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Table 5.4: DNSR error performance on high and low texture patches compared to

IDN[1]. (DNSR-IDN) value is given, negative values indicate that IDN performs

better

Image Set Percent of Patches PSNR Difference Std. Dev. of Difference

BSD100 [6] 40.8 0.5249dB 0.7256

URBAN100 [7] 37.7 0.7582dB 0.8758

BSD100 [6] 58.2 -0.1695dB 0.3787

URBAN100 [7] 62.3 -0.2694dB 0.5586

frequency details and textures better compared to other algorithms within our scope

of "fast" algorithms. Displayed images on Figure 5.5 show that DNSR is able to han-

dle aliased data better. This is due to the novel double network structure of DNSR.

High texture network handles textured recovery better and low texture network han-

dles edge recovery better. When aggregated with backprojected averaging, DNSR

excels at recovery of high frequency components.

We conducted an experiment to distill patches with high frequency components and

to measure their error performance. Low-High and High-Low frequency components

(in two dimensional FFT), that are multiple edges in the same direction are scored

as the highest on SC measure. High-High frequency components, that are multiple

edges on multiple orientations and irregular texture are scored as the lowest on SC

measure. We have obtained patches from BSD100 and URBAN100 test sets with

highest and lowest SC. We have put a lower limit over the strength of gradients (using

λ1 value from SC calculation). This is done to prevent nearly flat patches enter-

ing into comparison. We have distilled 30x30 non overlapping patches, 28370 out

of 75257 for URBAN100 set and 5151 out of 12601 total number of patches from

BSDS100 set have fallen within our category. From these patches we have calcu-

lated that DNSR performs on average 0.76dB better in PSNR compared to IDN [1]

as in table 5.4. Standard deviations of selected patches and remaining patches are

given. Given values indicate that, although somewhat higher, selected patches are not

outliers in any means. It shows that the important portions of images which contain

texture and edges are reconstructed better using DNSR as visually demonstrated in
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Figures 5.3 and 5.4 and Table 5.4. Samples from selected patches are given in Figure

5.3. IDN is powerful in creating visually pleasing sharp edges. However most of the

images are deviated from the original image in terms of structural shapes, location

and width of edges, textural components. Data fidelity is an important issue not only

for commercial image reconstruction but also for medical usage such as MRI and

CT scan imaging. From that perspective DNSR is able to reconstruct details better

qualitatively and quantitatively compared to other SotA methods. Bigger images of

detailed examples on Figure 5.5 are given in Figure 5.6. Further examples from Set5

[10] and Set14 [11] are given in Figures 5.7, 5.8, 5.9 to illustrate the detail recovery

improvement.

5.4 Further Validations and Experiments

Although theoretical and practical assertions from previous chapters have been cov-

ered in aforementioned experiments, there are implicit validations that need to be

done. For example the proposed representation-dictionary duality needs experimen-

tal validation. Also the stochastic gradient descent (SGD) based learning algorithms

such as ADAM [58] are used in our algorithm. The proven optimality of neuron fil-

ters are based on SGD. An implicit validation requirement appears from learning al-

gorithms. For this reason we have carried out additional experiments regarding other

branches of SR literature such as Generative Adversarial Networks [59], perceptual

loss [60] and content loss functions [43]. Also multiple scale adaptation of our DNSR

is tested. The reasoning for 3x scaling ratio was discussed as estimation of 9 pixels

being a bigger challenge than dyadic upsampling ratios which can be cascaded for

more options.

5.4.1 Noise Immunity

One of the weakest points of the CNNs is their dependence on input data models.

In all of the methods in literature, except possibly one [61], the training is carried

out with known downsampling models such as bicubic or bilinear. The main reason

for this is that the learned coefficients of the network adapt to enhance bicubically
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Figure 5.5: Visual comparison of our results. It can be observed that DNSR is su-

perior in reconstructing high frequency details of an image better compared to other

algorithms. From left to right: Original, Bicubic, VDSR [4], IDN [1], DNSR(ours).

