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ABSTRACT

AB INITIO INVESTIGATION OF THE NANOTRIBOLOGICAL
PROPERTIES OF THE H-BN/H-BN AND THE H-BN/Au(111) INTERFACES

Baksi, Merve
M.S., Department of Physics

Supervisor: Assoc. Prof. Dr. Hande Toffoli

Co-Supervisor : Prof. Dr. Oğuz Gülseren

May 2019, 77 pages

As the size of the systems reduces due to the advances in fabrication techniques,

materials properties that apply at macroscopic scale start to lose their validity. As

a reflection of this, friction at the atomic scale does not obey the macroscopic Da

Vinci-Amontons’ description. Each interface that experiences losses due to friction

therefore requires a separate examination. A particularly intensely studied class of

materials from a nanotribological point of view is the two-dimensional networks. In

addition to the interface of two-dimensional materials with themselves, the interface

between these materials and bulk surfaces are of interest. In this thesis, we exam-

ined the nanotribological properties of the h-BN/h-BN (hexagonal boron nitride), and

h- BN/Au(111) surfaces using Density Functional Theory (DFT). h-BN/Au(111) in-

terface is particularly relevant for modelling atomic force microscopy (AFM) and

friction force microscopy (FFM) experiments since it is expected to reveal superlu-

bric behaviour. We identify and discuss trends in the behavior of the friction force

as a function of vertical load for experimentally feasible contact area. Moreover, in

order to understand the edge effects of the interface, the interaction between small Au
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clusters and the h-BN network is also investigated.

Keywords: nanotribology, h-BN, Au(111), Au clusters, vertical load, potential energy

surface, friction coefficient
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ÖZ

A-BN/A-BN VE A-BN/Au(111) YÜZEYLERİ ARASINDAKİ
NANOTRİBOLOJİK ÖZELLİKLERİN İLK PRENSİP HESAPLARI İLE

İNCELENMESİ

Baksi, Merve
Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Doç. Dr. Hande Toffoli

Ortak Tez Yöneticisi : Prof. Dr. Oğuz Gülseren

Mayıs 2019 , 77 sayfa

Laboratuvar tekniklerindeki gelişmelerle birlikte, materyallerin boyutlarının küçül-

mesi, özelliklerinin de makroskopik boyuttakinden farklılaşmasına sebep olur. Bu ka-

dar küçük boyutlarda, sürtünme kuvvetini tarif eden makroskopik Da Vinci-Amontons

denklemleri geçerliliğini kaybeder. Bu sebeple nanotribolojik özellikleri incelenmek

istenen her arayüzün özel olarak incelenmesi ve dikkate alınması gerekir. Bu anlamda

çalışılan materyallerden iki boyutlu olanlar önemli bir yere sahiptir. Kendi araların-

daki etkileşimlerinin yanı sıra çeşitli kitle yüzeyleriyle de olan etkileşimleri önem

taşımaktadır. Bu çalışmada, a-BN/a-BN (altıgensel boron nitrat) ve a-BN/Au(111)

yüzeyleri arasındaki nanotribolojik özellikler yoğunluk fonksiyoneli teorisi (YFT)

hesapları kullanılarak incelenmiştir. a-BN/Au(111) arayüzünün düşük sürtünmeli ol-

ması öngörüldüğü için özellikle atomik kuvvet mikroskobu ve sürtünme kuvveti mik-

roskobu deneylerinin modellenmesi açısından önem taşımaktadır. Bu çalışmada, a-

BN/Au(111) arayüzündeki sürtünme kuvvetleri, değişik düşey yükler ve etki alanı

altında çalışılmıştır. Buna ilave olarak, yüzeylerin uç etkilerini de gözlemleyebilmek
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için Au topakları ile a-BN yüzeyi arasındaki etkileşim hesapları da yapılmıştır.

Anahtar Kelimeler: nanotriboloji, a-BN, Au(111), altın topakları, dikey yük, potansi-

yel enerji yüzeyi, sürtünme kuvveti katsayısı
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CHAPTER 1

INTRODUCTION

1.1 Friction at the Atomic Level

The behavior of particles at reduced scale are known to be very different especially

when compared to the physics of the macro scale. Friction at the atomic level is no

exception to this behavior and its driving mechanism has still not been understood

completely. It is one of the most important physical phenomena which affects in-

dustry, scientific experiments and our daily lives. It should be eliminated in some

cases in order to reduce the energy loss and hazardous emisson caused by all moving

mechanical systems regardless of their scale. As such, trying to reduce friction in en-

gineering systems is of importance to preserve our limited energy sources and protect

the planet [12].

Even though macroscopic sliding friction can be easily explained today by using

Leonardo da Vinci’s, Guillaume Amontons’ and Augustin de Coulomb’s discover-

ies made over hundreds of years ago, there is no generic set of equations to describe

atomic-scale friction. Every surface interaction has to be examined individually since

the atoms interact differently for different surfaces in contact. Depending on such sys-

tem properties as the substances, layers, clusters behavior of friction forces present is

expected to vary significantly.

There are several important points to be taken into account in the study of nanoscale

friction. One that is worth mentioning is the difference in true and apparent contact

area. The measurements taken in an experimental study using Surface Forces Appa-

ratus (SFA) [25] revealed that when two surfaces touch each other, the contact takes

place only at their asperities (unevenness of surface) and this shows that the true (mi-

1



croscopic) contact area is much less than the apparent (macroscopic) contact area.

Thus, the friction is proportional not to the apparent contact area but the true contact

area.

Figure 1.1: Illustration of real contact area at the asperities of an interface. Adapted

from [22].

After Da Vinci (1452-1519) introduced the friction coefficient for the first time as

the ratio of friction force to the normal load, French physicist Guillaume Amontons

discovered the dependence of friction force to the normal load in 1699 and found also

that the friction force does not depend on the contact area [5]. What is meant here is

not the true contact area but the apparent one and the statement is in consistent with

the SFA results as mentioned above. Hence, kinetic friction force is expressed as in

Equation 1.1 and it implies that the friction force is proportional to the normal load,

N , as well as it is independent of the apperant contact area.

Years later, another French physicist verified the previous findings of Da Vinci and

Amontons, adding one more rule to the friction. The rule states that the friction does

not depend on sliding velocity, v, once the motion starts [26]. However, this law does

not hold at the nano scale.

The dependence of the friction force to the normal load is given by the following

well-known equation.

F = µN (1.1)

where µ is the friction coefficient in Equation 1.1.

Before going into the details, we present a simple model. This model involves two

rigid walls are in contact. The lower wall, so called “substrate”, is fixed, and the

upper wall is connected to a spring with stiffness constant, k, and pulled. If the spring

2



constant is large enough; one expects to have a smooth sliding as if it is pulled with

a fixed sliding velocity by a rigid rod. On the other hand, if k is small, the system

exhibits stick-slip motion. During the stick-slip motion, the upper wall (slider) gets

stuck for a while and then suddenly proceeds its motion again.

This example shows that the friction force depends on the driving device, indicating

that the harder the spring, the smaller the friction force. This effect is strong for the

commensurate (if two crystals share common periodicity) surfaces since the atoms of

commensurate surfaces can lock in during sliding. In order for the motion to proceed,

all atoms that are locked must overcome the potential barrier in which they fall. On

the other hand, friction is smaller for incommensurate surfaces since the atoms of the

surfaces do not all lock at the same time during sliding. Therefore, the number of

atoms that need to overcome the potential barrier in which they are located is less.

In addition, it is worth to mention a known fact that the lubricants reduce the wear

and friction between two solids. This is correct for most of the macrotribological

processes. Yet, unless strongly irreversible processes such as plastic deformation

occurs, the presence of a few adsorbed lubricant particles can cause increase in solid

friction by strengthening the surface corrugations and locking the two surfaces [36].

Some interfaces are known to exhibit extremely low friction coefficients, a phe-

nomenon known as superlubricity. Superlubricity, which is driven entirely by sur-

face properties, was first introduced by Motohisa Hirano and Kazumasa Shinjo in

1990s [18], [19]. In general, a system that has a friction coefficient of 0.01 and lower

is called superlubric. Friction coefficient of two sliding surfaces of wood is 0.2 or

larger and it can be larger than 1 for clean metal surfaces under dry conditions [33].

Superlubricity may be caused by several reasons classified accordingly as thermolu-

bricity, quantum lubricity, liquid lubricity and structural lubricity [2]. In this thesis,

the relevant mechanism of friction comes from the structural lubricity and is going to

be elaborated in detail in the following chapters.

The experimental measurement of friction coefficients is very challenging. The most

significant tools that help measure friction force are probe-based microscopes, namely,

Atomic Force and Friction Force Microscopy (AFM/FFM). AFM designed based on
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the Scanning Tunneling Microscope which can only make measurement for elec-

trically conductive surfaces. Unlike STM, AFM can make measurements for both

electrically conducting and insulating materials. They are capable of measuring the

ultrasmall forces even lower than 1 µN . AFMs can both measure normal and lat-

eral forces. They are called Friction Force Microscope or Lateral Force Microscope

when they are modified to measure lateral forces or friction forces [5]. Over the

past 30 years, nanotribological studies have accelerated and several interfaces are

proven to be superlubric using different methods from experimental approaches to

first-principle calculations. Li et al. [30] proved the superlubricity of lamellar molyb-

denite (MoS2) by using in situ scanning electron microscopy and a silicon nanowire

force sensor to sensitively measure friction forces and proved an earlier molecular

dynamics study indicating that the friction coefficient of the system is less than 0.01

which is the upper limit for superlubric systems [37]. In this computational study, the

rotational symmetry, hence the incommensurability of the system is the main reason

for superlubric behavior.

Figure 1.2: Atomic Force Microscopy. Adapted from [1].

In another study, conducted by Dienwiebel and his team [9], a lamellar material,

graphite, was proved to be superlubric using a nanotribometer and at high vacuum.

For the rotational angles that are not compatible with graphite’s six-fold symmetry,

the system revealed ultra low friction force while at the exact commensurate cases
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stick-slip motion has been observed.

In 2017, friction between graphene-graphene and graphene-h-BN interface have been

investigated by Liu et al. [31] under high contact pressures by employing graphene-

coated microsphere (GMS) probe. The friction coefficient of graphene-graphene in-

terface reported as low as 0.025 and h-BN/graphene interface noted to be 0.0025

which proves the superlubric behavior of h-BN/graphene interface.

Many other research has been performed to reveal superlubricity especially using

graphene, graphite flakes as well as other two-dimensional materials. In this thesis,

h-BN/h-BN and Au(111)/h-BN interfaces have been modeled and investigated using

first-principle calculations. The latter is modeled as a representative of gold coated

AFM tip experiments. A couple of interfaces between gold clusters and h-BN have

also been modeled in order to represent the atomically sharp AFM tips and to see the

edge effects of the tips .

