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ABSTRACT 

 

POLAR CODES: PERFORMANCE OVER FADING CHA NNELS AND 

CONVERGENCE TO REED-MULLER CODES  

 

¥zvarēĸ, Irmak 

Master of Science, Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Melek Diker Y¿cel 

 

 

May 2019, 103 pages 

 

Polar codes introduced in 2008 by Erdal Arēkan have been proven to achieve Shannon 

capacity for any binary-input discrete memoryless channel. Being adopted as a part of 

the official coding scheme for the 5G standard, up-to-date research has moved from 

theory to practical applications, albeit keeping the connection with its ancestors. This 

thesis aims to address these two topics, narrowing down firstly to the performance of 

polar codes on fading binary symmetric channels and then to the relationship between 

polar codes and Reed-Muller codes. 

For fading channels, we experiment on a hierarchical scheme proposed in 2014 by Si, 

Kºyl¿oĵlu and Viswanath that uses multiple polar coding phases. We simulate the 

two-state fading case that utilizes three polar codes; two of them designed for binary 

symmetric channels and one for a binary erasure channel with an erasure rate 

representing the fading probability. We compare the bit error ratio performance of the 

proposed scheme with original polar coding. Results show that the hierarchical 

scheme outperforms the other whenever the probability of being in the degraded 

channel is not very high.  

As for the comparison between polar and Reed-Muller codes, we primarily focus on 

the generator matrices of the two codes constructed for binary erasure and additive 
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white Gaussian noise channels. Motivated by the convergence proof of Mondelli; we 

present some observations asserting the convergence thresholds of polar codes to 

Reed-Muller codes, in terms of the channel parameters such as erasure probability or 

signal to noise ratio. 

 

 

Keywords: Polar Codes, Fading Binary Symmetric Channel, Reed-Muller Codes, 

Binary Erasure Channel, Binary Input Additive White Gaussian Channel  
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¥Z 

 

KUTUPSAL KODLAR: S¥N¦MLEMELĶ KANALLARDA PERFORMANS 

VE REED-MULLER KODLARINA YAKINSAMA  

 

¥zvarēĸ, Irmak 

Y¿ksek Lisans, Elektrik ve Elektronik M¿hendisliĵi 

Tez Danēĸmanē: Do. Dr. Melek Diker Y¿cel 

 

 

Mayēs 2019, 103 sayfa 

 

2008 yēlēnda Erdal Arēkan tarafēndan ºnerilen kutupsal kodlarēn herhangi ikili-giriĸli 

ayrēk belleksiz bir kanal iin Shannon kapasitesine ulaĸabildiĵi kanētlanmēĸtēr. 5G 

standardē resmi kodlama yºnteminin bir parasē olarak kabul edilen kodlarla ile ilgili 

g¿ncel araĸtērmalar pratik uygulamalara yoĵunlaĸsa da bu kodlarēn atalarēyla kuramsal 

baĵlantēlarēnēn incelenmesi de s¿rmektedir. Bu tez; bu iki konuya deĵinerek, kutupsal 

kodlarēn sºn¿mlemeli ikili simetrik kanallardaki baĸarēmēnē ve Reed-Muller 

kodlarēyla iliĸkilerini incelemeyi amalamaktadēr.  

Sºn¿mlemeli kanallar iin Si, Kºyl¿oĵlu ve Viswanath tarafēndan 2014 yēlēnda 

ºnerilen ve birden fazla kutupsal kodlama fazē ieren hiyerarĸik yºntem ¿zerinde 

alēĸēlmēĸtēr. Ķki durumlu sºn¿mlemeli kanal iin; ikisi ikili simetrik kanala, biri de 

ikili silinti kanalēna gºre tasarlanmēĸ ¿ kutup kodu kullanan hiyerarĸik kodun 

benzetimi yapēlmēĸtēr. ¥nerilen yºntemin ikili  hata oranē ºzg¿n kutupsal kodlamayla 

karĸēlaĸtērēldēĵēnda, kºt¿ kanalda kalma olasēlēĵē ok y¿kselmediĵi s¿rece, ºnerilen 

yºntemin diĵerinden daha iyi bir baĸarēmē olduĵu gºr¿lmektedir. 

Kutup ve Reed-Muller kodlarē arasēndaki karĸēlaĸtērmada ise, ikili silinti kanalē ve 

toplanēr beyaz Gauss g¿r¿lt¿l¿ kanal iin oluĸturulan kutup ve Reed-Muller kodlarēnēn 

¿reten matrislerine odaklanēlmēĸtēr. Mondelliônin yakēnsama ispatēndan yola ēkēlarak; 
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silinti olasēlēĵē veya g¿r¿lt¿ varyansē gibi kanal parametreleri cinsinden, kutupsal 

kodlarēn Reed-Muller kodlarēna yakēnsama sēnērlarēnē belirten bazē gºzlemler 

sunulmuĸtur. 