From top to bottom: img_092.png, img_059.png, img_062.png from URBAN100 [7]
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Table 5.5: Noise immunity test of DNSR vs IDN[1]. DNSR outperforms IDN in

presence of noise even though IDN results were better on average without noise.

Noised Not Noised

DNSR IDN DNSR IDN

BSD100 PSNR(dB) 25.04 24.96 28.83 29.99

SSIM 0.7254 0.6663 0.8527 0.8013

URBAN100 PSNR(dB) 26.38 26.35 27.16 27.42

SSIM 0.6503 0.6388 0.8293 0.8359

downsampled images to HR scale. When a novel input is presented to a network that

is generated by a different model the result of CNN deteriorates.

This is also true for the presence of noise for networks. If a network is presented with

a slight addition of noise its pixelwise error performance drops significantly, more

so than that of known interpolation methods such as bicubic interpolation. For this

reason we tested our DNSR for its noise immunity levels. Since DNSR consists of

two different networks that are trained with different data we expect it to be more

immune to noise then other SotA methods. The LR image is accepted as the input to

the SR system. This is why instead of adding noise to the ground truth image and then

downsampling, we have contaminated LR test sets with noise. The noise mean levels

are held at 2 percent of highest value available for the images (0.02 to be precise, for

the 291 image set that is used). Monte-Carlo simulations are utilized such that noise

is generated in 100 realizations and the 100 sets of results are averaged. PSNR and

SSIM results of noised reconstruction of DNSR is compared to IDN [1]. Results are

displayed in Table 5.5. The decrease in performance of DNSR in presence of noise is

smaller compared to IDN [1].

5.4.2 Multiscale Adaptation of DNSR

The structure of DNSR does not allow the networks to be trained with multiscale data

such that algorithm can be used for many ratios at once. The learned interpolation can

only be trained for a single ratio therefore the overall framework can only be used for
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Table 5.6: Multiscale adaptation results of DNSR for 2x and 4x by using Bicubic

intertpolation. PSNR/SSIM results are given

Dataset Scale Bicubic SRCNN [3] VDSR [4] LapSRN [51] IDN [1] DNSR

BSD100 [6] x2 29.56/0.8431 31.36/0.8879 31.90/0.8960 31.80/0.8952 32.08/0.8985 31.74/0.8923

x4 25.96/0.6675 26.90/0.7101 27.29/0.7251 27.32/0.7275 27.41/0.7297 27.18/0.7289

Urban100 [7] x2 26.88/0.8403 29.50/0.8946 30.76/0.9140 30.41/0.9103 31.27/0.9196 30.57/0.9188

x4 23.14/0.6577 24.52/0.7221 25.18/0.7524 25.21/0.7562 25.41/0.7632 25.06/0.7573

single scaling ratio. The application of DNSR for multiple scale application requires

optimization of network structure for each scaling ratio. Instead we have used DNSR

to increase the resolution by 3 and adapt the upscaled image to required resolution by

bicubic interpolation.

The results for large data sets (Urban and BSD) are given for comparison in table

5.6. A compromise in error performance is expected because of data model shift,

such as in the case of noise immunity experiment. Although DNSR fares slightly

below SotA in performance, this experiment indicates that if the structure of network

is adapted and a new training is carried out, DNSR would be able to perform in the

SotA performance.

5.4.3 Angled Data and RDD

In our Representation-Dictionary Duality we proposed that during training phase,

neuron filters assume the role of representation vectors. After the training is finished

(or during forward pass of training), these filter coefficients assume the role of a

dictionary upon which the output image is reconstructed. This assertion required, in

principle, that the learned filters to present the prevalent features from the training set

such as edges and repeating patterns.

The spatial coherency computation method provided us with the opportunity to visu-

ally validate RDD. The arc tangent of y and x values of stronger eigenvalue yields

the orientation of the strongest edge inside the image as in equation 52 as described

in [31]. Utilizing this information we have obtained patches with orientation between
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40 and 50 degrees as in Figure 5.10.