1.2 Simple Models of Friction

In attempt to understand atomic-scale friction, several models have been developed

in the past decades. Here, we present them in chronological order.

Prandtl-Tomlinson model of atomic friction which was established by Prandtl in 1928

and Tomlinson in 1929, is the first model which helps us understand wearless atomic

level friction. In this model, two materials are placed over one another and are in

relative motion with respect to each other. The lower layer can be set in rest so that

it represents a periodic potential to the sliding upper layer. The surface atoms on the

upper layer are connected to the rest of the atoms in the material with springs as a

representative of chemical bonds while the surface atoms are not connected to each

other (Figure 1.3). Because of this, Prandtl-Tomlinson model is also known as inde-

pendent oscillator. During motion, springs will oscillate and there will be mechanical

vibrations which are called phonons. Phonons are the responsible mechanism to the

energy dissipation.

In this picture, oscillators move either in a slow and smooth motion or will perform
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abrupt jumps from one position to another depending on the spring constant, k, which

is the interaction forces exhibit within the materials as well as the sliding velocity

and the size of the potential barrier shown in Equation 1.2. During sliding, surface

atoms of the upper layer can lock in depending on these parameters and they can

only continue their motion when they have enough energy to overcome the potential

barrier in which they fall. The abrupt jumps cause stick-slip motion where continuous

sliding can be observed for small sliding velocities, stiff springs and small potentials.

mẍ = k(v0t− x)− ηẋ−Nsin(2πx/a) (1.2)

where m is the mass of the particle, N is the amplitude of the periodic potential,

which is created by the still substrate, v0 is the sliding velocity of the mobile layer,

η is the damping coefficient. Since η is the factor related to the phonon dissipation

energy, one cannot talk about friction without η term in a high enough temperature.

Figure 1.3: Prandtl-Tomlinson model. Adapted from [25].

Frenkel-Kontorova model is another representative model which helps us apprehend

the atomic friction force. In this model, surface atoms are connected to each other

by a spring different than the case in Prandtl-Tomlinson model. In addition, surface

atoms are not connected to the rest of the upper solid. Figure 1.4 shows the model.

Figure 1.4: Frenkel-Kontorova model. Adapted from [25].
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Another representation of atomic friction is Frenkel-Kontorova-Tomlinson Model. In

FKT model, surface atoms are both connected to the each other and to the rest of the

upper solid by the springs. See Figure 1.5.

Figure 1.5: Frenkel-Kontorova-Tomlinson model. Adapted from [25].

There is hybrid approach for understanding atomic friction which is more compli-

cated than the previous models. In this model of hybrid approach, all atoms in the

solid are assumed to be connected to each other by vertical and horizontal springs as

it is seen in Figure 1.6. This may seem to be the most accurate model to represent a

real system, however, one does not need to take the farthermost interactions between

atoms into account since especially for the bulk materials the atoms other than the

surface atoms have no contribution to the friction during the motion owing to the sta-

bility of the material, i.e; in the case of wearless friction. Therefore, hybrid approach

reduces itself to the previous models by nature.

Figure 1.6: Hybrid approach. Adapted from [25].
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CHAPTER 2

METHODS AND CALCULATION DETAILS

An accurate description of the electronic and structural properties of many-body

systems is of crucial importance for the advent of materials science. The central

paradigm in theoretical calculations is that the properties of a quantum mechanical

system is defined by the Schrödinger equation. However, this picture is complicated

since the many-electron system is in principle has 3N degrees of freedom where N is

the number of quasiparticles in the system. At this point Density Functional Theory

(DFT) provides an innovative method and simplifies many-electron systems in a very

elegant way. To put it concisely, DFT is an ab-initio simulation technique that uses

the electron density in order to analyze the properties of many-body systems.

The solution process starts with the construction of the Hamiltonian of the many-

electron system. In Equation 2.1, the first term is the kinetic energy of the nucleus,

the second one is the nucleus-nucleus interaction potential, the third one is the kinetic

energy of the electrons, the fourth is the electron-electron interactions and the fifth

term is the nucleus-electron interaction potential.

Ĥ = T̂n + V̂n−n + T̂e + V̂n−e + V̂e−e

= − ~2

2mI

Nn∑
I

∇2
I +

e2

4πε

1

2

∑
I 6=J

ZIZJ∣∣∣~RI − ~RJ

∣∣∣ − ~2

2me

N∑
i

∇2
i

− e2

4πε

Nion∑
I

Ne∑
i

ZI∣∣∣~ri − ~RI

∣∣∣ +
1

2

e2

4πε

N∑
i 6=j

1

|~ri − ~rj|

(2.1)
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In Equation 2.1 ~ri and ~rj define the locations of the ith and the jth electrons re-

spectively whereas ~RI is the location of the ~RI

th
nucleus. The Born-Oppenheimer

approximation states that the kinetic energy of the nucleus is negligible compared

to the electrons since the nucleus is much heavier than an electron. However, one

should keep in mind that it is only for practical reasons, since nuclei cannot be per-

fectly immobile in order to satisfy uncertainty principle; ∆x∆p ≥ ~ [16]. Also, the

nucleus-nucleus interaction potential, V̂n−n can be omitted from the expression since

it is a constant value and can be calculated easily. Then, Equation 2.1 is decoupled

Ĥ = T̂e + V̂e−e + V̂n−e (2.2)

The early wavefunction-based methods such as the Hartree and the Hartree-Fock

methods [34] rely on the construction of many-body wave functions from single-

particle orbitals. Whereas the wavefunction is constructed as a simple product in

the Hartree method, Slater determinants are employed in the Hartree-Fock method.

The problem is then solved in a variational manner employing a suitable basis set

to describe the orbitals. While straightforward, neither of these methods capture the

important correlation effects and therefore have limited use for our purposes.

In 1964, Hohenberg and Kohn have been developed a more sophisticated method

called Density Functional Theory (DFT) [20] which earned Walter Kohn a Nobel

Prize in Chemistry, thirty four years later in 1998. This innovative method relies on

the description of the ground state energy as a functional of the electronic density,

which, through two simple yet elegant theorems proposed by Hohenberg and Kohn,

can be minimized to obtain the ground state density. A brief account of the details

will be presented in the following sections.

2.1 From the Many Body Schrödinger Equation to Density Functional Theory

The electronic density operator is a measure of the contribution from each electron to

the probability of finding electrons at point ~r.
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n̂(~r) =
N∑
i

δ(~r − ~ri) (2.3)

where i = 1, 2, 3, ..., N is the electron index. The expectation value of the density

operator yields the electron density through the following derivation :

〈n̂(~r)〉 = 〈Ψ|n̂(~r)|Ψ〉 =

∫
Ψ∗(~r1, ~r2, ..., ~rN)

N∑
i

δ(~r − ~ri)Ψ(~r1, ~r2, ..., ~rN)d~r1d~r2...d~rN

=

∫
|Ψ(~r, ~r2, ..., ~rN)|2d~r2d~r3...d~rN +

∫
|Ψ(~r1, ~r3, ..., ~rN)|2d~r1d~r3...d~rN + ...

=N

∫
|Ψ(~r1, ~r2, ..., ~rN)|2d~r1d~r2...d~rN

(2.4)

One should note that once the Equation 2.4 is integrated over all space, the total

number of electrons, N , is obtained using the fact that wavefunction is normalizable.

∫
n(~r)d~r = N (2.5)

We remind the reader that the total energy takes the following form from Equation 2.2

in atomic units.

Ĥe = T̂e + V̂n−e + V̂e−e = −1

2

N∑
i

∇2
i +

Nion∑
I

Ne∑
i

vIext(~ri) +
1

2

N∑
i 6=j

1

|~ri − ~rj|
(2.6)

To utilize the density, we start with the external potential, which can be written exactly

in terms of the single particle density.

V̂ext =
N∑
i

vIext(~ri) (2.7)

The corresponding expectation value is

Eext =

∫
Ψ∗(~r1, ..., ~rN)(

N∑
i

vext(~ri))Ψ(~r1, ..., ~rN)d~r1d~r2...d~rN (2.8)
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After some manipulations, Equation 2.8 becomes

=

∫
vext(~r1)

[ ∫
|Ψ(~r1, ..., ~rN)|2d~r2d~r3...d~rN

]
d~r1

+

∫
vext(~r2)

[ ∫
|Ψ(~r1, ..., ~rN)|2d~r1d~r3...d~rN

]
d~r2 + ...+ ...

(2.9)

Realizing that all integrals yield the same expression, we finally obtain

Eext =

∫
n(~r)vext(~r)d~r (2.10)

The electron-electron interaction in the Hamiltonian is complicated due to the corre-

lation between all electrons.

V̂e−e =
1

2

∑
i 6=j

1

|~ri − ~rj|
≡ 1

2

∑
i 6=j

ve−e(~ri, ~rj) (2.11)

Then, the expectation value of V̂e−e is going to be Ee−e and can be found as follows.

Ee−e =

∫
Ψ∗(~r1, ~r2, ..., ~rN)V̂e−eΨ(~r1, ~r2, ..., ~rN)d~r1d~r2...d~rN (2.12)

Substituting Equation 2.11 into Equation 2.12, we will have N(N − 1) non-distinct

pairs in the sum and notice that all terms are the same. Therefore, we have:

Ee−e =

∫
ve−e(~r, ~r

′)d~r, d~r′
[
N(N − 1)

2

∫
|Ψ(~r, ~r′, ~r3, ..., ~rN)|2d~r3d~r4...d~rN

]
(2.13)

Here, the term inside the square brackets is defined as the two-particle density.

n(2)(~r, ~r′) =

[
N(N − 1)

2

∫
|Ψ(~r, ~r′, ~r3, ..., ~rN)|2d~r3d~r4...d~rN

]
(2.14)

Finally, we have the electron-electron interaction term in the Hamiltonian as a func-

tion of density as we desire.
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Ee−e =

∫
ve−e(~r, ~r

′)n(2)(~r, ~r′)d~r, d~r′ (2.15)

The electron density, as described above, is derived from a single-particle operator.

Therefore, in preparation of an approximation to reduce the two-particle density to

a single-particle density, we separate it into an uncorrelated contribution and the re-

maining correlation. In crystals and systems generally relevant for materials science,

this contribution is crucial yet small in magnitude.

n(2)(~r, ~r′) =
n(~r)n(~r′)

2
+ ∆n2(~r, ~r′) (2.16)

Next, using the above formulation, Ee−e becomes

Ee−e =
1

2

∫
n(~r)n(~r′)

|~r − ~r′|
d~rd~r′ +

∫
∆n2(~r, ~r′)

|~r − ~r′|
d~rd~r′ (2.17)

In Equation 2.17, the first term is the classical potential of a continuous charge dis-

tribution and is called Hartree energy, EH . In a more compact form, it will be as in

Equation 2.18.

