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ABSTRACT

POLAR CODES: PERFORMANCE OVER FADING CHA NNELS AND
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¥ z v almakk
Master of ScienceElectrical and Electronidsngineering
SupervisorAssoc. Prof. DrMe | ek Di ker Y¢cel

May 2019 103 pages

Polar codes introduced in 200y Er d al Ar ék an loachieve 8harmon pr ov
capacity for any binarinput discrete memoryless channel. Being adopted as a part of

the official coding scheme for the 5G standardiatdate research has moved from

theory to practical applications, albeit keeping the connectidnitgiancestors. This

thesis aims to address these two topics, narrowing diestly to the performance of

polar codes on fading binary symmetric channels anttthéihe relationship leeen

polar codes and Readuller codes.

For fading channels, we exjraent on a hierarchical scheme propose014 by Si,
Koyl ¢o0] | u a that usesnutipleapolar tcdding phases. We simulate the
two-state fading case that utilizes three polar codes; two of them designed for binary
symmetric channels and one forb@ary erasure channel with an erasure rate
representing the fading probabilitj/e compare thbit error ratioperformance of the
proposed scheme witbriginal polar coding.Results show that the hierarchical
scheme outperforms the other whenever the gintiby of being in the degraded

channel is not very high

As for the comparison between polar aneeBMuller codes, we primarily focus on
the generator matrices of the two codes constructedifary erasurand additive



white Gaussian noisehannelsMotivated by the convergengeoof of Mondelli; we
present some observatioassertingthe convergencéhresholdsof polar codesto

ReedMuller codesjn terms ofthe channel parametesach as erasure probability or
signal to noise ratio

Keywords: Polar Codes, Fading Binary Symmetric Channel, Rdatler Codes,

Binary Erasure Channdbinary Input Additive White Gaussian Channel
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CHAPTER 1

INTRODUCTION

Coding theory dates back to 1948, when Shannon published his seminal paper
[Shannon, 1948 posing the fadamental problem for a communication system of

how a message of information can be transmitted efficiently and reliably across a noisy
channel. Although he gave the answer to
such suitable codes exist, he did spcifically addresbow to findthese good codes

Since then,finding the structures for practical coding schemes that approach
Shannonds t heor etonecd the nain rfoodesof réseasch ib e e n

information theory and communications.

As formalizel by Shannon, the aforementioned problem can be divided into two
separate problems: tlseurce codingnd thechannelcoding The f or mer 6s t
efficiently represent the source of information using Igastsible number of bits

while the latter adds redundancy to protect the information against the noisy channel

and reliably transmit them to the receiver. In this thesisfarusis on the channel

coding,andit is assumed that the source coding problem has already been solved.

The most important parameters for the transmission problem are rate, probability of
(block or bit) error, delay and (encoding or decoding) complgRtighardson &
Urbanke, 200B According to Shannonds channel
capacityC are achievable. That is, for every rafe 0, there exists a sequence of
codes with maximal pratbility of error approaching to zero as codelength goes to
infinity. Conversely, any sequence of codes vifie maximal probability of error
approaching zero must haagateY 0. From this theorem, it is evident that we can

and would want to send ourformation at high rates with low probability of error.

But as the codelength increases, the constramdglay and complexity begin to rise.



Numerous research has been done to balance thisoffaddong with the explicit
constructions of the codesitlv arbitrarily small probability of error. Hamming
introduced the first singlerrorcorrecting block codes in 1950hich was quite weak

with respect to what Shannon proposed, yettwadest coddiscovered in that time
[Hamming, 1950 Hamming codesvere then followed by the binary and ternary
Golay codesntroduced by GolayjGolay, 1949, multiple error correctindReed
Muller codesby Reed and MullefMuller, 1954; Reed, 1934which happen to be a
close relative to polar codes that will be discussed later, arBiGhliecodesy Bose

and Ray[Bose & RayChaudhuri, 196]) and independently byiocquenghem
(Hocquenghem, 1959Around the same time, Reed and Solomon prop &zt
Solomon codeas a special case BCH code§Reed & Solomon, 1960By 1970s,

the algebraic approach whose objective was to maximize the minimum distance to
maximize the error correctiaradius left its seat to the probabilistic approach which

is concerned with optimizing the performance with respect to the encoding and
decoding complexity with the invention obnvolutional codeby Elias[Elias, 1955,
sequential decodiny WozencraffWozencraft, 195[7and further development of

El i as 0 Fovreey[®. D.0~grney, 1970 The first generation of channel coding
technology then started with introductiohthe iterative decoding algorithms such as
Viterbi algorithm by Viterbi [Viterbi, 1967 and theBCJR algorithnby Bahl, Cocke,
Jelinek, and RaviyBahl, Cocke, Jelinek, & Raviv, 19F.4'he Viterbi algorithm was
adoped for the 2G GSM networkB 1993,the second generation of channel coding
technology began witthe epochmakingturbo codeghatwere designed bBerrou,
Glavieux and Thitimajshim@Berrou, Glaieux, & Thitimajshima, 199Bhaving a

good error performance, rate very close to the Shannon capacity and linear decoding
complexity and adopted by 3GPP for the 3G UMTS systehmouple of years later,
MacKay rediscovered tHeDPC code§MacKay & Neal, 200Pwith the comparable
properties to the turbo codes, which was origind#yelopedy Gallager way back

in 1962[Gallager, 196



Both Turbo and LDPC codes belong be family ofcodes on graphthat again goes

back to 1981 when Tanner founded this capamityieving field of codes with the
iterative decoding algorithiiTanner, 198JL These two codes are extensively used in
communication standardsurbo being used in deep space communications (CCSDS),
and in the 3G/4G standards; LDPC being used for digital video broadcasting, satellite
communications, IEEE 802.3an (Ethernet), 802.16e (WiMax) 802.11n/ac (WiFi),
recent mobile generation (4G, LTE) ath@ next generation (5G).

Although it may seem that the problem imposed by Shannon has been already solved,

as Costello and Forney summarized @ostello & Forney, 207A Codi ng i s n
d e a d OWitly thet introduction of a new coding scheme calleg@ar codesby

Ar é KAa ré k a 1, the thi@ @ederation of channel coding technology has started

and both LDPC and polar codes have since bdeptad for the 5GPolarcodes are

based on theoretically provehannel polarizatiophenomenon whemgindependent

copies of the channel are combined and split so that the overall chpaolaglzein

the sense that S ome p o aphcitiesrtendotd 1; tehthte c han
channels become purely noiseless, while some tend to O; i.e. the channels become
purely noisy a®) © Hb. With this effect, one can reliably send information over the
noiseless channels, while sending known bits, or in other viozisn bitsover the

noi sy channel s. Il n t he suwteessivedcancellatioA (SE)k an o
decodingthat has a tim complexity of0 0 1 T0C. When compared to Turbo and

LDPC code performances, although this decoding scheme has poor performance, with
other decoding schemes like belief propagation (BP) or list decoding of SC (SCL), it

is shown by Tal and Vardy that polaydes indeed outperform Turbo and LDPC code
performance¢$Tal & Vardy, 201%. In short, this coding scheme provably achieves

the theoretical channel capacity with low complexity for aabjtisymmetric discrete
memoryless channels, both with a binary@BIC) [Hussami, Korada, & Urbanke,

2009 and norbinary input alphabdfral & Vardy, 2013.



Countless research has been done since the invention of polar codes to make the
performance better, including new decoding techniques, concatenation with other
schemes, and also some hardwianplementations. A brief information abiothe

work is given in Qapter 2, albeit it is impossible to includ# aspects of rapidly
growing current research. An interesting area is the design of polar codes for the
wireless communication channels, whé&ading aspects and timearying nature of

the channel presents major difficulty.idess communication has become one of the
most dynamic area of research in recent years due to increasing demand in not only
daily-used appliances such as cellular photaddets, laptops, or generally speaking,
remotely controlled devices; but also largeale needs such as smart homes that use
intelligent home electronics, satellite communications, coroierand military
applications Evidently, this demand brings pri@rating research seeking for better,
newer and more reliable technologies. Sitieepolar cod@erformance has already

been theoretically proved, this lesomplexitycoding scheme is quite compelling for

the developing systems, such as the {ifémeratbn (5G) cellular servicesin fact, in

2006 the third generation partnership project (3GR#ich is the international
standards organization that develops telecommunication protbesisadopted polar
codes forhigh data rate demandingpntrol channels of thair interfacefor 5G.
However, as the main propagation in wireless communication is electromagnetic wave
propagation in air, there are many unpredicted and random limitations, such as moving
objects or simply weather, as welltaginterference due to vastly increasing number

of users. The prior creates variation in signal power over time and frequency and is
called asfading. In a fading channel, there are replicas of the signal with different
amplitudes, phases and angles of airiVhese replicas are callednasltipathswhich

may add up constructively or destructively at the receiver. This multipath propagation
environment changes in a random manner and as a result, understanding the random
behavior and proposing solutions teeosome the adverse impacts of fading have been

among the key aspects oifraless communication channels.



Furthermore, Arékan points out the relat
as RM and BCH codeas early as 2009n [Ar € k a n]., It ig Stdded that the
similarities between the code constructions of polar and RM codes became clear such
that they belong to the same class of codes and the only difference is the rule for
selectingthe rows from a Hadamard matrix tee basis vectors of their generator
matrices. In adition, another similarity between RM and polar codes is that they both
canbeconstruate usi ng Pl ot kTheconstructianmfsRMrcades istarts n
with smaller codes and recursively grows, while that of polar starts from tha dieit
generator ratrix and removes the unnecessary rows. Without going futherg k a n
also interprets polar codes in a spectral point of Jjidaw & k a n whicR @ a8l
mentioned for BCH codesy Blahut[Blahut 1984. In short,it is intriguing to see

how a (relatively) new born code has relationship and similarities with two of the
earliest codes. Due to simplicity and regarding the previous work of jAkdo
[Akdgj an, 2018, we choose texaminghe relationship between RM and patades

in thisstudy.