θ = arctan(λ1,y, λ1,y) (52)

After training a network with the dataset consisting of similar orientation edges, we

have observed filters from the first layer. Picking strongest filters for better visual-

ization we have observed that the trained filters also had similar orientation in Figure

5.11. Which visually verified RDD, showing that the neuron filters extract prominent

features from the training set and they can be regarded as a representation vector and

a dictionary interchangeably.

5.4.4 Perceptual Loss Function and Performance of SGD

Standard procedure in neural network learning is to calculate an error value from an

iteration and to backpropagate the gradient of error to the network coefficients. This

is called stochastic gradient descent (SGD) type learning. Normally the error function

is chosen as MSE of difference of network output NET(ILR) and IHR where ILR is

low resolution input image and IHR is the high resolution target image. The error is

calculated as

MSE =
1

R

∑
∀r

(NET (ILRr )− IHRr )2 (53)

where R is total number of pixels on a patch. There have been other type of learning

algorithms in the literature. The proposal in [60] and later [43] was to use another

function instead of plain squared error calculation. Since methods such as SRGAN

[43] and Style Transfer [60] require visually pleasing outcomes they have utilized

pretrained layers of huge classification algorithms such as VGG-16 [62]. The VGG

algorithm is a CNN based network that uses hundreds of filters at each layer to grad-

ually reach to a binary or few digit outcome that will classify and image as depicted

in Figure 5.12.

Classification networks are trained with millions of high quality images differently

from superresolution networks where the standard training set contains averagely
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Figure 5.10: Image patches with angles between 40 and 50. Examples taken from

BSD100 [6]
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Figure 5.11: First layer filters from the network that is trained with image patches

that have an orientation between 40 and 50 degrees. Indicated with yellow arrow.

Figure 5.12: VGG-16 Network Topology
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sized 291 images. Usage of vast library of images enables these networks to absorb

prominent features from natural images. The idea of perceptual loss is to utilize some

portion of this assimilated information inside the error calculation so that the network

can effectively focus on prominent features of the training set instead of calculating

error equivalently from all input pixels. Therefore the classical error computation

becomes as

MSE =
1

R′

∑
∀r

(ρi(NET (ILRr ))− ρi(IHRr ))2 (54)

where ρi stands for ith layer of the VGG network and R’ stands for number of pixels

at the output of ith layer of VGG network. The output of the SR network (NET) and

target image is subjected to a layer of VGG network. This error value, the so called

content loss [43], is used in conjunction with classical MSE calculation because the

content loss cannot be used by itself to create superresolved images with fidelity to

the original data.

The usage of content loss was limited to generative adversarial networks that generate

visually sharp but low fidelity images. The MSE based algorithm SRResNet proposed

in the same paper [43] does not use the content loss. One of the major setbacks of

content loss is the huge amount of filters that needs to be used during training of

the network. Second disadvantage is that content loss tends to smooth out the image

causing localization errors for sharp edges. For these purposes we experimented on a

different idea stemming from perceptual loss.

The Gabor filters were used, before the advent of CNN, inside the classification and

detection algorithms [63]. Gabor filters are known for their feature discriminating

properties. We have designed a simple network that will select dominant features

from an image by using Gabor filters. Instead of using content loss that utilizes VGG

network we have used 40 Gabor filters for the same purpose.

Although using Gabor filters for edge detection and feature emphasis is a good idea

in general, the learning process of CNN was not feasible to incorporate its useful-

ness. After some testing we had to abandon this experiment due to halos and artifacts

created by Gabor filters. Although it was much faster compared to the VGG based

content loss it did not provide better results compared to our experiments with content

79



loss + MSE based training.

Similarly using entropy loss function [43] together with MSE based error measure-

ment did not provide better results. This concludes that SGD based learning methods

suit best for SR applications.
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CHAPTER 6

VIDEO EXPANSION OF DNSR

DNSR is intended for usage in realtime systems. Its lightweight formulation en-

sures realtime operability, while its reconstruction quality, fidelity and noise immu-

nity guaranties its success.

There is an additional information that can be utilized for video applications, that is

the temporal information. Since a video has almost always have movement, even

if it is in the background, the subpixel information from neighboring frames can be

harnessed.