Ee−e = EH + ∆Ee−e (2.18)

The kinetic energy operator cannot simply be manipulated in terms of the density

functional theory as was done for the other terms, since it involves a derivative opera-

tor. To explain the workaround usually employed, we introduce the Hohenberg-Kohn

theorems.

Hohenberg and Kohn’s first theorem states that there is a one-to-one correspondence

between the ground state density of a system and the external potential. This allows

for the unique determination of the ground state density [20].

Hohenberg and Kohn’s second theorem states that a universal functional of energy

can be defined in terms of density, and the minimum of this functional is the exact

ground state energy of the system [20].
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δE

δn
= 0 (2.19)

However, we can only take the derivative of EH in the total energy since the ki-

netic energy and the correlation energy terms cannot be differentiated with respect to

density in their current forms. The need for a single-particle operator is met by the

Kohn-Sham ansatz.

According to Kohn-Sham ansatz, for each N-particle system, it is possible to find an

auxiliary system of non-interacting particles such that the exact ground state density

is identical to the true system at hand [24]. Since the particles in the auxiliary system

are independent, the electronic density reduces to

n(~r) =
Ne∑
i=1

|Φi(~r)|2 (2.20)

where Φi(~r) are unspecified single-particle orbitals.

Now, instead of differentiating total energy with respect to density, which is not pos-

sible due to the kinetic energy term, it is possible to differentiate it with respect to

the complex conjugate of the single-particle orbital, i.e. instead of δE
δn

one should

consider δE
δΦ∗

i
.

δE

δΦ∗i
=
δE

δn

δn

δΦ∗i
=
δE

δn
Φi (2.21)

where we use the following relation to simplify it.

n(~r) =
∑
i

|Φi(~r)|2 =
∑
i

Φi
∗Φi

δn

δΦ∗i
= Φi (2.22)

Thus, if δE
δn

= 0, so is δE
δΦ∗

i
. This time though, there are N-equations to be solved.

Now that the single-particle definition of the ground state density is established, one is

able to differentiate the kinetic energy noting that the kinetic energy in terms of single-

particle orbitals is actually not equal to the real kinetic energy of the system. This is
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because it is the kinetic energy of the auxiliary system and ignores the correlation

between the electrons.

TKS = −1

2

Ne∑
i=1

∫
Φ∗i (~r)∇2Φi(~r)d~r Ttrue = TKS + ∆T (2.23)

where TKS is the single-particle kinetic energy of the auxiliary system and ∆T comes

from the correlation in the real system.

Differentiating of the single-particle kinetic energy as shown in Equation 2.23 then

yields

δTKS
δΦ∗i

= −1

2
∇2Φi(~r) (2.24)

Using Equation 2.10 and performing the differentiation of the Eext will yield:

δEext
δΦ∗i

= vext(~r)Φi(~r) (2.25)

The remaining term to be differentiated is theEe−e as defined in Equation 2.17, where

the result is:

δEe−e
δΦ∗i

=
δ(EH + ∆Ee−e)

δΦ∗i
(2.26)

The exact form of ∆Ee−e is not known but it is possible to perform the differentiation

of the first term in Equation 2.26.

δEH
δΦ∗i

=

∫
n(~r′)

|~r − ~r′|
d~r′Φ∗i (2.27)

The unknown terms in the energy are added up and called as exchange-correlation

energy, Exc, in Equation 2.28

Exc = ∆Ee−e + ∆T (2.28)
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With the definitions and the differentiations of all the terms in the total energy, one

arrives at the following:

δEtotal
δΦ∗i

= −1

2
∇2Φi(~r) + vext(~r)Φi(~r) +

∫
n(~r′)

|~r − ~r′|
d~r′Φi +

δExc
δΦ∗i

(2.29)

During minimization of the total energy, the orthonormality of the Kohn-Sham or-

bitals must be maintained. This is achieved by the introduction of a set of Lagrange

multipliers. At the end of the minimization following equation is obtained:

[T̂ + V̂ext + V̂H + V̂xc]Φi = εiΦi (2.30)

The total term in the parantheses of Equation 2.30 is called the Kohn-Sham Hamilto-

nian, ĤKS , and the eigenvalues, εi, are referred to the Kohn-Sham energies.

So far exact, the operator in Equation 2.30 is still a two-particle operator and can

therefore not be solved practically using a single-particle density. A very active and

rich field has emerged since the early work of Kohn, Hohenberg and Sham that has

explored accurate approximations under the common name of exchange-correlation

functionals.

Commonly used functionals to evaluate exchange-correlation energy are local-density

approximation (LDA) and generalized gradient approximation (GGA) [23, 39]. LDA

depends merely on density variable whereas GGA includes the gradient of the density

as well. Although accurate for covalently bonded systems, these local and semilocal

functionals do not involve the long-range, non-local correlations which are the base of

vdW interactions. vdW interactions embrace all possible forces between molecules

including permanent dipole-dipole, permanent dipole-induced dipole and two instan-

taneously induced dipoles which is also known as London dispersion force [3, 32].

The classical, non-dispersive part of the vdW is already included in DFT but long-

range dispersion corrections are needed to be implemented separately to the Exc[n] in

order especially to model accurately the systems that have polar nature such as h-BN

that we have examined in this thesis.

The simplest known vdW forces are described in the form of Lennard-Jones potential,
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VLJ(~r) = 4ε
[
(σ
r
)12 − (σ

r
)6], where the first term is the short-range Pauli repulsion

forces and the second term is the long-range attractive dispersion forces, i.e. London

dispersion forces. Here, ε is the bond energy defined as the energy necessary to bring

particles to make a bond or the depth of the potential whereas σ is the distance at

which the intermolecular potential between the two particles is zero. The second term

of LJ potential commonly referred to as vdW forces in condensed matter community

and can be implemented to DFT empirically. Although it can be added to DFT in

order to improve the formalization of the dispersion, the search for a better correction

to an exchange-correlation energy has been an ongoing research due to the limitations

of LJ potential including that it is proper only for systems consisting of neutral atoms

and that it does not contain density so that it can be implemented analytically to the

theory.

A promising solution lies in the non-local correlation functional of the Rutgers-Chalmers

collaboration named vdW density functional (vdW-DF), where long-range dispersion

effects are implemented as a perturbation to the LDA correlation term [45]. vdW-DF

tackles the non-local vdW interaction by an approximate non-emprical method.

EvdW−DF
xc [n] = ErevPBE

x [n] + ELDA
c [n] + Enl

c [n] (2.31)

The first term is the revised Perdew-Burke-Ernzerhof (revPBE) exchange functional,

which is a generalized gradient correction and together with the second term of

LDA correlation they are semi-local. The last term in Equation 2.31 concerns only

the correlation, and vdW interaction belongs to this part. However, one should re-

member that the total exchange-correlation potential includes the parts arising from

ErevPBE
x [n] and ELDA

c [n] as well.

EGGA
x [n] =

∫
d3(~r)n(~r)εhomx (n)Fx(s) (2.32)

In Equation 2.32, εhomx (n) = −3ekF/4π is the energy per particle in a homoge-

nous gas with kF = (3π2n)1/3, whereas Fx(s) is the enhancement factor which is

a function of the density and its gradient, Fx(s) = |∇n|/(2kFn). The choice of

Fx(s) = 1 gives the LDA exchange. Further designation has been performed by

17



Cooper et al. and vdW-DF-C09 functional has been developed with the choice of

Fx(s) = 1+µs2e−αs
2
+κ(1−e−αs2/2) where µ = 0.0617, κ = 1.245 and α = 0.0483

[8]. Here, the parameters are calculated by fitting the equation to the known func-

tionals (gradient expansion approximation (GEA) and revPBE), where the choice of

the functional depends on the range of s. As a consequence, DFT calculations of

intermolecular separation distances as well as the accuracy of vdW-DF interaction

energies have been improved remarkably with vdW-DF-C09 functional.

The ground state energy and the density of a system is acquired by the simultaneous

solution of the Kohn-Sham equations. The last three terms in the Kohn-Sham equa-

tions (Equation 2.30), which are also known as the effective potential, depend on the

molecular orbitals and the density which we seek. Hence, the solution of Kohn-Sham

equations requires a self-consistent approach.

Self-consistent field scheme (scf) is an iterative method to solve the Kohn-Sham equa-

tions and it creates a cycle of calculations. Starting point of an scf cycle is an initial

guess for the density of the system. The Kohn-Sham operator and the effective po-

tential is constructed with the initial guess of the density and Kohn-Sham equations

are solved accordingly. The resulting density is compared to the initial guess in the

first cycle and the estimated density is updated for the next cycle if they are not equal

to each other. This procedure is repeated until an equivalency between the estimated

density and the calculated density is observed.

2.2 Preliminary Calculations for Hexagonal Boron Nitride (h-BN)

The main purpose of this thesis is to examine the nanotribological properties of the

h-BN within different configurations of systems involving several layers of h-BN,

Au(111) and Au clusters.

Behavior of friction forces in an asymmetric interface, such as the one at hand here,

depends sensitively on the relative magnitudes of the lattice constants. We shall elab-

orate on this topic in the following chapters. Due to this sensitive dependence, the

numerical lattice constant to be used for the rest of this research must be calculated

with sufficient accuracy. As a rule of thumb, systems that are going to be modeled
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have to pass through a geometry optimization after they are constructed. The purpose

of a geometry optimization is to find the geometry of the system with negligible strain

where all forces on the atoms vanish, resulting in a minimized energy. Hence, after

constructing the honeycomb structure of h-BN molecule with the given lattice vec-

tors, geometry optimization has been performed. The molecular structure of h-BN is

also shown in Figure 2.1. B is a group 3A metalloid, which has an electronic structure

of [He] 2s2 2p1, whereas N is categorized as a reactive non-metal, whose electronic

structure is [He] 2s2 2p3.

u1 = a(
3

2
,

√
3

2
, 0) u2 = a(

3

2
,−
√

3

2
, 0)

Figure 2.1: h-BN molecule

In our calculations, we have used Quantum Espresso software which is distributed

free under the GNU public licence [14, 15]. We have chosen a large enough vacuum

distance (near 15Å) including the vdW interactions with the Cooper corrections [45]

in our calculations. The kinetic energy cut-off for the wavefunctions is chosen to be

30 Ry and the kinetic energy cut-off for the charge density is chosen to be 300 Ry.

This convention between the kinetic energy cut-off for wavefunction and for charge

density is related to the usage of ultrasoft pseudopotentials. Sampling of the brillouin

zone is done according to Monkhorst-Pack scheme and taken as 10 × 10 × 1 for the

geometry optimization of BN. The cut-off values and k-points are chosen so that we

have a feasible calculations for the problem at hand.