Thethesis consists of two independent parts: In the first part, it is aimed to observe

the performance of polar codes in a block fading chaeoetparing the performance

of the hierarchical scheni&i, K° y | ¢ & Vishwanath, 201Athat uses multiple

polar codingphaséso t hat of Ar ékanods[ Arléakianninp o2l 0a0r9 ]
the second part, it is aimed to calculate numerically the convergence of polar codes to

RM codes, specifically for the BEC and AWGN chanridle organization of this

thesis is as follows:

In Chapter 2, preliminary information about various concepth 8s communication
channels, coding and information theoretic parameters are given. Channel polarization
is summarized and encoding and decoding structurdsothbf polar andits close
relativeReedMuller codes are explained. The wireless fading chararelseviewed

in general termsand the chapter is finalized with a review ortcyulate work relating

to decoders and also polar codes on fading channels.



In Chapter 3, BER performance of theerarchical polar coding scheme for binary
fading channels ppmsed by SIK° y | ¢and MislwanathiSi et al, 2014 andthat
ofAr ékands or i gi nimcbmppredlha propaseddsehent s hedenwed

in detail and simulation results under various conditamesgiven.

In Chapter 4, the convergence of polar codes to RM codes is discussed with numerical
results. The proposition relating to the convergence given by Mortigindelli,

20149 is reviewed indetail. me numerical values of dga erasure rates or design
SNRs respectively, required by the convergence of polar codes to RM codes, for the
BEC and the AWGN channefre calculated, and various cases showing the

convergence are presented .

In Chapter5, concluding remarks and contributions of this thesis are discussed.



CHAPTER 2

PRELIMINARIES

In this chapter, we give some preliminaries that are used in the thesis. We start with
the discrete communication channel modieiowed by the phenomenon of channel
polarization based oA r &€ k a n 0[A r énkoa rf,witheéfePeBice toK or ad a 6 s
doctoral thesigKorada, 2009 and Reed Muller code€ontinuing with abrief
descripion of wireless fading channels, we end the chapter by gavimmief survey
onother recent work regardirtgcoders anfhding channelsiithin thecontext of this

thesis

The notation throughout the thesis is as folloWse capital lettergixd denotethe

random variables whose sample values are the lowercaséfonéd/e writedd to
denote the random variable® hd I8 hd ) and®d dp  "AQ 0 to denote the sub
vector O B (). The same analogy is used for ando , as well. We denote

the channel asogn © + with N and + being the input and output alphabets,

respectively. A bolde is used to denote vectors and matrices such éhat

®w 8
€ €& @& ingeneral
) 8

2.1.The Discrete Communication Channel

As discussed before, the main goal ahannel codés to transmit data reliably and
efficiently through the communication chann&@hannon declared that this was
possible; but as he did not say how, we are interested in finding such codes. To begin

with, we start with the basic digital communication system:



.| Source Source R
Source "I encoder decoder User
Source codeword EStiieted Souree
codeword

Channel o Channel

encoder Communication decoder
System

Channel codeword Received word
A
Modulator Demodul ator
A

»  Channel
Noise

Figure 2.1. Block diagram of a digital communication channel (reproduced fRlahut, 198%)

Throughout the thesis, as mentioned in previous chapter, we are only concerned with
the channel encoder and decoder, which is known as channel coding. Our
communication system is then depicted in Figure 2.2. The channel is a discrete
memoryless channel (D®) consisting of an encoding function that maps each
messagal N ! to codewordso N N, forming the codebook, and a decoding
function that tries to find the estimat@sof & from the received sequence N +

We assume that the message is unifordidyributed. The channel is memoryless in

the sense thaj o W B 1N o wheren wgo denotes the conditional
probability of receiving the outpud™ + and0 denotes the number of channel uses.
The performance of the code is measurgdhe probability of making an error, i.e.

probability of the estimaté not being equal ta . A rate is said to be achievable if



there exists a sequence of codes such that average probability of error approaches 0
which i s the c¢onCadngTheorer and its coBversadrihem 6 s
the capacity C of a DMC is the supremum over all achievable[feges Viswanath,

2009:

6 | A®am (2.1)

Y

M
—» Encoder Decoder —»

p(y|x)

Y

Figure 2.2. Block diagram of the simplified digital communication channel

2.2.The Binary Discrete Memoryless Channel

In this thesis, the input alphabgt is binary, so we have the binanput discrete
memoryless channel (BMC). All of the computations are in moduly the
logarithms are to the base 2 (unletatedotherwise) and the channel capacities and
code rates are ibits. If we denote the BMC asw , we can writeaw dn © + with

the conditional probability (denoted ap above in Fig. 2.2xo g hand @
corresponds toN uses of the channel; i.e. we haw dn © + with

® O W M B oI incorrespondence to aforementioned general DMC.

For a BDMC, two parameters of interest are the symmetric capacity:

) A 2.2
o P amol e O O (2.2)

C Po ¢ Po ¢
ve wn cL BT £0 G

and the Bhattacharyya parameter:



(2.3)

Although“0OO denotes the mutual information between the inpaihd outputy, from

(2.1), we can also call this as the symmetric capa€ty. provides a measure of

rate: It is the highest rate at which one can make a reliable communitatian

symmetric channel® @ is the upper bound on the probability of maximum
likelihood (ML) decision error and provides a measure of relialjiity é k a ., 20009
Both of these parameters take values in the closed intéva].[The importance of

both parameters will show up in designing the polar codes which will be discussed

next, thus we will not be giving further details about these two here, except the
following relationship between them:

Cw ow p (2.4)
W p 66 @5)

We can interpret (2.4) and (2.5) as higher the capacity, lower the Bhattacharyya
parameter. The proof is given[lAr e kanrj., 2012

"Ow is equal to the Shannon capacity when W is a symmetric chpArele k a n ,
2009. In this thesis, we use the following binary memoryless channels: The binary
symmetric channel (BSC), binary erasure channel (BEC) and additive white Gaussian
noise (AWGN) channel. BSG symmetric in the sense that Tt ® pP and

W PIT ® TP N, i.e. the probability of making an errorns which is called

as the transmission or the crossover probability. For BEGiavew 8T W o

1, and an error is made when the information bit is erased. In this case, we have
W Wt w P [ and the information bit is erased with probabifity We
denote these two channels as BHEnd BEC(), respectively, which are shown in
Figure 2.3(a) and 2.4. BSalso represents a discrete additive noise channel, where
the noise has Bernoulli distribution with the same paramgtes shown in Figure

2.3(b). We will use this property in the next chapter, thus give the proof hereinafter.

10



An AWGN channel is similato as shown in Figure 2.3(b), but instead of a
Bernoulli(f)) distributed noise, we have a white Gaussian noise. The noise is called
Awhiteo because the power is constant fo
constant, and iistributiom Fhe aapatity af BSG is@ n'©n d

with "O O being the binary entropy function, that of BETL{s simplyp [ and that

of an AWGN channelisl T @ 3. 2where3 . B the signato-noise ratio.

1-p
: I Z ~ Bern(p)
p
X i
S Y
P X > + > ¥
0 = 0
(@) (b)

Figure 2.3. (@) Binary symmetric channel BSg), (b) EquivalentBSC()

1—¢
1 < |
.
e
H""‘-\-L
3 .'W-.H
X e ¥
o
.-f"'-'
€~
-
—
.-'"'-'
0 = 0
1—¢

Figure 2.4. Binary erasure channBEC(
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Figure 2.5. Additive whiteGaussian noise (AWGN) chann&he noisds 0 mean anaf variance,

2.3.Channel Polarization and Polar Coding

Channel polarization occurs as a result of dombining and i{) splitting 0

independent copies 0fBMCsw , forming0 binaryinput channelss dp Q 0

where al most each of the newly constructed

extremes, 0 and 1 @isgoesto infinity. Formal proof of this phenomenon is given in
[Ar & k a nTheogeth Q We will start with the first level of polarization, and then

continue to th@eneral case.

We start with the basic channel transform using two individual chaanels the
first step of the recursiol, ¢ andw dh © + is obtained as shown in Figure

2.6. The newly constructed channel 6s
O 0D T W OW O ODA0 O OD (2.6)
Since the linear transform betwe&n and & is oneto-one (moe2 sum), andY

being identically independent distributed (i.i.d.) impligsalso being i.i.d., we have

the following:

oY o "Oh Mo oMy OhMw  ¢Ow (2.7)

12
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Figure 2.6. Basic channel combining

(2.7) implies that the channel capacity is conserved under the-stegléransform.
Up to now, this phase is called@sannel combininfA r € k a . We @0 IR left
hand side of (2.7) by using the chain rule:

oY M "oinq;‘g "oivnb g:Y 28)
oYy oY RY
(2.8) can be interpreted as follows: First term of the right hand €ld€{d> his the
mutual information between the inpitt and the outputé andd® with *Y treated as
random (noise) as shown in Figure 2.7. Denoting this channel agh © + | by
marginalizing (2.6) ovetY, the transition probability is given as:

®w 0P 0w 0D

alhe

(2.9)
D ODEO O OD

Yol o)

13
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Figure 2.7. @ after basic channel splitting

Next, second term of the rightind side of (2.8))0YM RY , is the mutual

information between the inplY and the outputé) and with Y known as shown
in Figure 2.8. Similarly, denoting this channelias gn © + N, the transition

probability is given as:

o O D goo oD gcbd)gjéé o ho  (2.10)

» g
R oy
Uj—— + |——» W
*, /’
iUz " " * Va2
2
W‘z[ )

Figure 2.8. @ after basic channel splitting
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With (2.9) and (2.10) one can see that the channel is split into twchsammelsg

andw .Ar é kallsrthis phase ahannel splittindA r é k a rj. With2tle€e Swo
phases, the polarization effect can be seen from the basic channel transform as follows:
Combining (2.7), (2.8), (2.9) we have

"Ow "Ow ¢Ow (2.11)
and further,
‘Ow oY Y
0 0D RY (2.12)

Y OYD "Ow
This concludes that
"Ow O  Ow (2.13)
Likewise, the Bhattacharyya parameter is transformed as
® W COWw W (2.19)
W W 0w (2.15)

The proof of (2.4) and (2.%) is given in[Korada, 200 Combining these two, we

have
RN RN CO W (2.16)
O W O W AR (2.17)

(2.11-17) imply that instead of using two independent channels, by combining and
splitting them, we get one better and one worse channel (i.e. two channels with either

higher capacity or lower capacity, respectively (or with lower and higher

15



Bhattacharyya paramese respectively). Due to this, we can also denote and

®w asw andw , respectively, of the initial channel. Once we have such
channels; intuitively, we want to send the information from the better channel, while
sending a known variableA rk&n calls these known variablesfeszen bits- from

the bad channels. This is the main notion in construction of polar codes.