6.1 Video Superresolution

Of course as there are advantages of using multi-frame approach to SR problem, there

are also challenges to it. The list of challenges are as follows

• Motion information should be estimated for neighbor frames

• Video training and test sets must be prepared by authors as there is no consensus

sets

• Neighbor frames should be motion compensated

• Motion compensated multiple frame information should be fused

• Learning based algorithms should be adapted to new structure

The literature of Video SR is quite limited compared to single image SR research. It is

due the listed problems that the problem becomes multi-aspected, such as optical flow
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Figure 6.1: Flownet[12] Topology

estimation, image warping and SR at the same time. SotA methods that address Video

SR (VSR) problem generally try to tackle these problems with simpler approaches

[14][2][15] as we will discuss in this chapter.

6.1.1 Optical Flow and Motion Estimation

The main challenge of VSR is optical flow (OF) estimation. Although the literature is

vast in terms of methods that can be utilized for OF estimation we limited our scope

for CNN based methods. The reason for this is that in most of the cases CNN based

approaches require joint training when they utilize cascaded models.

One of the most widely known methods is Flownet, that utilizes hundreds of filters

at each layer to estimate the optical flow. Their framework is depicted in Figure 6.1.

The cascaded pooling layers reduce the size of outputs from layers as it allow for

the usage of more and more filters at each stage. This network topology is similar to

classification methods such as VGG16 [62]. In another work pyramidal structure of

coarse to fine flow is proposed for OF estimation [64]

Later Flownet’s performance is improved by the introduction of Flownet2, which

made it the SotA method for best performing OF estimators among CNN based
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Figure 6.2: Flownet 2.0[13] Topology

methods. Their topology utilizes different structures of so called Pyramid struc-

ture. The final algorithm uses 160Million parameters to estimate OF and the model

is trained in two weeks.

There have been attempts to reduce the number of operations required for OF estima-

tion without sacrificing from performance [65] [66] [67] [68]. Although the fastest

among them, the LiteFlownet [68], still utilizes 10 Million parameters making it gi-

gantic compared to our DNSR that has only 52 thousand ops/op. Therefore fully-

grown OF estimators must be out of the scope for a real-time capable VSR algorithm.

6.1.2 Motion Compensation and Warping

One of the first methods that use end-to-end trainable approach to VSR problem is

VSRnet [14]. The main focus of the paper is how to fuse motion compensated frames

by using neural networks. Three main methods have been inspected namely 3D filters,

Slow fusion and Early fusion as depicted in 6.3. Although initially 3D convolution

kernels seem to be the best approach to utilize temporal information in SR problem,

it has been demonstrated that early fusion is the fastest and best performing method

of information fusion.

Later another methods called Video ESPCN (VESPCN) [2] has been proposed by the

same group that has proposed sub-pixel interpolation method[5]. VESPCN is target-

ted for real-time operability therefore their sub-blocks were light weight. VESPCN
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Figure 6.3: VSRnet[14] Topology

Figure 6.4: VESPCN[2] Topology

method is depicted in Figure 6.4. Similar to VSRnet, authors of VESPCN also in-

spected 3D convolutions, Slow fusion and Early fusion. The early fusion is found

to be the best suitable method of fusing motion compensated images. Therefore

the spatio-temporal ESPCN block depiceted in Figure 6.4 is nothing but ESPCN [5]

topology. [2][15] The Motion compensation (MC) block of VESPCN is more im-

portant than its enhancement segment. Proposed MC block utilizes a coarse to fine

architecture that is composed of total 12 layers of CNN as in Figure 6.5 and sum-

marized in Table 6.1. By varying the size of filters and using strided filters, motion

estimation and compensation is achieved at the same time. Although the performance

of proposed MC block has not been measured outside the entire algorithm.

