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ABSTRACT 

 

PHYSICAL SUBSPACE IDENTIFICATION FOR HEL ICOPTERS 

 

Avcēoĵlu, Sevil 

Doctor of Philosophy, Aerospace Engineering 

Supervisor: Assist. Prof. Dr. Ali T¿rker Kutay 

 

May 2019, 184 pages 

 

Subspace identification is a powerful tool due to its well-understood 

techniques based on linear algebra (orthogonal projections and intersections of 

subspaces) and numerical methods like QR and singular value decomposition. 

However, the state space model matrices which are obtained from 

conventional subspace identification algorithms are not necessarily associated 

with the physical states. This can be an important deficiency when physical 

parameter estimation is essential. This holds for the area of helicopter flight 

dynamics where physical parameter estimation is mainly conducted for 

mathematical model improvement, aerodynamic parameter validation and 

flight controller tuning. The main objective of this study is to obtain helicopter 

physical parameters from subspace identification results. In order to achieve 

this objective, N4SID subspace identification algorithm is implemented for a 

multi-role helicopter using both FLIGHTLAB simulation and real flight test 

data. After obtaining state space matrices via subspace identification, 

constrained nonlinear optimization methodologies are utilized for extracting 

the physical parameters. The state space matrices are transformed into 

equivalent physical forms via both ñSequential Quadratic Programmingò and 

ñInterior Pointò nonlinear optimization algorithms. The required objective 

function is generated by summing the square of similarity transformation 
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equations. The constraints are selected with physical insight. Many runs are 

conducted for randomly selected initial conditions. It can be concluded that all 

of the parameters with high significance can be obtained with a high level of 

accuracy for the data obtained from the linear model. This strongly supports 

the idea behind this study. Results for the data obtained from the nonlinear 

model are also evaluated to be satisfactory in the light of statistical error 

analysis. Results for the real flight test data are also evaluated to be good for 

the helicopter modes that are properly excited in the flight tests. 

 

 

Keywords: Subspace Identification, Parameter Estimation, Similarity Transformation, 

Optimization, Helicopter Dynamics.  
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¥Z 

 

HELĶKOPTERLER Ķ¢ĶN FĶZĶKSEL ALT UZAY ESASLI SĶSTEM 

TANIMLAMA  

 

Avcēoĵlu, Sevil 

Doktora, Havacēlēk ve Uzay M¿hendisliĵi 

Tez Danēĸmanē: Dr. ¥ĵr. ¦yesi Ali T¿rker Kutay 

 

Mayēs 2019, 184 sayfa 

 

Alt uzay esaslē sistem tanēmlama yºntemi olduk­a g¿­l¿ bir sistem tanēmlama 

yºntemidir. Bu ºzelliĵi kendini kanētlamēĸ dikey izd¿ĸ¿m ve alt uzaylarēn kesiĸimi 

gibi doĵrusal cebir yºntemleri ile QR ayrēĸtērmasē ve tekil deĵerlerine ayrēĸtērma gibi 

sayēsal a­ēdan saĵlam sayēsal yºntemlerin kullanēlmasēndan gelir. Ancak, alt uzay 

esaslē sistem tanēmlama yºntemi ile elde edilen durum uzay modeli herzaman fiziksel 

durum vektºrleri ile eĸleĸmeyebilir. Bu sebeple; alt uzay esaslē sistem tanēmlama 

yºntemi fiziksel parametre kestiriminin ºnemli olduĵu ­alēĸmalar i­in yetersiz 

kalmaktadēr. Bu durum, fiziksel parametre kestiriminin matematik model iyileĸtirme, 

aerodinamik parametre doĵrulama ve u­uĸ kontrolc¿s¿ iyileĸtirme faaliyetlerinde 

kullanēldēĵē helikopter u­uĸ dinamiĵi alanēnda da ge­erlidir. Bu ­alēĸmanēn ana amacē 

helikopter fiziksel parameterlerini alt uzay esaslē sistem tanēmlama yºntemi ile 

kestirebilmektir. Bu amacē ger­ekleĸtirmek i­in, bir genel maksat taarruz 

helikopterine ait veriler kullanēlarak N4SID alt uzay esaslē sistem tanēmlama yºntemi 

uygulanmēĸtēr. Gerekli veriler FLIGHTLAB u­uĸ benzetimlerinden ve ger­ek u­uĸ 

testlerinden elde edilmiĸtir. Alt uzay esaslē sistem tanēmlama yºntemi ile elde edilen 

sistem matris elemanlarē doĵrusal olmayan optimizasyon yºntemleri kullanēlarak 

fiziksel parametrelere ­evrilmiĸtir. Bunun i­in ñSēralē Karesel Programlamaò ve ñĶ­ 

Noktaò optimizasyon algoritmalarē kullanēlmēĸtēr. Burada ama­ fonksiyonu benzerlik 
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dºn¿ĸ¿m denklemlerinin karelerinin toplamē olarak ifade edilmiĸtir. Kēsētlar 

oluĸturulurken parametrelerin fiziksel anlamlarēndan yararlanēlmēĸtēr. Kēsētlar 

dahilinde, rastgele se­ilmiĸ deĵerler ile ­ok sayēda optimizasyon yapēlmēĸtēr. Sonu­lar 

gºstermektedir ki; doĵrusal helikopter modelinden yola ­ēkēlarak yapēlan sistem 

tanēmlama faaliyeti kapsamēnda, fiziksel anlamda baskēn olan parametreler olduk­a 

y¿ksek doĵrulukla elde edilebilmiĸtir. Bu durum; kullanēlan yºntemin doĵruluĵunu 

kuvvetli bir bi­imde desteklemektedir. Doĵrusal olmayan helikopter modelinden yola 

­ēkēlarak tekrarlanan sistem tanēmlama ve fiziksel parametre kestirimi faaliyeti de 

istatistiksel doĵruluk analizi sonu­larēna gºre baĸarēlē olmuĸtur. ¢alēĸma ayrēca ger­ek 

u­uĸ test verileri kullanēlarak tekrar edilmiĸ, d¿zg¿n olarak uyarēlabilen u­uĸ modlarē 

ile iliĸkili parameterler kestirilebilmiĸtir. 

 

Anahtar Kelimeler: Alt Uzay Esaslē Sistem Tanēmlama, Parametre Kestirimi, 

Benzerlik Dºn¿ĸ¿m¿, Optimizasyon, Helikopter Dinamiĵi 
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CHAPTER 1  

 

1. INTRODUCTION  

 

The aim of this study is extraction of physical parameters from subspace identification 

results via optimization techniques. The implementation is realized on to a multi-role 

twin engine helicopter. 

1.1. Literature Survey 

The helicopters are composed of numerous interacting subsystems. These are main 

rotor, fuselage, engine, flight control system, empennage and tail rotor. The helicopter 

flight dynamics can be modeled as the combination of the inertial, aerodynamic and 

the flight control forces acting on corresponding interactive subsystems. The effects 

of these forces are varying with the flight conditions. The interactions between the 

helicopter subsystems cause nonlinearity in system dynamics and bring some 

difficulties in modeling of the helicopter flight. These nonlinearities may not be easily 

modeled by analytical or numerical ways. In that case, wind tunnel and the flight test 

practices may be necessary to predict the indeterminate dynamics. No matter wind 

tunnel testing is utilized or not, the final step for the validation of helicopter design is 

flight testing. Flight testing is also opportunity for the flight dynamist to predict the 

helicopter model more accurately. System identification which is the way of model 

determination from experimental data can be utilized in the scope of flight data 

analysis. 

 

System identification is a foundational research field which is used to generate the 

dynamic model of a system by using input and output data set. System identification 

may be categorized mainly into three main groups: Output-Error Methods, Equation 

Error Methods and Subspace Identification methods. 
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The output error method is introduced in the 1960s. The objective of the Output Error 

Method is based on adjusting the values for the unknown parameters in the model to 

obtain the best possible fit between the measured output dataȟώ  and the estimated 

model response, ώ  (1). The best fit is obtained by iterating the model parameters. 

The measurement error noise matrix Ὑ is calculated as in (2).  

 

Ὡὸ ώ ὸ ώ ὸ (1) 

Ὑ  
ρ

ὔ
ώ ὸ ώ ὸ Ͻώ ὸ ώ ὸ  (2) 

 

The minimum of the cost function *ʔ with respect to the unknowns ʔ is obtained by 

satisfying all first derivatives function 
ὐʔ‏

  .ʔ are zero‏

This leads to a set of nonlinear equations that can only be solved iteratively with the 

main steps:  

¶ calculation of the cost function ὐ 

¶ calculation of the matrix Ὑ 

¶ update of the unknowns ʔ by minimizing the cost function ὐʔ  

¶ calculation of an output vector ώ  

 

Applications of output error method on helicopter systems are numerous. D. Banerjee 

and J.W. Harding [1] use flight test data to identify the AH-64 Apache attack 

helicopter by output error method. Kaletka [2] estimates the 6 DOF model of the BO 

105 helicopter by utilizing Maximum Likelihood output error method. SA 330 Puma 

is another platform which is identified by output error method [3]  

 

The equation error method is another widely used method in helicopter identification 

studies [4], [5] and [6]. In this method, the cost function which is defined directly in 
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terms of an input-output equation is minimized via least square techniques. For a 

system model given in (3), the equation error is defined as in (4) where the states, 

derivative of the states and the inputs are measurable (ὼ , ὼ ȟό ). 

