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ABSTRACT

PHYSICAL SUBSPACE IDENTIFICATION FOR HEL ICOPTERS

Av c é,&gvil u
Doctor ofPhilosophy Aerospace Engineering
SupervisorAssist. Prof. DrAl i T¢r ker Kut ay

May 2019 184 pages

Subspace identification is a powerful tool due to its aalerstood
techniques based on linear algebra (orthogonal projections and intersections of
subspaces) and numerical methods like QR and singular value decomposition.
However, the state space modeiatrices which are obtained from
conventional subspace identification algorithms are not necessarily associated
with the physical states. This can be an important deficiency when physical
parameter estimation is essential. This holds for the area of ptelidtight
dynamics where physical parameter estimation is mainly conducted for
mathematical model improvement, aerodynamic parameter validation and
flight controller tuning. The main objective of this study is to obtain helicopter
physical parameters fno subspace identification results. In order to achieve
this objective, N4SID subspace identification algorithm is implemented for a
multi-role helicopter using both FLIGHTLAB simulation and real flight test
data. After obtaining state space matrices vidspace identification,
constrained nonlinear optimization methodologies are utilized for extracting
the physical parameters. The state space matrices are transformed into

equivalent physical forms via both

Al nt eoriinotro Phonl i near optimization al

function is generated by summing the square of similarity transformation

nSeo

gor



equations. The constraints are selected with physical insight. Many runs are
conducted for randomly selected initiahclitions. It can be concluded that all

of the parameters with high significance can be obtained with a high level of
accuracy for the data obtained from the linear model. This streouglyorts

the idea behind this study. Results for the data obtained tlilermonlinear
model are also evaluated to be satisfactory in the light of statistical error
analysis. Results for the real flight test data are also evaluated to be good for

the helicopter modes that are properly excited in the flight tests.

Keywords:Subspace Identification, Parameter Estimation, Similarity Transformation,

Optimization, Helicopter Dynamics.
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CHAPTER 1

INTRODUCTION

The aim of this study is extraction of physical parameters sudospace identification
results via optimization techniques. The implementation is realized on to aroheilti

twin enginehelicopter.
1.1.Literature Survey

The helicopters are composed of numerous interacting subsystems. These are main
rotor, fuselage, engine, flight control system, empennage and tail rotor. The helicopter
flight dynamics can be modeled as the combination of the inertial, aerodynamic and
the flight control forces acting on corresponding interactive subsystems. The effects
of these forces are varying with the flight conditions. The interactions between the
helicopter subsystems cause nonlinearity in system dynamics and bring some
difficulties in modeling of the helicopter flight. These nonlinearities may not be easily
modeled byanalytical or numerical ways. In that case, wind tunnel and the flight test
practices may be necessary to predict the indeterminate dynamics. No matter wind
tunnel testing is utilized or not, the final step for the validation of helicopter design is
flight testing. Flight testing is also opportunity for the flight dynamist to predict the
helicopter model more accuratelyystem identification which is the way of model
determination from experimental data can be utilized in the scope of flight data
analysis.

Systemidentification is a foundational research field which is used to generate the
dynamic model of a system by using input and output data set. System identification
may be categorized mainly into three main groups: OtHpidr Methods, Equation
Error Methods and Subspaddehtification methods.



The output error method is introduced in the 1960s. The objective of the Output Error
Method is based on adjusting the values for the unknown parameters in the model to
obtain the best possible fit betweer theasured output data  and the estimated
model responseap (1). The best fit is obtained by iterating the model parameters.

The measrement error noise matriXis calculated as i(R).
Qo0 0O W O Q)

w o0 w 00w o0 w o )

The minimum of the cost function? with respect to the unknownss obtained by
satisfying all first derivatives functi(;nU ? 1 o are zero.

This leads to a set of nonlinear equations that can only be solved iteratively with the
main steps:

{ calculationof the cost functiom

7 calculation of the matrix

{1 update of the unknowrsby minimizing the cost function ?

)l

calculation of an output vector

Applications of output error method on helicopter systems are numerous. D. Banerjee
and J.W. Hardig [1] use flight test data to identify the A% Apache attack
helicopter by output error method. Kalefd estimates the 6 DOF model of the BO

105 helicopter by utilizing Maximum Likelihood output error method. SA 330 Puma

is another platform which is identified by output error method [3]

The equation error method is another widely used method in helicopter identification
studieg[4], [5] and[6]. In this method, the cost function which is defined directly in



terms of an inpubutput equation is minimized via least sgugechniques. For a
system model given i(3), the equation error is defined as(#) where the states,

derivative of the states and the inputs are measurable (¢ ).

w 0w 0o (3)

Q w ow 606 (4

There are many algorithms which utilize these methods. There are many system
identification tools as well. CIFER (Comprehensive Identification from Frequency
Response) which is one of the a walobwn one, has been studied on a wide range of
helicopters ke BO-105[7] UH-60[8], Yamaha R50[9], OH-58D[10], SH2G[11]

and AH64[12], [13] and on a quadrot$t4]. Higher order models for the Raptdr 5

and Evolution EX smaiscale UAV helicopters were identified [b5] and[16]. The
frequency domain system identification method developed by Tischler and Remple
[17] was implemented for R44 helicopter[i8].

As an alternative to these classical methods which are mentioned above, subspace
identification [19] attracted attention in the helicopter design society recently.
Subspace identification differs from the classical system identification methods in
many aspects. In principle, the models of constructing sequences are different. In
classical techniques, first the sy% matrices are obtained, and then the states are
estimatedHowever,in case of subspace identification first the states are estimated
directly from inputoutput data, then the system matrices are obtained.

The schematic illustration of these procediifferenceds given inFigurel.1l. These

differencedring some advantages such as computation accuracy and convergence.
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Figure 1.1. Schematic lllustration of the Basic Differences between Classical Methods and Subspace

Methods[19]

Additionally, subspace identification algorithms utilize sound techniques based on

Classical
identification

High order model

reduction

Model

Reduced model

linear algebra (orthogonal projections and intersections of subspaces)raedcal

methods like QR and singular value decomposition. One of the main novelties of the
subspace identification is to demonstrate how the Kalman filter states can be obtained
from inputoutput data using linear algebra tools (QR and singular value
demmposition). Hence, the identification problem becomes a linear least squares
problem in the unknown system matrices. Another novelty is in the field of
parameterization. Although classical system identification algorithms require a certain

userspecifiedparameterization, subspace identification algorithms use full state space

model s and the only

subspace identification algorithms, the order of the system can be predicted by

inspection of cedin singular values.

t he

order of

t he

system



By having the opportunity to obtain the reduced model directly from-opigut data
without having to compute the high order model, subspace identification algorithms

always constitute models with as low order as possible.

The devéopment of subspace identification algorithimbased on 1990s. The system
model identification idea from the concepts like between subspaces or the singular
value decomposition which are seemingly unrelated are started to be combined
cleverly in 1970s[R0]-[29]). Finally the complete algorithms are dated to 1990s to
2000s [19], [30] and[31]). The detailed historical progress of subspace identification
algorithmsis explained in19].

The current subspace algorithms such[E3 and [31] have proven extremely
successful in dealing with the estimation of disctates state space models. One class

of subspace identifi cat Mdtrwariahle@QuputkErrorh m wh i
State®a c e 0 ( NBO|BaSd? pn the idea of estimating a basis of the observability
sSsubspace directly from dat a. Numericab t h e r
algorithms forSubspaceState SpaceSystemiDe nt i fi cati ono ( N4SI D)
estimation of the state sequence for the system as an intermediate step for the
estimation of the state space model. The details of these algorithms with the extended

versions are explained j@9] and[31].