Later another methods has been proposed for VSR problem that utilizes a novel Sub-

pixel Motion Compensation (SPMC) block that estimates the motion and interpolates
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Layer Coarse flow Fine flow

1 Conv k5-n24-s2 / ReLU Conv k5-n24-s2 / ReLU

2 Conv k3-n24-s1 / ReLU Conv k3-n24-s1 / ReLU

3 Conv k5-n24-s2 / ReLU Conv k3-n24-s1 / ReLU

4 Conv k3-n24-s1 / ReLU Conv k3-n24-s1 / ReLU

5 Conv k3-n32-s1 / tanh Conv k3-n8-s1 / tanh

6 Sub-pixel upscale ×4 Sub-pixel upscale ×2

Table 6.1: Motion compensation block of VESPCN [2]. CNN layers are summarized

as their kernel size (k), number of filters (n) and stride (s). The activation functions

are either RELU or tanh.

Figure 6.5: VESPCN Motion Compensation Topology
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Figure 6.6: SubPixel Motion Compensation Block

an image according to subpixel motions [15]. The method uses, similar to all the

previous methods, three frames for SPMC, two of the frames being the neighboring

frames to the central frame.

Other methods include Huang et. al. [69] which uses bidirectional recurrent frame-

work where networks are chosen to be shallow and motion compensation is done

without explicit estimation. Similarly Jo et. al. [70] uses dynamic upsampling fil-

ters that are estimated recurrently for every new frame. By doing so the requirement

for explicit motion estimation have been averted. Liu et. al. [71] proposed to learn

temporal dynamics in a network that uses previously estimated motion information

on following frames to reduce the operation weight. Sajjadi et. al. [72] used warped

frame of previous computation for following frame calculations in a frame recurrent

architecture.

We have tested SPMC as our initial candidate for MC for VSR algorithm. We have

used SPMC in front of our DNSR as depicted in Figure 6.7

However the problem that occurred in the noise immunity test also appeared in VSR

test. Since SPMC created images with slightly different sharpness compared to bicu-

bic interpolation, the results of SPMC+DNSR were not as successful as expected as

in Figures 6.8 and 6.9. Joint optimization of SPMC+DNSR was not possible as train-

able files of SPMC were not presented online. Therefore we have chosen to propose
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Figure 6.7: Usage of SPMC[15] together with our DNSR

Figure 6.8: DNSR only compared to VSR usage of SPMC+DNSR

our own method for end-to-end trainable VSR algorithm.

6.1.3 Detail Fusion Interpolation

The learning ability of CNNs for any given task is incredible looking at plethora of

research areas from scene understanding to generative networks. Although most of

the times it is mathematically unproven, using enough number of filters and with

correct choice of building blocks any imaging problem can be taught to a CNN. For

this reason we have proposed an architecture that we hoped would account for motion

estimation and motion compensation at the same time.

Usage of 3D filters have been discussed in literature, including the methods in our

limited scope of VSR. Utilizing temporal information is easier by the usage of 3D

filters since they can also learn motion together with spatial variations. However

proposing a CNN based motion estimator should have some assumptions regarding
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Figure 6.9: Details of comparison of DNSR to VSR usage of SPMC+DNSR

the speed and variation of motion. For this reason by assuming mild panning, affine

transformation and minimal occlusions we have proposed using a network whose

initial layer consists of 7x7 filters.

As we have proven in Chapter 3 learned coefficients of a network follow Representation-

Dictionary Duality. This meant that the prominent features of the training set were

absorbed by the filters in similar shapes. Using this line of thought in formulation of

multi-frame approach we propose that by using enough number of filters the CNN

could capture the motion of prominent features, therefore could compensate for as-

sumed motion statistics. 256 filters per frame at the initial layer have been used.

Second layer of the network was used to fuse outputs of the first layer with 64 filters

of size 3x3 and the last layer is used for the interpolation kernels similar to subpixel

interpolation block of [5]. This adds 17K ops/op to the total number of operations

which is not comparable to 160 Million of parameters that are utilized in SotA meth-

ods.