 

 

Anahtar Kelimeler: Kutupsal Kodlar, Sºn¿mlemeli Ķkili Simetrik Kanal, Reed-Muller 

Kodlarē, Ķkili Silinti Kanalē, Ķkili Giriĸli Eklenmiĸ Beyaz Gauss G¿r¿lt¿l¿ Kanal 
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CHAPTER 1  

 

1. INTRODUCTION  

 

Coding theory dates back to 1948, when Shannon published his seminal paper 

[Shannon, 1948], posing the fundamental problem for a communication system of 

how a message of information can be transmitted efficiently and reliably across a noisy 

channel. Although he gave the answer to this problem as ñcodingò and proved that 

such suitable codes exist, he did not specifically address how to find these good codes. 

Since then, finding the structures for practical coding schemes that approach 

Shannonôs theoretical limits has been one of the main focuses of research in 

information theory and communications. 

As formalized by Shannon, the aforementioned problem can be divided into two 

separate problems: the source coding and the channel coding. The formerôs task is to 

efficiently represent the source of information using least possible number of bits; 

while the latter adds redundancy to protect the information against the noisy channel 

and reliably transmit them to the receiver. In this thesis, our focus is on the channel 

coding, and it is assumed that the source coding problem has already been solved. 

The most important parameters for the transmission problem are rate, probability of 

(block or bit) error, delay and (encoding or decoding) complexity [Richardson & 

Urbanke, 2008]. According to Shannonôs channel coding theorem, all rates below 

capacity C are achievable. That is, for every rate Ὑ ὅ, there exists a sequence of 

codes with maximal probability of error  approaching to zero as codelength goes to 

infinity. Conversely, any sequence of codes with the maximal probability of error 

approaching zero must have a rate Ὑ ὅ. From this theorem, it is evident that we can 

and would want to send our information at high rates with low probability of error. 

But as the codelength increases, the constraints on delay and complexity begin to rise.  
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Numerous research has been done to balance this trade-off, along with the explicit 

constructions of the codes with arbitrarily small probability of error. Hamming 

introduced the first single-error-correcting block codes in 1950, which was quite weak 

with respect to what Shannon proposed, yet was the best code discovered in that time 

[Hamming, 1950]. Hamming codes were then followed by the binary and ternary 

Golay codes introduced by Golay [Golay, 1949], multiple error correcting Reed-

Muller codes by Reed and Muller [Muller, 1954; Reed, 1954], which happen to be a 

close relative to polar codes that will be discussed later, and the BCH codes by Bose 

and Ray [Bose & Ray-Chaudhuri, 1960], and independently by Hocquenghem 

(Hocquenghem, 1959). Around the same time, Reed and Solomon proposed Reed-

Solomon codes as a special case of BCH codes [Reed & Solomon, 1960]. By 1970s, 

the algebraic approach whose objective was to maximize the minimum distance to 

maximize the error correction radius, left its seat to the probabilistic approach which 

is concerned with optimizing the performance with respect to the encoding and 

decoding complexity with the invention of convolutional codes by Elias [Elias, 1955], 

sequential decoding by Wozencraft [Wozencraft, 1957] and further development of 

Eliasô work by Forney [G. D. Forney, 1970]. The first generation of channel coding 

technology then started with introduction of the iterative decoding algorithms such as 

Viterbi algorithm by Viterbi [Viterbi, 1967] and the BCJR algorithm by Bahl, Cocke, 

Jelinek, and Raviv [Bahl, Cocke, Jelinek, & Raviv, 1974]. The Viterbi algorithm was 

adopted for the 2G GSM networks. In 1993, the second generation of channel coding 

technology began with the epoch-making turbo codes that were designed by Berrou, 

Glavieux and Thitimajshima [Berrou, Glavieux, & Thitimajshima, 1993] having a 

good error performance, rate very close to the Shannon capacity and linear decoding 

complexity, and adopted by 3GPP for the 3G UMTS systems. A couple of years later, 

MacKay rediscovered the LDPC codes [MacKay & Neal, 2002] with the comparable 

properties to the turbo codes, which was originally developed by Gallager way back 

in 1962 [Gallager, 1962]. 
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Both Turbo and LDPC codes belong to the family of codes on graphs that again goes 

back to 1981 when Tanner founded this capacity-achieving field of codes with the 

iterative decoding algorithm [Tanner, 1981]. These two codes are extensively used in 

communication standards: Turbo being used in deep space communications (CCSDS), 

and in the 3G/4G standards; LDPC being used for digital video broadcasting, satellite 

communications, IEEE 802.3an (Ethernet), 802.16e (WiMax) 802.11n/ac (WiFi), 

recent mobile generation (4G, LTE) and the next generation (5G).  