With the basic transform having discussed, we can move onto the general case starting
with the second step of recursion whére T for illustrative purposes. Far T,
similar to combining two independent copiescdofto form @ , two independent
copies ofw are combined to obtaio , with the transition probability
® O T B »oOow
W ODAOAOA0 W VWD A6 W WD A0 W VD (2.18)
W OVEOMEd © OD W
The combining phase @f Tt is illustrated in Figure . In general, we can write

the following transition probabilities for the newly constructed chaonedp ©

+ formed by the combining and splitting operations. Combining phase yields

® o fTo; & 686 0 &, o (2.19)
where6 arethed6s wi t h odd ionhdwdBeh, ,andeds ar e
the even indices, i.& O MMM . Forp "Q 0hthe spliting phase
yields

w wh o0 1 c—w W D (2.20)

with the relation betwee@ and the previously constructed , channels where

p Q 0j¢can be written as

16
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Figure 2.9. @ after recursive channel combining and splitting

Furthermore, rate and reliability parameters are transformed as

Ow

Ow

j

17

(2.21)

2.22)

2.23)



O Ow ¢Oow

and

D W Cid W j 0 W
D w 0 W
(2.24)
D W ) qANAN
D w O w j O w
Similar to (2.7), the cumulative rate and reliability is given as
"Ow 0 @
(2.25)
D W 0 Ow

More detail and proof can be found [Ar & k a n Kora?ld) R09® Equations
regarding the Bhattacharyya parameter hold with equality if and oalyisfBEC.

Starting from the initial Bhattacharyya parameter denotei jasone can calculate
the Bhattacharyya parameters recursively as

Q

'rQ CTQ
for'Q phche B g . For the channels mentioned above in Figures 2.3, the

initial Bhattacharyya parameters are summarized in Table 2.1, along with the channel
capacities. Since the itral Bhattacharyya parameter of an AWGN channel is a
function of the noise variancg [H. Li & Yuan, 2013, we will denote it as

AWGN(, )in Table 2.1

18



Table 2.1. Channel capacities and initial Bhattacharyya parameters of BSC, BEC and AWGN

channels
Initial Bhattach
Channel Capacity nitial Bhattacharyya
parameter
BSC() 17 H() ¢cnp N
BEC({) 177 T
- O
AWGN(, ) ?I i@ — Q—

Polar codes are the codes that utilize the polarization effect. As discussed, the main
idea is to send information on the channels whose capacities tend to 1 while freezing
the bad channels whose capacities tend to 0. A polar code is defined with thetpara
OFMA O  whered ¢ is the codelength) is the number of information bits,
is the information set, i.e. indices of the channels that information will be sent over,
ando' being the vector of frozen bits. One can choose the frareasdesired. In

this thesis, we will use allero vector for the choice of frozen bits. Since probability
of block error for a GROF O polar code is uppdsounded byB ' ¢ @

[Ar &k a r, the(>-deinént information set is chosen frompf8 i) such that
the Bhattacharyya parameters satigfygo Ho forall@' and@ ' 8

In other words, we send the information bits from the channels with least
Bhattacharyya parameters. The remaining 0 number of bits of the sét are set

to the frozen variables that the receiver knows the values and the channels that they
are £nt from. Furthermore, sin@@ w is channel specific as summarized in Table

2.1, polar codes are also specific to channels.

Recall the basic transform given in the beginning of this section, we have the encoding

w 6 O and® O . We can represerihis as® 'Y i g E in vector

19



notation. Then, for the general case, git@n S ;[ , the encoded sequenie can

be written as

w 0670 (2.26)

where"G is the¢ Kronecker power ofQiie. '@ 6 § OIn( Ar ékan,
2009) Ar ék an uses a  pesuchuthat the enocodinghast r i x

6 6 'O ,however, he also adds thi@ can be used instead®f "G  to simplify

the encoding, with the decoding done inreitersed index order. We will do the
encoding as in (268 and change the order of @eling. The input sequenae is

constructed as described in the previous paragraph.

To explain further, we wilgive arate0.5 0 h) (8,4) polar codeexplicitly. This
code encodes T bits of information while freezingd 0 1 bits. Which bits

in the input sequenae are set to information or frozen depends on the Bhattacharyya

parameters of the channels: The Bhattacharyya parameters of the clanrfé
1, é, & WRoe® eare shown in Figure 2.10. In this thesis, we assume the
erasue probability of the channel is known beforehand, so that the polar code is
designed (i.e. the Bhattacharyya parameters are calculated) according to the same
erasure probability. Intuitively, since the code is specifically designed for the channel,
the deoding performance would be better than the code performance with a constant
design. Arékan calls [Aheéekam@Choadthg®etd ve pol ar
channels with the least Bhattacharyya parameters, the information bits are sent from
6 M and the rest is set to frozen bits. As an example, if the information

sequence isphrtpht , the input sequence will b miTdTiprdTdpht . With the

generator matrixd given as

20



[1 0 0 0 0 0 0 O]
11000 0O0O0
101 00O0O0O0
F®=1111100 00
1 0001000
11001100
10101010
(1 1 1 1 1 1 1 1]

the encoded sequence ¢s  Tiphtplphdpht, with the overall coplexity of
O 61 T0C8

Once the encoded sequence is sent over the individual chanaeld received as ,
the decoding is done a bitversed order as mentioned: Represerdings o hi.e.
letting the indices start from O and endOat p, the corresponding binary
representations of the indices aret i mih ph pfp Tt mifp phE p p
Reversing the bits, we getTt nitp mthn php pht rtip mih php p p which

yields miwthchptpluholyy . So, instead of decoding in natural order

done as in the aforementioned -tBversed order resulting in decoding

As discussed in Chapter 1, there are many suboptimum decddgarghems which

can beused nst ead of the optimum ML decoding

successive cancellation (SC) decoding algorithm that uses the previously decoded bits

without revising is used. Fgr "Q 0, the decoding algorithm is given as

, T OEE
ph E'@&E'’
5 5 (2.27)
.~ ., W 0 wh T
Qo T GEAOXEOA

whered is the log likelihood ratio (LLR) given by

21
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&
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0.1914 u | | A L + b w .
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[o3168_ur] :

Figure 2.10. Bhattacharyya parameters of (8, 4) polar code designed for BEC(0.5) and selection of

the indices (shown by red)

W
wp

The decoding starts at the rightmost column (i.e. the channel level}y

which can be calculated directly, and continues to the left Iével® and finally

reaches the decision leviéel 8Forp "Q 0] chthe recursive formulas far are
found from (2.2) and (2.2) as

(2.29)
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0 wh (2.90)

“ o .‘ , >
O: W Mg aoy L, w; My

Similar to Fastourier Transform structure, the SC decoding consists of butterfly
structures. Equations @8) and (2.8) can be used to calculate uppeft and lower

|l eft nodesd LLR values, respectivel y. Lo
Figure 2.11 and recalling from (2.9), thelowee f t node uses uppero
decode its own bit. Thus, in all butterflies, the lowee f t node waits f ol
decoding to result, which is completed using the results of the nodes on itstegkt. S

for an example decoding ford O o yfoh ofvhphxhp h rirdit - polar

code are given explicitly ipA r & k a r].,The Zdmpléxity of this decoding scheme

isalsod 01 TOC.

Another decoding technique is called as the belief propagation (BP) deddding.k a n
introduces this technique for polar codgsr € k a n ]. Th2 Gtdu€uoe of BP

decoding is explained in the next sectianich isaboutthe Reed Muller codes. It is

shown that BP decoding of polar codes have a better BER performance over SC
decoding Akdoj an, 2018; Chen, Niu, & Lin, 2012; Korada, 2009

1V (y2) 1Y ()

1P (y2) 1 (y,)

Figure 2.11. Successive cancellation (SC) decoder for polar code of code length 2.
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2.4.Reed Muller Codes

As mentioned in Chapter 1 of this thesis, Reed Muller (RM) codes are one of the
oldest, yet simplest codes in Coding Theory. They belong to the class of linear block
codes over Galois field (GF(2pith flexible parameters, thus draw attention due to

easeof theirdecoding algorithms.

RM codescan be constructed in two ways: either inductivelysing the Kronecker
product. We start with the prior case, as given by BlfBlahut, 1984. Denoting the

elememwise (Hadamardproduct of two vectors by , wecan write

—s | HhREpRE 4

i
s and| t , withF= and{} are single row vectors of the same

+ 1

length. When constructing the generator matrix of the RM code, one simply takes all

where=

possible row products defined By. Specifically, the generator matdx  of the

i th-order RM code, constructéaductively, with codelength) ¢ is given as

whereq is the allones vector of length , 1 is a&-by-0 matrix consisting of all

binary¢ -tuples in its columns, and all othgr 6 sg¢ & i are constructed from
all possiblea -row products fromy yielding to be an g -by-¢ matrix. The
minimum distanc&) of RM codes is; (see[Blahut 1984 for proof) and since
there ard8 SQ such rows, the number of information hitén the 6 i) RM code

is

(2.31)
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Note that RM codes can also be representeoliE bypair instead of ) i) . However,
due to notation used throughout the thesis, we will be usingithe notation for

the RM codes, as well.