There is no consensus training and test set for video superresolution. For this purpose
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Figure 6.10: Detail Fusion Interpolator (DFI)

we have used the same set that has been used by [15] taken from [73] [74]. The

proposed 3 layered network, as in Figure 6.10, has been trained for 6 hours with

the same setup as our DNSR, described in Chapter 5. Resulting network, the Detail

Fusion Interplator (DFI), is an SR algorithm on its own, although its main purpose is

to fuse multiple frames together simultaneously estimating and compensating motion.

6.1.4 DNSR + DFI

Comparison of DFI to bicubic interpolation and DNSR is shown in Figure 6.11

To test the motion estimation capability of DFI we have submitted repeated frames

as neighboring frames to the algorithm. It is clearly seen in Figure 6.12 that the DFI

can capture information from neighboring frames. Similarly we wanted to test our

proposal of a CNN’s ability to capture motion information of prominent features.

Since the training set contained similar adjacent frames, we have trained a variation

of DFI that is able to accept 5 frames. The filters from initial layer of DFI showed

signs of motion capture of some features shown in Figure 6.13. Motion information

absorption capability of DFI can only be verified, other than visualizing the filters, by

using DFI for the purpose it was trained for and quantitatively testing the end results.
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Figure 6.11: Comparison of Bicubic interpolation, DNSR and DFI

Figure 6.12: DFI tested with repeated single frame and neighboring three frames.

This test confirms the motion compensation ability of DFI.
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Figure 6.13: 2 sets of filters from initial layer of DFI to visualize motion capture

capacity for prominent features

After the training of DFI is completed, it is used together with DNSR. Similary to

SPMC case there have been artifacts in the resulting image due to the modelling

change of DNSR input. Therefore we have jointly optimized DFI and DNSR as

shown in Figure 6.15. We have used pretrained coefficients from low texture net-

work. The high texture network accepts DFI output after bicubic downsampling.

This operation cancels our opportunity to use pretrained coefficients. Three options

have been discussed for the solution of this

• Training High Texture network with video training data set

• Training a learned downsampling layer to couple DFI and HT network in a

jointly trainable fashion

• To use pretrained coefficients as is

By experimenting with three options we have concluded that total performance was

not improving in retraining strategies. Training a high texture network with only

video training set was not successful because of limited number of examples (30 sets

to be exact). Training a downsampling network had its effect on the total performance,

subtracting what re-training added to the performance. Therefore we have chosen to

use trained high texture network coefficients as is. This is not a problem as it was in

other cases because of bicubic downsampling. The resizing of an image with a known
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Figure 6.14: Ringing artifacts caused by using DFI together with DNSR without joint

optimization

operator (known to the trained coefficients) removed the effects of statistical changes

to the input image.

The result of DFI+DNSR is displayed in Figure 6.16. A numerical comparison is

done for SotA VSR methods in Table 6.2. DFI+DNSR is not the best performing

method in the literature. However we have demonstrated that the motion can be

estimated and compensated at the same time by approximately 17 thousand ops/op

as DFI+DNSR score is higher than that of DNSR solely. Also DFI+DNSR has 68K

ops/op whereas SotA VSR method [70] has 2.7M parameters and 675K ops/op which

Figure 6.15: Joint DFI DNSR Topology
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Figure 6.16: DFI+DNSR result compared with single frame methods. VSR compari-

son could not be done because test codes for 3x scaling was not available online.

Table 6.2: DFIDNSR is compared to SotA methods that have reported 3x scaling

results.

Bicubic VSRnet [14] VESPCN [2] Tao et. al. [15] Jo et. al. [70] Ours

SPMCS [15] PSNR 28.85 28.55 - 31.92 - 31.68

SSIM 0.82 0.85 - 0.90 - 0.89

Vid4 [75] PSNR 25.64 25.31 27.25 27.49 28.90 27.41

SSIM 0.80 0.76 0.84 0.84 0.89 0.85

is 10 times more computational load. Therefore DFI+DNSR is a lightweight and fast

algorithm that performs well within its computational category.
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CHAPTER 7

CONCLUSION

In this thesis a mathematical analysis of CNNs have been carried out. The learning

process of neurons have been proven to be optimal for inverse problems. The fil-

ters of CNNs have been shown to follow Representation-Dictionary Duality (RDD).