Although it may seem that the problem imposed by Shannon has been already solved, 

as Costello and Forney summarized in [Costello & Forney, 2007], ñCoding is not 

deadò yet. With the introduction of a new coding scheme called as polar codes by 

Arēkan [Arēkan, 2009], the third generation of channel coding technology has started 

and both LDPC and polar codes have since been adopted for the 5G. Polar codes are 

based on theoretically proven channel polarization phenomenon where N independent 

copies of the channel are combined and split so that the overall channels polarize in 

the sense that some portion of the channel indicesô capacities tend to 1; i.e. the 

channels become purely noiseless, while some tend to 0; i.e. the channels become 

purely noisy as ὔᴼЊ. With this effect, one can reliably send information over the 

noiseless channels, while sending known bits, or in other words frozen bits, over the 

noisy channels. In the decoder, Arēkan originally uses successive cancellation (SC) 

decoding that has a time complexity of ὕὔÌÏÇὔ . When compared to Turbo and 

LDPC code performances, although this decoding scheme has poor performance, with 

other decoding schemes like belief propagation (BP) or list decoding of SC (SCL), it 

is shown by Tal and Vardy that polar codes indeed outperform Turbo and LDPC code 

performances [Tal & Vardy, 2015]. In short, this coding scheme provably achieves 

the theoretical channel capacity with low complexity for arbitrary symmetric discrete 

memoryless channels, both with a binary (B-DMC) [Hussami, Korada, & Urbanke, 

2009] and non-binary input alphabet [Tal & Vardy, 2013]. 
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Countless research has been done since the invention of polar codes to make the 

performance better, including new decoding techniques, concatenation with other 

schemes, and also some hardware implementations. A brief information about the 

work is given in Chapter 2, albeit it is impossible to include all aspects of rapidly 

growing current research. An interesting area is the design of polar codes for the 

wireless communication channels, where fading aspects and time-varying nature of 

the channel presents major difficulty. Wireless communication has become one of the 

most dynamic area of research in recent years due to increasing demand in not only 

daily-used appliances such as cellular phones, tablets, laptops, or generally speaking, 

remotely controlled devices; but also larger-scale needs such as smart homes that use 

intelligent home electronics, satellite communications, commercial and military 

applications. Evidently, this demand brings proliferating research seeking for better, 

newer and more reliable technologies. Since the polar code performance has already 

been theoretically proved, this low-complexity-coding scheme is quite compelling for 

the developing systems, such as the fifth-generation (5G) cellular services. In fact, in 

2006, the third generation partnership project (3GPP), which is the international 

standards organization that develops telecommunication protocols, has adopted polar 

codes for high data rate demanding control channels of the air interface for 5G. 

However, as the main propagation in wireless communication is electromagnetic wave 

propagation in air, there are many unpredicted and random limitations, such as moving 

objects or simply weather, as well as the interference due to vastly increasing number 

of users. The prior creates variation in signal power over time and frequency and is 

called as fading. In a fading channel, there are replicas of the signal with different 

amplitudes, phases and angles of arrival. These replicas are called as multipaths which 

may add up constructively or destructively at the receiver. This multipath propagation 

environment changes in a random manner and as a result, understanding the random 

behavior and proposing solutions to overcome the adverse impacts of fading have been 

among the key aspects of wireless communication channels. 
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Furthermore, Arēkan points out the relationship between polar and other codes such 

as RM and BCH codes as early as 2009, in [Arēkan, 2009].  It is stated that the 

similarities between the code constructions of polar and RM codes became clear such 

that they belong to the same class of codes and the only difference is the rule for 

selecting the rows from a Hadamard matrix as the basis vectors of their generator 

matrices. In addition, another similarity between RM and polar codes is that they both 

can be constructed using Plotkinôs construction: The construction of RM codes starts 

with smaller codes and recursively grows, while that of polar starts from the full-order 

generator matrix and removes the unnecessary rows. Without going further, Arēkan 

also interprets polar codes in a spectral point of view [Arēkan, 2009] which is also 

mentioned for BCH codes by Blahut [Blahut, 1984]. In short, it is intriguing to see 

how a (relatively) new born code has relationship and similarities with two of the 

earliest codes. Due to simplicity and regarding the previous work of Akdoĵan 

[Akdoĵan, 2018], we choose to examine the relationship between RM and polar codes 

in this study.  