 

ὼ ὃὼ ὄό (3) 

Ὡ ὼ ὃὼ ὄό  (4) 

 

There are many algorithms which utilize these methods. There are many system 

identification tools as well. CIFER (Comprehensive Identification from Frequency 

Response) which is one of the a well-known one, has been studied on a wide range of 

helicopters like BO-105 [7] UH-60 [8], Yamaha R-50 [9], OH-58D [10], SH-2G [11] 

and AH-64 [12], [13]  and on a quadrotor [14]. Higher order models for the Raptor 50 

and Evolution EX small-scale UAV helicopters were identified in [15] and [16]. The 

frequency domain system identification method developed by Tischler and Remple 

[17] was implemented for R44 helicopter in [18]. 

 

As an alternative to these classical methods which are mentioned above, subspace 

identification [19] attracted attention in the helicopter design society recently. 

Subspace identification differs from the classical system identification methods in 

many aspects. In principle, the models of constructing sequences are different. In 

classical techniques, first the system matrices are obtained, and then the states are 

estimated. However, in case of subspace identification first the states are estimated 

directly from input-output data, then the system matrices are obtained. 

 

The schematic illustration of these procedure differences is given in Figure 1.1. These 

differences bring some advantages such as computation accuracy and convergence.  
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Figure 1.1. Schematic Illustration of the Basic Differences between Classical Methods and Subspace 

Methods [19] 

 

Additionally, subspace identification algorithms utilize sound techniques based on 

linear algebra (orthogonal projections and intersections of subspaces) and numerical 

methods like QR and singular value decomposition. One of the main novelties of the 

subspace identification is to demonstrate how the Kalman filter states can be obtained 

from input-output data using linear algebra tools (QR and singular value 

decomposition). Hence, the identification problem becomes a linear least squares 

problem in the unknown system matrices. Another novelty is in the field of 

parameterization. Although classical system identification algorithms require a certain 

user-specified parameterization, subspace identification algorithms use full state space 

models and the only the order of the system is required as ñparameterò. In fact, in 

subspace identification algorithms, the order of the system can be predicted by 

inspection of certain singular values. 
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By having the opportunity to obtain the reduced model directly from input-output data 

without having to compute the high order model, subspace identification algorithms 

always constitute models with as low order as possible. 

 

The development of subspace identification algorithms is based on 1990s. The system 

model identification idea from the concepts like between subspaces or the singular 

value decomposition which are seemingly unrelated are started to be combined 

cleverly in 1970s ([20]-[29]). Finally the complete algorithms are dated to 1990s to 

2000s ([19], [30] and [31]). The detailed historical progress of subspace identification 

algorithms is explained in [19]. 

 

The current subspace algorithms such as [19] and [31] have proven extremely 

successful in dealing with the estimation of discrete-time state space models. One class 

of subspace identification algorithm which is called as ñMultivariable Output-Error 

State sPaceò (MOESP) [30] based on the idea of estimating a basis of the observability 

subspace directly from data. The other class of algorithm called as ñNumerical 

algorithms for Subspace State Space System IDentificationò (N4SID) relies on the 

estimation of the state sequence for the system as an intermediate step for the 

estimation of the state space model. The details of these algorithms with the extended 

versions are explained in [19] and [31]. 

 

The interest of helicopter design society on subspace identification methods arise in 

the last decade. Until now, some variants of subspace identification algorithms like 

N4SID ([19]-[32]) and MOESP ([33]-[35]) were applied on a number of helicopter 

simulation data. As a further step, a real flight test application is performed both for 

EH101 helicopter [36] and ACT/FHS the DLRôs research helicopter [37]. In [38], 

subspace identification methods were used for the identification of a helicopter 

including rotor and engine dynamics. In this study where DLRôs research helicopter 

ACT/FHS is analyzed, the subspace identification is utilized to assure the maximum 
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likelihood system identification results regarding the system order and eigenvalues. 

The MOESP method was applied for a small-scale unmanned rotorcraft model in [39]. 

 

These studies showed that subspace identification method can be an alternative for 

helicopter systems due to having many advantages like parameterization, convergence 

and model reduction [19] as mentioned above. On the other hand, the state space 

model matrices which are obtained from conventional subspace identification 

algorithms are not necessarily associated with the physical parameters [19]. Physical 

parameter estimation based on subspace identification for helicopter systems is still 

being investigated.  

 

The main objective of this study is to obtain helicopter physical parameters from 

subspace identification results. There are previous studies on this problem ([40]-[42]) 

utilizing Laguerre filters to convert the discrete time state space models into 

continuous models. Another approach for finding the physical parameters from 

subspace identification results is ñoptimizationò. As it is mentioned before, the system 

matrices ὃȟὄȟὅȟὈ which are found by subspace identification method do not 

necessarily have a direct physical interpretation. However, they have a conceptual 

relevance [19]. The similarity transformation of a discrete LTI system, ὼӶ Ὕ ὼ 

leads to a new set of state space matrices in Eq. (14) - (16) [43]. 

 

ὃӶ Ὕ ὃὝ (5) 

ὄ Ὕ ὄ (6) 

ὅӶ ὅὝ (7) 

The aim is to find the ὃӶȟὄȟὅӶ matrices with the similarity transformation matrix Ὕ 

which lead us to the physical parameters.  
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The objective function (8) is defined as the sum squares of the difference between the 

right and left side of the similarity transformation equations Eq. (5)-(7) where the 

equality and the inequality constraints are determined with physical insight.  

 

άὭὲὪὼ άὭὲᴁὃӶὼ Ὕὼ ὃὝὼᴁ ᴁὄὼ Ὕὼ ὄᴁ

ᴁὅӶὼ ὅὝὼᴁ  

(8) 

There are a limited number of studies in the literature which tackle with the 

identification problem by this approach ([44]-[49]). These studies propose simple cost 

functions (like least squares or quadratic) and most of them are applied for relatively 

simple systems like inverted pendulum or mass spring systems. However, helicopter 

identification may require far more variables to be solved. Therefore, it may require 

more advanced optimization algorithms. Due to the nonlinear characteristics of the 

objective function, this problem can be handled by NonLinear Programming (NLP) 

([44]-[46]). In the literature, there exist a number of algorithms for solving NLP 

problems. In our case, we decided to concentrate on ñlarge-scaleò NLP algorithms 

where the total number of variables is greater than one hundred. In [50], Benson 

compares this type of algorithms in terms of efficiency. The preliminary study 

investigated in [51] is about estimating helicopter physical parameters from subspace 

identification. ñInterior Pointò algorithm was used in [51] to solve the aforementioned 

optimization problem. Regarding the ñlarge-scaleò NLP algorithm performance 

examination by Benson in [50], we selected both ñInterior Pointò algorithm and 

ñSequential Quadratic Programmingò algorithm for our optimization problem. 

 

Other improvements are made on constraint and initial value selections by introducing 

a variety of conditions. In addition, in [51], the required data is only obtained from 

linear model simulations. However, in this study, the methodology is extended for 

nonlinear model simulation data and real flight test data of a tactical helicopter (multi-

role helicopter). The outcome will be critical in many aspects like model 
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improvement, wind tunnel data validation and flight controller design. The conducted 

study is summarized in the following paragraph. 

 

As a first step, data gathering is studied. The excitation signal is selected as 3-2-1-1, 

which is commonly recommended for helicopter practices [17]. The input signal 

frequency content and amplitude are adjusted for exciting the helicopter body 

dynamics properly [17]. This will ensure the quality of system identification. As a 

second step N4SID algorithm [19] is applied to obtain the state-space model of the 

helicopter for a certain flight condition. The obtained state-space matrices, which are 

not necessarily associated with the physical states, are required to be transformed into 

the physical state-space matrices in order to obtain the stability and control derivatives. 

The similarity transformation theory [44] is utilized in conjunction with constrained 

nonlinear optimization for this purpose. The objective function, sum of the square of 

similarity transformation equations ([44]-[49]) is minimized to obtain the physical 

state-space matrices and the corresponding similarity transformation matrix. 

 

In the above summarized optimization problem, two algorithms are experimented. 

These are ñSequential Quadratic Programmingò and ñInterior Pointò ([52]-[54]) 

algorithms. They are selected considering both the size of the unknowns (over one 

hundred in this problem) and the nonlinear form of the objective function. The 

implementation of these algorithms for extracting physical parameters from subspace 

identification results is a candidate for being a prime in the field of helicopter flight 

dynamics. 

 

Initial values of the parameters in optimization experiments are selected randomly. 

Constraints of the physical parameters may be selected considering typical error 

budgets of wind tunnel testing and aerodynamic prediction tools for helicopter 

systems or by using common practices of aerospace vehicle modeling. However, for 

convenience, constraints are selected considering linearized outputs of FLIGHTLAB 

with several error margins from [-10% 10%] to [-90% 90%] in this study. The physical 
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value for each parameter is estimated by minimizing the objective function via the 

above-mentioned algorithms under given constraints and initial values. The 

optimizations are repeated for different initial conditions in order to increase the 

confidence level. The percentage estimation errors are calculated for each parameter 

in every run. The physical parameters obtained at the end of the optimization are used 

for time domain verification of the model. The time domain output of the model is 

compared with the actual measurement using Theilôs inequality coefficient (TIC) 

metric ([55], [56]). After obtaining promising results for the methodology, the study 

is repeated for the same helicopter by using nonlinear simulation data and real flight 

test data. 

 

1.2 Main Contributions 

There are three main contributions of this study. The first one is successful 

implementation of subspace identification to a multi-role twin engine helicopter. The 

second contribution is the extraction of physical parameters from subspace 

identification results via optimization techniques. The third major contribution is the 

application of identification inputs in all four input channels of the helicopter for the 

same test case to extract both direct and cross coupling derivatives by utilizing 

subspace identification. With these contributions we are aiming to enhance the 

implementation of subspace identification technique for helicopters. 