The interest of helicopter design society on subspace identification methods arise in

the last decadeUntil now, some variants of subspace identification algorithms like

N4SID (19]-[32]) and MOESP [B3]-[35]) were applied on a number of helicopter
simulation data. As a further step, a real flight test application is performedoboth

EH101 helicoptef36)and ACT/ FHS t he DLR[87%Inf38,sear ch
subspace identification methods were used for the identification of a helicopter
including rotor and engine dynamidsssn t hi s study where DLRG6s

ACT/FHS is analyzed, the subspace identificatentilized to assure the maximum



likelihood system identification results regarding the system order and eigenvalues

The MOESP method was applied for a srsathle unmanned rotorcraft mode[39].

These studies showed that subspace identification method can be an alternative for
helicopter systems due to having many advantages like parameterization, convergence
and model reductiofil9] as mentioned above. On the other hand, the state space
model matrices which are obtained from conventional subspace identification
algorithms are not necessarily associated with the physical parafd®fe Physical
parameter estimation based on subspace identification for helicopter systems is still
being investigated.

The main objective of this study is totalm helicopter physical parameters from

subspace identification results. There are previous studies on this protdéd 2])

utilizing Laguerre filters to convert the discrete time state space models into

continuous models. Another approach for finding the physical parameters from

subsmace i dentification results is Aoptimizatic
matrices 6 MHO which are found by subspace identification method do not

necessarily have a direct physical interpretation. However, they have a conceptual
relevance[19]. The similarity transformation of a discrete LTI systaifi, 'Y

leads to a new set of state space matrices in Eq- (18)[43].

of "y &Y (5)
& Y & (6)
ol 6"y (7)

The aim is to find thé b Fbimatrices with the similarity transformation matiX

which lead us to the physical parameters.



The objective functioli8) is defined as the sum squares of theedéhce between the
right and left side of the similarity transformation equations (B(7) where the

equality and the inequality constraints are determined with physical insight.

a QR  a@lo Yo 6 YWwE Ao Yo 04
©)

mlo 6 v

There are a limited number of studies in tliterature which tackle with the
identification problem by this approadd4]-[49]). These studies propose simple cost
functions (like least squares or quadratic) and most of them are applied for relatively
simple systems like inverted pendulum or mass spring systems. However, helicopter
identification may require far more variablesbe solved. Thereforé may require

more advanced optimization algorithms. Due to the nonlinear characteristics of the
objective function, this problem can be handled by NonLinear Programming (NLP)
([44]-[46]). In the literature, there exist a number of algorithms for solving NLP
probl ems. I n our case, we cihé ®iod eNd. Pt ca | gmn
where the total number of variables ieagter than one hundred. |60], Benson

compares this type of algorithms in terms of efficiency. The preliminary study
investigated irf51] is about estimating helicopter physical parameters from subspace
identification. @Al nt e f5il]torsolvetha aforreroentmred or i t |
optimization probl esncalRedgaNKIldP ngl ¢ drei tihlna
examination by Benson ifb0], we selected both Alnteri

ASequential Quadratic Programmingo al gor |

Other improvements are made on constraint and initial value selections by introducing
a variety of conditions. laddition, in[51], the required data is only obtained from
linear model simulations. However, in this study, the methodology is extended for
nonlinearmodel simulation data and real flight test data of a tactical helicopter{multi

role helicopter). The outcome will be critical in many aspects like model



improvement, wind tunnel data validation and flight controller design. The conducted

study is smmarized in the following paragraph.

As a first step, data gathering is studied. The excitation signal is selecté&ila%,3
which is commonly recommended for helicopter practiddy. The input signal
frequency content and amplitude are adjusted for exciting the helicopter body
dynamics properly17]. This will ensure the quality of system identification. As a
second step N4SID algorithf9] is applied to obtain the stagpace model of the
helicopte for a certain flight condition. The obtained stapmce matrices, which are

not necessarily associated with the physical states, are required to be transformed into
the physical statepace matrices in order to obtain the stability and control dergativ
The similarity transformation theof$4] is utilized in conjunction with constrained
nonlinear optimization for this purpose. The objective function, sum ofqiners of
similarity transformation equation§4é]-[49]) is minimized to obtairthe physical

statespace matrices and the corresponding similarity transformation matrix.

In the above summarized optimization problem, &lgorithmsare experimented.

These are fASequenti al Quadr at i[5]-58) ogr ammi n g
algorithms. They are selected considering both the size of the unknowns (over one

hundred in this problem) and the nonlinear form of the objective function. The
implementation of these algdrins for extracting physical parameters from subspace

identification results is a candidate for being a prime in the field of helicopter flight

dynamics.

Initial values of the parameters in optimization experiments are selected randomly.
Constraints of thephysical parameters may be selected considering typical error
budgets of wind tunnel testing and aerodynamic prediction tools for helicopter
systems or by using common practices of aerospace vehicle modinvgver,for
convenience, constraints are s#bdel considering linearized outputs of FLIGHTLAB
with several error margins fromlj0% 10%] to {90% 90%] in this study. The physical



value for each parameter is estimated by minimizing the objective function via the
abovementioned algorithms under givenconstraints and initial values. The
optimizations are repeated for different initial conditions in order to increase the
confidence level. The percentage estimation errors are calculated for each parameter

in every run. The physical parameters obtaingdeaend of the optimization are used

for time domain verification of the model. The time domain output of the model is
compared with the actual measur ement us i
metric (55], [56]). After obtaining promising results for the methodology, the study

is repeated for the same helicopter by using neali simulation data and real flight

test data.

1.2 Main Contributions

There are three main contributions of this study. The first one is successful
implementation of subspace identification to a rdte twin enginenhelicopter The
second contribution is the extraction of physical parameters from subspace
identification results via optimization techniques. The third major contribution is the
application of identification inputs in all four input channels oftieécopter for the
same test case to extract both direct and cross coupling derivatives by utilizing
subspace identification. With these contributions we are aiming to enhance the

implementation of subspace identification technique for helicopters.

1.3 Organization of the Thesis

The main objective of this study is presented in Chapter 1. Then the literature survey
is introduced to define the problem properly. Background information on system
identification techniques are presented here. Research is tatedron the problem

of physical parameter estimation from subspace identification results. The nonlinear
optimization methodologies are searched for solving the problem. Then the main

contributions are summarized in this chapter.



In Chapter 2, the thep of subspace identification is introduced. The main focus is
given on a robust subspace algorithm which proved to work well on practical data.
The problem of finding physical parameter estimation and the similarity
transformation approach are mentionedeh

In Chapter 3, the modstructure of the helicopter is defined for our specific problem.
The inputs, outputs and the states are introduced here. The main assumptions about

the stability and control derivatives are also mentioned in this chapter.

The optmization procedure and the objective function are explained in Chapter 4.
Both ASequential Quadratic Programmingo
mentioned here. The formation of the objective function in accordance with the model
structure isdefined here. The basic assumptions about constraints, the initial values

and the constants are also given in this chapter.

In Chapter 5, the implementation of the methodology is introduced on aroialti
helicopter. Data gathering, subspace ideation and parameter estimation

methodology is introduced for given specific flight conditions.