For the pursuit of finding the optimal lattice constant, several scf calculations around

the experimental lattice constant value of h-BN has been performed and the result is

shown in Figure 2.2. From this graph with a proper fit, a cell dimension of 2.74 Bohr

radius (1.45 Å) that corresponds to the minimum value of the energy, Emin, has been
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found. Lastly, a geometry optimization with the obtained lattice constant is performed

to minimize the energy so as to ensure the system is stable.
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Figure 2.2: Energy vs Cell Dimension Graph of BN molecule

2.3 Preliminary Calculations for Bulk Gold (Au) and Au clusters

Au is a noble metal with the electronic structure of [Xe] 4f14 5d10 6s1 and it almost

never reacts to other materials although it is discovered in the last two decades that it

can be used as a catalyst [7].

In order to model the bulk Au structure, the lattice constant of the crystal has been

optimized to proceed further by using both primitive unit cell and conventional unit

cell. Primitive unit cell of Au contains only one atom while the latter contains four

atoms in its face-center cubic (fcc) lattice structure. The optimization has been per-

formed for several number of k-points to find the convergence in the lattice parameter.

Ideally, the resulting lattice parameters should be similar while the precision level of

the numbers can change. To present the effect of k-point choice and the convergence

of the lattice constant by increasing k-points, Figure 2.3 is shown. One can see that

the lattice parameters for different k-points has similar values, converging to 4.11 Å.

Among the calculated k-points, 12 × 12 × 12 has been chosen to proceed further

calculations (Figure 2.4). Then, the corresponding lattice constant of Au, 7.76 Bohr
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Figure 2.3: Effect of k-points on the lattice constant calculation of Au.
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Figure 2.4: Lattice constant optimization of gold (Au) with 12 k-points in each di-

rection

Radius, which corresponds to 4.11 Å, for this k-point mesh grid is found. This value

has been used for the all Au included calculations in this thesis. The kinetic energy

cut-off for the wavefunctions is chosen to be 30 Ry and the kinetic energy cut-off for

the charge density is chosen to be 300 Ry. These parameters have been chosen so that

we have fast enough computation time with a feasible calculation results.

After finding the lattice constant and deciding on the proper parameters, Au(111)

surface of ABC stacking is constructed using the given unit vectors that create a plane

which cuts the bulk Au of face centered cubic shape unit cell as shown in Figure 2.5.
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Au(111) surface structure is chosen since it is the smoothest surface structure of Au

among the other low index surfaces.

Figure 2.5: (111) surface representation. Adapted from [28].

u1 = a(

√
2

2
, 0, 0) u2 = a(

1√
8
,

√
3√
8
, 0)

Once the first layer is constructed, second layer is obtained by displacing the first

layer along the yz-plane using the vector (0,− a√
6
, a√

3
). Similarly, for the third layer,

the first layer is shifted using the vector (0, a√
6
, 2a√

3
). The distance between the layers

in this structure is a√
3
.

In order to obtain more sensitive results on the potential energy graph of the h-

BN/Au(111) interface, the kinetic energy cut-off for wavefunction and the charge

density has been increased to 60 Ry and 600 Ry, respectively, by compromising the

computational time. Sampling of the brillouin zone is chosen to be 20 × 12 × 1 for

the h-BN/Au(111) interface with these updated cut-off values considering the asym-

metric shape of the (2× 2)h-BN and (3× 1)Au(111) supercells.

Rhombic gold cluster is modeled by using two equilateral triangles side by side as

they share a common edge. The initial bond length is chosen approximately 2.69 Å

according to the study of Chinagandham et al. [40] and the geometry optimization

is performed with the parameters of our simulation environment in order to find the

correct structure with negligible strain. The real bond lengths in our system has turned
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out to be fluctuating between 2.60 and 2.66 Å, making the structure a little distorted.

Similarly, the initial structure of the icosahedral and cuboctahedral gold clusters are

modeled using the space vectors given in Table 2.1, followed by the geometry opti-

mization of the clusters.

Table 2.1: Space vectors of icosahedron and cuboctahedron shaped gold clusters.

cuboctahedron icosahedron
a√
2
(0, 1, 1) a

2
(0, 1, θ)

a√
2
(0,−1, 1) a

2
(0,−1, θ)

a√
2
(0, 1,−1) a

2
(0, 1,−θ)

a√
2
(0,−1,−1) a

2
(0,−1,−θ)

a√
2
(1, 1, 0) a

2
(1, θ, 0)

a√
2
(−1, 1, 0) a

2
(−1, θ, 0)

a√
2
(1,−1, 0) a

2
(1,−θ, 0)

a√
2
(−1,−1, 0) a

2
(−1,−θ, 0)

a√
2
(1, 0, 1) a

2
(θ, 0, 1)

a√
2
(1, 0,−1) a

2
(θ, 0,−1)

a√
2
(−1, 0, 1) a

2
(−θ, 0, 1)

a√
2
(−1, 0,−1) a

2
(−θ, 0,−1)

a√
2
(0, 0, 0) a

2
(0, 0, 0)

where a is the bond length and θ = 1+
√

5
2

is the golden ratio in Table 2.1 [35].

The further discussion about the systems and the calculations performed so far are

provided in the next chapters along with the nanotribological behavior of these inter-

faces constructed.
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CHAPTER 3

NANOTRIBOLOGICAL PROPERTIES OF THE TWO DIMENSIONAL

HEXAGONAL BORON NITRIDE

3.1 Friction Between Two h-BN Layers

Hexagonal Boron Nitride (h-BN) is a wide-band gap semiconductor while its band

gap slightly varies depending on the stacking; namely AA, AB, AD, AE and AF

[51]. Hexagonal boron nitride has the honeycomb lattice structure as in the case of

graphite and it has the similar lubrication performance with graphite. These similari-

ties between them makes h-BN to be called “white graphite” [4].

Materials based on boron nitride have been used as electrical insulators and thermal

conductors for the last decades due to its high conductivity property. It also exhibits

outstanding luminescence performance which makes it an effective candidate for ul-

traviolet region light emitting devices [38] such as ultraviolet laser devices which

are increasing in demand because they have crucial applications to the sterilization,

optical storage and nanosurgery [47].

In-plane bonding of h-BN is barely affected by the uniaxial pressure thanks to the

strong in-plane covalent bonds which are much more stronger than the inter-plane

weak van der Waals bonding [21].

We start our calculations by constructing the h-BN structure as it has been discussed

in the preliminary calculations in chapter 2 and lattice constant of h-BN is found to be

1.45 Å with the DFT parameters we have used. A system consists of two BN layers

has been modeled and one BN layer is placed over another to find the tribological
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behavior of the interface. Due to the symmetrical nature of the model, whether the

top layer or the bottom layer is mobile does not have an effect on the calculation

results. Therefore, we have kept the bottom layer fixed during the calculations while

we pull the the upper layer along x-direction (armchair) towards the asperities of the

fixed BN layer. The atoms of the fixed BN layer provide a periodic potential for the

upper mobile BN layer owing to the periodicity of the material. During the sliding,

we have also changed the vertical distances between the materials from 2.9 Å to 3.5

Å by increasing the separation in steps of 0.17 Å. Then, we calculated the adhesion

energy along the sliding path at each vertical distance. Adhesion energy between the

two BN sheets and the friction force during the sliding are indicated in Figure 3.1.
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Figure 3.1: Adhesion energy and friction force at the h-BN/h-BN interface in arm-

chair (x) direction

We have further examined the interface by taking the three vertical distances out of

seven (from 2.9 Å to 3.5 Å) and considered the interface at 2.9 Å, 3.0 Å and 3.2 Å.

Then, we have carried out our investigation by observing the directional dependence

of the friction force. Thus, we have pulled the upper h-BN layer over the bottom one

along armchair (x) and zigzag (y) directions as the directions are shown in Figure 3.2.

The starting point of the two h-BN layers are the same for each sliding direction.

In Figure 3.4, the graph at the left shows the adhesion energy at the interface along the

armchair (x) direction. The hills and the dips of the graph correspond to the different

locations of two BN layers with respect to each other. Reguzzoni et al. [41] indicated

in their study with two graphene layers that the first maximum (smaller peak) cor-
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Armchair direction (x)

Zigzag direction (y)

a=1.45 Å 

Figure 3.2: Honeycomb structure of BN

responds to the potential energy surface (PES) saddle point and the highest (global)

maximum is the AA stacking. Since graphene and BN molecule have similar molec-

ular structure, it is safe to say the smaller peak in the adhesion energy in Figure 3.4 is

called PES saddle point as in the case of Reguzzoni’s study and global maximum is

the AA stacking where the same atoms of the two layers are completely aligned. The

positions of the two materials at the minimum, maximum and the saddle points are

shown in Figure 3.3.

Figure 3.3: Above: Minimum point configuration of the two h-BN layers and the

starting point of the motion. Left: two layers of BN at saddle point. Right: two

layers of BN at AA stacking while sliding in armchair (x) direction. The atoms of the

bottom h-BN layer are shown in relatively small sizes and pale colors compared to

the atoms of the upper layer which are larger and have brighter colors.

Adhesion energy between the two sheets of h-BN is calculated using the following

equation.
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Eadh = Ebilayer − 2× Elayer (3.1)
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Figure 3.4: Adhesion energy and friction force of the h-BN/h-BN along armchair (x)

direction

Although the lateral friction force which is displayed in Figure 3.4 for three different

separations appears to be counter-intuitive from a macroscopic point of view, it is

correlated to the fact that the corrugation, defined as the energy difference between

the minimum and the maximum of the energy landscape, decreases with increasing

separation for the separations studied here.

To understand the friction behavior at zero load, we repeat the above calculation by

means of conduction geometry optimization at every point along the sliding path.

During these calculations, we only allow the BN layer to relax along the z axis while

keeping x and y coordinates fixed. This allows us to map the adhesion energy at zero

load as a function of x, which we present in Figure 3.5.

From the adhesion energy calculated at different heights, the lateral friction force can

be calculated using

Ffric = −∂Eadh
∂x

(3.2)

In the calculation of the derivative, we use a centered-difference approach to minimize

28



−145

−140

−135

−130

−125

−120

−115

−110

−105

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

A
dh

es
io

n 
E

ne
rg

y 
[m

eV
]

Sliding in Armchair Direction [Å]

Potential Energy Surface Graph of 2−BN Layers 
by Relaxation Calculation

z=2.9Å
z=3.0Å
z=3.2Å

−80

−60

−40

−20

 0

 20

 40

 60

 80

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

Fr
ic

tio
n 

fo
rc

e 
[p

N
]

Sliding in Armchair Direction [Å]

Friction Force vs Position between 2−BN Layers 
by Relaxation Calculation

2.9Å
3.0Å
3.2Å

Figure 3.5: Adhesion energy and friction force between the two h-BN along x-

direction using the geometry optimization method at every point during the sliding.

the error :

Ffric(x) = − lim
x→ 0

Eadh(x+ ε)− Eadh(x− ε)
2ε

(3.3)

The lateral friction forces calculated for the geometry-optimized case shown in Fig-

ure 3.5 presents three different initial separations, which all converge to the same

result. This is evidence that our convergence criteria for the geometry optimization is

tight enough. As expected, the zero-load friction forces are much smaller compared

to the fixed-separation results since these separations correspond to larger loads.