 

1.3 Organization of the Thesis 

The main objective of this study is presented in Chapter 1. Then the literature survey 

is introduced to define the problem properly. Background information on system 

identification techniques are presented here. Research is concentrated on the problem 

of physical parameter estimation from subspace identification results. The nonlinear 

optimization methodologies are searched for solving the problem. Then the main 

contributions are summarized in this chapter.  
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In Chapter 2, the theory of subspace identification is introduced. The main focus is 

given on a robust subspace algorithm which proved to work well on practical data. 

The problem of finding physical parameter estimation and the similarity 

transformation approach are mentioned here. 

 

In Chapter 3, the model-structure of the helicopter is defined for our specific problem. 

The inputs, outputs and the states are introduced here. The main assumptions about 

the stability and control derivatives are also mentioned in this chapter.  

 

The optimization procedure and the objective function are explained in Chapter 4. 

Both ñSequential Quadratic Programmingò and ñInterior Pointò algorithms are briefly 

mentioned here. The formation of the objective function in accordance with the model 

structure is defined here. The basic assumptions about constraints, the initial values 

and the constants are also given in this chapter.  

 

In Chapter 5, the implementation of the methodology is introduced on a multi-role 

helicopter. Data gathering, subspace identification and parameter estimation 

methodology is introduced for given specific flight conditions. 

 

In Chapter 6, several conditions for the selected algorithm, boundary condition and 

initial values are examined, and the numerical results are presented. The 

implementation for nonlinear simulation output and real flight test data are presented 

here too. 

 

Finally, the obtained results and the outcome of the research are discussed in Chapter 

7. 
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CHAPTER 2  

 

2. SUBSPACE IDENTIFICAT ION THEORY  

 

2.1. Introduction to Linear System Identification 

Dynamic systems can be expressed as mathematical models. These models are used 

for design improvement, simulation, analysis and training. Typically, they provide 

advantageous in many circumstances where the real system testing is too expensive, 

too difficult or too time consuming. Especially for the rotorcrafts systems, it is almost 

impossible to validate a flight control system without mathematical model 

verifications on the ground since the challenging maneuvers performed in the air may 

contain in serious risks. 

 

The mathematical model of the air vehicle systems can be derived from nonlinear 

equations-of-motion, typically by implementing several simplifying assumptions. 

However, for relatively more complex systems like rotorcrafts, a simplified model 

may not be sufficient for simulating the performance of the final implementation. In 

such a case the mathematical model improvement can be achieved via system 

identification techniques. In general practice, the collected input and output data is 

used to find parameters of predefined model structure. In this context, system 

identification is described as dynamic extension of curve fitting. In the final step, the 

model is validated with the experimental data which were not used in the system 

identification experiment. 

 

Being an alternative to classical system identification methods subspace identification 

is based on finding the state space models by using only experimental input-output 

data set. The general overview of subspace identification is supplied in the following 

paragraph. 
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2.2. State Space Representation of Dynamic Systems 

In subspace identification method, the dynamic model of the system is restricted to 

discrete time, linear, time-invariant, state space models. Mathematically, these models 

are defined by the following set of difference equations1: 

ὼ ὃὼ ὄό ύ  (9) 

ώ ὅὼ Ὀό ὺ (10) 

with 

Ὁ
ύ
ὺ ύ ὺ

ὗ Ὓ

Ὓ Ὑ
‏ π (11) 

 

In this model, the vectors ό ᶰᴙ  and ώᶰᴙ are the input and outputs at time 

instant Ὧ. The size of the input and output are denoted Í and Ì respectively. 

 

The state vector of the process at discrete time instant Ὧ is represented as ὼᶰᴙ  

where the size of it is equal to ὲ. ὺᶰᴙ and ύ ᶰᴙ are stochastic signals. It is 

assumed that they are zero mean, stationary, white noise vector sequences. 

 

ὃᶰᴙ  matrix which is called as system matrix describes the dynamics of the 

system. ὄᶰᴙ  is called as input matrix which represents the linear transformation 

by which the control inputs influence states in the next time step. ὅᶰᴙ  is the 

output matrix which describes the linear relation between the states and the outputs 

(measurements) Ù. The Ὀᶰᴙ m matrix is the direct feedthrough term. In general 

practice, this term is most often 0 for continuous time systems. The covariance 

                                                 

1 % denotes the expected value operator and ‏  the Kronecker delta. 
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matrices of the process and measurement noise sequences ὺᶰᴙ and ύ ᶰᴙ  are 

called as ὗᶰᴙ , Ὓɴ ᴙ  and Ὑᶰᴙ .  

 

In subspace identification theory, the matrix pair ὃȟὅ is assumed to be observable. 

It means that all modes in the system can be observed in the output, ώ. Also, the 

matrix pair ὃȟὄ ὗ  is required to be controllable for subspace identification 

algorithms. In other words, all modes of the system are excited by either the 

deterministic input ό and/or the stochastic input ύ  [19]. 

 

The graphical representation of discrete time and time-invariant state space model is 

given in Figure 2.1. 

 

Figure 2.1. Discrete-time and time-invariant State Space Model of Dynamic Systems 

 

 

2.3. Brief Overview on Subspace Identification Theory [19] 

Subspace identification theory is based on system theory, linear algebra and statistics. 

The linear algebra tools (QR and singular value decomposition) are utilized to find the 

system states. Once these states are known, the problem turns into a linear least 

squares problem. Since the problem converted into a linear form, it can be solved 

easier when compared to ñclassicalò prediction error methods [57]. 
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In subspace identification algorithms, only the order of the system requires to be 

selected as a parameter. However, for classical methods, there has been an extensive 

amount of research to determine so-called canonical models, i.e. models with a 

minimum number of parameters.  The problems arise from with these minimal 

parameterizations are listed in detail in [19]. 

 

Due to the order reduction and consequently the matrix size reduction accomplished 

by using QR and singular value decompositions, the subspace identification 

algorithms are quite fast. Also, they are faster than (again) the ñclassicalò 

identification methods, such as Prediction Error Methods, because they are not 

iterative. By extension, there are no convergence problems. In addition to all of these, 

numerical robustness is guaranteed since subspace identification algorithms are 

proven by numerical linear algebra. 

 

2.4. Geometric Tools [19] 

Subspace identification algorithms use of several geometric tools. These geometric 

tools are defined in the following paragraphs. The matrices ὃᶰᴙ , ὄᶰᴙ  and 

ὅᶰᴙ  are assumed to be given here below. 

 

 

2.4.1. Orthogonal Projections 

The projection of the row space of a matrix "ᶰᴙ onto the row space of "ᶰᴙ  

is denoted as Б  where the related equation is given (12). 

 

Б Ḱὄ Ͻὄὄ Ͻὄ, (12) 
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The operator ñò denotes the Moore-Penrose pseudo-inverse of the matrix. The 

projection of the row space of the matrix ὃᶰᴙ  on the row space of the matrix 

ὄᶰᴙ  is given in (13). Here the boldface notation denotes the row space onto 

which one projects. 

 

ὃ ║ḰὃϽБ  ὃϽὄ Ͻὄὄ Ͻὄ (13) 

 

The orthogonal projection of the row space of the matrix ὃᶰᴙ  on the row space 

of the matrix ὄᶰᴙ  is illustrated in a simplest way in Figure 2.2 to make it more 

understandable.  

 

Figure 2.2. Orthogonal Projection Representation in a Simple Form2 

 

2.4.2. Oblique Projections 

Oblique projection is projection of a matrix onto the linear combinations of two non-

orthogonal matrices. In other words, project the row space of ὃ orthogonally on the 

joint row space of ὄ and ὅ; and decompose the result along the row space of ὅ. 

Mathematically, the orthogonal projection of the row space of ὃ on the joint row space 

of ὄ and ὅ can be given in (14). 

                                                 
2   denotes orthogonal complement of the row space of Ȣ 

A/B

A/B

A

B



 

 

 

16 

 

ὃ
╒
║
ḰὃϽὅ ὄ Ͻὅὅ ὅὄ

ὄὅ ὄὄ
Ͻ
ὅ
ὄ

 (14) 

 

The oblique projection the row space of the matrix ὃ along the row space of the matrix 

ὄ onto the row space of the matrix ὅ is illustrated in a simplest way in Figure 2.3 to 

make it more understandable.  

 

Figure 2.3. Oblique Projection Representation in a Simple Form3 

 

2.4.3. Singular Value Decomposition 

The order of the system is determined according to the results of Singular Value 

Decomposition (SVD). Singular values are another expression of the principal angles 

and directions. 

 

Definition 1 Principal angles and directions 

For given two matrices !ᶰᴙ , "ᶰᴙ  , the singular value decomposition is 

expressed as in (15). 

 

ὃ Ͻὃὃ Ͻὃὄ Ͻὄὄ Ͻὄ ὟὛὠ  (15) 

                                                 
3    denotes orthogonal complement of the row space of  . 

B

A/BC

A

C
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Here the principal directions between the row spaces of ὃ and ὄ matrices are 

equivalent with the rows of Ὗ  and the rows of ὠ . Also the row spaces of ! and " 

matrices are related with the singular values (the diagonal of S) which is equal to the 

cosines of the principal angles in between them. The formulas are as given in (16). 

 

═᷂ ὄ ḰὟ  

ὃ᷂ ║ Ḱὠ  

ὃ᷂ ὄ ḰὛ 

(16) 

2.4.4. Statistical Approaches 

In subspace identification algorithms, some statistical assumptions work very well if 

large number of data is available. In subspace identification it is assumed that there 

are infinitely many data sets available Ὦ Њ  and that the data is ñergodicò.  