As an example, if one wants to construct a (16, 11) RM code, then from (2.32) the

order of this RM code is found to be ¢. Then, the generator matrix of the (16, 11)

1
RM code isy 7 with
l
1 7 Isthe allones vector:
1T ePPPPPPPPPPPPPPDPP F

f 4 consists of all binarg  t-tuples its columns:

TN TMNTNTNTITNTITPEPPP P

=
434
© 34
p= R |
© O o
4370
© 470
= ol o)
golholhel
[ |
© 44
40 3
© o I
4 3070
© 4070
el
relicheke)

f 4 is constructed by taking atk  ¢-row products defined b :

JRLS LS L S| S L | S L LS S L S | S LY < o T °
MO T TN TMNTMNTMTTPE P T TP
U T T T T MM mmmpP TP M p T

T mnonnmnmnmnmnpop NN NTMTTTIITTP
Ift T T T T p T P T T T T T P T y
T M M p M M M P M TMMTP T T M U

Before mentioning the second construction method of RM codes, the rqws @an

be reordered by row echelon permutations, which have no effect on the code. Once

that is performed, it can be observed that actually consists ofO B g

mentioned for the Polar code construction, which naturally leads to the Kronecker
powerconstruction of RM codes. For the construction of RM codes with Kronecker

power, the¢  Kronecker power ofOis taken, and rows with minimum weightY
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are chosen. As an example, for the above (16, 11) RM ddde, T and the rows of

"O of weightat least 4 are chosen as the rows of the generator ratrix:

P PP M TMTMMTMTNMTITTMTNTMNTITTTT T,
‘Epnnppnnnnnnnnnn{'
b mpnrnpmmpnnnn OO T T
b pppPpPpPPPIT T
b pmm MmO pRN TN T T OT
T < IR LS T L S 1 G G G £ o N { O T £ G 1 G 1 O 1 G 1 o
b ppp MWL P PP T
b nmmomnnpnmnnmOp RO N TP T
‘b pmMmpp UM P P TMWTP P T
b mp mp mp mp WP WP TP T
b pppppepppppepppppp pY
It can be seen clearly that T once the suitable row permutations are

performed.

Similar to decoding opolar codes, a recursive decoding algorithm for RM codes was
proposed[Dumer, 2017. It is pointed out by Korad§Korada, 2009 that this

algorithm is similar to the successive cadcl at i on al gorithm propos
[Ar & k a n.,RM 2ode3 are proven to be capacity achieving on both erasure and

error channel§Abbe, Shpilka, & Wigderson, 2015; Kudekar et al., 2DBAd

outperformpolar codes when MAP decoding is ug&tbndelli, Hassani, & Urbanke,

2014, howeve they fall behind when SC decoding is ugddshemi, Dan, Mondelli,

& Gross, 2018 Mondelli, Hassani and Urbankleususe the two in a hybrid structure

and benefit from both under certain channel conditidandelli et al., 201} Forney

poposes another decoding called fiBelief Progy
graphs [Forney, 200], among which RM codes also belong. BP decoding

performance lies nearly halfway between that of MAP and SC decoding, and in fact,

SC decoder is a p#cular instance of BP decodfforada, 200P BP decoding can

be used for both RM anmmblar codes, but it is shown that performanceadér codes

under BP decoding is better than that of RMcddes € k an], 2010a

BP decoding is a message passing algorithm on factor graphs, and it is based on
Gal |l ager 6s L[BEKel€sh, Cantmerdr] Ebada, & Ten Brink, 2D
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consists ot | | @G stagesandl I @ processing @ments (PE) depicted with

dashed box in Figure 2.12 and detailed in Figklb.gur e 2. 12 i s al so «
g r a [Dénoting the nodes of PE witffiQwhere'(s the stagep Q ¢ p and

Qs the bit index p Q 0 , at each PE, messages asssed from left to right

(denoted a$ ;) and from right to left (denoted &&; ) by

0 Q0 Y,
05 0 Q0 RhY;
R i RNY R 2.2)
Y . QY R oY &
Yo Y QY
where0 ¢ ,0 Tipf8 isthe time index anéhd 1 T-6—.

I. — message propagation

!
|

®
+
L ]
L ]
+
[

f
|

[ ]
[ ]
L.
+
[ ]
+
_
[ ]

®
®
il hY
S
\
S
( A

|

R — message propagation

Figure 2.12. Belief propagation (BP) decoder construction for RM codes of code length 8. The

dashed line shows a processing element (PE)
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Figure 2.13. Details of a processing element (PE) used in a BP decoder

The initial leftmostY . messages, denoting thgriori information at the decoder,

and the rightmosd . messages, denoting the channel output, are initialized as

) S0 TTw
) R I 156 .
VLW pPpw
m E'®EO EIT &l Oi £
Hh E@&EO A£O01 UAI

while all other nodes at tim@ Tt are set to 0. The decoding iteratively continues

(2.33)
v .

until a predefined number of iteratiods are performed. Assuming the decoding
is finished atb  "Y the LLRs of the estimatds of the input®¢ and the transmitted
codeworde are calculated as

mh EUE Y, T

p I OEAOXxI
w 0 Y

o«

(2.34)

h

Sinceb  may result in decoding latency, the iterations may also be stopped when
early stopping conditions are met. Although suggested primarily for the polar codes,
we prefer to mention these in this section due to the given context of BP decoding, yet
without giving too much detaiElkelesh, Ebada, Cammerer and Ten Bdekcribe 3
stopping criteria called as the practical, perfect knowlduizged, and CR@ided
stopping condition§Elkelesh Ebada, Cammerer, & Ten Brink, 2018&he first one

is simply the generator matrbased 7 based) condition where the iterations stop
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whene O is satisfied and thug is a valid estimate. The second one continues
iterating until0 ¢ is satisfed, which requires the knowledge of the information bit
and thus may baei dcead dl,e da nads tihgee nliaest one
cyclic redundancy check (CRC) code tha¢aks upon the information bits. Yuan and
Parhipropose a minimum LLMased criterion that stops the iteration when all LLRs

of ¢ exceed a given threshold valpduan & Parhi, 201 Furthermore, an adaptive
stopping condition that is based on channel condition estimation that determines this
threshold with respect to the channel SNR is proposed. In summary, both of the
aforementoned proposals improviee performance of BP decoders.

2.5.The Wireless Fading Channel

As mentioned before, propagation of signals in wireless chanmgélsectromagnetic
waves. Assuming no phase offset, we can denote the band pass input dignal as
POOQ where 6 0 is the complex envelope aof 6 and "Qis the carrier
frequency. Due to reflection, diffraction and scattering, there are many paths of a
single transmitted signal, each with different delays and Doppler phase Bhéts.

the resulting received signal is sum of all delayed and attenuated replicas of the

transmitted signal:

10 P | 000 T 0 Q (2.35)

where¢ denotes th&th path € 1 denotes the linef-sight (LOS) pathy | ©

being the attenuation factor (which is a function of path Idss§ being the time
delay and%o being the Doppler phase shift ©th path (Note that the Doppler shift

on £th path is"™Q 0 "QF 60 and% | ¢"Q 0'QQ. Letting %o 0

¢‘'Qf 0 % so that it represents both delay and Doppler phase shift, the

simplified version of received signal is
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io P I 0Q 6o t o 0 (2.36)

On the other hand, if we model the channehdmear time varying system with a

baseband channel impulse respots#t , we can simply writd 0
P _ Qotoo tQTQ . Comparing this to (2.37), we have the impulse

response for a fading channel as

Qont 0 1t t oo (2.37)

where] O is thedirac delta function. For the discrete case, we can naturally write
we¢ B Q& wa & such thatQ a is thedh channel filter tap at timé&
[Rappaport, 1996 We will not go into further detail as it is sufficient to keep in mind

that the channel impulse response is a function of attenuation, delay and phase shifts

for the scope of this thesis.

As mentioned before, fading is variation in signal power oves ind frequency, and

can be divided into two: largecale and smalcale propagation effects. The former
effect is mainly due to path loss and blocking of objects, i.e. shadowing, in relatively
large distances and time durations, while the latter effectcterizes the rapid signal
power fluctuations that happen in much shorter distances and time. Both propagation
effects are modeled statistically. Without loss of generality, the term fading alone is
used for smaikcale propagation effects and we wil toncerned smadicale fading

in the simulations performed in Chapter 3.

Factors affecting sma#icale fading can be stated as multipath propagation, speed of
the mobile station with respect to base station or the surrounding objects, and the
transmisgn bandwidth of the signalRappaport, 1996 From (2.%), due to
randomness and dependency on delay and Doppler shift, it is evident that there would

some key parameters when defining a fading channel such as how fast the channel
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changes over time or fragncy.Coherence timeepresents how fast the channel is
changing over time and is a function of Doppler shifts of different paths contributing

to the same filter tajf2 & : If we denoteDoppler spreachs maximum difference of

Doppler shifts, i.e/0 D | r{fﬂ‘Q’r 0 1 o0, then the coherence time ¥

pX1’O . When the codeword length spans multiple channel fades, or equivalently many
coherence periodsY, we have thdast fading channelln fast fading channel, the
channel changes are fasat the bit errors for the individual bits are indepenflesg,

2004]. Going further, if channel ta® & remains constant ovéY symbols, we have

the simpleblock fading channehat can be thought as parallel channels with filter
taps being constant within the block, while being i.i.d. among different blocks. We

assume the block fading channel model throughout the simulations in Chapter 3.