In Chapter 6, several conditions for the selected algorithm, boundary condition and
initial values are examined, and the numerical results are presented. The
implementation for nonlinear simulation output and real flight test data are presented

here too.

Finally, the obtained results and the outcome of the research are discussed in Chapter
7.

10
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CHAPTER 2

SUBSPACE IDENTIFICAT ION THEORY

2.1.Introduction to Linear System Identification

Dynamic systemsan be expressed as mathematical modélese models are used

for design improvement, simulation, analysis and training. Typically, they provide
advantageous in many circumstances where the real system testing is too expensive,
too difficult or too timeconsuming. Especially for the rotorcrafts systems, it is almost
impossible to validate a flight control system without mathematical model
verifications on the ground since the challenging maneuvers performed in the air may

contain in serious risks.

The mathematical model of the air vehicle systems can be derived from nonlinear
equationsof-motion, typically by implementing several simplifying assumptions.
However, for relatively more complex systems like rotorcrafts, a simplified model
may not be suffi@nt for simulating the performance of the final implementation. In
such a case the mathematical model improvement can be achieved via system
identification techniques. In general practice, the collected input and output data is
used to find parameters ofrgulefined model structure. In this context, system
identification is described as dynamic extension of curve fitting. In the final step, the
model is validated with the experimental data which were not used in the system

identification experiment.

Being an alternative to classical system identification methods subspace identification
is based on finding the state space models by using only experimentaburjpuit

data set. The general overview of subspace identification is supplied in the following
paragaph.

11



2.2.State Space Representation of Dynamic Systems

In subspace identification method, the dynamic model of the system is restricted to
discrete time, linear, timmvariant, state space modeélsathematically, these models
are defined by the following sef difference equatiofs

() ow 0606 0 9
6o 86 06 (10)

with
ob o o 5 M o« (11

In this model, the vector8 N 4 andw N a are the input and outputs at time

instant’Q The size of the input and output are dendteahdi respectively.

The state vector of the process at discrete time in¥dsrepresented ad N 5
where the size of it is equaléo0 N 9 and0 N a are stochastic signals. It is

assumed that they are zero mean, stationary, white noise vector sequences.

oN 9 matrix which is called as system matrix describes the dynamics of the
systemO N 4 is called as input matrix which represents thedr transformation

by which the control inputs influence states in the next time stéps is the

output matrix which describes the linear relation between the states and the outputs
(measurementd) . TheON 1 m matrix is the direct feedthrobgerm. In general

practice, this term is most often 0 for continuous time systems. The covariance

1 %denotes the expected value operatorjandhe Kronecker delta.

12



matrices of the process and measurement noise sequenctes and0 N s are

caleda®) s ,"W a and¥YN s

In subspace identificatiotheory, the matrix pairdhd is assumed to be observable.

It means that all modes in the system can be observed in the abtpAtso, the

matrix pair 6h6 0~ is required to be controllable for subspace identification

algorithms. In other words, lamodes of the system are excited by either the

deterministic inpud and/or the stochastic inpat [19].

The graphical representation of discrete time and-inmwariant state space modsl!

given inFigure2.1.

Wi
| .
uk R B =T k+1 2 Xk C . _>yk

» D

Figure 2.1. Discretetime andtime-invariant State Space Model of Dynamic Systems

2.3.Brief Overview on Subspace Identification Theory[19]

Subspace identification theory is based on system theory, linear algebra and statistics.
The linear algebra tools (QR and singular value decomposition) are utilized to find the
system states. i@e these states are known, the problem turns into a linear least
squares problem. Since the problem converted into a linear form, it can be solved

easier when compared to ABll.assical 0 predi

13



In subspace identification algorithms, only the order of the system requires to be
selected as a parameter. However, for classical methods, there has been an extensive
amount of research to determine-cadled canonical models, i.e. models with a
minimum rumber of parameters. The problems arise from with these minimal

parameterizations are listed in detai[19].

Due to the order reduction and consequently the xnsitze reduction accomplished

by using QR and singular value decompositions, the subspace identification
algorithms are quite fast. Alsat h ey ar e faster t han (agai n
identification methods, such as Prediction Error Methods, because theyoar
iterative. By extension, there are no convergence problems. In addition to all of these,
numerical robustness is guaranteed since subspace identification algorithms are

proven by numerical linear algebra.

2.4.Geometric Tools[19]

Subspace identification algorithms use of several geometric tools. These geometric
tools are defined in the following paragraphs. The maticesi  ,6 N 5 and

0N a  are assumeatbe given here below.

2.4.1.0rthogonal Projections

The projection of the row space of a matrix 1  onto the row space dfN 5

is denoted ab where the related equation is givdr).

B K6 066 @, (12
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The oper at drenidt e sPenrrdsepseMdneerse of the matrix. The
projection of the row space of the matax' s on the row space of the matrix
ON g is given in(13). Here the boldface notation denotes the row space onto
which one projects.

6 ||KoB 0B 266 B (13

The orthogonal projection of the row space of the mairixs on the row space
of the matrixd N 5 is illustrated in a simplest way Figure2.2 to make it more

understandable.

A/ B/-I A

7 5
'

A/B *B

Figure 2.2. Orthogonal Projection Representation in a Simple Rorm

2.4.2.0bligue Projections

Oblique projection iprojection of a matrix onto the linear combinations of two-non
orthogonal matrices. In other words, project the row spacearthogonally on the
joint row space o and6; and decompose the result along the row spaae. of
Mathematically, the orthogonal projection of the row spaceaf the joint row space

of 6 andO can be given irf14).

2 denotes orthogonal complement of the row space of

15
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w2 o (14
66 066 ¢

o |\= Koog o 2099 99 o
The oblique projection the row space of the mairalong the row space of the matrix

0 onto the row space of the matoxis illustrated in a simplest way Figure2.3 to

make it more understandable.

B

O

AlsC

Figure 2.3. Oblique Projection Representation in a Simple Fbrm

2.4.3.Singular Value Decomposition

The order of the system is determined according to the results of Singular Value
Decomposition (SVD). Singular values are anotharession of the principal angles
and directions.

Definition 1 Principal angles and directions

For given two matricesN 5, " N g , the singular value decomposition is

expressed as if15).

0 000 6 266 B YV (15

3 denotes orthogonal complement of the row space.of

16



Here the principal directions between the row space$® ahd 6 matrices are
equivalent with the rows oY and the rows ofy . Also the row spaces ofand"
matrices are related with the singular values (the diagonal of S) which is equal to the
cosnes of the principal angles in between them. The formulas are as gid8). in

o, | K (16)

2.4.4.Statistical Approaches

In subspace identification algorithms, some statistical assumptions work very well if
large number of data is available. In subspace identification it is assumed that there

are infinitely many data sets availabl®@ H andthatthel at a i s fer godi c

To make it more illustrative, consider that there are two given sequénces
andQ ¥ a ,Q TipMB (QThe sequenc® is a zero mean sequence as given in
Eq(17) and independent from (Eg.(18))

oA m (17)

0HQ T (18)

Due to the assumptions of ergodicity and the infinite number of data can be driven:
The expectation operato® which is the average over an infinite number of

experiments can be replaced with the oper&@owhich is applied tahe sum of

variables. Foinstancefor the correlation betweeh andA we get:

17



ovo 1EE @0 (19

0 ®Q (20)

Here the operatdD is defined as if21).
o Ki E% 1)
(o]

In the light of this information, consider two given sequences of iap@nd noise
Q:
6K 6 6 E 0o (22)
QK QQE Q (23

It can be found that the expected value of the sum of the veotarsd Qbecomes
zero as it is seen in EQ4) under the assumptions that an infimitember of data

available (a large set of data samples) and the data are ergodic.