Next, we present friction forces along the zigzag (y) direction. Directional depen-

dence of the friction is worth to examine since sliding directions affect the stacking

of the two materials leading to a different topology of the potential energy surface.

The results for sliding along the zigzag direction is shown in Figure 3.7.

In all of the calculations presented, the positive side of the friction force graphs are not

of interest since they correspond to the “downhill” motion of the atoms. The system

is at either saddle point or at global maximum point which are not the most stable

configurations for the system. Small disturbances can cause a motion on the system

and the atoms of the upper layer fall to the nearest minimum point by themselves.

Thus, we take into account only the negative parts of the friction force for the average

friction force calculations.
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Figure 3.6: Two h-BN layers, upper layer is pulled through zigzag (y) direction.

Above: The starting point of the sliding.
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Figure 3.7: Adhesion energy and friction force of the h-BN/h-BN along zigzag (y)

direction

3.1.1 Discussion

To facilitate the comparison of lateral friction forces in different directions, we collect

all our friction force results in a single plot at the constant vertical distance of 3.0 in

Figure 3.8.

Although the overall features of the profiles are similar, the maximum value of fric-

tion force for zigzag sliding is less than that of the armchair sliding since there is

no repeated ontop-ontop coincidence among the same atoms. The Boron atoms on
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Figure 3.8: Comparison of the h-BN/h-BN results

the upper layer coincide with the N atoms of the lower layer recurrently during the

zigzag sliding. On the other hand, there is an repeated ontop-ontop coincidence along

with the B-N coincidence during the armchair sliding. Hence, the saddle point is, of

course, absent in the case of the zigzag configuration. All the maxima correspond to a

global maximum and the magnitude is much smaller than that of the armchair results.

Since these two directions represent the highest possible symmetry, we expect the

friction forces obtained in these directions to be upper limits for the entire interface

with the initial stacking at hand.

Next, we focus on the average friction forces, which would correspond to forces felt

by a realistic experiment. The average friction force calculation has been performed

for different sliding direction and shown in Table 3.1.

Average friction force has been calculated using following deduction.

F average
fric =

∆x

Ltotal

∑
i

Ffric(i) (3.4)

where ∆x is the infinitesimal sliding distance, Ltotal is the projection distance of the

negative parts of the friction force curve to the lateral axis and Ffric(i) is the friction

force at the ith position.
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Table 3.1: Average Friction Force between h-BN/h-BN for Different Sliding Direc-

tions

Average Values of Friction Force per unit cell [pN]

Separation distance [Å] Armchair direction Zigzag direction

z=2.9 122.46 84.00

z=3.0 90.50 62.80

z=3.2 47.45 34.19

3.2 Friction Calculation Between Two h-BN Layers Under

Applied Normal Force

Materials properties at nano-scale tend to differ under an applied load, therefore,

require further analysis. Nanotribology research with AFM/FFM experiments reveal

the load dependency of the friction force at a given interface and computer simulations

of materials under load may provide a benchmark to the future experiments. In this

section, we report the nanotribological behavior of the h-BN/h-BN interface under

applied normal force.

In a system, any vertical position between two materials which is different than the

equilibrium distance results in a vertical strain at the interface. This vertical strain

is the load force and it depends on the distance between the tip and the surface. We

start finding the load force as a function vertical distance at the h-BN/h-BN interface.

Load force is found by taking the negative derivative of the total energy with respect

to the vertical distance between the two sheets of h-BN.

Fload = −∂Etotal
∂z

(3.5)

At every lateral position during sliding, there exists a corresponding equivalent ver-

tical distance where the system is at the minimum energy configuration i.e at zero

load. For the pursuit of reaching the friction force under load, graphs of total energy

vs separation between two h-BN sheets are drawn for each lateral position during the

sliding along armchair (x) direction. At each step of the sliding process, upper layer
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of the h-BN is moved by 0.17 Å from the initial point of 0 Å to the 4.35 Å, totaling

to 25 steps. For simplicity, we have left out some intermediate steps of the results

and shown the rest of them at the three graphs corresponding to different lateral (x)

positions as seen in Figure 3.9.
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Figure 3.9: Total Energy vs vertical distance at different lateral (x) positions at the

interface of the h-BN/h-BN

The vertical distance corresponding to the minimum energy value for each lateral

position can be found from Figure 3.9. Any other vertical position at which two h-

BN layers are located, distinct from the equivalent vertical distance will provoke a

normal (load) force. Therefore, the negative derivative of Figure 3.9 with respect to

the vertical distance (z) gives Figure 3.10.
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Figure 3.10: Load force vs vertical distance at different lateral positions (x) at the

interface of h-BN/h-BN

3.3 Contact Area Decision for Load Force Calculations

Load force calculations at the interface of the h-BN/h-BN has performed by starting

with the decision of an experimentally feasible contact area since DFT calculations so

far have been achieved over one unit cell and we seek for our results to be comparable

with experimental research.

For this purpose, contact area estimation has to be done. For microscopic friction,

this is not straightforward since the real contact area is different than the apparent

one. However, relation between area and load force can be implemented from con-

tinuum mechanics models which assume a sphere tip in contact with a flat plane that

is the sample. Yet, the models still do not represent the exact result since load-area

relation does not purely depend on geometry but the strength of the adhesive forces
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as well [11]. Therefore, it is not possible to find real contact area but it is possible

to make a close approximations by using the continuum mechanics models since the

models are generally fit to the experimental data.

In the Leung and Goh’s study, the contact area is said to be 10−15 m2 which corre-

sponds to 10, 000 nm2 AFM tip of Si3N4 with pyramidal shape tip indicated by the

manufacturer [29]. In the paper, it has been said that they used 0.1 µN load force to

enhance the tip-surface interaction.

In another study conducted by Bhushan and Kulkarni, Si3N4 and diamond tip has

been used over various samples such as SiO2 and Si(111). The radii of the tips that

are used in the study are R = 100 nm for NTT/FFM instrument with applied forces

being in the range from 1 to 50 µN and R = 150 nm for the AFM/FFM instrument

with the applied normal force being in the range from 50 to 150nN [6]. In the light of

these information and assuming the contact area being circular region, the estimated

contact area corresponds to the given radii can be calculated as 30, 000 nm2 and

67, 500 nm2 respectively using the area formula for circle which is πR2. Figure 3.11

is added on to show some of the results of Bhushan and Kulkarni’s work.

Figure 3.11: Friction force as a function of normal force for virgin Si(111), SiO2

coating and polished natural diamond. Measurements were made on a fresh 1 µm x

1µm scan areas using a diamond tip with a maximum force to (a) about 1300nN and

(b) 40 µN as cited from Leung and Goh’s study [6]

There are other studies examining the effects of the load force on the contact area

in nanoscale systems. A comprehensive study has been done by Enachescu et al.
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using diamond(111)/tungsten carbide single asperity contact with UHV-AFM having

the tip radius of R = 110 nm, contact area of which turns out to be approximately

35, 000 nm2. In their work, in order to be able to describe the tip-sample interaction

they also showed some continuum mechanics models that fit to the experimental data

quite convincingly such as Derjaguin-Müller-Toporov Model (DMT Model). Accord-

ing to DMT model studied by Enachescu et al., load force and contact area is related

to following equation:

A = π
R2/3

K2/3
(L+ 2πγR)2/3

whereR is the tip radius, γ is the neccessary work per unit area in order to separate tip

and sample in contact to infinity. K is defined asK = 4
3
×E∗ withE∗ is the combined

elastic modulus giving by the equation E∗ = [(1−ν2
1)/E1 +(1−ν2

2)/E2]−1. Here E1

andE2 are the Young’s moduli and ν1 and ν2 are the Poisson’s ratios of the sphere and

plane respectively [11]. They also examined the contact area dependence of friction

force in Figure 3.12.

Figure 3.12: Change in friction force by contact area studied by Enachescu et al. [11]

From the literature research, it has been understood that the contact area between the

tip and the sample is roughly taken in the range between 10, 000 and 70, 000 nm2 in

several studies. Thus, it may be convenient to choose contact area to be 20, 000 nm2

in our study.

Since the contact area has been decided from the literature research, the graphs shown
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in the Figure 3.10 is updated with the chosen contact area to proceed further. New

results are illustrated in Figure 3.13. As seen, for a 20, 000 nm2 contact area, load

force is in the µN range. When thought of the distances between two h-BN layers

altered from 2.9 Å to 3.5 Å, this µN range may be expected. Yet, one should keep in

mind that this conversion is only assumptive since conversion process cannot be exact

as it has been explained in detail above. This is done in order to provide a comparison

for the future experimental research that will use these materials.

After deciding the contact area and recalculating the results, we have chosen the mag-

nitude of the load force that we wish to apply to the interface. For starters, 100 µN

load force is chosen to analyze the interface.
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Figure 3.13: Load Force vs vertical distance (z) over the contact area of 20, 000 nm2

Corresponding equivalent vertical distances at each lateral position are found from

Figure 3.13 under the chosen magnitude of the load using spline interpolation. At this

point, energy values corresponding to these z-distances are computed from Figure 3.9
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again with the help of the spline interpolation. Then, Figure 3.14 shows how adhesion

energy and the friction force at the interface during the sliding changes at each lateral

position under 100 µN load. The friction force is found with the same differentiation

method as before.
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Figure 3.14: Adhesion energy and friction force at the h-BN/h-BN interface under

100 µN load

The method to find the friction force over a contact area is multiplying the results

which is found for one unit cell by the chosen contact area and then dividing it into

the area of the one unit cell at hand. In this case, the area of the primitive unit cell of

h-BN is 0.054 nm2.

In order to be able to make a more precise inference from Figure 3.14, the resolution

of the calculation is increased and the results are plotted again. The sliding path is

divided into 75 steps instead of 25 steps as done for the 100 µN case above. By this

way, DFT calculations have been performed for closer consecutive steps of positions,

leading to an increased resolution in the calculations. The results can be seen in Fig-

ure 3.15. As seen, when the resolution is increased, there appear few more points that

the friction force make peaks. We remind the reader that the contact area information

is implemented only on the friction calculations. Graph of adhesion energy is still

over one unit cell since there is no need for contact area information of energies to

calculate friction. Friction force is related to the curvature of the adhesion energy

graph, not to the magnitude. Our aim is to see the load dependency of the average

friction force, therefore, several more calculations have been performed using 50 µN,
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60 µN, 70 µN, 80 µN, 90 µN load forces over the chosen contact area other than 100

µN. The results are shown in the Figure 3.16.
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Figure 3.15: Adhesion energy and friction force at the h-BN/h-BN interface under

100 µN load with increased calculation steps

In order to see how the electronic orbitals are arranged, average charge density dif-

ference calculations have been performed at the lateral positions of 1.0 Å and 3.0 Å.