 

To make it more illustrative, consider that there are two given sequences ὥ ᶰᴙ  

and Ὡᶰᴙ , Ὧ πȟρȟȣȟὮ. The sequence Ὡ is a zero mean sequence as given in 

Eq.(17) and independent from ὥ (Eq. (18)) 

ὉÅ π (17) 

ὉὥὩ π (18) 

Due to the assumptions of ergodicity and the infinite number of data can be driven: 

The expectation operator Ὁ which is the average over an infinite number of 

experiments can be replaced with the operator Ὁ which is applied to the sum of 

variables. For instance, for the correlation between Á and Å we get: 
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ὉὥὩ ÌÉÍ
ᴼ

ρ

Ὦ
ὥὩ  (19) 

Ὁ ὥὩ  (20) 

Here the operator Ὁ is defined as in (21). 

Ὁ ḰÌÉÍ
ᴼ

ρ

Ê
 (21) 

In the light of this information, consider two given sequences of input ό and noise 

Ὡ: 

όḰ ό  ό Ễ  ό  (22) 

ὩḰ Ὡ  Ὡ Ễ  Ὡ  (23) 

It can be found that the expected value of the sum of the vectors  ό and Ὡ becomes 

zero as it is seen in Eq. (24) under the assumptions that an infinite number of data 

available (a large set of data samples) and the data are ergodic. 

Ὁ όὩ π (24) 

Eq. (24) leads to 

ὉόϽὩ π (25) 

Geometric interpretation of this result is that the input vector ό is perpendicular to the 

noise vector Ὡ. This is a precious inference because it is used in subspace identification 

algorithms to subtract the noise effects.  
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ὉᴁὩȾόᴁ π 
(26) 

 

2.5. Subspace Identification for Deterministic Systems 

The subspace identification problem is formulated for deterministic LTI systems 

which are not disturbed by noise. Let such a system be given by 

ὼ ὃὼ ὄόȟ (27) 

ώ ὅὼ Ὀόȟ (28) 

where Øᶰᴙ , Õᶰᴙ  and Ùᶰᴙ. The process noise ×  and the measurement 

noise Ö do not exist for deterministic systems. The goal of subspace identification is 

to find the state space matrices ὃȟὄȟὅȟὈ and the state vector Øᶰᴙ  up to a 

similarity transformation in the presence of the input  ό ᶰᴙ  and output data set 

ώᶰᴙ.  

 

It is definite that most of the real systems contain noise. However, we start to explain 

the theory of subspace identification from a deterministic system which is easier to 

understand. Subspace identification starts with the construction of Block Hankel 

matrices. 

 

2.5.1. Blok Hankel Matrices 

Block Hankel matrices are constituted from the input-output data set. The form of the 

input Block Hankel matrix is given in (29). 
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Ὗȿ Ḱ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ
ό ό ό ό ȢȢȢ ό
ό ό ό ό ȢȢȢ ό
Ȣ Ȣ Ȣ Ȣ ȢȢȢ Ȣ
Ȣ Ȣ Ȣ Ȣ ȢȢȢ Ȣ
Ȣ Ȣ Ȣ Ȣ ȢȢȢ Ȣ
ό ό ό ό ȢȢȢ ό
ό ό ό ό ȢȢȢ ό
Ȣ Ȣ Ȣ Ȣ ȢȢȢ Ȣ
Ȣ Ȣ Ȣ Ȣ ȢȢȢ Ȣ
Ȣ Ȣ Ȣ Ȣ ȢȢȢ Ȣ

ό ό ό ό ȢȢȢό Ứ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

 

 

(29) 

 

Here the number of block index Ὥ defines the approximate order of the system being 

identified. The only requirement for Ὥ being larger than the estimated order of the 

system. The number of columns (Ὦ) is formulated as in (30) where ί is the total number 

of data samples.  

Ὦ ί ςὭ ρ (30) 

The subscript of Ὗȿ denote the first and last element of the first column in the 

block Hankel matrix of inputs. Ὗȿ  is combination of two equally sized matrices. 

By definition, the first part of the matrix Ὗȿis called as Block Hankel matrices of past 

inputs. Other representation of this matrix is Ὗwhere the subscript ñὴò stands for 

ñpastò. The second part of the matrix Ὗȿ  is called as Block Hankel matrices of 

future inputs. Similarly, it is symbolized as Ὗ where the subscript ñὪò stands for 

ñfutureò. Another Block Hankel matrices used in subspace identification theory are 

Ὗ and Ὗ are obtained by shifting the borders of Ὗ   and Ὗ. 

 

This notation which is adopted from [64] and [19] also holds for the other Block 

Hankel matrices of the outputs: ὣȿ , ὣȿ, ὣȿ , ὣ, ὣ, ὣ and ὣ . ὣȿ (ὣ) is 

called as Block Hankel matrices of past inputs.ὣȿ  (ὣ) is called as Block Hankel 
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matrices of future inputs. Also, ὣ  and ὣ  are obtained by shifting the borders of 

ὣ and ὣ.  

 

ὣȿ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ
ώ ώ ώ ώ ȢȢȢ ώ
ώ ώ ώ ώ ȢȢȢ ώ
Ȣ Ȣ Ȣ Ȣ ȢȢȢ Ȣ
Ȣ Ȣ Ȣ Ȣ ȢȢȢ Ȣ
Ȣ Ȣ Ȣ Ȣ ȢȢȢ Ȣ
ώ ώ ώ ώ ȢȢȢ ώ
ώ ώ ώ ώ ȢȢȢ ώ
Ȣ Ȣ Ȣ Ȣ ȢȢȢ Ȣ
Ȣ Ȣ Ȣ Ȣ ȢȢȢ Ȣ
Ȣ Ȣ Ȣ Ȣ ȢȢȢ Ȣ
ώ ώ ώ ώ ȢȢȢώ Ứ

ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

 (31) 

Another Block Hankel matrix which is formulated in (32) is ὡὴ obtained by 

combining the past inputs and outputs. 

ὡ ȿ Ḱ
Ὗȿ
ὣȿ

Ὗ

ὣ
ὡ  (32) 

ὡὴ matrix is obtained by shifting the borders of Ὗ   and ὣ as defined in Eq. (33). 

ὡὴ 
Ὗὴ

ὣὴ
 (33) 

2.5.2. State Sequence Matrix 

Another important matrix is ñstate sequence matrixͼ  ὢ for subspace identification 

algorithms. The state sequence matrixȟὢ is shown in Eq. (34) as more explicit form. 

In this equation, Ὥ stands for the subscript of the first element of the state sequence. 

ὢ ὼ ὼ ὼ ὼ ȣ ὼ ᶰᴙ  (34) 
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2.5.3. System Related Matrices 

The extended observability matrix ɜÉ is extensively used in subspace identification 

algorithms. Explicit representation of the observability matrix ɜÉ is shown as in 

Eq.(35). Here it is assumed that the system is observable. 

 

ɜḰ

ở

Ở
ờ

ὅ
ὅὃ
ὅὃ
ȣ
ὅὃ Ợ

ỡ
Ỡ
ᶰᴙ  (35) 

 

The reversed extended controllability matrix Ў (where the subscript Ὥ denotes the 

number of block columns) represented as: 

 

Ў Ḱ ὃ ὄ ὃ ὄ ὃ ὄ ὃ ὄ ȣ ὄ ᶰᴙ  (36) 

 

The lower block triangular Toeplitz matrix Ὄd is defined as: 

 

(Ḱ

ở

Ở
ờ

Ὀ π π ȣ π
ὅὄ Ὀ π ȣ π
ὅὃὄ ὅὄ Ὀ ȣ π
ȣ ȣ ȣ ȣ ȣ

ὅὃ ὄ ὅὃ ὄ ὅὃ ὄ ȣ ὈỢ

ỡ
Ỡ
ᶰᴙ  (37) 

 

Here it is assumed that the system is controllable. 

 

2.5.4. Main Theorems for Deterministic Subspace Identification Algorithms 

Theorem 1 Matrix input -output equations ([19], Chapter 2) 

The following Theorem which is widely used in subspace identification algorithms 

states how the linear state space relations of formula (27) - (28) can be reformulated 
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in a matrix form. The proof of (38)-(40) follows directly from state space equations 

given in (27) -(28).  

 

ὣ ɜὢ ὌὟ  (38) 

ὣ ɜὢ ὌὟ (39) 

ὢ ὃὢ ɝὟ  (40) 

 

The geometric representation of the equation (39) is given in Figure 2.4. Here the 

vectors in the row space of ὣ are obtained as a sum of linear combinations of vectors 

in the row space of ὢ and linear combinations of vectors in the row space of Ὗ. 

 

 

 

Figure 2.4. Geometric Representation of ὣ in terms of ὢ and Ὗ 

 

Main Theorem ([19], Chapter 2) 

This theorem indicates that the state sequence ὢ and the extended observability 

matrix ɜὭ can be extracted from the given input-output data set (Ὗ , Ὗ, ὣ, ὣ). 

This can be expressed in two ways: 
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¶ The state sequence ὢ can be determined directly from the given input-output 

data, without knowledge of the system matrices ὃȟὄȟὅ and Ὀ. 

¶  The extended observability matrix ɜÉ can be determined directly from the 

given input-output data. 

 

Definition 2: Persistency of excitation ([19], Chapter 2) 

The input sequence ό ᶰᴙ is persistently exciting of order ςὭ if the input 

covariance matrix (41) has full rank. 