2.6.Further Notes and Literature Review

In this section, wegive some further notes aiy to summarize the existing work

related to our work presented in this thesis
2.6.1.Decodersfor RM and Polar Codes

From the point of view of Kronecker product construction of RM codes, it is obvious
that RM andpolar codes are very similar, termsof their generator matrice¥he
difference is thatRM codesuse minimumdistance rule while theolar codesuse
minimum Bhattacharyya parametede. In other wordspolar codes are chanrel
specific whereas the RVbdes are chann@ldependent. It is showthatfor ¢ T,

the generator matrices of the two codes are exactly the same, bui afterg the

rows of the generator matrices start to difier € k a rj. Nong2tliel@és®, they can be
decoded using the same decoders. As a result, due to the siesiliaritioth encoding

and decoding, they remain to be close relatives and they are often compared in terms
of error rate performance. While doing so, further decoding techniques that can be

used in decoding either of the two codes are used:
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i. CRGaided Decodig
CRC code is an erratetecting code that is basedaytlic codes andheckghe data
by adding someredundancy It is commonly used in various areas such as
telecommunication standards such as 3GPP or GSM, mobil®nkstar computer
architecturesTheyare denoted as CR&wheren is the number of redundancy bits.
Since all of the decoding techniques may well be improved with the help of a CRC
code, we will not be going much further in detail here (and also in the following
described decoding techniqliesxcept mentioning that it was shown that a SCL
decoding of polar codes with CRI& outperformed statef-the-art LDPC codeg§Tal
& Vardy, 2019. For other applications of CRC codes usedecoding of polar codes,
preferred readers may ref®l Li, Shen, & Tse, 2014; Murata Ochiai, 2017; Niu &
Chen, 201p

ii.  Permuted Decoding
Due to iterative construction of polar codes, one can easily manipulate the stages of
the factor graph, such that the stages are permuted. IHwssami, Korada and
Urbanke[Hussami et al., 20Q9nd Koradaalone [Korada, 200Pto first mention
permutation of layers of the factor graph for decoding of the polar codes, leaving it as
an open problem. Since there &re 1 | ¢ layers in a factor graph, there arways
to construct it, irrespective of the type of decoder used Aesult, we will mention
the permuted SC and BP decoding (PSCD and PBPD, respectively) here.

A

Vangala, Viterboand Hongi ve t he proof otfinvagiance@awler 6 s per n
uses the permutation over the SC decoder. They show that although the pedormanc

is degraded when PSCD is used for the polar codes designed for the standard SC

decoder (which is the breversed decoding order as given in the original construction

of polar codes), the PSCD performance is exactly the same as SCD when the polar

code caostruction is matched to the permutation used at the decoder (i.e., the order of
Bhattacharyya parameters of the bit channels are in the same order as the decoding

order) They also conclude that using the latter case, if exactly the opposite order of
thebyers (with respect to Arékandés original
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construction, the decoding order becomes the natural order which results in less
complexity and latency of the decod¥iangala, Viterbo, & Hong, 2014

Permutation on the BP decoder is also up&kidoj an, 2018; Doan, Hashemi,
Mondelli, & Gross, 2018Elkelesh et al., 2018zElkelesh Ebada, Cammerand Ten

Brink use these different permutations in series such that if one permuted factor graph
fails to decode the received codeword, a permuted version of it is used until a
predefined number of maxum permutations is reached. They conclude that using
more than one representation (i.e., permutation) of the factor graph results in improved
decoding performance, and even outperforms SCL decoder when a proper stopping
criterion (for example, perfect kndedgebased one) is usgétlkelesh et al., 2018a

Unlike the random choice of permutation used in the prelyomentionedwork,

Doan, Hashemi, Mondeland Grossproposea method to construct a predetermined

set of permutations, which consists of only the good permutations of the original factor
graph, andt is shown to improve FER performance. Interestingly, they also mention
that the good permutations are those which are obtained by permutiledgtrimast

side of the factor grapfDoan et al., @18 (Although the authors conclude it as
Arightmosto instead of Al eftmost o, t he
opposite of the onasedin this thesis, as shown Figure 2.12. Thus, we give their

result the opposite way, without loss ofdrmation). This conclusion is also verified

by numerical calculations y A k duvbgalaorinvestigates the use of multiple factor
graphs, both dependently (by Il etting the
be filled by that of previous factorraph) and independently (by sending the
undecoded codewords to the next factor graph), and concludes that dependent use of
multiple factor graphs outperform the independent use under BP deAlag an,

2019.

Another way of using #hfactor graph permutations both for futar and RM codes,
referred to as Successive Permutation SC List Decoding (SP&Cdiscussed by
Hashemj Doan, Mondelliand Gross Using the code partitioning describdxy

Hassanet al.[Hassani et al., 2018t is pointed out thiethere are actually more than
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¢ Apermutations, and thus they propose a method that constructs the best permutation

Aon the flyo, I . e. during the course of dec
most reliable LLR values. Once conducted both forS@eand SCL decoders, this

scheme shows improved FER performance in decoding both of the Etzddbemi et

al., 201§.

iii.  List Decoding

List decoding was actually mentioned for RM codes using their recursive encoding
structure called as tHelotkin constructionfDumer & Shabunov, 2017A r € klson
mentions this construction for Polar coflds € k a nand[R10 & B a n], PlokiA 1 0 a

construction basically decomposes th% code onto subblockse‘l P and

S until the repetition codesé2 forany'Q pHB £ i and full spaces g
for any’'Q pfB h are reached. As a result, tiéie construction is formed and
recursive encoding and decoding can be performed (for detailfDaeer, 2004,

2008).

List decoding of polar codes are considered both for the SC andd®8etsTal and
Vardy propose list decoding to the SC decoder, referring to as SCL decoding with a
parameter0 called the list siz§Tal & Vardy, 2013. The decoding is performed
successiely oneby-one as in the original SC decoder, but the SCL decoder takes
decoding paths into account when decoding the next information bit: When decoding
an unfrozen bit , the decoder splits the previoislecoding paths (used for the
decoding of the previous information bits into two such tha® can either be 0

or 1, and then keeps the most likélpaths for the next decoding phase. At the end,
the decoder chooses the most likely path amompagths, giving a single decoded
codeword. Whe  p, the SCL decoder is simply the original SC decoder where it
decides a decoded information bit to be 0 or 1 instantly at each decoding phase
(without keeping trackf decoding paths). It is observed tleator rate performance

is improved with increasing list size, with a cost of increased complexity and latency.

Hardware improvements regarding this issue, such as partitioning the decoding paths
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(referred to as partitione8CL (PSCL) to reduce memory rgements exist
[Hashemi, BalatsoukeStimming, Giard, Thibeault, & Gross, 2Q1éut hardware
implementationconsiderations areot within scope of this thesis. Nonetheless, the
performance is comparable to statethe at LDPC and Turbo codes, and indeed SCL
decoding of Polar codes outperforms LDPC codes used in WIMAX when CRC
precoding is usefilal & Vardy, 2015.

Unlike the serial use of permuted factpaphs discussed in PBP decod&ikelesh,
Ebada, Cammerer and Ten Brink tise BP decoders in parallel, resulting in the BP

List (BPL) decoding of polar codes. The proposed method is to gelegt cyclic

shifts among different factor graph represeatet, decode the received codeword
usingL parallel BP decoders, and finally picking the codeword closest (in terms of
Euclidean distance) to the received codeword. They claim that this proposed scheme
Is the best iterative decoder, in terms of sl@toding and low latenchElkelesh,
Ebada, Cammerer, & TerriBk, 2018l. They also use RM and polar codes together,

which is described in Chapter 4 of this thesis.

2.6.2.Fading Channels andPolar Codes

Existing work relating to polar codes and fading channels do nofafatack. Our

underlying motivation to invefgfate this relationship is mainly due to the work of,Liu

Hong and ViterbgLiu, Hong, & Viterbo, 201V. As the probability of error in a fading

channels inversely proportional to the channel gain (or fading coefficient), they claim

t hat the fading channels are naturally
pol arizationo. They propose a new met hod
specifically for the fading channel thus match the polar code construction to the fading
channels. This method is found to provide 1.5 dB gain over LDPC codes at block error

rate 10",

BravosSantos and Trifonov botharrow the fading channels to only the Rayleigh

fading and consider the polar codes for such chafBedso-Santos, 2013; Trifonov,
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2015. Bravo-Santosconstructspolar codes assuming the channel statistics such as
either channel distribution or chanrsghte informationi.e. CDI or CSljs known for

binary input and for block Rayleigh fading channels. Compared to Turbo and LDPC
codes, it is shown that the suggested scheme is closer to the theoretical limit when
large codelengths are usedBravo-Santos, 2013 Similar to fading polarization
mentionedby Liu et al. [S. Liu et al.,, 201]; Trifonov models the polarized
subchannels as fading channels whose gains have.CHlistribution which is a
general case of Rayleigh distribution. It is noted that this modelling can be used to
estimate the error probabilities in the polarized subchannels. Furthermore, it is pointed
out that classical polar codes perform poorly in thknig channels unless the code is
optimized for the Rayleigh channel, frozen bits are dynamically set to linear
combinations of other symbols, and sequential or list decoding is used. For the latter
case, it is shown that use of dynamic frozen sympuaisidessignificant gain over
similar LDPC coddTrifonov, 2015.

Continuing with the block fading channeBputros and Bilieri state that unlike the
natural construction of polar codes which is deterministic; in block fading channels,
the channel polarization can be thought as multiple parallel channels having different
mutual informationWithin a block of0 symbols, theyassume only two fading states
with no specific distribution and affectingZc symbolsirrespective of the order,
which they r ef erAsaresuliateey dbsewé theippldrizmtion effectd
on 3 differentsuchmultiplexed structureBy analying the mutual informationutage
probabilities|Boutros & Biglieri, 2013.

Similar tothe work ofBoutros and BigliefiS i Koyl ¢o0] | upropased Vi shwana
hierarchical polar coding scheme for block fading binary symmetric and additive

exponential noise channels without CSI at the transmitter. For the block fading BSC

case, they start with two channel states that one block can be in, and genefalize to

states[Si, K° y | ¢ &]Vishwanath, 2014 Observing that this work is mainly

theoretical, v leave the details af to Chapter 3 where we try to investigate the bit

error rate performance of this proposeteme.

36



CHAPTER 3

HIERARCHICAL POLAR CODING SCHEME
FOR FADING BINARY SYMMETRIC CHANNELS

In this chapter, we compare the hierarchical polar coding scheme for binary fading
channels proposed by Si, KSl ot B,;201 With and V
Arékands originalAr @ld rg,We Z&BEefly expldnthe e

scheme and then compare the BER (bit error ratio) performance of the hierarchical

polar coding scheme if8i et al., 201} with that of the plain polar codinghAr € k a n

2009 under similar conditions.