Skip connections are proven to be useful and even required for CNNs to converge in

performance, especially for high textured images.

Using mathematical background that we have provided and combining multiple ideas

we have carefully constructed a context based double network superresolution (DNSR)

algorithm. The DNSR consists of two separate networks that are trained individually.

One of the networks, namely low texture network, is responsible from constructing

edges and corners inside the image. It is trained with low texture image patches to en-

sure it is performing its assigned duty. Other network is specialized for high textured

image reconstruction. High texture network is trained with low spatial coherency

data.

The data separation is done by using a method called spatial coherency measure.

Low texture images consist of edges and mostly flat regions. High texture images

consist of regular and irregular textures, multiple orientation edges. Using RDD and

Skip connection analysis we have utilized skip connections for low coherency (high

texture) network. The depths of individual networks are also chosen according to our

mathematical analysis. High texture network is chosen shallow but with more filters

per layer and low texture network is chosen to be deeper with less parameters in total.

We have shown that DNSR is competing with SotA method. In terms of speed DNSR

is 1.4 times faster than the fastest algorithm and more than 10 times faster than the
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average of inspected methods. DNSR also performs well in terms of pixel wise error

performance. Except one method IDN[1], DNSR scores are also better than SotA

methods. The IDN method is subjected to extensive testing against DNSR and it

has been found that the informatively rich portions of an image such as textured and

edged regions are recovered, on average, better compared to IDN.

Noise immunity of DNSR is tested and it has been found to be more immune to

noise than other SotA methods. Such tests are important in terms of determining an

algorithm’s overall success. A method should also succeed outside limited scope of

training/test sets. The surest method to determine this is to measure noise immunity.

An extension of DNSR to video SR is also proposed. The multiple frame process-

ing comes with its challenges such as optical flow estimation, motion compensation,

pixel registration. Instead of using huge constructs designed solely for optical flow

estimation we have proposed a light-weight joint motion estimation-compensation

block namely Detail Fusion Interpolator (DFI). We have tested the performance of

DFI alone and together with DNSR. Usage of DFI together with DNSR improved

DNSR results for video sequences that are used in the literature for video SR algo-

rithms.

7.1 Future Work

We have proposed many useful method and ideas during this thesis that stood incom-

plete. In the future we plan on completing tests and analyses on these methods.

We have proposed Separate Channel Interpolation (SCHI) for the purpose of subpixel

accuracy interpolation. The idea behind SCHI was to utilize a network’s capacity to

evolve one pixel towards n2 many pixels where n is the upsampling ratio. All of the

methods in the literature use a single network to bring about all of the interpolated

pixels. As it can be further discussed with manifold theory [16] this would mean using

the same low dimensional manifold to enhance subpixels which is a downgrading

factor. Although pixelwise performance of our proposed algorithm was not as high

as expected we tie this result to our limited scope of real-time operable network. In

the future we will test SCHI idea with heavier networks to see its full usefulness.
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We have tested some of the mostly used texture classification method to separate the

training set into two. We also compared texture cue to other cues such as strength of

edge information. But we still think there could be more methods to try for separation

of data into informatively meaningful portions. One of such methods could be to train

an individual network to do the separation.

From our analysis on network structure in Chapter 4, we have concluded that net-

works that are trained with almost flat patches should increase their receptive fields.

We have proposed to use deeper networks to include more information inside the

CNN, which can also be done by using dilated convolutions [76]. Dilated convo-

lutions can also capture a larger area during convolution operation and effectively

increase the receptive field of a network. We plan a further research on different

network structures that can be tested against our proposed DNSR networks. Also dif-

ferent training strategies that do not only follow MSE based gradients but also SSIM

based gradients are planned to be investigated.

The video expansion of DNSR can be carried further. The DFI is still size limited and

can be evolved. Using more layers and more filters we plan on experimenting more

on DFI structure for joint estimation and compensation of motion. Also, as it is in the

case of inverse problems, the mathematical foundation of using CNN for optical flow

estimation and also motion compensation is lacking and requires further research.
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