The thesis consists of two independent parts: In the first part, it is aimed to observe 

the performance of polar codes in a block fading channel, comparing the performance 

of the hierarchical scheme [Si, Kºyl¿oĵlu, & Vishwanath, 2014] that uses multiple 

polar coding phases to that of Arēkanôs plain polar coding scheme [Arēkan, 2009]. In 

the second part, it is aimed to calculate numerically the convergence of polar codes to 

RM codes, specifically for the BEC and AWGN channel. The organization of this 

thesis is as follows:  

In Chapter 2, preliminary information about various concepts such as communication 

channels, coding and information theoretic parameters are given. Channel polarization 

is summarized and encoding and decoding structures of both polar and its close 

relative Reed-Muller codes are explained. The wireless fading channels are reviewed 

in general terms, and the chapter is finalized with a review on up-to-date work relating 

to decoders and also polar codes on fading channels. 
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In Chapter 3, BER performance of the hierarchical polar coding scheme for binary 

fading channels proposed by Si, Kºyl¿oĵlu and Vishwanath [Si et al., 2014] and that 

of Arēkanôs original polar code scheme is compared. The proposed scheme is reviewed 

in detail and simulation results under various conditions are given. 

In Chapter 4, the convergence of polar codes to RM codes is discussed with numerical 

results. The proposition relating to the convergence given by Mondelli [Mondelli, 

2016] is reviewed in detail. Some numerical values of design erasure rates or design 

SNRs respectively, required by the convergence of polar codes to RM codes, for the 

BEC and the AWGN channel are calculated, and various cases showing the 

convergence are presented. 

In Chapter 5, concluding remarks and contributions of this thesis are discussed. 
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CHAPTER 2  

 

2. PRELIMINARIES  

 

In this chapter, we give some preliminaries that are used in the thesis. We start with 

the discrete communication channel models, followed by the phenomenon of channel 

polarization based on Arēkanôs work [Arēkan, 2009] with reference to Koradaôs 

doctoral thesis [Korada, 2009], and Reed Muller codes. Continuing with a brief 

description of wireless fading channels, we end the chapter by giving a brief survey 

on other recent work regarding decoders and fading channels within the context of this 

thesis. 

The notation throughout the thesis is as follows: The capital letters ὢȟὣ denote the 

random variables whose sample values are the lowercase ones ὼȟώ. We write ὢ  to 

denote the random variables ὢȟὢȟȣȟὢ ) and ὢȡ ρ ὭȟὮ ὔ to denote the sub-

vector ὢȟὢ ȟȣȟὢ). The same analogy is used for ὼ  and ὼ, as well. We denote 

the channel as ὡȡתᴼ+ with ת and + being the input and output alphabets, 

respectively. A bold ● is used to denote vectors and matrices such that ●

ὥ ȣ ὥ
ể ể ể
ὥ ȣ ὥ

 in general. 

 

2.1. The Discrete Communication Channel 

As discussed before, the main goal of a channel code is to transmit data reliably and 

efficiently through the communication channel. Shannon declared that this was 

possible; but as he did not say how, we are interested in finding such codes. To begin 

with, we start with the basic digital communication system: 
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Communication

System

Source
Source 

encoder

Channel 

encoder

Modulator

Channel

Source 

decoder

Channel 

decoder
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Source codeword
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Estimated source 

codeword

Noise
 

Figure 2.1. Block diagram of a digital communication channel (reproduced from [Blahut, 1984]) 

 

Throughout the thesis, as mentioned in previous chapter, we are only concerned with 

the channel encoder and decoder, which is known as channel coding. Our 

communication system is then depicted in Figure 2.2. The channel is a discrete 

memoryless channel (DMC) consisting of an encoding function that maps each 

message άᶰִי  to codewords ὼ ᶰת  , forming the codebook, and a decoding 

function that tries to find the estimates ά of ά from the received sequence ώ ᶰ+ . 

We assume that the message is uniformly distributed. The channel is memoryless in 

the sense that ὴώȿὼȟά  Б ὴώȿὼ  where ὴώȿὼ denotes the conditional 

probability of receiving the output ώɴ + and ὔ denotes the number of channel uses. 

The performance of the code is measured by the probability of making an error, i.e. 

probability of the estimate ά not being equal to ά. A rate is said to be achievable if 
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there exists a sequence of codes such that average probability of error approaches 0 

which is the consequence of Shannonôs Coding Theorem and its converse; and then, 

the capacity C of a DMC is the supremum over all achievable rates [Tse & Viswanath, 

2005]: 

 ὅ ÍÁØὍὢȠὣ (2.1) 

 

 

Figure 2.2. Block diagram of the simplified digital communication channel 

 

2.2. The Binary Discrete Memoryless Channel 

In this thesis, the input alphabet ת is binary, so we have the binary-input discrete 

memoryless channel (B-DMC). All of the computations are in modulo-2, the 

logarithms are to the base 2 (unless stated otherwise) and the channel capacities and 

code rates are in bits. If we denote the B-DMC as ὡ, we can write ὡȡתᴼ+ with 

the conditional probability (denoted as ὴ above in Fig. 2.2) ὡ ώȿὼȟ and ὡ  

corresponds to N uses of the channel; i.e. we have ὡ ȡת ᴼ+  with 

ὡ ώȿὼȟά  Б ὡ ώȿὼ  in correspondence to aforementioned general DMC. 