0O 0Q m (24)

Eq.(24) leads to

o6 T (25)

Geometric interpretation of this result is that the input vezisrperpendicular to the
noise vectoK2 This is a precious inference because it is used in subspace identification

algorithms to subtract the noise effects.

18
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2.5.Subspace Identification for Deterministic Systems

The subspace identification problem famulated for deterministic LTI systems

which are not disturbed by noise. Let such a system be given by

@ 6w 60 h (27)
®w 6w 06 h (29)

where@d v g , O v a andU N a . The process noise and the measurement
noiseO do not exist for deterministic systems. The goal of subspace identification is
to find the state space matricé$dHHO and the state vectd® M 8 up to a
similarity transformation in the presencéthe input 6 ¥ a1 and output data set

wNa.

It is definite that most of the real systems contain noise. However, we start to explain
the theory of subspace identification from a deterministic system which is easier to
understand.Subspace identification starts with the construction of Block Hankel

matrices.

2.5.1.Blok Hankel Matrices

Block Hankel matrices are constituted from the irputiput data set. The form of the

input Block Hankel matrix is given if29).

19
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0o O O 0 Cc O&c 0 G0 ¢ o Co

) o

Here the number of block indélefines the approximate order of the system being
identified. The only requirement fdfbeing larger than the estimated order of the
system. The number of colusm@Qis formulated as i(80) wherei is the total number

of data samples.

~

Qi ¢Qp (30

The subscript on,é denote the first and last element of the first column in the

block Hankel matrix of inputsTY% is combination of two equally sized matrices.

By definition, the first part of the matriyx sis called as Block Hankel matrices of past

inputs. Other @presentation of this matrix ¥wher e t hends wsh saardisp tf ofr
Apast o. The sec oTst igpcalled as Bldck Hamkel mairecds ofi X

future inputs. Similarly, it is symbolized &¥wher e t he®s whsamrdisp tf offr

i f ut Anotekeod Block Hankel matrices used in subspace identification theory are
"Y and"Y are obtained by shifting the borders™sf and"Y .

This notation which is adopted frof4] and[19] also holds for the other Block

Hankel matrices of the outputdy , g, @ 0,0, 0 and & . O (Q) is

called as Block Hankel matrices of past inpifs. (@) is called as Block Hankel

20



matrices of future inputs. Als@y andd® are obtained by shifting the borders of

@ and®.

O 0 O » 888 &
“Hoo® o ®© 888 o !
- 8 8 8 888 8 "
8 8 8 8 888 8 |
;8 8 8 8 888 8 .

A o W 00 W 8 88 o()’ o (31)

| W W W 888 w
8 8 8 8 888 8 ,
18 8 8 8 888 8
1] 8 8 8 8 888 8 n
Lo S %) 888w U

Another Block Hankel matrix which is formulated {{82) is wobtained by

combining the past inputs and outputs.

oy K . A (32)

Wy, matrix is obtained by shifting the borders™sf and® as defined in Eq33).

Gy (33)

i
(O
2.5.2.State Sequence Matrix

Another i mportant mat £ @ for subspac@ mléntificaBon s e q U €
algorithms. The state sequence métrixis shown in Eq(34) as more explicit form.

In this equation’3tands for the subscript of the first element of the state sequence.

S O o @ @ 8 w N g (34)
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2.5.3.System Related Matrices

The extended observability matrdgis extensively used in subspace identification
algorithms. Explicit representation of the observability matids shown as in

Eq(35). Here it is assumed that the system is observable.

N (39

The reversed extended controllability mathix (where the subscripfdlenotes the

number of block columnsgpresented as:

YKo 6 6 6 6 6 6 6 8 6N=a (36)

The lower block triangular Toeplitz matri&is defined as:

(6] T T 8 T
& 060 0 T 8 mH
(Ka 666 66 O 8 maMA (37)
8 8 8 8 8
60 6 066 6 66 6 8 OQ

Here it is assumed that the system is controllable.

2.5.4.Main Theorems for Deterministic Subspace Identification Algorithms

Theorem 1 Matrix input-output equations (19], Chapter 2)
The following Theorem which is widely used in subspace identification algorithms

states how the linear state space relations of for@ila (28) can be reformulated

22



in a matrix form. The proof of38)-(40) follows directly from state space equations

given in(27) -(28).

@ 3&d O (38)
O 36 OV (39)
O 66 3Ty (40)

The geometric representation of the equaf@®) is given inFigure 2.4. Here the
vectors in the row space a@f are obtained as a sum of linear combinations of vectors

in the row space ab and linear combinations of vectors in the row spac¥ of

Figure 2.4. Geometric Representation @fin terms ofd and™Y

Main Theorem ([19], Chapter 2)
This theorem indicates that the state sequeéband the extended observability

matrix 3-.can be extracted from the given inmuttput data sefY, Y, ®, ®).

This can be expressed in two ways:

23



! The state sequence can be determined directly from the given irputput
data, without knowledge of the system matrig&$ho andO.
1 The extended observability matrg¢ can be determined directly from the

given inputoutput data.

Definition 2: Persistency of excitation([19], Chapter 2)
The input sequende M a4 is persistently exciting of orde¢™Qif the input

covariance matriX41) has full rank.
Y KB s AYq (41)

Theorem 2: Deterministic Identification ([19], Chapter 2)
Under the assumptions that:
1. The inputd is persistently exciting of ordef(Definition 2).
2. The intersection of the row space "5f (the future inputs) and the row
space ofv (the past states) is empty.
3. The userdefined weighting matricas N 5 andw N s aresuch
thatw is full rank andw obeysi G&) 1 O£ where®

is the block Hankel matrix containing the past inputs and outputs.

and0 is defined as the oblique projection:

0 K®OT © (42)

and the singular value decomposition:

e 3 m 6
5 5
o7 T (43
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Y'Y (44)

We have
1. The matrix(-dgs equal to the product of the extended observability matrix and
the states:

0 3O (45)

2. The order of the systef@7)- (28) is equal to the number of singular values

equation(43) different from zero.

3. The extended observability mattixjs equal to:
3 o YY'y (46)
where "W g IS an arbitrary nomsingular similarity transformation.

4. The part of the state sequendethat lies in the column space @f can be

recovered from:
o Y Yo (47)
5. The state sequence is equal to:

O 30 (48)

The proof of the Theorem which provides some insight in how subspace identification

results are typically derived is given in Appendix A.

2.5.5.Algorithms for Deterministic Systems

According to[19], the system matricé&sd h5 andO can be computed in two different
ways:

{1 finding the state sequence maiiix

25



1 finding the extended observéty matrix 3
The schematic illustration deterministic identification procedure is preserfegline
2.5. The system matrices can be computed loyguzsny of the two ways.

input-output
data up . s

¥

system matrices
AB.C.D

Figure 2.5. An overview of the deterministic subspace identification procedure [19]

The algorithms which are based on Theorem 2 will be outlined in the following

paragraphs.