3.1.Propors ed Scheme by Si, K°yl¢ojlu and Vi sh

Si, Koyl ¢o0] | u prapost a Vierardnivah coding rschertmat uses

multiple polar coding phaseer block fading channels with additive binary and
exponential noise channels. Inthisthesi® cal | t hi s odedwe tama 0
focus on the fading BSC case as the model of the AWGN block fading channel with

BPSK modulationThe author@assume that only the decoder knows the channel state

information (in short we will denote thisas@Bkasi c hannel state info
decoder 0), whi |l e wsthechannelastats statistEbreimpliatyy | y k n ¢

we focus on the case of tvabate fading channel, where there are only two fading
states that a block may encounter, althougfSinet al, 2014, generalization t&

states is also given.

Referring to Figure 3(b), the output® of a fading BSC with inputv can be

represented as

N ORS Orh Q pB R ® pM WA (3.1)



where0 is the block lengthy is the mmber of blocks, andoyf6s are i dentical

Bernoulli distributed within a block and independent over fading blods
mentioned before, we assume only two states; that is, with prob#pfithe blockd

can be in State 1 andth probabilityry p 1, it can be in State 2. For the blocks
in State 1, the nois® j; is Bernoulli distributed with parametgr. Likewise, for the
blocks in State 2, the noisg}; is Bernoulli distributed with parametgr 1) . These
probabilities will beused to model the AWGN channel with BPSK modulation as

discussed below.

As mentioned in Section 2.when we talk about fading channels, for the discrete
AWGN case, we have® @ & whereQis the channel gain andis the Gaussian

noise. With BPSK modation, this channel can be considered as a binary input and
binary output channel with transition probability relating to the AWGN channel state

In other words, since the channel is assumed to be constant over a block, the channel
gain'Q; 'Q,!"Q phB R hwith probabilityy for i ¥ pky and the equivalent
fading BSCs have the crossover probabilities

~

niody p p BQANYOY (v pit (3.2)

wherel3 ® is the cumulative normal function of the Gaussian distribu(®ee
Appendix Afor proof). As a result, the two fading blocks are equivalent to two BSCs:
®w "3# andw " 3 A

The overall capacity for the&ate fading BSC is
0 ne On
, . , o~ (3.3)
npe ©On P n p On

and the authors state that the proposed polar coding scheme achieves this capacity

without channel state information at the transmit&ret al., 2014
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Itis assumed th@t.5 1 1, sowe will callo as the bad (or degraded) channel
andw as the goodor superior) channel. Since Bhattacharyya parameters for the
construction of polar codes are required, the information bit indices of the bad channel
are a subset of that of the good channel. This is given in LemmBiaifal., 2014

After reordering the indices, they are grouped into three sets as shown in Fig.3.1.

1.
2.

Set: where both channel s6 capacities ten

Set! where the degraded channel s capac
superior tends ta.

Set where both channel s6é capacities ten

Figure 3.1. Choice of information bits in a codeword of length N according to the encoding scheme

proposed iffSi et al., 201} for two fading states (reproduced frg@&i et al., 201}).

Then, if we denote the sets of information bits asand'  for the degraded and

superior channels, respectivelye can write' : and’ : * ' handthe

following relations are formedonsidering theises of these sets:

ss § s p Of fO
g s s ss s On On 0 (3.4)
ss 0 s s Of 79O
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where'O O is the binary entropy function and the offsein Tip approaches @s
0 © Ho. One should notice that, the overall code rateYis 1 'Y p Ny,
whereY s Sf0 p On T andyY Ss g sTo p 0On T .
So, the code rat& is less than the-&tate fading channel capaciig P
"'On given by (3.3) andY is less thams p On onlyfor nonzero values

of the offsef 8

Looking at Fig.31, regardless of the fading state, the channel with indices in the set

always polarizes to a good channel (the capacity tends to 1) and in the similar manner,

the channel with indices in the setalways polarizes to a bad channel (the capacity

tends to 0). Then, we can send the information bits at indices belonging:to set
reliably, whil e we can Afr eeHBHavevertthee i ndi ces
indices over the set behave differently:With probabilityr) , the constructed

channel is in the degraded state, while with probalplityr} , the constructed channel

is in the superior state. In other words, the information bits are sent unreliably with

probability } . So, the channels in set can be modeled as a BEC with erasure

probability of : & T 6 ‘Od&) 8As a result, the uncertainty in layer can be

overcome by exploiting an overlaid BEC over the fading BSCs.

With this being said, the encoder hierarchically uses two phases to corestruc
codeword of lengtly 6as explained in the next section, followedthy block fading

channel modelling and finaltye threephased deced to decode the information hits

3.1.1.Hierarchical Encoding
3.1.1.1.Phase Ii BEC Encoding

In this phaseg s polar codewords specified by the paramecffﬁ! i At are
constructedy setting the frozen variables towhere' is theinformation set for

W O0'0d suchthat

40



PN 160 (3.5)

wheremt | L p 1 and vanishes as gets large enougihe encoder generates

g s 0 bits denoted as such that

-l
D>
oc
o

3.1.1.2.Phase 2 BSC Encoding

In this phased polar codewords specified by the parameteis $1 < ' ht, where

: is the information set fab 0 "Y@ , are produced. Unlike setting all of the
frozen bits to O, the output of the first phase is transposed and used as frozen bits,
along with the remaining zeros. The encoder thus encodess+ = (where

“(.) is the permutation to order the Bhattacharyya parameters in ascending manner,
for the degraded channel) and generates an overall codeword of {eigthhe

overall encoding scheme is shown in Fig.3.2.

: T '
' Phase 1: BEC Encoding 1
' 71 x Cp = M 1
I 1 '

] i
' | transpose i

1
! Phase 2: BSC Encoding ™

Figure 3.2. Polar encoder proposed|i8i et al., 201}for a fading binary symmetric channel with
two states (reproduced frof8i et al., 201}
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3.1.2.The Block Fading Channel

® © © 8 8 f
®w 0w w 8 8 o =
The output of the encoder denotecHas & 8 8 8 8 & &
w 0w 0w 8 8 w L

such that @ hd pdPhQ pd) is transmitted from the fading BSCs as
follows:

. N . n O BermnmPMEATOGRA OAAAA

bn ©RS Grsuch EhEL L b 1aaMoact | GO
In other words, if the blockis in the degradefl fi b atangl state (which happens
with probabilityrj ), the noise added to this block is distributed as Bernoulli random
variable with probabilityj hand if the block is in the suger ( fi g o chahne) state
(with probabilityy  p 1), the noise added to this block is distributed as Bernoulli
random variable with probabilityy . After = is transmitted from the fading channel,
the received codeword such thatl &:h'Q pdih®d pdd is decoded using
three phases, with the channel state information being known at the rexseshewn

in Figure 3.3.

3.1.3.Hierarchical Decoding
3.1.3.1.Phase Il BSC Decoding 1

In the first phase of decoding, the decoder uses the classical|BSEC (successive

cancellation) polar decoder with parameter

n - E'@ - .
° T grom, N gm0 N QPP
v V,d)“ (@) Fb Tt (37)
0 o F mhE A& ¢ 0
ph | OEAOxEOAS
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This procedure decodes the information bits in blocks with respect to the superior
channel states reliably; however, the ones with respect to the degraded channel states
cannot be decoded reliably, because the frozen bits of the degizai®dkel states

(G i ) are unknown due to the unknown set Thus, a0 ¢ Smatrix= is

constructed by choosing the rows corresponding to the superior state directly from this
phasebs output and the rows correspondin
which are then sent to the next phase.

3.1.3.2.Phase 27 BEC Decoding

In this phase hte frozen bits with respect to the degraded channel states are decoded

using the classical BEG( -SCdecoder with parametér :

Tt . 1
\ 4 g EE g 5, ”
O T .~ = . h ; h Q
Qodash)d, = P
, : : n 3.8
Q ¢ Fl‘) % “’T[FIE(:)IE OCSSh)CL " P ( )
O@S da I|‘pv (b C’)cssh‘)q, p
trph ot her wi se.

The output is the estimate of the information bits constructed in Phase 1 of encoding,

reconstructing the erased bitssn Then the blocks corresponding to thegraded

channel states, which are not decoded in the previous phase, can be decoded using the
next phase.

3.1.3.3.Phase 3 BSC Decoding 2

Finally, in Phase 3, the remaining blocks corresponding the degraded channel states
can be decoded using the BHC -SC deoder with parametat d,
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o i Ov hE®E! h Q od)

|pv'(bﬁ (A')CLFDCL Tt (39)
Q- ¢ FD ThE A& = P
R®Mq Ty wp ogdy p

rph ot her wi se.

For the indices in set , the frozen bits are set to the values-jiwhich is constructed

from the estimate- from the previous phase, and for the indices in s¢hey are set
to 0. For the indices in set LLR calculations are done, just as if agdical BSESC

was used. The overall decoding scheme is shown in Figure 3.3.

In Phase 1, only the blocks in the superior state are decoded; while in Phase 3, only
the blocks in the degraded state are decoded. In Phase 2, all blocks are decoded using
a BEC() )-SC decoder.

The performance of this scheme is intuitively discussd8iiet al., 2014]finalized
with a theorem stating that as long as the designed rates of polar codes do not exceed
the corresponding channel capacities, all information bits are dicoald

O 06l TICO complexity.

3.2.Simulation Results

In this part, we compare the mufthase polar coding schenmeoposed bySi,

Koyl ¢of | u anpSietdl,i2@1thatan ad &l | -ct ohdee A W& Wt ahn 6 s
original polarcode[A r €& k a rj, which @esBnply calii Ar & k a ncbosd epide | oarr

Apol ar coded. We constructn& pmlinaY code at
with respect to both the degraded channel probabilitand the superiochannel

probabilityy for performance comparison. The SKcoder is assumed to know

the channel states, so that the appropriate blocks are decoded in Phase 1 and Phase 3

[Sietal.,2014] Such i nformation is redundant for
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selection of Dblocks Awith respect to c¢ha
works on all blocks irrespective of their fading states. In the simulations, the SKV
code and th& r & k molar@ae are subjected to exactly the same channel states and

channel noise.