For a B-DMC, two parameters of interest are the symmetric capacity: 

 
Ὅὡ ḯ

ρ

ς
ὡ ώȿὼ

ɴת

ÌÏÇ
ὡ ώȿὼ

ρ
ςὡ ώ

ȿπ
ρ
ςὡ ώ

ȿρ+ɴ

 
(2.2) 

and the Bhattacharyya parameter: 
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 ὤὡ ḯ ὡ ώȿπὡ ώȿρ

+ɴ

 
(2.3) 

 

Although ὍϽ denotes the mutual information between the input X and output Y, from 

(2.1), we can also call this as the symmetric capacity. Ὅὡ  provides a measure of 

rate: It is the highest rate at which one can make a reliable communication for a 

symmetric channel. ὤὡ  is the upper bound on the probability of maximum-

likelihood (ML) decision error and provides a measure of reliability [Arēkan, 2009]. 

Both of these parameters take values in the closed interval [0, 1]. The importance of 

both parameters will show up in designing the polar codes which will be discussed 

next, thus we will not be giving further details about these two here, except the 

following relationship between them: 

 Ὅὡ ὤὡ ρ (2.4) 

 Ὅὡ ρ ὤὡ  (2.5) 

We can interpret (2.4) and (2.5) as higher the capacity, lower the Bhattacharyya 

parameter. The proof is given in [Arēkan, 2012]. 

 Ὅὡ  is equal to the Shannon capacity when W is a symmetric channel [Arēkan, 

2009]. In this thesis, we use the following binary memoryless channels: The binary 

symmetric channel (BSC), binary erasure channel (BEC) and additive white Gaussian 

noise (AWGN) channel. BSC is symmetric in the sense that ὡ πȿπ ὡ ρȿρ and 

ὡ ρȿπ ὡ πȿρ ὴ, i.e. the probability of making an error is ὴ, which is called 

as the transmission or the crossover probability. For BEC, we have ὡ ώȿπὡ ώȿρ

π, and an error is made when the information bit is erased. In this case, we have 

ὡ ώȿπ ὡ ώȿρ  and the information bit is erased with probability . We 

denote these two channels as BSC(ὴ) and BEC(), respectively, which are shown in 

Figure 2.3(a) and 2.4. BSC also represents a discrete additive noise channel, where 

the noise has Bernoulli distribution with the same parameter ὴ as shown in Figure 

2.3(b). We will use this property in the next chapter, thus give the proof hereinafter. 
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An AWGN channel is similar to as shown in Figure 2.3(b), but instead of a 

Bernoulli(ὴ) distributed noise, we have a white Gaussian noise. The noise is called 

ñwhiteò because the power is constant for all frequencies; i.e. its spectral density is 

constant, and it has a ñGaussianò distribution. The capacity of BSC(ὴ) is ρ Ὄὴ 

with ὌϽ being the binary entropy function, that of BEC() is simply ρ   and that 

of an AWGN channel is ÌÏÇρ 3.2 where 3.2 is the signal-to-noise ratio. 

 

 

 

(a) (b) 
Figure 2.3.  (a) Binary symmetric channel BSC(ὴ), (b) Equivalent BSC(ὴ) 

 

 

 

Figure 2.4. Binary erasure channel BEC( 
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Figure 2.5. Additive white Gaussian noise (AWGN) channel. The noise is 0 mean and of variance „  

 

2.3. Channel Polarization and Polar Coding 

Channel polarization occurs as a result of (i) combining and (ii ) splitting ὔ 

independent copies of B-DMCs ὡ, forming ὔ binary-input channels ὡ ȡρ Ὥ ὔ 

where almost each of the newly constructed channelsô capacities approach to the two 

extremes, 0 and 1 as ὔ goes to infinity. Formal proof of this phenomenon is given in 

[Arēkan, 2009, Theorem 1]. We will start with the first level of polarization, and then 

continue to the general case. 

We start with the basic channel transform using two individual channels ὡ. In the 

first step of the recursion, ὔ ς and ὡȡת ᴼ+  is obtained as shown in Figure 

2.6. The newly constructed channelôs transition probability is given as 

 

ὡ ώȿό ḯ ὡ ώȿὼ ὡ ώȿόἅό ὡ ώȿό  (2.6) 

Since the linear transform between Ὗ  and ὢ  is one-to-one (mod-2 sum), and Ὗ  

being identically independent distributed (i.i.d.) implies ὢ  also being i.i.d., we have 

the following: 

 ὍὟȠὣ ὍὢȠὣ ὍὢȠὣ ὍὢȠὣ ςὍὡ  (2.7) 
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Figure 2.6. Basic channel combining 

 

(2.7) implies that the channel capacity is conserved under the single-step transform. 