2.5.5.1.Algorithm 1 ([19], Chapter 2)

The algorithm starts with oiojue projectiond calculations.
0 KoOT o (49)

O O (50)

Then® can be calculated froif0) as below:
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D) 3 0 (52

Then WithTYs and @ matrices which are optained from inpuitput data and the

state sequence matrices calculated by the equdt8nand(51) we can estimate the

system matricesH' i and$ according to least square approéss).

D) o0 &
g 6 O Ys 2

With this approximation, it is possible to solve all of the system matrices in one step.
However, in the following algorithm theseatrices are estimated in two separate
steps. Firsbho matrices are determined then the rest of the system matiid@pdre

estimated. The algorithm steps are explained in the following paragraph.

2.5.5.2.Algorithm 2 ([19], Chapter 2)

After calculating theextended observability matrigzg the system matrices are
determined in two separate steps.

Determination ob and6 matrices
The matrice® and6 can be determined from the extended observability matrix

The shift structure of the matré is used for this purpog6é6].

30 3 (53

Where3 denotess without the firstl (number of outputs) rows. Then the matrix A
can be determined by equati@#). Then thef matrix is determined as the figtows

of 3

0 3 3 (54)

Determination oh and’O matrices
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In the next stag&) andO matrices are computed. When we rearrange the-imytyiut

equation(39), we find that,

3 30V (55

Wheres N 7 is a full row rank matrix satisfying 3 T

If we multiply the equatiorf55) with 'Y we obtain(56) where the linear least square

approach is applicable. Here the matrigeE h™Y are all known matrices. The only

unknown is"O matrix which is the combination of known matricesd and the

unknown matrice$ HO.

3OY 30 (56)

For simplicity, theleft-handside of the equation is symbolized with and3 with

fl. Then the equatiofb6) can be written as;

1 1 8 1
O T T 8 m
y 00 (] T 8 T
fll.fl 8 fl 6066 66 0 8 T (57)
8 8 8 8 8
60 0 00 6 60 O 8 OO
Where! N q L andfloN 5 "% 1 Then the equatiofb?) is rewritten as
fl. fl 8 fl fl
Sflfl 8 Al IR
v o0 mn
Co 8 Aol o oma oo, O (59)
0
8 8 8 8 8 —
o fl m 8 T TQ
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Then6 andO matrices formulated i(68) are computed with least square approach.

2.6.Facts on Real World Applications

So far, we discussed subspace identification algorithms for datestic systems.
However the real system measurements generally contain noise terms. Therefore, for
reaklife applications, the systems (E®) - (10)) are modeled with the process and

measurement noise andv .

From many available subspace identification methods in literfi9le¢ he A Robus't
Subspace Al gorithmo is wutilizeihmany t hi s
industrial data and it is suggested for practical applicat[@8$, Chapter 4, Algorithm
3). The required information about theory and tdge@hm is given in the following

paragraphs.

Theorem 3 Matrix input-output equations (19], Chapter 4)
The matrix inpuoutput equations for the combined system (similar to the matrix input
output equationé38) - (40)) are defined in the following Theorem.

O 360 OY & (59
O 360 OY O (60)
O 06 37 (61)

Where® and® are thestochastiderms.
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Theorem 4 Orthogonal projection

Under the assumptions that:
1. The deterministic inpué is uncorrelated with the process noise and
measurement noise
2. The inputd is persistently exciting of ordef@Definition 2)
3. The number of measurements goes to infitiy H

4. The process noise and the measurement noiseare not identically zero.

Then
GKROT = 62)
T
3w 05 (63)
With Kalman filter state sequence
ORd (64

Where8 is the initial state sequence matrix dhds initial state covariance matrix.
Optimal prediction:

Another projection matrix in the theory of robust subspace identification is the
prediction matrix which can be computed from the input output datdaout having

the system matrices. The prediction matc® {s considered as an optimal prediction

of the future outputd) on the subspace formed by Block Hankel matrices of past
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inputs and outputsi( ) and the Block Hankel matrices of the futimput (Y). The

corresponding formulation is shown in £§5).

v e @

Here, it is proposed to combine thast (o ) and the future inputsY.) linearly to

predict the future output® () [19].

Theorem 5 Combined Identification (19], Chapter 4)

Under the assumptions that:

o k~ 0D

and0

The deterministic inpu6é is uncorrelated with the process noige and

measurement noise

The inputd is persistently exciting of ordefGDefinition 2)

The number of measurements goes to infiRy H

The process noise and the measurement noiseare not identically zero.
The userdefined weighting matricas N s andw N 8 areschthat
o is full rank and® obeysi G& 1 O@EAAD  wherew is the

block Hankel matrix containing the past inputs and outputs.

is defined as the oblique projection:

0 K®OT © (66)

andthe singular value decomposition:

w67 5 5 (67)

:IOQ
[ |
(o) N e)]
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We have
1. The matrix) is equal to the product of the extended observability matrix and

the states:

0 3 (68)

2. The order of the syste(@)-(10) is equal to the number of singular values in

equation(43) different from zero.
3. The extended observability matcxis equal to:
3 o YY'y (69)

where "W 5 is an arbitrary nomrsingularsimilarity transformation.
4. The part of the state sequendethat lies in the column space @f can be

recovered from:
o Y Yo (70)

5. The state sequence is equal to:

® 30 (71

2.6.1.Algorithm 3 T Robust Subspace Identification [19], Chapter 4)

The algorithm starts with oblique projection(66) and orthogonal projectici (62),

@ (72) calculations.

1) 97 (72)

3 ® 05 (73
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®» K& i (74)

Reduction of the size of oblique projection matbixwill simplify the rest of the
matrix operations Thus, SVD is calculated tor(67). By inspecting the singular
values theY and"Y matrices are calculated to determine extended observability
matrix3 (69). Here the weight matrices andw are assumed as identity which is

compatible with Theorem 5.

Then some set of linear equations which are quite complicated are solved do find
and0 matrices. The equatior{35)-(78) are used to generate the linear least square

problan given in (79). Here ” h” are the covariances of the process and

measurement noise of the residuals and an intermediate fhatripjven as ir(80).

A 8 687Yy U @ 60 O (75)

@ 60 0OY, & 06w 0OV (76)

® 3 20 OV (77)

) 3 00 0 Y (79)

® O 6 wo 1Y . (79
W0 0

8s O 830
1k °%® o0 (80)
Ogt 63 O
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After finding! and# matrices from(79), thes and3 matrices are recomputed to
get better estimation on the remaining system matricasd’O matrices where both
o and why  are used.

® o

o0 wi & {Q 0 5 WO I ohO 'Y (81)

The matrice® and’O are calculated by solving the minimization problem shown in

Eq.(81). The intermediate steps are explainefll®] in more detalil

2.7.Similarity Transformation

The system matricedh i HO found through the above given formulatidoes not
necessarily have a direct physical interpretation but they have a conceptual relevance
[19]. According to the similarity transformation thedd3] the state vector of a
discrete LTI system can be transhed into another state vector. This is shown in Eq.
(82).

Yo (82)

Such an operation leads to a new set of state space matrices as show83)(Bg)

However,O andO  matrix are not state dependehherefore these matrices are

not included in the similarity transformation equations.

0 Y OUY (83
0 Y O (84)
0 0"Y (89
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In this study, our primary aim is to obtain the 5 H  matrices with the
corresponding similarity transformation matriXy which is invertible. This will
hopefullylead usto the physical parameters. Since both the physical system matrices
and the similarity transformation matrix is lacking, a candidate solution is the

minimization of the difference between the left hand side and the right hand side of
Eq. (83)-(85).