Phase 1: BSC Decoding @

- —on{ - -
|4 B

, transpose

BSC Decoder I \J

Phase 3: BSC Decoding 11 *

- e ele
Ig1 ial  |F|

Figure 3.3. Polar decoder proposed[i8i et al., 201¥for a fading binary symmetric channel with
two states (reproduced frof8i et al., 201}

It should be noted that, from (3.4) and (3.5), cae see that the design parameters of

the SK\tcode result in code rates very close to the channel capacities which need to
bedecreased for practical code applicatio
code rateisY sSI0 p On § whose channetapacity isO P

"On ; and the code rate of the first BSC decoder (which is with respect to the good
channel) isY ss g st p On T whose channel capacity is

0 p "ON . Similarly, the code rate of the BEC encodefYis ' 70

p 1N 1 andthe channel capacity@ed 6 Od) isO p n.Ascanbe
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seen, proper offsefs and] are needed so that the code rates are smaller than the

channel capacities.

We determine these offsets uniformly by fixing the code¥éi® a percentage of the

capacity0, such thatY | § wherem | p. This implies© T 10 ;
hencej p | 0 forthe BSCsn andw ; similarly] p | O forthe
BEC,w.

 For the SKV-code;'Y 07 |6 ,Y 07T |06 and’Y
OX6 | 0 .As aresult, the overall code raté, 'Y p 1 Y is
settled ag times the overall capacity given by (3.3);i.e’Y | 0
o Forthe BSCsv and® hthe initial setss §8 sands, sgiven by (3.4)
become ss | p Ofn 0 0, ¢ s | p On O 0
O U andss 0O 0.
o FortheBEC®, ' P RO U .
 For the polar code denoted byh) the rate is also adjusted such tat
Y | O
o Corresponding number of information bits of the polar code is found as
O nuov p N U YO.
In the figuresof this section, we plothe BER performancesf the SK\:codesand
Ar ékanods p o lna the probabibtysof beiagrinsthe slegraded channel; for
a codelengthd 256 and number of blocks 256. On each figure, we add the

uncoded BER performancg,n P N n,asagreen reference curve.

We fix the crossover probability of the degraded chanpeto 0.1 and assign
probabilitiesry 0.1, 0.05, 0.02, 0.01 and 0.001 to the superionicblato observe
probability ratios of 1, 2, 5, 10, and 100, respectively. We start by choosing the

coefficientf  "YX0 as 0.6 for all values af andr .

Firstly, thecaseaf 1  0.1lissimulated but not plotted, to confithat theSKV

and pola codes become the same when there is onlychaanelstate Specifically
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speakingthe erasure chann®l does not existwhap 1) ,since the se sshown

in Figure 3.1 vanishes. As eaault, there is no BEC encoder and decoder in the-SKV
code. ItsPhase 2encoderis equal to thgolarencoder; ands Phase 1 and Phase 3
decoders are equal to tpelar decoderHence the SKV and polarcodes perform
exactly the same when the crossover probabilities of the BSCs are equal, which is

verified by thesimulation results as well.

Comparison figures of BER performance begin with a superior channel of transition
probabilityry  0.05;i.e.f 7 . In Table 3.1, the channel capacities, 0
0 and the overall channel capacitycorrespondingo 1 0.1,n 0.05 for
different values of| are tabulated, along with the adjusted values)foib ,0 and

0 which yield code rates equal to 60% of the related capacity.

Table 3.1. Channel capacities 5 [ |, the overall channel capacityforn, 0.1, 0.05,

corresponding number of information bits, 0 , 0 andv for| 0.6

n 0 0 61 6 O ss| L ss gs |0 0

0.1 0.695 | 0.9 138 107
0.2 0677 | 0.8 123 104
0.3 0659 | 0.7 108 102
0.4 0641 | 0.6 92 99
05| 0531 | 0714 | 0622 | 05 82 110 77 96
0.6 0604 | 0.4 61 93
0.7 0586 | 0.3 46 90
0.8 0568 | 0.2 31 88
0.9 0549 | 0.1 15 85

Notice that the maximum value of the capacitpis p OnR forg O;i.e,

when the channel is always in the superior state, and the minimum capacity value is
o p On forf 1, when the channel always remains in the degratie.

Thereforethe overall channel condition deterioratesrpsncreases.
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In Figure 3.4, we plot the BER performance of the StOde withv 82,9 s

O U 28 (red curve) and the polar codes designed both with respect to the
degraded channeb (blue curve) and the superior chanael (pink curve) against
increasing valuesf 1] . Recall that the overall code rate is a functiomof thus it
does not remain constant at each stepj ofThisalso yields varying polar code rates
(from 0.43to 0.32 ag] goes from 0 to )1 as well. However, the code rates of the

SKV-codes for the individual channels andw are 0.32 ad 0.43 respectively.

Bit Error Ratio (BER)

—&—SKV-code
—=—Polar code (p,) Il

o Polar code (p2)
Uncoded

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Probability of being in the degraded state (q1)

Figure 3.4. BER performance of the Sk¥@ode and polar codes for different probabilities of the
degraded statéy, & 256, 1 0.1, 1 0.05, with code rate¥  0.60

FromFigure 3.40ne observes thatfay  0.53, the SKVcode performs much better

than the polar codes. For the smallest valugjof 0.1, the SKVcode provides 3

times better BER performance over the polar codes, and it is about 20 times better
than the uncoded case. However, fpr 0.53 the performance of the Sktbde

starts to become worse than those of the polar codes and it approaches the uncoded
BER performance af 0.9; where polar codes provide 10 times better BER

performance over the uncoded case and the-8&dé. It is also obseed that the
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choice of the design parameter for the polar code fj.e., 0.1 orr;  0.05) does

not make an appreciable difference.

Next, we incrase the gap between the channels and continugywith0.1 andh
0.02i.e.,i M 5,thatwould yeld the channel capacitiés v h andd along

with the adjusted values for the information bits given in Table 3.2.

Table 3.2. Channel capacitie§ h 5 |, the overall channel capacidyfory 0.1,  0.02,

corresponding number of information bits, 0 ,0 ,0 andrateY 0.60.

n 0 o} o} o} 0 0 0 U] Y

0.1 0.826 0.9 138 127 0.496
0.2 0.793 0.8 123 122 0.477
0.3 0.760 0.7 108 117 0.457
0.4 0.728 0.6 92 112 0.438
0.5 0.531 0.859 0.695 0.5 82 132 77 107 0.418
0.6 0.662 0.4 61 102 0.398
0.7 0.629 0.3 46 97 0.379
0.8 0597 0.2 31 92 0.359
0.9 0564 0.1 15 87 0.340

Since the overaltapacity is increased, the polar cad&e'Y is alsoincreased. We

plot the BER performances in Figure 3.5, whemeobserves similar curve shapes to
Figure 3.4: the SK\ode curve that is below the polar code curves for small
crosses them at  0.71. Polar codes outperform the SKV coderfor 0.71, but

their performance is worse for small valuesiof where thecode rateY is higher

This declining behavior of polar codes for smplimplies that, although the channel

is more likely tobe in the superior state, yet the errors made in a few degraded blocks
by overrate polar decoders dominate the overall number of errors. Again, the SKV

code approaches the uncoded BER curvg ascreases.
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i —&—8KV-code

Polar code (| |
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"4 4 Polar code (p,)
10 ‘ ‘ | | Hicoded
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probability of being in the degraded state (q 1)

Figure 3.5. BER performance of the Sk¥@ode and polar codes for different probabilities of the
degraded staté) 6 256,11 0.1,  0.02, with code ratey  0.60

Decreasing) further to 0.01, we simulate a channel conditionrfaffj  10. In
Table 3.3, we tabulate the corresponding channel capacities and the number of
information bits for these channels.

Table 3.3. Channel capacities 5 5 ,the overall channel capacityfory 0.1,  0.01,

corresponding number of information bits, 0 ,0 ,0 andrateY 0.60.

9\ 0 0 0 0 0 ] ] 0 Y

0.1 0.880 0.9 138 135 0.527
0.2 0.842 0.8 123 129 0.504
0.3 0.803 0.7 108 123 0.480
0.4 0.764 0.6 92 117 0.457
0.5 0.531 0.919 0.725 0.5 82 141 77 112 0.438
0.6 0.686 0.4 61 106 0.414
0.7 0.647 0.3 46 100 0.391
0.8 0.609 0.2 31 94 0.367
0.9 0570 0.1 15 88 0.344
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Once we plot the performance curves for these codes, as shown in Figure 3.6, we

observe two distinct changes as compared to Figure 3.4 and Figure 3.5:

First, for smaller values af , the BER performances of both polar codes area@bov
the uncoded case, while the SKdde remains more than 10 times better. The reason
may be explained as follow§he channel is more likely to have a capacity of for
lower values of] andd for higher values of] . Since the polar codes dotnese

CSI (so they do not know which state the block is in), the codéyrasbould satisfy

Y 0 0 so that it may decode correctly. Once we check thig for 0.1 (see

the last column of Table 3.8hownby red, we notice that the code rate is 135/256 =
0.527, which is very close to . As a result, it is quite possible that degraded blocks
cannot be decoded correctly. In addition, once such an error has been made, it is
expected to be large; because witbhability rj , assuming half of the information
bits are incorrectly decoded, polar BER has an additive compgngqt which is
comparable to the uncoded BER §ff) Pp 1N n .Hence, one can reason the

aforementioned dominance of degraded blodlorer over negligible amount of
superior block errors.