Up to now, this phase is called as channel combining [Arēkan, 2009]. We can split left 

hand side of (2.7) by using the chain rule: 

 ὍὟȠὣ         ὍὟȠὣ ὍὟȠὣȿὟ

ὍὟȠὣ ὍὟȠὣȟὟ  
(2.8) 

(2.8) can be interpreted as follows: First term of the right hand side, ὍὟȠὣ ȟ is the 

mutual information between the input Ὗ and the outputs ὣ and ὣ with Ὗ treated as 

random (noise) as shown in Figure 2.7. Denoting this channel as ὡ ȡ תᴼ+ , by 

marginalizing (2.6) over Ὗ, the transition probability is given as: 

 
ὡ ώȿό   

ρ

ς
ὡ ώȿό

ρ

ς
ὡ ώȿόἅό ὡ ώȿό  

(2.9) 
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Figure 2.7. ὡ  after basic channel splitting 

 

Next, second term of the right-hand side of (2.8), ὍὟȠὣȟὟ , is the mutual 

information between the input Ὗ and the outputs ὣ and ὣ with Ὗ known as shown 

in Figure 2.8. Similarly, denoting this channel as ὡ ȡ תᴼ+  ת, the transition 

probability is given as: 

 
ὡ ώȟόȿό

ρ

ς
ὡ ώȿό

ρ

ς
ὡ ώȿόἅό ὡ ώȿό  (2.10) 

 

 

Figure 2.8. ὡ  after basic channel splitting 
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With (2.9) and (2.10) one can see that the channel is split into two sub-channels, ὡ  

and ὡ . Arēkan calls this phase as channel splitting [Arēkan, 2009]. With these two 

phases, the polarization effect can be seen from the basic channel transform as follows: 

Combining (2.7), (2.8), (2.9) we have 

 Ὅὡ Ὅὡ ςὍὡ  (2.11) 

and further, 

 Ὅὡ  ὍὟȠὣȟὟ  

                                             ὌὟ ὌὟȿὣȟὟ   

                                            ὌὟ ὌὟȿὣ Ὅὡ  

(2.12) 

This concludes that  

 Ὅὡ Ὅὡ Ὅὡ  (2.13) 

Likewise, the Bhattacharyya parameter is transformed as  

 ὤὡ ςὤὡ ὤὡ  (2.14) 

 ὤὡ ὤὡ  (2.15) 

The proof of (2.14) and (2.15) is given in [Korada, 2009]. Combining these two, we 

have 

 ὤὡ ὤὡ ςὤὡ  (2.16) 

 ὤὡ ὤὡ ὤὡ  (2.17) 

(2.11-17) imply that instead of using two independent channels, by combining and 

splitting them, we get one better and one worse channel (i.e. two channels with either 

higher capacity or lower capacity, respectively (or with lower and higher 
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Bhattacharyya parameters, respectively). Due to this, we can also denote ὡ  and 

ὡ  as ὡ  and ὡ , respectively, of the initial channel ὡ. Once we have such 

channels; intuitively, we want to send the information from the better channel, while 

sending a known variable - Arēkan calls these known variables as frozen bits - from 

the bad channels. This is the main notion in construction of polar codes. 

With the basic transform having discussed, we can move onto the general case starting 

with the second step of recursion where ὔ τ for illustrative purposes. For ὔ τ, 

similar to combining two independent copies of ὡ to form ὡ , two independent 

copies of ὡ  are combined to obtain ὡ , with the transition probability 

ὡ ώȿό ḯБ ὡ ώȿὼ   

            ὡ ώȿόἅόἅόἅό ὡ ώȿόἅό ὡ ώȿόἅό ὡ ώȿό  

            ὡ ώȿόἅόȟόἅό ὡ ώȿόȟό   

(2.18) 

The combining phase of ὔ τ is illustrated in Figure 2.9. In general, we can write 

the following transition probabilities for the newly constructed channel ὡ ȡת ᴼ

+  formed by the combining and splitting operations. Combining phase yields 

 ὡ ώȿό ḯὡ ϳ ώ
ϳ
όἅό ὡ ϳ ώϳ ό  (2.19) 

where ό are the όôs with odd indices, i.e. ό όȟόȟόȟȣȟό , and όôs are 

the even indices, i.e. ό όȟόȟόȟȣȟό . For ρ Ὥ ὔȟ the splitting phase 

yields  

 
ὡ ώȟό ό ḯ

ρ

ς
ὡ ώȿό

ɴת

 (2.20) 

with the relation between ὡ  and the previously constructed ὡ Ⱦ  channels where 

ρ Ὦ ὔ ςϳ  can be written as 
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 ὡ ώȟό ό      