Corresponding configurations at those lateral positions are shown in Figure 3.17 and

the average charge density difference results under 50 µN and 90 µN loads are shown

in Figure 3.18. At first glance, one can realise the magnitude of the average charge

density is a little higher for the 90 µN case as compared to the 50 µN case. It can be

also seen that the results of the lateral positions x = 1 Å and x = 3 Å coincide except

that there is two extra peaks in the x = 1 Å case under 50 µN load. The negatively

charged peak at x = 1 Å becomes positively charged when the magnitude of the load

is increased to 90 µN . Similarly, almost neutral fluctuating part at the interface under

50 µN gets positively charged for the 90 µN case as well. We observe that the distri-

bution of the average charge at the interface for different lateral positions are different

than each other.

We have calculated the average friction force and the friction coefficient at this in-

terface and reported the results in Figure 3.19 and Table 3.2. We observed that the

average friction force increases whereas the friction coefficient decreases when the

load is increased. The friction coefficient is calculated by using Equation 3.6.
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Figure 3.16: Friction force between two BN sheets under several load forces

Faverage = µN (3.6)
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Figure 3.17: Top left: Upper BN is located at 1.0 Å with respect to the initial config-

uration of AB-stacking. Top right: at 1.5 Å. Bottom: at 3.0 Å.

Figure 3.18: Average charge density difference at the h-BN/h-BN interface
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Figure 3.19: Change in average friction force over the contact area and the friction

coefficient change by the load.
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Table 3.2: Friction coefficient and average friction force over the contact area at the

h-BN/h-BN interface under applied load

Friction Coefficient, µ and Faverage under Applied Loads, N

Applied Load [µN ] Average Friction Force [µN ] Friction Coefficients

50 11.50 0.23

60 11.73 0.20

70 11.82 0.17

80 12.08 0.15

90 12.28 0.14

100 28.45 0.28

3.4 Friction Calculation Between 3, 4 and 5 h-BN Layers

It is well-known that the lamellar structures of the two-dimensional materials vary

in behavior compared to their single layered structures. We have improved our h-

BN/h-BN interface by adding a third layer to the system and moved one layer over

others. ABA stacking of three infinite h-BN sheets have been prepared and the top

layer which lies on the A stacking configuration has been pulled to the armchair (x)

direction. In order to find where to place the second layer over the bottom layer, a

geometry optimization has been done and equilibrium distance of 3.18 Å has been

found. Next, the third layer was placed at desired distances which in this case varies

between 2.9 to 3.5 Å. After the calculations at each sliding distance, adhesion energy

and the friction force at the interface has been obtained and shown in Figure 3.21.

Figure 3.20: Three layered h-BN

We have followed the similar analysis as before and calculated the change in the
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Figure 3.21: Adhesion energy and friction force at the interface of 3 layered h-BN/h-

BN along x-direction

average friction force by the distance between second and the third layer. It is shown

in Figure 3.22.
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Figure 3.22: Average friction force at the interface of 3 layered h-BN/h-BN

After placing the second h-BN layer, third one has been placed at the equilibrium

distance of 2.99 Å which is found by the same way as before with the geometry

optimization. Then, the fourth layer has been placed between the distances of 2.9 to

3.5 Å. The results are shown in Figure 3.24.

Change in the average friction force with respect to the distance between the third and

the fourth layer has been calculated and shown in Figure 3.25.

Similarly now, fourth layer has been placed over the previous system at the equilib-

43



Figure 3.23: Four layered h-BN
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Figure 3.24: Adhesion energy and friction force at the interface of 4 layered h-BN/h-

BN along x-direction
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Figure 3.25: Average friction force at the interface of 4 layered h-BN/h-BN

rium distance of 2.99 Å which is the same equilibrium distance between the second

and the third layer. Then, the fifth layer has been placed and the calculations have
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been performed while changing the vertical distance between the materials. The re-

sults are shown in Figure 3.27

Figure 3.26: Five layered h-BN

−120

−100

−80

−60

−40

−20

 0

 20

 40

 60

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

A
dh

es
io

n 
E

ne
rg

y 
[m

eV
]

Position in Armchair Direction [Å]

Potential Energy Surface Graph of 5 h−BN Layers

z=2.9Å
z=3.0Å
z=3.1Å
z=3.2Å
z=3.3Å
z=3.4Å
z=3.5Å

−250
−200
−150
−100

−50
 0

 50
 100
 150
 200
 250

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

Fr
ic

tio
n 

Fo
rc

e 
[p

N
]

Sliding in Armchair Direction [Å]

Friction Force by sliding top layer of 5 layered h−BN

z=2.9Å
z=3.0Å
z=3.1Å
z=3.2Å
z=3.3Å
z=3.4Å
z=3.5Å

Figure 3.27: Adhesion energy and friction force at the interface of 5 layered h-BN/h-

BN along x-direction

Once more, change in the average friction force with respect to the distance between

fourth and the fifth layer is calculated and shown in Figure 3.28.

We have compared our average friction force findings of lamellar h-BN in Figure 3.29

and Table 3.3. It is seen that the number of h-BN layers from 2 to 5 affects the

average friction. There seems to be a slight decrease in the trend. A similar study

with molecular dynamics has been conducted by Suzhi et al. on graphene sheets

sandwiched between amorphous silicon and AFM tip of Si under a constant load

of 0.8 nN where they report that the average friction decreases as the number of

graphene layers are increased [44]. This is explained by the size of the true contact
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Figure 3.28: Average friction force at the interface of 5 layered h-BN/h-BN
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Figure 3.29: Average friction force vs number of h-BN layers

Table 3.3: Average Friction Force Change by the Number of Layers of the h-BN

Change in Average Friction Force by Number of h-BN Layers

Number of BN layers z=2.9Å z=3.0Å z=3.1Å z=3.2Å z=3.3Å z=3.4Å z=3.5Å

2 137.90 101.73 73.63 53.60 39.22 28.17 20.77

3 135.52 101.31 75.95 56.02 40.21 29.64 21.94

4 135.84 99.74 73.11 53.30 39.04 28.17 20.67

5 135.93 99.96 70.11 53.48 41.29 28.29 20.69

area which is larger for thinner surfaces since the puckering effect becomes more

observable. This is related to the bending stiffness of the sheet due to the out-of-

plane deformation created by the movement of the tip. In their study, the decrease in

the average friction is seen clearer due to the usage of a finite tip. The results of our
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study are not as drastic as theirs since instead of a finite tip, an infinite sheet of BN has

been used. Therefore, one cannot expect major differences in average friction force

as the number of layer increases since puckering effect may not be as observable as

for an infinite sheet unlike the case for a finite tip. The observed slight difference in

our results is due to the vdW forces which are small. In addition, puckering effect

also evolves with time and an eyeful outcome of this phenomenon cannot be possible

in static DFT calculations.

In another study conducted by Lee et al. with friction force microscopy (FFM), a

decrease in the friction force when the number of h-BN layers is increased from single

layer to four has been observed and this observation was attributed to the increase in

the real contact area due to the puckering effect [27].

The change in average friction force between multi-layered h-BN is also explained by

the change in the interlayer distances due to the important contribution of vdW disper-

sive interactions including Pauli repulsion in addition to the electrostatic interactions.

The contribution of the vdW and the electrostatic interaction potentials are different

for different stacking configurations [13]. Hence, when we keep in mind the stacking,

it can be seen from our results at Table 3.3 that there is a slight decrease in the average

friction force on some results when the number of layers of h-BN increases.
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CHAPTER 4

FRICTION INVESTIGATION OF Au(111) SURFACES AND GOLD

CLUSTERS OVER TWO DIMENSIONAL HEXAGONAL BORON NITRIDE

4.1 Au(111)/h-BN Interface

In this chapter, we explore the tribological properties of the Au(111)/h-BN interface.

This is a unique interface between a metal and a two-dimensional system with polar

bonds and therefore exhibits a rich variety of physics.

In the preliminary calculations at chapter 2, lattice constant of Au was calculated to

be 4.11 Å with the DFT parameters we have used. Creating the interface presents

certain challenges since the compatibility between lattice spacing of any two mate-

rials are one of the crucial factors that affects the nanotribological properties of the

interfaces.

The mechanism is based on the ability of top surface atoms to overcome the poten-

tial barrier which is created by the substrate i.e bottom surface atoms. If the lattice

parameters of top and bottom surfaces are in coincidence with one other, the system

is said to be commensurate so the upper surface atoms lock into the potential wells

created by the substrate, makes the sliding of top layer difficult, resulting in a greater

friction force. On the other hand, if the lattice parameters of the two materials does

not match, then the system is said to be incommensurate so the atoms in the upper

layer cannot fit to the potential wells of the lower layer. In these cases, structural

lubricity is a common occurrence.

In order to model such interfaces in periodic computational tools, the usual practice

is to apply compressive/tensile strain to one or both of the materials. Such a ma-
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nipulation of the lattice constants may potentially affect the results since the friction

forces at the interface are largely governed by the electronic density, which in turn

depends on atomic positions. As a means of testing the extent of this effect, we first

investigate the magnitude of friction in the presence of an extreme amount of strain

at the interface. We then proceed with a reasonable model with a much reduce level

of mismatch.

4.1.1 3 layered Au(111)/h-BN Interface: An Extreme Case Investigation

For the pursuit of creating as commensurate an interface as possible, a 3 layered

Au(111) slab has been modeled using 2×2 conventional unit cell and placed over the

infinite sheet of 2×2 BN first. The procedure is not straightforward to apply since the

lattice parameters of the materials are different from each other. Hence, in order to

place the materials one over another within periodic boundary conditions, either the

lattice parameters of h-BN need to be extended or the lattice parameters of Au(111)

needs to be contracted. In each case, one has to remember that a strain is introduced

to the system. We have performed both of the methods and calculated the adhesion

energy change at the interface during sliding.

First, 2 × 2 unit cell of BN was extended by 16% in order to fit it to the unit cell of

2× 2 Au(111). Then one material is kept fixed while the other one is moved along x-

direction. Since they are in relative motion, the adhesion energy and the friction force

at the interface will not be affected by the choice of whether the h-BN or Au(111) is

mobile.