Bit Error Ratio (BER)

e —&—SKV-code
/ —s—Polar code (p1) |

/ & Polar code (p2)
1 0_3 p ‘ ‘ Uncoded

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Probability of being in the degraded state (q 1)

Figure 3.6. BER performance of the Sk¥@ode and polar codes for different probabilities of the
degraded staté) 6 256,11 0.1,  0.01, with code rate¥  0.60
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Second, for higher values gf, we now observe that the performances of two polar
codes diverge from each other. This is reasonable becansmaseases, the channel

is more likely to be in the degraded state; aimte the polar code designed for the
degraded channeb performs better than the one designed for the superior channel
w , the separation of BER curves is enhanced with increasing ratjofgf. As a
result, the pink curve starts to move away frém blue curve foj 0.5, and the

blue curve appears as the best performance among all codes f@.73.

Apart from these observations, one may also notice the intersections of theo8KV

and polar code performances (which are simildfigire 3.4and Figure 3.patn

0.73 for the blue curve of the polar code designed for the degraded channel, and at
N 0.77 for the pink curve of the polar code designed for the superior channel. At
the largest value ofj 0.9, the SKVcode again approacheset uncoded

performance.

Next we pick a casavherer 1n 100 by decreasing) to 0.001, while keeping

N as 0.1. The parameters of this simulation are tabulated in Table 3.4. As the overall
channel capacity is increased by using a better superior channel than before, the rates
used in this simulation are the highest among the ones given in this chapteth&ince

erasure channeb is a function ofy only, there is no change in its rate.

Table 3.4. Channekapacitie®d R R ,the overall channel capacifyfory 0.1,/  0.001,

corresponding number of information bits, 0 ,0 ,0 andrateY 0.60.

n 0 0 0 0 0 v 0 U] Y

0.1 0.943 0.9 138 145 0.566
0.2 0.897 0.8 123 138 0.539
0.3 0.851 0.7 108 131 0.512
0.4 0.806 0.6 92 124 0.484
0.5 0.531 0.989 0.760 0.5 82 152 77 117 0.457
0.6 0.714 0.4 61 110 0.430
0.7 0.668 0.3 46 103 0.402
0.8 0.623 0.2 31 96 0.375
0.9 0577 0.1 15 89 0.348
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In Figure 3.7, we plot the BER curves of the codes mentioned in Table 3.4. We witness
the same two observations mentioned for Figure 3.6, but this time, the diveojence
the two polar code curves is more pronounced as a result of the larger raffg of

The polar code designed with respect to the good channel functions poorly, remaining
almost always above the uncoded case except at0.9. When the channel is more
likely to be in the degraded state, i.e., for 0.5, we observe that the SKd6de
performs approximately 10 times better than the uncoded case. Again, theo8KV

performs 3635 times bettethan the polar codes fgqr  0.2.

Bit Error Ratio (BER)

i —6-SKV-code
//Z‘/ —=—Polar code (p,) |

//, & Polar code (pz)
10.3‘/ ‘ ! Uncoded

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Probability of being in the degraded state (q 1)

Figure 3.7. BER performance of the Sk¥Wode and polar codes for different probabilities of the
degraded statéh, 6 256,11 0.1, n 0.001, with code rate¥  0.60

The red BER curve of the Sk¥bde intersects the blue curve of the polar code
designed fo the degraded channel &t 0.75, after which the polar code
outperforms the SK\Mode. For]  0.65, one observes that both of the polar codes
perform worse than the uncoded case. Once the code rate of the polar code is checked
from the last column ofable 3.4, one notices that the rate at smallalues is not

appropriate when the channel fades into the bad state. In other wondss asnall,
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the code ratéY is more likely to remain very close, or even above the channel
capacityd . This s explicitly tabulated and shown in red in Table 3.5. Although this
rate is suitable when the channel is in the good stateYi &, is suitable for alfj

values, the reason why the blue and pink curves remain above the uncoded curve is

thus the rate being impractical for the degraded channel blocks.

Table 3.5. Ratio of the polar code rafé to capacities fthe fading channeld andé

forn 0.1,f 0.001

r'] 5 5 51 0 Y TG Y TG
0.1 0.943 145 1.066 0.572
0.2 0.897 138 1.015 0.545
0.3 0851 131 0.964 0.518
0.4 0.806 124 0.911 0.489
0.5 0.531 0.989 0.760 117 0.861 0.462
0.6 0.714 110 0.810 0.435
0.7 0.668 103 0.757 0.406
0.8 0623 96 0.706 0.379
0.9 0577 89 0.655 0.352

In order to compare the above four cases whefg takes the values 2, 5, 10 and
100, wecombine the four figures, 3.4 to 3.7 in a single figure. Examinind3 &
performance of the SK\{code and polar codes in Figure 3.8, one observes that,

1 SKV curve (of BER performance) remains almost the same in all four cases,
with the rightmost end &  1touching the uncoded BER of 0.1, but the polar
code curves get worse gsfiy and’Y | dincrease.

1 SKV-code is better than polar codes at small valués,dfut it becomes worse
fory 1, andn increases from 0.53 to 0.75 with increasingn .

{1 Polar code designed for BSC] is the best solution far  0.75, butyY | 0

seems too high for polar codes) saeeds to be propertjecreased.
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Figure 3.8. BER performanceof the SK\tcodes and polar codes for different probabilities of the
degraded statéy, 6 256, 1 0.1 (a)0.001, (b) 0.02, (c) 0.01 and (d) 0.0@dth code
ratesY 0.60

In the simulations discussed thus far, whgrés changed for fixed values gf and

f , variation of'Y with respect tay is decisive in the shape of the polar code BER
performances. It is such that, rasincreases from 0 to I¥ decreases frony to'Y .

So, the choice of the coefficiant "YI6 seems to be crucial. While the constraint of
Y Y,where’Y | 0 | 0O p N o n'y p N Y, forms a
rateequivalence between the SKV and single polar code simulations, one also needs
to guaranteethaf O , so that the polar coadan decode the degraded blocks. To
satisfyY 0 Y X is not easy at small valuesrpf, whered approacheé

0 andY approache¥ Y. Fulfilmentof'Y 0 puts atighter restriction on

| 'Y 70, such that| Y 70 p. This inequality can be explained by
employing the lower and upper boundsoof 1 6 p n 6 (thatisd

0 6 asp 1n mon the ratioY 70. So, one obtains
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In the nextsimulation, we lower altoderates bychoosing| 0.4. Among the
previousn -f pairs, we select the lastne with 1 0.001 New simulation
parameters are given in Table 3.6, which showsiitt| 0.4,the constraint of
Y 0 s satisfied at small values df as well; andall coderates remain in

practical limitsirrespective of the code used and thannektate.

Table 3.6. Channel capacitie§ 5 R ,the overall channel capacifyfor, 0.1,/  0.001,

corresponding number of information bits, 0 ,0 ,0 , and ratéY  0.40.

n 0 0 0 0 0 0 0 0 Y

0.1 0.943 0.9 92 96 0.375
0.2 0.897 0.8 82 92 0.359
0.3 0.851 0.7 72 87 0.340
0.4 0.806 0.6 61 82 0.320
0.5 0.531 0.989 0.760 0.5 54 101 51 78 0.305
0.6 0.714 0.4 41 73 0.285
0.7 0.668 0.3 31 68 0.266
0.8 0.623 0.2 20 63 0.246
0.9 0577 0.1 10 59 0.230

BER performances of the SKV and polar codesrjor 0.1andr}  0.00lat the
overall code rate shown the last column of Table 3.6 are plotted in Figure 3.9. The
SKV-code achieves a BER as smalbad0®atfy 0.1 and instead of touching the
uncoded curve af 0.9, it performsalmost 10 times better. Polar code asalso

remain below the uncoded case, because of the careful adjustment of all code rates.
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Figure 3.9. BER performance of the SKk¥@ode and polar codes for different probabilities of the
046

degraded stat®), o6 256 1 0.1,1

Asn ;i.e., the percentage of the degraded blocks increases, the best choice is the polar
code designed for the degraded channelf{for 0.72 in this case). Polar code also
has the advantage of not requiring any CSI, as opposed to the&@kVWe find that

the worsening of the SKV performance’psncreases is mainly because of the errors

0.6

—&—8KV-code
—s—Polar code (p1) 1

& Polar code (p2) |

Uncoded

0.8

0.001, with code rate¥

made by the BEC decoder, as an inspection ofeTal reveals.

0.9

Table 3.7. BER performance of the BEC decoder of the S&ddeforry 0.1,  0.001
and Y76 0.4

M 01| 02| 03| 04| 05 0.6 0.7 0.8 0.9

BER | 0 0 0 0 0 0.000016 | 0.000087 | 0.000189 | 0.000361

One mayalso wonder how the original polar code would behave, if it were allowed to

work at the rate bound¥ and‘Y rather than the fairly chosen code rate that
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increases fronY to"Y , asr] goes from 1 to 0. As expected and also spotted in Figure
3.10 (a), performances of the polar codes atYatgould produce lower bounds, and

those aty would form upper bound to other BER performances.

Figure 3.10. BER performanceof the SK\:code and polar codes for different probabilities of the
degraded stat®y, & 256, n 0.1,  0.001, with code rate¥  0.60 . Additionally, (a)
polar codes are designed with respect to the degraded clanreaid (b) to the superior chanmel,
at ratesY RAY and'Y .

Finally, we expresgiurations osome simulationasingintel Xeon CPU E5L620 v3
@3.5 GHz, 32 GB RAMand 64bit OS Foran0 6 block wherel 6 256, at

n 0.1, a single encodingnd decoding ofthe SKV-code takesbout6 seconds
while it lasts3 seconds for the polar code on the averag@. At 0.9,theSKV-c o d e 6 s
duration increases to 21 secondsile that ofthe polar code remasithe sameFor

the simulations in Figures 3.4 to/3a simulation point is obtained in approximately
22 minutes atfj 0.1 and52 minutes at) 0.9, where the decoding is performed
over 120channel realizationso measure BERas low as10?, reliably. For the
simulation in Figure 3.9, in order to obtainreliable BER as low as 510°, the
decoding is performed over 1000 channel realizatiwhgch takes aboubughly 48

hours.
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