    
ρ

ς
ὡ ώȟόȟ ἅόȟ ό ἅό ὡ ώϳ ȟόȟ ό  

(2.21) 

 ὡ ώȟό ό   

ρ

ς
ὡ Ⱦ ώ

Ⱦ
ȟό ȟ ἅόȟ ό ἅό ὡ Ⱦ ώϳ ȟόȟ ό  

(2.22) 

 

 

Figure 2.9. ὡ after recursive channel combining and splitting 

 

Furthermore, rate and reliability parameters are transformed as 

 Ὅὡ Ὅὡ ϳ Ὅὡ  (2.23) 
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Ὅ Ὅὡ ςὍὡ ϳ  

and 

 
ὤὡ ςὤὡ ϳ ὤὡ ϳ  

ὤὡ ὤὡ ϳ  

ὤὡ ὤὡ ςὤὡ ϳ  

ὤὡ ὤὡ ϳ ὤὡ  

(2.24) 

Similar to (2.7), the cumulative rate and reliability is given as  

 

Ὅὡ ὔὍὡ  

ὤὡ ὔὤὡ  

(2.25) 

More detail and proof can be found in [Arēkan, 2009; Korada, 2009]. Equations 

regarding the Bhattacharyya parameter hold with equality if and only if ὡ is BEC.  

Starting from the initial Bhattacharyya parameter denoted as ὤȟ, one can calculate 

the Bhattacharyya parameters recursively as  

 
ὤ ȟ

ςὤȟ ὤȟ ȟρ Ὦ Ὧ          

ὤȟ ȟὯ ρ Ὦ ςὯ
 

 

   

for Ὧ ρȟςȟςȟȣȟς . For the channels mentioned above in Figures 2.3 ï 2.5, the 

initial Bhattacharyya parameters are summarized in Table 2.1, along with the channel 

capacities. Since the initial Bhattacharyya parameter of an AWGN channel is a 

function of the noise variance „  [H. Li & Yuan, 2013], we will denote it as 

AWGN(„) in Table 2.1. 



 

 

 

19 

 

 

Table 2.1. Channel capacities and initial Bhattacharyya parameters of BSC, BEC and AWGN 

channels 

Channel Capacity 
Initial Bhattacharyya 

parameter 

BSC(ὴ) 1 ï H(ὴ) ςὴρ ὴ 

BEC() 1 ï   

AWGN(„) 
ρ

ς
ÌÏÇρ

Ὁ

„
  Ὡ  

 

Polar codes are the codes that utilize the polarization effect. As discussed, the main 

idea is to send information on the channels whose capacities tend to 1 while freezing 

the bad channels whose capacities tend to 0. A polar code is defined with the parameter 

ὔȟὑȟꜝ ȟόꜝ  where ὔ ς is the codelength, ὑ is the number of information bits, 

 ꜝis the information set, i.e. indices of the channels that information will be sent over, 

and όꜝ  being the vector of frozen bits. One can choose the frozen bits as desired. In 

this thesis, we will use all-zero vector for the choice of frozen bits. Since probability 

of block error for a ὔȟὑȟꜝ ȟόꜝ  polar code is upper-bounded by В ὤὡᶰꜝ  

[Arēkan, 2012], the ὑ-element information set ꜝ is chosen from ρȟȣȟὔ  such that 

the Bhattacharyya parameters satisfy ὤὡ ὤὡ  for all Ὥɴ  ꜝand Ὦɴ ꜝ Ȣ 

In other words, we send the information bits from the channels with least 

Bhattacharyya parameters. The remaining ὔ ὑ number of bits of the set ꜝ  are set 

to the frozen variables that the receiver knows the values and the channels that they 

are sent from. Furthermore, since ὤὡ  is channel specific as summarized in Table 

2.1, polar codes are also specific to channels.  

Recall the basic transform given in the beginning of this section, we have the encoding 

ὼ ό ό and ὼ ό. We can represent this as ὢ Ὗ ẗ
ρ π
ρ ρ

 in vector 
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notation. Then, for the general case, given Ὂḯ
ρ π
ρ ρ

, the encoded sequence ὼ  can 

be written as 

 ὼ όὊṧ  (2.26) 

where Ὂṧ  is the ὲ  Kronecker power of Ὂ, i.e. Ὂṧ Ὂṧ ṧὊ. In (Arēkan, 

2009), Arēkan uses a permutation matrix ὄ such that the encoding is ὼ

όὄὊṧ , however, he also adds that Ὂṧ  can be used instead of ὄὊṧ  to simplify 

the encoding, with the decoding done in bit-reversed index order. We will do the 

encoding as in (2.26) and change the order of decoding. The input sequence ό  is 

constructed as described in the previous paragraph.  