Next, the 2 × 2 unit cell of Au(111) is contracted by 13.8% to fit it the unit cell of

2×2 h-BN. The adhesion energy as a function of the vertical distance graphs for both

cases are shown in Figure 4.2.

As seen from the results, the adsorption energy is found to be negative when h-BN is

extended whereas it is positive in the case of the contraction of the (2 × 2) Au(111).

We have used the structure of the extended h-BN and contracted Au(111) while we

were calculating their optimized energies and utilized those energies when we cal-

culate the adsorption energy at the whole interfaces. In fact, this result shows us
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Figure 4.1: Left: (2×2) Au(111)-(2×2) BN when only Au(111) is contacted. Right:

(2 × 2) Au(111)-(2 × 2) BN when only BN is extended. Pink color is for B atoms,

blue is for N atoms and the yellow is for Au atoms where decreasing in size of the

pale Au atoms indicates the relative distances from the uppermost h-BN.
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Figure 4.2: Adsorption energy at the interface of (2× 2)Au(111)/(2× 2)h-BN. Left:

when the h-BN is extended. Right: when the Au(111) is contracted.

(2 × 2)Au(111) cannot be contracted that much in order to place it over the (2 × 2)

unit cell of BN, the results are extreme indeed. Due to its unstable nature, we discard

the case with the positive adsorption energy here. Hence, only the friction force at the

interface of the extended BN and the unchanged Au(111) is calculated. The results

are shown in Figure 4.3.

Whereas in the case of Au under compressive strain, the adhesion energy is posi-

tive, in the case of BN extension, the adhesion energies are very strong. This is also

reflected in the magnitude of lateral, friction forces, which are also large. We thus
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Figure 4.3: Adhesion energy and friction force at the interface of Au(111)/BN when

BN is extended

conclude, by means of exploring its extreme limits that strain may indeed be a po-

tential effect that needs to be factored in during the calculations regarding friction.

Therefore, it should be minimized as much as is possible and practicable. At the very

least, its effect should carefully be scrutinized.

4.1.2 4 layered Au(111)/h-BN Interface without the Strain

Convinced by the results of our investigation in the previous section that the strain

introduced in the smaller simulation cell is prohibitively large, we employed a larger

unit cell in an attempt to reduce the strain. The choice of 3 × 1 Au(111) and 2 × 2

h-BN indeed yields a perfect match with no need for compressive or tensile strain

in either material. The rest of the calculations in this thesis will be performed using

these supercells. (See Figure 4.4).
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During the construction of the 4 layered Au(111), stacking of the layer construction

has an effect on the interface properties. Hence, we have chosen to place the fourt

layer of gold atoms so that the ABC stacking of the slab is preserved.

Figure 4.4: BN and Au(111) interface; unit cells are in perfect match. Pink, blue and

yellow colors represent B, N and Au atoms respectively and the shrinking pale atoms

is to represent the relative distance of the slab layers to the uppermost BN layer.

The adhesion energies for a variety of vertical separation have been calculated by

substracting the summation of the energies of the optimized geometries of (3 × 1)

Au(111) and (2 × 2) h-BN from the total energy of the whole system as written in

Equation 4.1.

Eadh = Etotal
system − E

opt
(3×1)Au111 − E

opt
(2×1)BN (4.1)

Once the surface profile of the interface with the adhesion energy calculations is es-

tablished, friction force of the system has been obtained at seven different vertical dis-

tances between 2.9 Å and 3.5 Å using the numerical derivative method as explained

in the previous section. For the sake of simplicity, only the friction force results at 2.9

Å, 3.2 Å and 3.5 Å are shown in Figure 4.6. The average friction force as a function

of the separation distance is also calculated and shown in Figure 4.6.

So far, we have the surface profile of the interface along x-direction, but we wish to

obtain the full surface profile. Hence, we have moved the Au(111) over the h-BN

sheet along every direction and obtained the potential energy surface (PES) of the

4 layered Au(111) and h-BN interface. (See Figure 4.7). The calculated adhesion

energy is divided by four which corresponds to one h-BN unit so that the magnitude
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Figure 4.5: Adhesion energy at the interface of 4 layered Au(111)/h-BN, when

moved along x-direction for different z-distances
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Figure 4.6: Friction force at the interface of 4 layered Au(111)/h-BN, when moved

along x-direction for different z-distances

of the adhesion energy becomes comparable with the results of our previous and

upcoming systems.
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Figure 4.7: PES of 4 layered Au(111) and BN sheet.

The points labeled on PES are shown in the Figure 4.8.

A

E

B

C D

Figure 4.8: Relative positions during sliding as labeled on PES

From Figure 4.8, one can see that the locations labeled as A, B and E all correspond

to the same atomistic arrangement during sliding. The atoms of h-BN and Au(111)

are aligned so that the sliding steps of A, B and E are exactly identical. Similarly,

positions C and D correspond to an equal arrangement.
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4.2 Nanotribological Properties of the Au(111)/h-BN Interface Under Applied

Load Force

We defined the load force in the previous chapter as any vertical position between

two materials different than the equilibrium distance results in a vertical strain at the

interface. This vertical strain is the load force and it depends on the distance between

the tip and the surface. In chapter 3, nanotribological properties at the interface of

h-BN/h-BN has been examined under the presence of the load and now, using the

same methods and contact area estimation which was calculated to be 20, 000 nm2,

Au(111)/h-BN interface will be investigated under the presence of the vertical load,

as well. The procedure is exactly the same as in chapter 3. The area of the supercell

we are using here is 0, 219 nm2 which means that we assume there are over 90, 000

supercells at the contact of Au(111) coated AFM tip and the h-BN.
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Figure 4.9: Adhesion energy as a function of separation distance between 4 layered

Au(111) and BN at each lateral position
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In order to decide the load force that we wish to apply to the interface here, first,

adhesion energy as a function of the vertical distance at each lateral position of 0.06

Å has been calculated with the similar method used in chapter 3, all the way through

2.90 Å totaling to 50 steps of simulation. For the sake of simplicity, we have left out

some intermediate steps of the results again and shown the rest of them at the three

graphs corresponding to different lateral (x) positions as seen in Figure 4.9. Load

force is found by taking the negative derivative of the total energy with respect to the

vertical distance between the materials as shown in Equation 3.5.
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Figure 4.10: Load as a function of separation distance between 4 layered Au(111)

and BN at each lateral position over the estimated contact area

The change in the adhesion energy at the interface during the motion along x-direction

under the chosen vertical loads are calculated. The results are shown in Figure 4.11.

57



−613.6

−613.2

−612.8

−612.4

−612

−611.6

−611.2

 0  0.5  1  1.5  2  2.5  3

E
 [

m
eV

]

x [Å]

under 50 µN load

−609.2

−608.8

−608.4

−608

−607.6

−607.2

−606.8

 0  0.5  1  1.5  2  2.5  3

E
 [

m
eV

]

x [Å]

under 55 µN load

−604.4

−604

−603.6

−603.2

−602.8

−602.4

−602

−601.6

 0  0.5  1  1.5  2  2.5  3

E
 [

m
eV

]

x [Å]

under 60 µN load

−593.6

−593.2

−592.8

−592.4

−592

−591.6

−591.2

 0  0.5  1  1.5  2  2.5  3

E
 [

m
eV

]

x [Å]

under 70 µN load

Figure 4.11: Adhesion energy at the interface of 4 layered Au(111) and h-BN under

several magnitudes of normal load

The friction force is calculated by using the numerical derivative of the energy and the

results are shown in Figure 4.12 along with the average friction force and the friction

coefficients as reported in Table 4.1 where the load and the average friction force over

one h-BN unit has also been calculated and shown in Table 4.1 to be able to make a

comparison with the other results of our research.

As an attempt to understand the electronic origins of the tribological behavior, the

average charge density difference along the vertical distance at the Au(111)/BN in-

terface under the normal load of 50 µN and 70 µN have been calculated at the lateral

positions of x=0 and x=1.5 Å and shown in Figure 4.14. At first glance, the charge

density difference profile in both cases are very similar. The charge profile of the

interface is interesting. It is polarized with an electron excess in the Au side and a

deficiency in the BN side of the interface. While the Au surface remains more or

less neutral, the BN sheet appears to have been charged positively. Due to the high
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Figure 4.12: Friction force at the interface of 4 layered Au(111) and BN under ap-

plied normal force

Table 4.1: Friction coefficient and average friction force between 4 layered Au(111)

and h-BN. The results are shown with and without the conctact area.

Friction Coefficient (µ) and Faverage under vertical loads (N)

Load [µN ] Load per BN unit [nN ] Faverage [µN ] Faverage per BN unit [nN ] µ

50 0.14 1.19 0.013 0.024

55 0.15 1.09 0.012 0.020

60 0.16 0.94 0.010 0.016

70 0.19 0.92 0.010 0.013

lubricity of this interface as understood from our results, the average charge density

difference with the presence of the different magnitudes of load does not change sig-

nificantly as well as with the different lateral positions.
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Figure 4.13: Average friction force and the friction coefficient as a function of load

at the interface of 4 layered Au(111)/h-BN
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4.3 Gold Clusters and h-BN

Au nano clusters are of interest due to their potential applications in technology [50].

Since they demonstrate many different geometries, properties of the clusters highly

depend on its shape and the size. In literature, there are several studies showing the

stability of the Au clusters depending on the size and the geometry [42, 46, 49, 52].

Even for a given certain number of atoms, Au clusters may vary their structure due to

entropic and dynamic effects [10]. Since their interaction with materials are also ex-

pected to be different than that of their bulk structures, they are needed to be examined

in order to see especially the edge effects of the tip in AFM/FFM experiments.
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In this thesis, one Au atom, rhombic Au cluster consisting of 4 gold atoms and icosa-

hedral Au cluster with 13 atoms are placed over BN sheet and nanotribological prop-

erties of the systems are examined.

4.3.1 Au atom over h-BN

A benchmark calculation has been performed using one Au atom placed over an in-

finite sheet of (3 × 3) BN. Potential energy surface of the interface are calculated

and the resulting map is shown in Figure 4.15 along with the starting configuration.

From the PES, one can see the places where Au atom is energetically the most and the

least favorable. The middle region of the PES indicates the least stable configuration

where Au atom is aligned with the B-atom of the h-BN. The adhesion energy and the

average friction for the zigzag sliding direction of the Au atom on the BN sample has

been investigated and the results are shown in Figure 4.16. For the adhesion energy

calculations in Figure 4.16, the z-coordinate of the atoms is allowed to be relaxed

while performing DFT, so, there is no vertical load between the Au atom and the h-

BN. Friction force at the interface is calculated with the same method as before, and

its average value has been found to be 76.27 pN as shown inside the friction force

graph in Figure 4.16. The average friction force of this system at zero load is very

large compared to the Au(111)/h-BN interface whose average friction was found to be

0.013 nN (13 pN) with the presence of the load. Therefore, the average friction of one

gold atom and BN sample has at least five times larger than that of the Au(111)/BN

interface while the magnitude of the adhesion energy is greater as well compared to

the results of adhesion energy per BN-unit shown in Figure 4.7.