"YO 0"Y (86)

"YO o] (87)

This can be achieved by an optimization that makes use of the lower bound of the sum
squares of the difference between the right and left si@(85). It may be
important to mention that E¢83) and Eq.(84) are highly nonlinear and difficult to

solve it[47]. The forms shown in E{86) and Eq(87) are chosen instead Bfy. (83)

and Eq(84) to reduce the difficulty.

This optimization problem may have infinitely many solutions if we do not define
well-founded constraints. At this point, a good model structure proposition becomes
crucial for the estimation of the state space model which is constructed from the

physical parameters.
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CHAPTER 3

MODEL STRUCTURE

The model structure determination is highly related with the dynamics concerned for
identification. The mdel structure of an aerospace vehicle is usually obtained from
the governing @©OF flight-dynamics equations. These equations inherently contain

a substantiahumberof parameters required for validating mathematical models, wind
tunnel test results anaif tuning the flight controller gains. TheDBOF nonlinear
equations of motion for a helicopter can be written as shown i1(88y- Eq. (93)

[58] with forces and moments represented by the small perturbatiory tte these
equations, the force derivatives are normalized by mass, and the moment derivatives
are normalized by the corresponding moments of inertia. Moreover for the moment
derivatives, a prenultiplication by the inertia tensor has been carried ouhat they

implicitly include products of inertia terms (.80 h O hetc.)[58].

6 O6 OO GO0 O O 0 AR O 01 "Qhéi
(88)
A & & O
b ®6 OO OO0 ® O/ dfF & 6 i
06 %l 4% Qi WE QE— & (89)
& & &
0 G6 GU GO ® U R 6 O
(90)

"D BED E4%o QO ol QE—
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(93)
01 0 1 0 0 VR
n 06 0L OO 0 0/ O1 0O 0
(92
0 VR
i 06 00 OO 0O 0OnRn O6i O 7 0O
(93
v U
%o N i WD GE T OBD (b S
B AR =Y 9

These equations can be represented in the state space form as show@envith
the motion states and the controls inputs given in(&4q.and Eq.(98) respectively.

The proposed model structure hasadtedt and 4 inputs.

W 0 6 o (96)
4] OO6x DNONJ 97)
S 1 1 1 (98)

The physical system matrices and6 are shown in Eq(99) and Eq.(100

respectively.
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oy, “ “ “ , « “ , o~ 7 - ,
o w ® O 0 @) w o Qo 13— Qbboi —
w & O O L W o ) "Qbod—  "Qboi —
b 0 0 0 0 0 1 1
n . N o o \ (99
b oo 0 0 0 0 T i
p 0 0 0 0 0 T T
lm T T p [ %0 — 03600— T T
um T T i 03— | — i i
o, o . . Ul
Ip') w w W ]
1 W W W 0
" 'b 0 0 b N
0 1L n " o 1
Ilf) v v v ] (100)
1V 0] U U 1
HT[ TT TT TT I
U T Tt Tt n VY

When the rest of the state space matrices are concerned, with the assumption that all

of the system states are perfectly measurable, the assatiatad an identity matrix

and according to our problem formatibn'O  is equal to zero.

Since all of the states are assumed to be perfectly measurable, the total number of
parameters to be estimated in , 0 and Y matrices are 36, 24 and 64
respectively.Therefore altogether there are 124 unknowssich a problem can be
classified as an optimization problem with large number of variables. The solution

methodology is explained in the following paragraph.
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It is important to understand the physical behavior of these parameters prior to
estimation. Irother words, initial value assessment and constraint value selection with

physical intuition is important to get a solutigtb].

Each stability and control derivativaee made up of a contribution from different
components of a helicopter such as main rotor, tail rotor, fuselage, stabilizers etc. The
significant stability and control derivatives are defined briefly by referersBigand

[59] in the following paragraphs. The detail explanations with fdatians and the

illustrations are given ifb8] and[59].

3.1.Derivative of Forces with respect to Translational Velocity Components
(éo FléO F]é F] J'LO F] J'Lo F]J'L F&O Fl&o F] £

Perturbation in translational velocity changes the rotor flapping which causes change
in forces and moments around rotor, fage and empennage. The derivatives

& hadhd hed which are coupled at low speeds, becomes independent from each other
with an increasing forward velocif§8]. Direct force damping andd which reflect

the drag and side force on the rofaselage combination respectively changes
linearly with speed58]. The coupling derivativesy and & are lesssignificant

compared to the direct derivatives as it is expected.

The approximation for heave damping derivative can be written as in Eq. (18) for

forward flight condition[58].

W S T (1031
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3.2.Derivative of Forces with respect to Translational Velocity Components
(éo FléO ﬁé F] J'L() F] J'Lo F]J'L F&O Fl&o F] £

The speed and incidence stabilityld have major effect on longitudinal stability.
Although the main rotor moments do not significantly change with forward velocity,
the pitching moment contributions of the fuselage and empennage become significant
due to aerodynamic loads. Positive indicates speed stability whereas negaiiive

refers incidence stabilit§p8].

Pitching moment due to sideslip is also anther important parameter. The changes

in sideslip cause significant variations in downwash at the horizontal stafbi&er

The derivativesd hd hé h0 couple with each other at the ldvequency

longitudinal and lateral motions of the helicopter.

Dihedral effect 0  and weathercock stabilityy parameters are significant sideslip
derivatives. A positive value far implies stability. A negative value far implies
stability [58].

3.3.Derivative of Forces with respect to Translational Velocity Components
(&, hL AL, AL, AL AL AL AL AL

The derivatives® hé change significantly by main rotor contributions. These

derivatives contribute significantly to the pitch and roll dargharacteristicgs8].

3.4.Derivative of Moments with respect to Angular Velocity Components
@hdpdnd nd pd BB Rd )
The direct and cqled damping derivative® hO h0 hd are significantly

important derivatives in system dynamics. The direct damping derivalivés
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indicate shorterm, small and moderate amplitude, handling characteristics, while the
crossdamping derivative) h0 characterize the level of pitttoll and roll pitch

couplings[58].

The derivative$ ho h( have influence on the character of the lateral / directional
stability and control characteristics of the helico&8].In general, the derivatives
O ho are presumed to be less significant compare to their primary

counterparts) H) [59].

3.5.General Viewon Stability Derivatives

The parameters which implicate powerful information about helicopter flight stability
are tabulated iTable3.1 with the expeted values for satisfying stabilif8]. Prior
knowledge of the helicopter flight stability under examination may give hint about the

sign of these deratives.

As it is mentioned above, there exists 60 parameters to be estimated (36 parameters in

0 and 24 parameters in ) in our problem. However, they are not all the same

in the sense of significance. Some of them are quite insignificant compared to the
others. I n fact, these fAinsignificantodo paranm
to their dynamic characteristicFlight region is another factor determining the set of
Ainsignificanto parameters. | n,dgdmmon practi
®»,®,®,0 ,0 ,0 andthe control parameteis hd hO  h&d  are

assumed as fArherehre,thesé Mmady ceal to tzara. Moreover for flight

conditions with high forward velocity (where the inertial velocities are so dominant)

the aerodynamic effects may be negligible (&, ) [58].
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Table3.1. Derivatives with Expected Values to Ensure Stability

Stability Criteria Expected Value
Dihedral effect 0 T
Roll damping 0 T
Yaw to roll coupling 0 ™
Static speed stability 0 L1
Incidence stability 0 T
Pitch damping 0 T
Weathercock stability 0 ™
Adverse yaw 0 ™
Yaw damping 0 1
Drag damping O T
Side Force Damping O T
Heave Damping O T

3.6. Derivative of Forces with respect to Control Inputs €5y, i, __m

Heave control sensitivityif mainly affected by the blade loading and tip speed.
The control sensitivity increases with forward spg]. The derivative of thrust with

respect to longitudinal clic @ ) increases almost linearly with increasing speed.