 

Ὑ ḰɮὟȿ ȟὟȿ   (41) 

 

Theorem 2: Deterministic Identification ( [19], Chapter 2) 

Under the assumptions that: 

1. The input ό is persistently exciting of order ςὭ (Definition 2). 

2. The intersection of the row space of Ὗ (the future inputs) and the row 

space of ὢ  (the past states) is empty. 

3. The user-defined weighting matrices ὡ ᶰᴙ  and ὡ ᶰᴙ  are such 

that ὡ  is full rank and ὡ  obeys: ὶὥὲὯὡ ὶὥὲὯὡ Ͻὡ  where ὡ  

is the block Hankel matrix containing the past inputs and outputs. 

 

and ὕ is defined as the oblique projection: 

ὕḰὣȾ ὡ  (42) 

 

and the singular value decomposition: 

ὡὕ7 5 5 3 π
π π

6

6
 (43) 
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ὟὛὠ  (44) 

 

We have  

1. The matrix ὕὭ is equal to the product of the extended observability matrix and 

the states: 

ὕ ɜὢ (45) 

2. The order of the system (27)- (28) is equal to the number of singular values in 

equation (43) different from zero. 

 

3. The extended observability matrix ῲὭ is equal to: 

ɜ ὡ ὟὛ
Ⱦ
Ὕ (46) 

where  Ὕ ᶰᴙ  is an arbitrary non-singular similarity transformation. 

4. The part of the state sequence ὢ that lies in the column space of ὡ can be 

recovered from: 

ὢὡ Ὕ Ὓ
Ⱦ
ὠ  (47) 

5. The state sequence ὢ is equal to: 

ὢ ɜὕ (48) 

The proof of the Theorem which provides some insight in how subspace identification 

results are typically derived is given in Appendix A.  

 

2.5.5. Algorithms for Deterministic Systems 

According to [19], the system matrices ὃȟὄȟὅ and Ὀ can be computed in two different 

ways: 

¶ finding the state sequence matrix ὢ 



 

 

 

26 

 

¶ finding the extended observability matrix ɜὭ  

The schematic illustration deterministic identification procedure is presented in Figure 

2.5. The system matrices can be computed by using any of the two ways. 

 

Figure 2.5. An overview of the deterministic subspace identification procedure [19] 

 

The algorithms which are based on Theorem 2 will be outlined in the following 

paragraphs.  

 

2.5.5.1. Algorithm 1 ( [19], Chapter 2) 

The algorithm starts with oblique projection ὕ calculations. 

ὕ ḰὣȾ ὡ  (49) 

ῲ ὢ  (50) 

Then ὢ  can be calculated from (50) as below: 
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ὢ ɜ ὕ  (51) 

Then with Ὗȿ and ὣȿ matrices which are optained from input-output data and the 

state sequence matrices calculated by the equations (48) and (51) we can estimate the 

system matrices !ȟ"ȟ# and $ according to least square approach (52). 

ὢ
ὣȿ

ὃ ὄ
ὅ Ὀ

ὢ
Ὗȿ

 (52) 

 

With this approximation, it is possible to solve all of the system matrices in one step. 

However, in the following algorithm these matrices are estimated in two separate 

steps. First ὃȟὅ matrices are determined then the rest of the system matrices (ὄȟὈ) are 

estimated. The algorithm steps are explained in the following paragraph.  

 

2.5.5.2. Algorithm 2 ( [19], Chapter 2) 

After calculating the extended observability matrix ɜÉ, the system matrices are 

determined in two separate steps. 

 

Determination of ὃ and ὅ matrices 

The matrices ὃ and ὅ can be determined from the extended observability matrix ɜ. 

The shift structure of the matrix ɜ is used for this purpose [66]. 

ɜὃ ɜ (53) 

Where ɜdenotes ɜ without the first Ì (number of outputs) rows. Then the matrix A 

can be determined by equation (54). Then the # matrix is determined as the first ὰ rows 

of ɜ 

ὃ ɜ Ͻɜ (54) 

Determination of ὄ and Ὀ matrices 
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In the next stage, ὄ and Ὀ matrices are computed. When we rearrange the input-output 

equation (39), we find that, 

ɜὣ ɜὌὟ (55) 

 

Where ɜ ᶰᴙ  is a full row rank matrix satisfying ɜ Ͻɜ π.  

 

If we multiply the equation (55) with Ὗ  we obtain (56) where the linear least square 

approach is applicable. Here the matrices ɜȟὣȟὟ are all known matrices. The only 

unknown is Ὄ matrix which is the combination of known matrices ὃȟὅ and the 

unknown matrices ὄȟὈ. 

ɜὣὟ  ɜὌ (56) 

 

For simplicity, the left-hand side of the equation is symbolized with ִי  and ɜ  with 

fl. Then the equation (56) can be written as; 

 

יִ יִ ȣ יִ

fl fl ȣ fl

ở

Ở
ờ

Ὀ π π ȣ π
ὅὄ Ὀ π ȣ π
ὅὃὄ ὅὄ Ὀ ȣ π
ȣ ȣ ȣ ȣ ȣ

ὅὃ ὄ ὅὃ ὄ ὅὃ ὄ ȣ ὈỢ

ỡ
Ỡ

 

 

(57) 

 

Where ִיὯᶰᴙ
ÌÉÎ Í

 and flὯᶰᴙ
ÌÉÎ Ì

 . Then the equation (57) is rewritten as  

 

יִ יִ ȣ יִ

ở

Ở
ờ

fl fl ȣ fl fl
fl fl ȣ fl π
fl fl ȣ π π
ȣ ȣ ȣ ȣ ȣ
fl π ȣ π πỢ

ỡ
Ỡ Ὅ π
π ɜ

Ὀ
ὄ

 (58) 
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Then ὄ and Ὀ matrices formulated in (58) are computed with least square approach. 

 

2.6. Facts on Real World Applications 

So far, we discussed subspace identification algorithms for deterministic systems. 

However, the real system measurements generally contain noise terms. Therefore, for 

real-life applications, the systems (Eq. (9) - (10)) are modeled with the process and 

measurement noise ύ  and ὺ. 

 

From many available subspace identification methods in literature [19] the ñRobust 

Subspace Algorithmò is utilized on this study. This method is proved with many 

industrial data and it is suggested for practical applications ([19], Chapter 4, Algorithm 

3). The required information about theory and the algorithm is given in the following 

paragraphs. 

 

Theorem 3 Matrix input -output equations ([19], Chapter 4) 

The matrix input-output equations for the combined system (similar to the matrix input 

output equations (38) - (40)) are defined in the following Theorem. 

 

ὣ ɜὢ ὌὟ ὣ (59) 

ὣ ɜὢ ὌὟ ὣ (60) 

ὢ ὃὢ ɝὟ  (61) 

 

Where ὣ and ὣ are the stochastic terms. 
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Theorem 4 Orthogonal projection 

 

Under the assumptions that: 

1. The deterministic input ό is uncorrelated with the process noise ύ  and 

measurement noise ὺ  

2. The input ό is persistently exciting of order ςὭ (Definition 2) 

3. The number of measurements goes to infinity Ὦ O Њ 

4. The process noise ύ   and the measurement noise ὺ are not identically zero. 

 

Then  

ὤḰὣȾ
╦▬
╤█

 (62) 

ɜὢ Ὄ5 (63) 

 

With Kalman filter state sequence  

ὢḰὢ
ȟ

 (64) 

 

Where 8 is the initial state sequence matrix and 0 is initial state covariance matrix. 

 

Optimal prediction:  

 

Another projection matrix in the theory of robust subspace identification is the 

prediction matrix : which can be computed from the input output data, without having 

the system matrices. The prediction matrix (ὤ) is considered as an optimal prediction 

of the future output (ὣ) on the subspace formed by Block Hankel matrices of past 
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inputs and outputs (ὡ ) and the Block Hankel matrices of the future input (Ὗ). The 

corresponding formulation is shown in Eq. (65). 

ὤ ὣȾ
ὡ

Ὗ
 (65) 

Here, it is proposed to combine the past (ὡ  ) and the future inputs (Ὗ.) linearly to 

predict the future outputs (9) [19]. 

 

Theorem 5 Combined Identification ([19], Chapter 4) 

 

Under the assumptions that: 

 

1. The deterministic input ό is uncorrelated with the process noise ύ  and 

measurement noise ὺ  

2. The input ό is persistently exciting of order ςὭ (Definition 2) 

3. The number of measurements goes to infinity Ὦ O Њ 

4. The process noise ύ   and the measurement noise ὺ are not identically zero. 

5. The user-defined weighting matrices ὡ ᶰᴙ  and ὡ ᶰᴙ  are such that 

ὡ  is full rank and ὡ  obeys: ὶὥὲὯὡ ὶὥὲὯὡ Ͻὡ  where ὡ  is the 

block Hankel matrix containing the past inputs and outputs. 

 

and ὕ is defined as the oblique projection: 

ὕḰὣȾ ὡ  (66) 

 

and the singular value decomposition: 

ὡὕ7 5 5 3 π
π π

6

6
 (67) 

 



 

 

 

32 

 

We have  

1. The matrix ὕ is equal to the product of the extended observability matrix and 

the states: 

ὕ ɜὢ (68) 

2. The order of the system (9)-(10) is equal to the number of singular values in 

equation (43) different from zero. 

 

3. The extended observability matrix ῲ is equal to: 

ɜ ὡ ὟὛ
Ⱦ
Ὕ (69) 

where  Ὕ ᶰᴙ  is an arbitrary non-singular similarity transformation. 