4.3.2 Rhombic Au over h-BN

The most stable structure of Au4 clusters examined in several studies. It has been

shown that with 4-atoms Au clusters, monoatomic zigzag or linear nanowire, rhom-

bus shape, Y-shape or square shape clusters can be obtained and for a clean Au4,

rhombus shape has the lowest energy so it is the most stable one [46]. In our study,

nanotribological properties of the rhombic Au4 has been studied.
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Figure 4.15: Potential energy surface at the interface of Au atom and h-BN (right)

along with the starting configuration (left).
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Figure 4.16: Adhesion Energy Graph of Au atom over (3x3)BN sheet

During the structure optimization, it was observed that the Au4 structure tilted due

to the existence of vdW forces. This optimization has been done using several unit

cell sizes to make sure that the interaction between the two consecutive simulation

boxes are eliminated. Once we have chosen a large enough unit cell of 4× 4, friction

forces during sliding for both the tilted and the flat clusters were calculated in order

to understand the effect of this tilting. The results are shown in Figure 4.17 and

the average friction values are indicated inside of the graphs. We have seen that

the tilted cluster strongly interacts with the BN sample via one atom at the bottom

so the adhesion energy at the interface is very large compared to the planar case.

62



Accordingly, average friction is larger for the tilted cluster case as seen.

Figure 4.17: Au4 is placed over (4× 4) BN; top view and side view

Figure 4.18: Au4 is placed over (4× 4) BN when it is kept planar by force; top view

and side view

Figure 4.19: Au4 over (4x4)BN PES graphs; top: Tilted Au4, bottom: Planar Au4
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Figure 4.20: Adhesion energy and friction force of Rhombic Au (Au4) over BN

(tilted configuration)

−450

−400

−350

−300

−250

−200

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

A
dh

es
io

n 
E

ne
rg

y 
[m

eV
]

Position in x−direction [Å]

Planar Au4

−300

−250

−200

−150

−100

−50

 0

 50

 100

 150

 200

 0  0.5  1  1.5  2  2.5  3  3.5  4

Fr
ic

tio
n 

Fo
rc

e 
[p

N
]

Sliding in x−direction [Å]

Planar Au4 
Average Friction = 177.93 pN

Figure 4.21: Adhesion energy and friction force of Rhombic Au (Au4) over BN

(planar configuration)

4.3.3 Icosahedral Au13 over h-BN

As the number of atoms in a cluster increases, the number of possible local minima of

its configurations also increase. For this reason, we conducted an extensive literature

search to identify the most likely configuration for the Au13 cluster. In [43], Shafai et

al. examine Au13 cluster and performed a constant temperature molecular dynamics

to obtain the relaxed geometries after generating the initial structure of the cluster.

After finding a number of geometries of Au13, they proceed with the DFT calculations

to find the most stable structures. Among each type of clusters, they choose planar,

flake, cub-octahedral and icosahedral structures. In their study, it is shown that for
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the clean Au13 cluster, planar structure is the most stable one among others while

the icosahedral is the least stable. This is supported by another study conducted

by Xiao et al [49] which also shows that the zigzag monoatomic gold clusters are

more stable than the linear monoatomic gold clusters. An important point worth

mentioning is that the icosahedral structure undergoes a Jahn-Teller distortion due to

the degenerate states of the highly symmetric structure and therefore, collapses to the

distorted cuboctahedral geometry as shown in [43]. In another study conducted by

Wang et al. [46], it is reported that the lowest energy configuration of Au13 cluster is

neither icosahedron nor cuboctahedron but an amorphous structure as it is compatible

with the result of Shafai et al. [43]. Shafai et al. [43] also noted that for the ligated

Au13 cluster, planar structure is no more the energetically favorable one. In fact, the

energetic order is reversed for the ligated case of Au13 where this time (distorted)

icosahedral structure become the most stable one.

In several studies, 13-atoms Au cluster is pinpointed as the transition point from 2D

to 3D structures [17,49]. Up to 13 atoms, Au clusters favor a planar shape and make

a transition to the 3D shape for larger sizes. In this thesis, icosahedral structure of

Au13 cluster is placed over h-BN to understand the size effect on nanotribology by

means of studying a larger cluster.

Perfect structure of icosahedral and cuboctahedral Au clusters are shown in Fig-

ure 4.22 and they have been constructed by using the space vectors given in chapter 2.

Figure 4.22: Perfect icosahedral (top row) and perfect cuboctahedral (bottom row)

from side and top view
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Icosahedral cluster which consists of 13-atoms has been placed over infinite sheet of

h-BN. In order to eliminate the interaction between the Au clusters inside the consec-

utive simulation boxes, the supercell size of 6 × 6 BN has been chosen to construct

the interface properly. Next, the geometry optimization of the Au13/h-BN system was

performed to obtain the most stable structure. The result of the geometry optimiza-

tion revealed that there is a structural transition from perfect icosahedral to distorted

cuboctahedral. This result is compatible with the literature. The structural transition

from perfect icosahedral to distorted cuboctahedral is due to the high symmetry of the

icosahedron as discussed earlier in this section. Therefore, the remaining calculations

have been performed using this configuration of distorted cuboctahedral, so, distorted

cluster has been moved over the h-BN. The results are shown in Figure 4.24

Figure 4.23: Structural transition from perfect icosahedral to distorted cuboctahedral

when Au13 is placed over BN sample.

The average friction force has been calculated to be 204.88 pN over the one unit

cell as also shown inside the friction graph. This is a very large value compared

to the previous systems of h-BN/h-BN and Au(111)/h-BN interfaces if their results

are considered over one unit cell instead of a whole contact area. This is due to the

increase in the unsaturated electrons at the edges of the clusters. The average friction

force of the Au13 and BN interface is much larger than the case of one Au atom.

However, although it is smaller than the average friction of the rhombic Au cluster

case, there is not a major difference. Average friction of the Au13 with BN was

calculated to be about 204 pN whereas it is about 300 pN for the tilted rhombic Au

cluster case. In both of the systems, the adhesion energy at the interface is larger than

that of the previous systems but it is even larger for Au13. The Au13 cluster strongly
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interacts with the BN, almost covalently bonding and the corrugation is extensive.
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Figure 4.24: Adhesion energy and friction force of icosahedral Au13 over h-BN

In the next chapter, we will further discuss our results and make a summary.
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CHAPTER 5

CONCLUSION AND DISCUSSION

In this thesis, we have examined the nanotribological properties of the different inter-

faces by modeling them using Density Functional Theory (DFT).

First, we have investigated the tribological behavior of the h-BN/h-BN interface along

zigzag and armchair directions while changing the vertical distance. We have seen

that the maximum average friction force value is obtained when we slide one layer

along the armchair direction due to the repeated ontop-ontop coincidence of the same

atoms between the upper and the lower layer. In addition, we have seen that the

friction force becomes smaller when we increase the vertical distance between the

materials from 2.9 Å to 3.2 Å where the equilibrium distance between the two is

around 3.2 Å at the initial point and varies a little during the sliding path. Average

friction forces and friction coefficients under different magnitudes of vertical load

have also been investigated and it is found that the average friction force increases

with the increase in the vertical load for this system.

We have also investigated the friction force at the interface of the h-BN/h-BN when

we increase the number of h-BN layers. An increase in the number of layers results

in a small decrease in the friction force.

Next, the Au(111)/h-BN interface and the interaction between gold clusters and h-

BN have been investigated. The Au(111)/h-BN interface was examined under several

magnitudes of normal load and average friction forces and friction coefficients were

calculated. The average friction force at the interfaces become smaller if the commen-

surability of the system decreases. The Au(111)/h-BN interface is incommensurate

compared to the h-BN/h-BN interface. Hence, the average friction force per unit cell
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and the friction coefficient itself are found to be small. Even under an applied normal

force, the interface reveals possible superlubric behavior due to the small values of the

friction coefficient. The friction coefficients for the Au(111)/h-BN interface are close

to the range of the numbers that are used in the definition of the superlubricity [33].

For instance, under an applied normal load of 70 µN over our estimated contact area,

which corresponds to 0.19 nN per BN unit, friction coefficient was calculated to be

0.013. On the other hand, friction coefficient under this load for h-BN/h-BN interface

has been found to be 0.17. The friction coefficient between two sliding wood is about

0.2 just a reminder to the reader in order to be able to make a comparison.

In the case of the clusters, the commensurability of the interface consisting of clusters

and the h-BN is high causing the friction force to be much larger compared to the h-

BN/h-BN and Au(111)/h-BN interfaces.

We have seen that the friction force is connected to the corrugation of our systems.

Corrugation here is defined as the difference between the maximum and the minimum

adhesion energy on the potential energy surface. The corrugation of the potential

energy surface of the Au(111)/h-BN interface was calculated, and the energy values

have been converted to one h-BN unit so that we can compare it with the result of

h-BN/h-BN interface. We have found that the maximum value of the corrugation at

the Au(111)/h-BN interface under no load is 0.35 meV which is very small, so is the

average friction force being 0.49 pN at zero load. Corrugation of the h-BN/h-BN

interface along armchair direction at zero load is about 34.42 meV which is two order

of magnitude larger than that of the Au(111)/h-BN interface and the average friction

at this interface at zero load is calculated to be 31.72 pN.

When we look at the corrugation of the gold clusters-h-BN interfaces, the magnitude

of the minimum and the maximum adhesion energy differences are even larger, in

the range of several hundred meV, making a huge difference between the previous

systems. It is about 140 meV for one gold atom, 220 meV and 550 meV for planar

and tilted rhomboid gold clusters respectively and 245 meV for icosahedral Au cluster

system at the contact of h-BN sample. The average friction forces are calculated to

be 76 pN for one gold atom, 178 pN and 300 pN for planar and tilted rhombic gold

cluster cases respectively and 205 pN for icosahedral Au cluster system. These results
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which show the increase in the corrugation causes increase in the friction force are

consistent with the study of Wolloch et al. [48].

In summary, we have seen that the Au(111)/h-BN interface reveals superlubric-like

behavior since the friction coefficient of the system is close to the range of the friction

coefficients that are used for the definition of the superlubricity even with the pres-

ence of an load. We have also seen that the commensurability of the system while

constructing has an impact on the nanotribological behavior of the system. The fric-

tion force between Au clusters and h-BN is much larger than that of the bulk Au

and h-BN, leading to an increase in the overall friction of the systems. Finally, static

calculations that we report here indicate an upper limit to the static friction and our

results will be a benchmark for the future AFM/FFM experiments.
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