The derivative of thrust with respect to the main rotor collective () and with
respect to the longitudinal cyclicd( ) which can be obtained from the thrust and

uniform inflow equations can be formulated as in @42 and in Eq(103) [58].

TWOo” Y'p
(o) Y @i 0

(102
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Wo” Y
) C S (103

The side force is mainly affected by tail rotor thrust which changes directly with the

pedal input @

3.7.Derivative of Moments with respect to Control Inputs ﬁ%DFﬁM F\_
e
| . . . .
Jﬁqwﬂqéﬁl =i=hi- o hJJ ﬁ. =+=hji ﬁ. \:)l

Changes in collective control may cause pitching and rolling morﬁqrg,}é,g) ).
In fact, the changes in rotthrust may generate a moment if there exists a thrust offset.

Moreover, the changes in flapping due to the collective input generate hub moment
proportional to the flap angle.

The pedal input is directly related with tail rotor thrust which has signfficapact

on the yawing momend, .

- The crosscoupling derivative 0 Is also

significant in rotor dynamics. Both ) derivatives increase with forward

speed58].

The direct and coupled flap responses to cyclic control inputs

0 M M R ) change with the stiffness number; and they are practically

independent of forward spegsB].

Understanding the behavior of these parameters under certain flight conditions will be
useful in the estimation of their values. The initial value assessment acah#igaint
selections of the optimization problem whose explanation is presented in the following
chapters are performed under the guidance of the information given in this chapter.
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CHAPTER 4

PARAMETER ESTIMATION WITH NONLINEAR CONSTRAINT
OPTIMIZATION THEORY

Consider an optimization problem;

G Q¢ Q6 REM...
[ 6 ODREGON m

(104

The realvalued function A s which is desired to be minimized is named as
the objective function. The vect@ris a vector with n independent variabl&s:
PGhPMdMB D N a 8The setmis a subset of called the constraint set or
feasible set. In our problem, the objectivediion shown in Eq(105) is the sum
squares of the difference between the right and $&fe of the similarity
transformation equations shown in E86), (87) and Eq.(85) ([44]-[46])

G Q... aQe"Y...0 .. 0 7Y "Y...0 .. 0
(109

In the literature, there exist a number of algorithms for solving NonLinear
Programming (NLP) problem($44]-[46]). In our case, we decided to concentrate on

Al asgal ed NLP algorithms where the total
hundred. IH50] Benson compares these types of algorithms in terms of efficiency. In

this respect we utilized both the IP (Interfoint) method and the SQP (Sequential

Quadratic Programming) for our optimization problem.
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The interior methods, which are alsalled as barrier methods, are used to transform

a constrained problem into an unconstrained problem or into a sequence of
unconstrained problenfi35]. Interior Point Algorithms, in general sense, are based on
searching the optimum solution by starting from an available point and continuing
gradually to get better ones which lie in the interior points of the available area.
Consider that our objectiveuriction "Q..., which is aimed to be minimized, is
subjected to the constraint functio)... 71 The barrier problem aims to find
infimum of a functionQ... " ? where'Q... 71 Here" ? is a barrier function

that is nonnegative and continuous overrtigion ? DC ? mand approaches b
as the boundary of the regior DC ? Tt is approached from the interior. More
specifically, problem is reformulated in E4.06) with Frisch's logarithmic barrier

function[60] for each barrier parameter 1, and nonnegative slack variables,

a Qe Qa Q%E@... t I i h (106

i 0 O@EDO Q.. i T

Ast converges to zero, the approximate problem (EQE)) becomes a sequence of
equality constrained problems which are easier to solve than the original inequality

constrained problem.

SQP is also one of the most effective methods for nonlyneanstrained optimization
problemg52]. It provides successful results for both small and lagde problems.

For SQP, we can express our optimization problemwasndn (107).

& 0% 04 DED. .
EvQi .Naf (107)

i 0 0 @CEH.. T

Q... W
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The idea behind the SQP is to model the objective function at the current.itebgte

a quadratic programming sub problem. Then a new iterate is defined by
minimizing thesub probleni52]. In general practice, the SQP methods are executed
in two stages. These are step computation and the Hessian approximation. Merit

function is used to ensure that the SQP method converges from remote starting points.

Both IP and SQP algorithms are readily available in the optimization toolbox of
MATLAB with a wide variety options for the user. Thainconsolver of MATLAB
is utilized as the optimization tool for our problem. The IP and SQP algorithms are

utilized hereunder a variety of initial conditions and constraints.
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CHAPTER 5

IMPLEMENTATION ON HE LICOPTER SYSTEMS

The method described on the previous sections is implemented first on simulated flight
data. For thipurposewe used a nonlinear model of a mutiie helicopter which was
developed in FLIGHTLAB environment. The FLIGHTLAB Model Editor (FLME) is
used for data entry. FLME structurd&igure 5.1) allowed us to allocate the data
according to hierarchical modules that correspond to a physical ocallegbsystem

of the helicopter. The model is composed of main rotor, tail rotor, airframe and flight

control modules.

The AMain Rotoro is modeled with ABl ade
rotor radius, rotational speed with direction, rotob thacation, shatft tilt, swashplate

phase angle and blade tip loss factor properties are supplied. The blade structure is
selected as fAArticulatedo. The ri-lggd bl a
dynamics. The damper of the lelad) dynamics is mdeled as linear. The physical
parameters like torque offset, rotor precone angle, precone / flapping / feathering/lead

lag hinge offset, flapping hinge / lag damper spring stiffness, flapping hinge / linear

lag damper damping coefficient, flap / lag sprinndeformed angle and effective

delta3 angle are modeled. The geometric / inertial blade is generated in many equally
spaced segments. The aerodynamic data is generated by wind tunnel tests and the
FLUENT analysis results are used as a complementargesolihe main rotor air

loads are represented with a quassteady aerodynamics model featuring stall delay

due to rotation empirical corrections. The air load entry is performed according to the
blade segments which are consistent with airfoil radialostgiositions. Petersle

Finite State model is selected for induced velocity model. The inflow harmonics are
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selected as three. The inflow correction data is modeled from empirical data regarding
the ground effect and wake distortion effect. Pekégs3 state interference model is

generated to simulate the main rotor interference on fuselage, tail rotor and tail

surfaces.