4. The part of the state sequence ὢ that lies in the column space of ὡ can be 

recovered from: 

ὢὡ Ὕ Ὓ
Ⱦ
ὠ  (70) 

5. The state sequence ὢ is equal to: 

ὢ ɜὕ (71) 

 

2.6.1. Algorithm 3 ï Robust Subspace Identification ([19], Chapter 4) 

The algorithm starts with oblique projection ὕ (66) and orthogonal projection ὤ (62), 

ὤ  (72) calculations. 

ὤ 9Ⱦ
7

5
 (72) 

ɜ ὢ Ὄ 5  (73) 



 

 

 

33 

 

ὢ Ḱὢ
ȟ

 (74) 

 

Reduction of the size of oblique projection matrix ὕ will simplify the rest of the 

matrix operations Thus, SVD is calculated for ὕ (67). By inspecting the singular 

values the Ὗ and Ὓ matrices are calculated to determine extended observability 

matrix ɜ (69). Here the weight matrices ὡ  and ὡ  are assumed as identity which is 

compatible with Theorem 5. 

 

Then some set of linear equations which are quite complicated are solved to find ὃ 

and ὅ matrices. The equations (75)-(78) are used to generate the linear least square 

problem given in (79). Here ”ȟ ”  are the covariances of the process and 

measurement noise of the residuals and an intermediate matrix ʆ is given as in (80). 

 

ὢ ὃὢ ὄὟȿ ὑ ὣȿ ὅὢ ὈὟȿ  (75) 

ὣȿ  ὅὢ  ὈὟȿ  ὣȿ ὅὢ ὈὟȿ  (76) 

ὢ ɜ Ͻὤ ὌὟ  (77) 

ὢ ɜ Ͻὤ Ὄ Ὗ  (78) 

ῲ ὤ

ὣὭὭ

ὃ
ὅ
ῲὤ ‖Ὗ

”
”  (79) 

‖Ḱ
ὄȿɜ Ὄ ὃɜὌ

Ὀȿπ ὅɜὌ
 (80) 
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After finding ! and # matrices from (79), the ɜ and ɜ  matrices are recomputed to 

get better estimation on the remaining system matrices  ὄ and Ὀ matrices where both 

ὃȟὅ and ῲȟῲ   are used. 

ὄȟὈ ὥὶὫάὭὲȟ
ῲ ὤ

ὣὭὭ

ὃ
ὅ
ῲὤ ‖ὄȟὈὟ  (81) 

 

The matrices ὄ and Ὀ are calculated by solving the minimization problem shown in 

Eq. (81). The intermediate steps are explained in [19] in more detail.  

 

2.7. Similarity Transformation 

The system matrices ὃȟὄȟὅȟὈ found through the above given formulation does not 

necessarily have a direct physical interpretation but they have a conceptual relevance 

[19]. According to the similarity transformation theory [43] the state vector of a 

discrete LTI system can be transformed into another state vector. This is shown in Eq. 

(82). 

ὼ Ὕ ὼ (82) 

 

Such an operation leads to a new set of state space matrices as shown in Eq. (83)-(85) 

However, Ὀ and Ὀ  matrix are not state dependent. Therefore, these matrices are 

not included in the similarity transformation equations. 

ὃ Ὕ ὃὝ (83) 

ὄ Ὕ ὄ (84) 

ὅ ὅὝ (85) 
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In this study, our primary aim is to obtain the ὃ ȟὄ ȟὅ  matrices with the 

corresponding similarity transformation matrix, Ὕ which is invertible. This will 

hopefully lead us to the physical parameters. Since both the physical system matrices 

and the similarity transformation matrix is lacking, a candidate solution is the 

minimization of the difference between the left hand side and the right hand side of 

Eq. (83)-(85).  

Ὕὃ ὃὝ (86) 

Ὕὄ ὄ (87) 

This can be achieved by an optimization that makes use of the lower bound of the sum 

squares of the difference between the right and left sides, (83)-(85). It may be 

important to mention that Eq. (83) and Eq. (84) are highly nonlinear and difficult to 

solve it [47]. The forms shown in Eq. (86) and Eq. (87) are chosen instead of Eq. (83) 

and Eq. (84) to reduce the difficulty. 

This optimization problem may have infinitely many solutions if we do not define 

well-founded constraints. At this point, a good model structure proposition becomes 

crucial for the estimation of the state space model which is constructed from the 

physical parameters. 
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CHAPTER 3  

 

3. MODEL STRUCTURE  

 

The model structure determination is highly related with the dynamics concerned for 

identification. The model structure of an aerospace vehicle is usually obtained from 

the governing 6-DOF flight-dynamics equations. These equations inherently contain 

a substantial number of parameters required for validating mathematical models, wind 

tunnel test results and for tuning the flight controller gains. The 6-DOF nonlinear 

equations of motion for a helicopter can be written as shown in Eq. (88) - Eq. (93) 

[58] with forces and moments represented by the small perturbation theory. In these 

equations, the force derivatives are normalized by mass, and the moment derivatives 

are normalized by the corresponding moments of inertia. Moreover for the moment 

derivatives, a pre-multiplication by the inertia tensor has been carried out so that they 

implicitly include products of inertia terms (i.e., ὍȟὍȟ etc.) [58]. 

 

ό  ὢό ὢὺ ὢύ ὢὴ ὢ ύ ή ὢ ὺ ὶ Ὣὧέί—— 

ὢ ‏ ὢ ‏ ὢ ‏  ὢ ‏  

(88) 

ὺ ὣό ὣὺ ὣύ ὣ ύ ὴ ὣή ὣ ό ὶ

Ὣὧέί‰ὧέί—‰ ὫίὭὲ‰ίὭὲ—— ὣ ‏ 

ὣ ‏ ὣ ‏  ὣ ‏     

(89) 

ύ ὤό ὤὺ ὤύ ὤ ὺ ὴ ὤ ό ή ὤὶ

ὫίὭὲ‰ὧέί—‰ Ὣὧέί‰ίὭὲ—— 

(90) 
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ὤ ‏ ὤ ‏ ὤ ‏ ὤ ‏  

ὴ ὒό ὒὺ ὒύ ὒὴ ὒή

ὒὶὒ ‏ ὒ ‏ ὒ ‏ ὒ ‏  
(91) 

ή ὓ ό ὓὺ ὓ ύ ὓὴ ὓή ὓὶὓ ‏ ὓ ‏

ὓ ‏ ὓ ‏  
(92) 

ὶ ὔό ὔὺ ὔύ ὔὴ ὔή ὔὶ ὔ ‏ ὔ ‏

ὔ ‏ ὔ ‏  
(93) 

‰ ὴ ήίὭὲ‰ὸὥὲ— ὶὧέί‰ὸὥὲ— 
(94) 

— ήὧέί‰ ὶίὭὲ— 
(95) 

 

These equations can be represented in the state space form as shown in Eq. (96) with 

the motion states and the controls inputs given in Eq. (97) and Eq. (98) respectively. 

The proposed model structure has 8 states and 4 inputs. 

ὼ ὃ ὼ ὄ ό (96) 

Ø Õ Ö × Ð Ñ Ò ה ʃ (97) 

Õ ɿ ɿ ɿ ɿ  (98) 

 

The physical system matrices ὃ  and ὄ  are shown in Eq. (99) and Eq. (100) 

respectively. 
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ὃ  

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ
ὢ ὢ ὢ ὢ ὢ ύ ὢ ὺ π Ὣὧ—

ὣ ὣ ὣ ὣ ύ ὣ ὣ ό Ὣὧ‰ὧ— Ὣί‰ί—

ὤ ὤ ὤ ὤ ὺ ὤ ό ὤ Ὣί‰ὧ— Ὣὧ‰ί—

ὒ ὒ ὒ ὒ ὒ ὒ π π

ὓ ὓ ὓ ὓ ὓ ὓ π π

ὔ ὔ ὔ ὔ ὔ ὔ π π

π π π ρ ί‰ὸ— ὧ‰ὸ— π π
π π π π ὧ— ί— π π Ứ

ủ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

 

 

(99) 

ὄ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ
ὢ ὢ ὢ ὢ

ὣ ὣ ὣ ὣ

ὤ ὤ ὤ ὤ

ὒ ὒ ὒ ὒ

ὓ ὓ ὒ ὓ

ὔ ὔ ὔ ὔ

π π π π
π π π πỨ

ủ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

 

 

(100) 

When the rest of the state space matrices are concerned, with the assumption that all 

of the system states are perfectly measurable, the associated ὅ  is an identity matrix 

and according to our problem formulation Ὀ  is equal to zero. 

 

Since all of the states are assumed to be perfectly measurable, the total number of 

parameters to be estimated in ὃ , ὄ  and Ὕ matrices are 36, 24 and 64 

respectively. Therefore, altogether there are 124 unknowns. Such a problem can be 

classified as an optimization problem with large number of variables. The solution 

methodology is explained in the following paragraph. 
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It is important to understand the physical behavior of these parameters prior to 

estimation. In other words, initial value assessment and constraint value selection with 

physical intuition is important to get a solution [45]. 

 

Each stability and control derivative are made up of a contribution from different 

components of a helicopter such as main rotor, tail rotor, fuselage, stabilizers etc. The 

significant stability and control derivatives are defined briefly by referencing [58] and 

[59] in the following paragraphs. The detail explanations with formulations and the 

illustrations are given in [58] and [59]. 

 

3.1. Derivative of Forces with respect to Translational Velocity Components 

(╧◊ȟ ╧○ȟ ╧◌ȟ╨◊ȟ╨○ȟ ╨◌ȟ╩◊ȟ ╩○ȟ╩◌   

Perturbation in translational velocity changes the rotor flapping which causes change 

in forces and moments around rotor, fuselage and empennage. The derivatives 

ὢȟ ὣȟ ὢȟ ὣ which are coupled at low speeds, becomes independent from each other 

with an increasing forward velocity [58]. Direct force damping ὢ  and ὣ which reflect 

the drag and side force on the rotorïfuselage combination respectively changes 

linearly with speed [58]. The coupling derivatives ὢ and ὣ are less significant 

compared to the direct derivatives as it is expected.   

 

The approximation for heave damping derivative can be written as in Eq. (18) for 

forward flight condition, [58]. 

 

ὤ  
”ὥ‘ Ὑὃ

ςὓ

τ

ψ‘ ὥί
 (101) 
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3.2. Derivative of Forces with respect to Translational Velocity Components 

(╧◊ȟ ╧○ȟ ╧◌ȟ╨◊ȟ╨○ȟ ╨◌ȟ╩◊ȟ ╩○ȟ╩◌   

The speed and incidence stability ὓȟὓ  have major effect on longitudinal stability. 

Although the main rotor moments do not significantly change with forward velocity, 

the pitching moment contributions of the fuselage and empennage become significant 

due to aerodynamic loads. Positive ὓ  indicates speed stability whereas negative ὓ  

refers incidence stability [58]. 

 

Pitching moment due to sideslip ὓ  is also another important parameter. The changes 

in sideslip cause significant variations in downwash at the horizontal stabilizer [58]. 

 

The derivatives ὒȟὒȟ ὔȟ ὔ  couple with each other at the low-frequency 

longitudinal and lateral motions of the helicopter.  

 

Dihedral effect ὒ  and weathercock stability ὔ  parameters are significant sideslip 

derivatives. A positive value for ὔ  implies stability. A negative value for ὒ implies 

stability [58]. 

 

3.3. Derivative of Forces with respect to Translational Velocity Components 

(╧◊ȟ ╧○ȟ ╧◌ȟ╨◊ȟ╨○ȟ ╨◌ȟ╩◊ȟ ╩○ȟ╩◌   

The derivatives ὢȟ ὣ change significantly by main rotor contributions. These 

derivatives contribute significantly to the pitch and roll damping characteristics [58]. 

 

3.4. Derivative of Moments with respect to Angular Velocity Components 

(╛▬ȟ ╛▲ȟ ╛►ȟ╜▬ȟ╜▲ȟ ╜►ȟ╝▬ȟ╝▲ȟ╝►) 

The direct and coupled damping derivatives ὒȟ ὒȟὓȟὓ  are significantly 

important derivatives in system dynamics. The direct damping derivatives ὒȟὓ  
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indicate short-term, small and moderate amplitude, handling characteristics, while the 

cross-damping derivatives  ὒȟὓ  characterize the level of pitchïroll and rollïpitch 

couplings [58]. 

 

The derivatives ὒȟὔȟὔ  have influence on the character of the lateral / directional 

stability and control characteristics of the helicopter [58].In general, the derivatives 

ὒ ȟὔ  are presumed to be less significant compare to their primary 

counterparts  ὒȟὔ  [59]. 

 

3.5. General View on Stability Derivatives 

The parameters which implicate powerful information about helicopter flight stability 

are tabulated in Table 3.1 with the expected values for satisfying stability [58]. Prior 

knowledge of the helicopter flight stability under examination may give hint about the 

sign of these derivatives. 

 

As it is mentioned above, there exists 60 parameters to be estimated (36 parameters in 

ὃ  and 24 parameters in ὄ ) in our problem. However, they are not all the same 

in the sense of significance. Some of them are quite insignificant compared to the 

others. In fact, these ñinsignificantò parameters vary from helicopter to helicopter due 

to their dynamic characteristics. Flight region is another factor determining the set of 

ñinsignificantò parameters. In common practice, the stability parameters ὢ, ὢ , ὣ, 

ὣ, ὤ, ὤ, ὓ , ὓ , ὔ  and the control parameters ὢ ȟὣ ȟ ὓ ȟ ὣ  are 

assumed as ñinsignificantò. Therefore, these may set to zero. Moreover for flight 

conditions with high forward velocity (where the inertial velocities are so dominant) 

the aerodynamic effects may be negligible (e.g., ὤ, ὣ) [58]. 
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Table 3.1. Derivatives with Expected Values to Ensure Stability 

Stability Criteria Expected Value 

Dihedral effect ὒ π 

Roll damping ὒ π 

Yaw to roll coupling ὒ π 

Static speed stability ὓ π 

Incidence stability ὓ π 

Pitch damping ὓ π 

Weathercock stability ὔ π 

Adverse yaw ὔ π 

Yaw damping ὔ π 

Drag damping ὢ π 

Side Force Damping  ὣ π 

Heave Damping ὤ π 

 

3.6. Derivative of Forces with respect to Control Inputs (╩♯╬▫■ ȟ╩♯■▫▪
ȟ╨♯▬▄▀  ) 

Heave control sensitivity (ὤ  mainly affected by the blade loading and tip speed. 

The control sensitivity increases with forward speed [58].The derivative of thrust with 

respect to longitudinal cyclic  ὤ ) increases almost linearly with increasing speed. 

 

The derivative of thrust with respect to the main rotor collective (ὤ ) and with 

respect to the longitudinal cyclic (ὤ ) which can be obtained from the thrust and 

uniform inflow equations can be formulated as in Eq. (102) and in Eq. (103) [58]. 

 

ὤ  
τ

σ

ὥὃ” Ὑ‘ρ ‘

ψ‘ ὥίὓ
 (102) 
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ὤ  ς
ὥὃ” Ὑ‘

ψ‘ ὥίὓ
 (103) 

 

The side force is mainly affected by tail rotor thrust which changes directly with the 

pedal input ὣ . 

 

3.7. Derivative of Moments with respect to Control Inputs (╜♯╬▫■ȟ╛♯╬▫■
ȟ 

╝♯▬▄▀ȟ╛♯▬▄▀, ╛♯■╪◄ȟ╛■▫▪ ȟ  ╜♯■╪◄ȟ╜♯■▫▪) 

Changes in collective control may cause pitching and rolling moment ὓ
ὧέὰ‏

, ὒ ). 

In fact, the changes in rotor thrust may generate a moment if there exists a thrust offset. 

Moreover, the changes in flapping due to the collective input generate hub moment 

proportional to the flap angle. 

 

The pedal input is directly related with tail rotor thrust which has significant impact 

on the yawing moment ὔ
ὴὩὨ‏

. The cross-coupling derivative ὒ  is also 

significant in rotor dynamics.  Both ὔ ȟὒ   derivatives increase with forward 

speed [58]. 

 

The direct and coupled flap responses to cyclic control inputs 

(ὒ ȟὒ  ȟὓ ȟὓ ) change with the stiffness number; and they are practically 

independent of forward speed [58]. 

 

Understanding the behavior of these parameters under certain flight conditions will be 

useful in the estimation of their values. The initial value assessment and the constraint 

selections of the optimization problem whose explanation is presented in the following 

chapters are performed under the guidance of the information given in this chapter. 
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CHAPTER 4  

 

4. PARAMETER ESTIMATION  WITH NONLINEAR CONSTRAINT  

OPTIMIZATION THEORY  

 

Consider an optimization problem; 

άὭὲὭάὭᾀὩÍÉÎὪ…

ίόὦὮὩὧὸ ὸέ …ᶰɱ
 (104) 

 

The real-valued function  Æȡᴙ ᴙ  which is desired to be minimized is named as 

the objective function. The vector ʔ is a vector with n independent variables: ʔ

 ØȟØȟØȟȣȟØ ᶰᴙȢ The set ɱ is a subset of ᴙ  called the constraint set or 

feasible set. In our problem, the objective function shown in Eq. (105) is the sum 

squares of the difference between the right and left side of the similarity 

transformation equations shown in Eq. (86), (87) and Eq. (85) ([44]-[46])  

άὭὲὪ… άὭὲὝ…ὃ … ὃὝ… Ὕ…ὄ … ὄ

ὅ … ὅὝ…  

(105) 

 

In the literature, there exist a number of algorithms for solving NonLinear 

Programming (NLP) problems ([44]-[46]). In our case, we decided to concentrate on 

ñlarge-scaleò NLP algorithms where the total number of variables is greater than one 

hundred. In [50] Benson compares these types of algorithms in terms of efficiency. In 

this respect we utilized both the IP (Interior-Point) method and the SQP (Sequential 

Quadratic Programming) for our optimization problem. 
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The interior methods, which are also called as barrier methods, are used to transform 

a constrained problem into an unconstrained problem or into a sequence of 

unconstrained problems [35]. Interior Point Algorithms, in general sense, are based on 

searching the optimum solution by starting from an available point and continuing 

gradually to get better ones which lie in the interior points of the available area. 

Consider that our objective function Ὢ…, which is aimed to be minimized, is 

subjected to the constraint function, Ὣ… π. The barrier problem aims to find 

infimum of a function Ὢ… ʈ"ʔ where Ὣ… π.  Here "ʔ is a barrier function 

that is nonnegative and continuous over the region ʔḊ Çʔ  π and approaches Ð 

as the boundary of the region ʔḊ Çʔ  π is approached from the interior. More 

specifically, problem is reformulated in Eq. (106) with Frisch's logarithmic barrier 

function [60] for each barrier parameter ʈ π, and nonnegative slack variables, ί.  