File Model Help

B+ O Rotorcraft Model

B— @ Environment
<» Main Rotor
0O Blade Element

H— > Airloads

B Tail Rotor

< Rotor3
—< Rotord
—< Wing

f— O Airframe
s— O External Body
H— Propulsion
#— O Flight Control

— O Solution Parameters

< Blade Structure

O Articulated

B Blade property
B Structural nodes

[E
BE—<% Induced Velocity
E—+¢ Rotor Interference

O Disk Tail Rotor (Coll only)

— @ External Program Coupling
s— @ User-defined subsystem

Main Rotor

=t

LA

* Blade Element

" Finite Element

" Disk Main Retor (Coll/Cyclic)
" Ducted Fan

nodel0

rotorl

AfActuator

cant angle, blade tip loss factor, lift curve slope, rotor head drag coefficient, effective
rotor head drag area, airfoil cgtant drag coefficient, solidity weighted blade chord,
linear blade twist, delta 3 angle, partial of coning with respect to thrust, blockage effect

properties, inflow / profile drag correction, induced inflow / coning time constants are

Figure 5.1. FLME Interface of FLIGHTLAB

Di

modeled in this made.

s k

MoRet or 6 smadwelde .f oThd Tlali 4dde
number of tail rotor blades, rotor radius, rotational speed with direction, hub location,
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Airframe model is comprised of fuselage, horizontal tail and vertical tail components.

The ARigid Fuselageo model is generated w
of inertia in pitch, roll, yaw axis and the total product of inertias. Athefassociated
aerodynamic data belongs to wind tunnel test results and numerical analysis performed

in FLUENT environment.

The flight stability augmentation system model is embedded in the flight control
module. Rate feedback stabilization systems fdlf pitch and yaw channels are
enabled to increase system stability. These stabilization systems also include the main

rotor and tail rotor actuator models. Actuator models are linear.

The #fAi deal engineodo model i's seodfemgnessd f or
nominal engine torque and main rotor to engine gear ratio properties are produced as

engine properties.

The FLIGHTLAB model is trimmedRigure5.2) and flight simulations are performed

in several flight maneuvering conditions like hovering, forward flight, climb. The
model is verified by comparing the simulation results with the related flight test data.
Both simulations and the flight testfats are repeated with several environmental

conditions for verification.
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| Trim
Results
Trim variables... Algorithm: 0: Newton; 1: Newton-Hooke; 2:Hooke-Jeeves |0
e Max No. ?terat?ons for 1st outer trim loop 30
Max Mo. iterations for all outer trim loops except the 1st 10
Select gutputs.. Max steady state iteration number 20
Newton: automatic relaxation flag: 1: on; 0: off 1
Newton: relaxation factor <1.0 and >0 05
Number of multiple trims 1
Number of outer trim loops 10
Number of revolutions for averaging 1
Trim variable limit check: >=1: on; else: off 0
Trim wvariable limit margin factor 0.95
Trim wariable relaxation for Hooke-Jeeves 0.618
Trim wariable tolerance for Hooke- |eeves 0.001
Run | Apply | Reset | Close | Help

Figure 5.2. Xanalysis Interface of FLIGHTLAB for Trim Analysis

5.1.Implementation with Linear Model Data

Two linearization approaches are available in FLIGHTUBB]. T h e averagadr e 0

gend  asteddy fierturbatidh(Figure5.3). T h everfaged gerigmethod estimates

the stability and control matrices by perturbing the system model at each rotor
azimuth. Then the resultant derivatives are by averagingrebelting partial
derivatives over one r ot o rsteadyeperturbatiochi o n . On
method obtains the derivatives by perturbing the state or control, running the model

to steady state, and then averaging the resulting partial derivatreesone rotor

revolution[67].
Both methods are practiced in this study and the method selection is performed by

comparing the linear model responses withntilinear model simulations. Since the

fiaveraged gengfhethod gives better results, it is selected for our problem.
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The nonlinear FLIGHTLAB model is linearized around a specific trim point (level
flight at 70 knots, 2000 ft MSL). Linearization is perfomn@gain using the

linearization feature of FLIGHTLAB Xanalysis interface.

Linearization

Results

Select jnputs... Control state: 0: Reduce all; 1: Retain all ]

Finite difference: 0: forward; 1: central 1
Select states...

Flag: -1: geng/eframe; 0: geng; 1: steady 0
Select gutputs... Mumber of steps to average linearization 25

Option: 0: No model reduction; 1: reduction 1

Perturbation factor 0.02

Propulsion state: 0: Reduce all; 1: from state list |0
Steady state tolerance 0.0005

Run ‘ Apply ‘ Reset | Close | Help

Figure 5.3. Xanalysis Interface of FLIGHTLAB for Linearization

Linear mod el conf i guamlysi®o ni nit §7]. dnatkiect e d
process, inputs (E4109) areselected as longitudinal cyclic, lateral cyclic, collective

and pedal; the states are selected as((Hd)) roll angle, pitch angletranslational

velocity components (longitudinal, lateral and vertical velocity), and angular velocity
components (roll, pitch and yaw rates). The outputs are assigned to the states (EQ.
(112).

O dmbo (108)
QeEnod Hh A A (109
i 0o V%P Mmh (110



€ 6 0 O MMA (112

The expanded form on the basis of the irgtateoutput configuration is given in

Appendix B.

Model linearization is applicable around the trim point. Trim condition is determined

according to the model verification status. Trim condition at 70 knot forward velocity

where the model data coincide with the flight test results is selected as tak initi

condition for linearization. Pressure altitude is selected as 2000 ft and the ambient
temperature is chosen as 15 AC. Appropriate
before trim analysis. For forward velocity condition body accelerations aretset as

targets. Pilot control inputs and the Euler angles are defined as trim variables which

are released as free to solve trim equations. After trim analysis, linearization analysis

is performed to calculate the linear model in FLIGHTLAB environment. Tthen

model structure is converted to the form given in Bd2. The transformation

equations are defined in Appendix B.

4
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The obtained linear model is transferred to MATLAB environment, which will be

utilized for the rest of the analysis.

Now we shall proceed byenerating input and output data required for identification.
One of the most optimal input signal types which meet the-kmehvn requirement

of persistently exciting[17], [37]) is 3-2-1-1. This input signal is sequentially applied

for each channel during the same identifmattest. The input signal frequency
content and amplitude shall be well adjusted for exciting the helicopter body dynamics
properly (17]). In the light of this, fregency content of the input signal is adjusted to
cover a frequency range of @11Hz. Signal to noise ratio is also taken into account
while selecting the amplitudes of the input signals. Moreover, helicopter is not allowed
to drift away from the trim contion too much [L7]). For thispurposejnput signal

amplitudes are limited in such a way that the helicopter attitude angles stay in the
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range of p 1deg around thepecific trim point and the helicopter angular velocity

components shall not exceedp tdeg/s. These considerations about the input design

are expected to ensure the quality of identification. Constructed signals for each input
MATLAB

frequency content of the input signal. Singlded amplitude spectrum of the input

channel are shown ikigure 5.4.

signals is shown ifrigure5.5.

6fftoéd command

Jlat (%)

(%)

6Ion

(%)

ped

1)

(%)

coll

)

LJ L‘ I \ I I \ I
0 5 10 15 20 25 30 35 40
time (s)
\ T
| 1 | | 1 | 1
5 10 15 20 25 30 35 40
time (s)
I I \ I u I L‘ \ I
5 10 15 20 25 30 35 40
time (s)
| 1 | | | | 1
5 10 15 20 25 30 35 40
time (s)

Figure 5.4. Input Signals (2-1-1)
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Figure 5.5. Single Sided Amplitude Spectrum of Each Input Signal

The input signals are fed to the linear model in MATLAB environment to generate the
outputs required for identification. The outputs were selected as roll angle,rgteh a
translational velocity components (longitudinal, lateral and vertical velocity), and
angular velocity components (roll, pitch and yaw rates). Time domain responses of

the system to the inputs givenkigure5.4 are illustrated irFigure5.6.
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Figure 5.6. Output Signals
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