άὭὲὭάὭᾀὩÍÉÎ
ȟ
Ὢ… ʈ ÌÎί ȟ

ίόὦὮὩὧὸ ὸέ Ὣ… ί π

 (106) 

 

 

As ʈ converges to zero, the approximate problem (Eq. (106)) becomes a sequence of 

equality constrained problems which are easier to solve than the original inequality 

constrained problem. 

 

SQP is also one of the most effective methods for nonlinearly constrained optimization 

problems [52]. It provides successful results for both small and large-scale problems. 

For SQP, we can express our optimization problem as given in (107). 

 

άὭὲὭάὭᾀὩÍÉÎὪ…

έὺὩὶ …ɴ ᴙὲ

ίόὦὮὩὧὸ ὸέὬ… π
Ὣ… π

 (107) 
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The idea behind the SQP is to model the objective function at the current iterate … by 

a quadratic programming sub problem. Then a new iterate …  is defined by 

minimizing the sub problem [52]. In general practice, the SQP methods are executed 

in two stages. These are step computation and the Hessian approximation. Merit 

function is used to ensure that the SQP method converges from remote starting points.  

 

Both IP and SQP algorithms are readily available in the optimization toolbox of 

MATLAB with a wide variety options for the user. The fmincon solver of MATLAB 

is utilized as the optimization tool for our problem. The IP and SQP algorithms are 

utilized here under a variety of initial conditions and constraints. 
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CHAPTER 5  

 

5. IMPLEMENTATION ON HE LICOPTER SYSTEMS 

 

The method described on the previous sections is implemented first on simulated flight 

data. For this purpose, we used a nonlinear model of a multi-role helicopter which was 

developed in FLIGHTLAB environment. The FLIGHTLAB Model Editor (FLME) is 

used for data entry. FLME structure (Figure 5.1) allowed us to allocate the data 

according to hierarchical modules that correspond to a physical or a logical subsystem 

of the helicopter. The model is composed of main rotor, tail rotor, airframe and flight 

control modules. 

 

The ñMain Rotorò is modeled with ñBlade Elementò approach. The number of blades, 

rotor radius, rotational speed with direction, rotor hub location, shaft tilt, swashplate 

phase angle and blade tip loss factor properties are supplied. The blade structure is 

selected as ñArticulatedò. The rigid blade model includes both flapping and lead-lag 

dynamics. The damper of the lead-lag dynamics is modeled as linear. The physical 

parameters like torque offset, rotor precone angle, precone / flapping / feathering/lead-

lag hinge offset, flapping hinge / lag damper spring stiffness, flapping hinge / linear 

lag damper damping coefficient, flap / lag spring undeformed angle and effective 

delta-3 angle are modeled. The geometric / inertial blade is generated in many equally 

spaced segments. The aerodynamic data is generated by wind tunnel tests and the 

FLUENT analysis results are used as a complementary source. The main rotor air 

loads are represented with a quasi-unsteady aerodynamics model featuring stall delay 

due to rotation empirical corrections. The air load entry is performed according to the 

blade segments which are consistent with airfoil radial station positions. Peters-He 

Finite State model is selected for induced velocity model. The inflow harmonics are 
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selected as three. The inflow correction data is modeled from empirical data regarding 

the ground effect and wake distortion effect. Peters-He 3-state interference model is 

generated to simulate the main rotor interference on fuselage, tail rotor and tail 

surfaces.  

 

 

Figure 5.1. FLME Interface of FLIGHTLAB 

 

ñActuator Disk Modelò is used for ñTail Rotorò module. The blade properties like 

number of tail rotor blades, rotor radius, rotational speed with direction, hub location, 

cant angle, blade tip loss factor, lift curve slope, rotor head drag coefficient, effective 

rotor head drag area, airfoil constant drag coefficient, solidity weighted blade chord, 

linear blade twist, delta 3 angle, partial of coning with respect to thrust, blockage effect 

properties, inflow / profile drag correction, induced inflow / coning time constants are 

modeled in this module. 
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Airframe model is comprised of fuselage, horizontal tail and vertical tail components. 

The ñRigid Fuselageò model is generated with vehicle center of gravity, mass, moment 

of inertia in pitch, roll, yaw axis and the total product of inertias. All of the associated 

aerodynamic data belongs to wind tunnel test results and numerical analysis performed 

in FLUENT environment. 

 

The flight stability augmentation system model is embedded in the flight control 

module. Rate feedback stabilization systems for roll, pitch and yaw channels are 

enabled to increase system stability. These stabilization systems also include the main 

rotor and tail rotor actuator models. Actuator models are linear. 

 

The ñideal engineò model is selected for propulsion system. The number of engines, 

nominal engine torque and main rotor to engine gear ratio properties are produced as 

engine properties. 

 

The FLIGHTLAB model is trimmed (Figure 5.2) and flight simulations are performed 

in several flight maneuvering conditions like hovering, forward flight, climb. The 

model is verified by comparing the simulation results with the related flight test data. 

Both simulations and the flight test efforts are repeated with several environmental 

conditions for verification. 
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Figure 5.2. Xanalysis Interface of FLIGHTLAB for Trim Analysis 

 

 

5.1. Implementation with Linear Model Data 

 

Two linearization approaches are available in FLIGHTLAB [67]. These are ñaveraged 

genq" and ñsteady perturbation" (Figure 5.3). The ñaveraged genq" method estimates 

the stability and control matrices by perturbing the system model at each rotor 

azimuth. Then the resultant derivatives are by averaging the resulting partial 

derivatives over one rotor revolution. On the other hand, the ñsteady perturbation" 

method obtains the derivatives by perturbing the state or control, running the model 

to steady state, and then averaging the resulting partial derivatives over one rotor 

revolution [67].  

 

Both methods are practiced in this study and the method selection is performed by 

comparing the linear model responses with the nonlinear model simulations. Since the 

ñaveraged genq" method gives better results, it is selected for our problem. 
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The nonlinear FLIGHTLAB model is linearized around a specific trim point (level 

flight at 70 knots, 2000 ft MSL). Linearization is performed again using the 

linearization feature of FLIGHTLAB Xanalysis interface. 

 

 

Figure 5.3. Xanalysis Interface of FLIGHTLAB for Linearization 

 

Linear model configuration is selected from ñXanalysisò interface [67]. In this 

process, inputs (Eq. (109)) are selected as longitudinal cyclic, lateral cyclic, collective 

and pedal; the states are selected as (Eq. (110)) roll angle, pitch angle; translational 

velocity components (longitudinal, lateral and vertical velocity), and angular velocity 

components (roll, pitch and yaw rates). The outputs are assigned to the states (Eq. 

(111). 

 

ὼ ὃὼ ὄό (108) 

Ὥὲὴόὸί     Ḋ ‏ ȟ‏ ȟ‏ ȟ‏  (109) 

ίὸὥὸὩί     Ḋ  ‰ȟ—ȟόȟὺȟύȟὴȟήȟὶ (110) 
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έόὸὴόὸί  Ḋ  ‰ȟ—ȟόȟὺȟύȟὴȟήȟὶ (111) 

 

 

The expanded form on the basis of the input-state-output configuration is given in 

Appendix B. 

 

Model linearization is applicable around the trim point. Trim condition is determined 

according to the model verification status. Trim condition at 70 knot forward velocity 

where the model data coincide with the flight test results is selected as the initial 

condition for linearization. Pressure altitude is selected as 2000 ft and the ambient 

temperature is chosen as 15 ÁC. Appropriate trim targets and trim variables are set 

before trim analysis. For forward velocity condition body accelerations are set as trim 

targets. Pilot control inputs and the Euler angles are defined as trim variables which 

are released as free to solve trim equations. After trim analysis, linearization analysis 

is performed to calculate the linear model in FLIGHTLAB environment. Then the 

model structure is converted to the form given in Eq. (112). The transformation 

equations are defined in Appendix B. 
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where  
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 (114) 

 

The obtained linear model is transferred to MATLAB environment, which will be 

utilized for the rest of the analysis. 

 

Now we shall proceed by generating input and output data required for identification. 

One of the most optimal input signal types which meet the well-known requirement 

of persistently exciting ([17], [37]) is 3-2-1-1. This input signal is sequentially applied 

for each channel during the same identification test. The input signal frequency 

content and amplitude shall be well adjusted for exciting the helicopter body dynamics 

properly ([17]). In the light of this, frequency content of the input signal is adjusted to 

cover a frequency range of 0.1-1 Hz. Signal to noise ratio is also taken into account 

while selecting the amplitudes of the input signals. Moreover, helicopter is not allowed 

to drift away from the trim condition too much ([17]). For this purpose, input signal 

amplitudes are limited in such a way that the helicopter attitude angles stay in the 
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range of  ρπ deg around the specific trim point and the helicopter angular velocity 

components shall not exceed  ρπ deg/s. These considerations about the input design 

are expected to ensure the quality of identification. Constructed signals for each input 

channel are shown in Figure 5.4. MATLAB ófftô command is used to check the 

frequency content of the input signal. Single-sided amplitude spectrum of the input 

signals is shown in Figure 5.5. 

 

 

Figure 5.4. Input Signals (3-2-1-1) 
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Figure 5.5. Single-Sided Amplitude Spectrum of Each Input Signal 

 

The input signals are fed to the linear model in MATLAB environment to generate the 

outputs required for identification. The outputs were selected as roll angle, pitch angle; 

translational velocity components (longitudinal, lateral and vertical velocity), and 

angular velocity components (roll, pitch and yaw rates). Time domain responses of 

the system to the inputs given in Figure 5.4 are illustrated in Figure 5.6. 
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Figure 5.6. Output Signals 
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