To explain further, we will give a rate 0.5 ὔȟὑ  (8,4) polar code explicitly. This 

code encodes ὑ τ bits of information while freezing  ὔ ὑ τ bits. Which bits 

in the input sequence ό  are set to information or frozen depends on the Bhattacharyya 

parameters of the channels: The Bhattacharyya parameters of the channels ὡ ȟὭ  

1, é, 8 where ὡ "%#πȢυ are shown in Figure 2.10. In this thesis, we assume the 

erasure probability of the channel is known beforehand, so that the polar code is 

designed (i.e. the Bhattacharyya parameters are calculated) according to the same 

erasure probability. Intuitively, since the code is specifically designed for the channel, 

the decoding performance would be better than the code performance with a constant 

design. Arēkan calls this as adaptive polar coding [Arēkan, 2008]. Choosing the 4 

channels with the least Bhattacharyya parameters, the information bits are sent from 

όȟόȟόȟό  and the rest is set to frozen bits. As an example, if the information 

sequence is ρȟπȟρȟπ, the input sequence will be ό πȟπȟπȟρȟπȟπȟρȟπ. With the 

generator matrix Ὂṧ  given as  
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the encoded sequence is ὼ πȟρȟπȟρȟρȟπȟρȟπ, with the overall complexity of 

ὕὔÌÏÇὔȢ 

Once the encoded sequence is sent over the individual channels ὡ and received as ώ, 

the decoding is done a bit-reversed order as mentioned: Representing ώ as ώȟ i.e.  

letting the indices start from 0 and end at ὔ ρ, the corresponding binary 

representations of the indices are πππȟππρȟπρπȟπρρȟρππȟρπρȟρρπȟρρρ. 

Reversing the bits, we get πππȟρππȟπρπȟρρπȟππρȟρπρȟπρρȟρρρ which 

yields πȟτȟςȟφȟρȟυȟσȟχ. So, instead of decoding in natural order  

πȟρȟςȟσȟτȟυȟφȟχ which means decoding ώȟώȟώȟώȟώȟώȟώȟώ, decoding is 

done as in the aforementioned bit-reversed order resulting in decoding 

ώȟώȟώȟώȟώȟώȟώȟώ.  

As discussed in Chapter 1, there are many suboptimum decoding algorithms, which 

can be used instead of the optimum ML decoding. In Arēkanôs original scheme, 

successive cancellation (SC) decoding algorithm that uses the previously decoded bits 

without revising is used. For ρ Ὥ ὔ, the decoding algorithm is given as 

 
          ό

πȟ  ÉÆ Ὥɴ ꜝ
ρȟ ÉÆ Ὥɴ ꜝ

 

Ὠ ώȟό ḯ
πȟ ὒ ώȟό π

ρȟ ÏÔÈÅÒ×ÉÓÅ  
 

(2.27) 

where ὒ  is the log- likelihood ratio (LLR) given by 
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ὒ ώȟό ḯÌÏÇ

ὡ ώȟό ȿπ

ὡ ώȟό ȿρ
 (2.28) 

 

 

Figure 2.10. Bhattacharyya parameters of (8, 4) polar code designed for BEC(0.5) and selection of 

the indices (shown by red) 

 

The decoding starts at the rightmost column (i.e. the channel level), ὒ ώ
ώπ
ώρ 

which can be calculated directly, and continues to the left levels ὒ ȟὒ  and finally 

reaches the decision level ὒ Ȣ  For ρ Ὦ ὔ ςϳȟ the recursive formulas for ὒ  are 

found from (2.21) and (2.22) as 

 ὒ ώȟό   

ὒϳ ώ
ϳ
ȟόȟ ἅόȟ ὒϳ ώϳ ȟόȟ ρ

ὒϳ ώ
ϳ
ȟόȟ ἅόȟ ὒϳ ώϳ ȟόȟ

 

(2.29) 
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ὒ ώȟό   

          ὒϳ ώ
ϳ
ȟόȟ ἅόȟ ὒϳ ώϳ ȟόȟ  

(2.30) 

Similar to Fast-Fourier Transform structure, the SC decoding consists of butterfly 

structures. Equations (2.29) and (2.30) can be used to calculate upper-left and lower-

left nodesô LLR values, respectively. Looking at the smallest butterfly as shown in 

Figure 2.11 and recalling from (2.9), the lower-left node uses upperôs decoded bit to 

decode its own bit. Thus, in all butterflies, the lower-left node waits for the upperôs 

decoding to result, which is completed using the results of the nodes on its right. Steps 

for an example decoding for ὔȟὑȟꜝ ȟόꜝ ψȟυȟσȟυȟφȟχȟψȟπȟπȟπ  polar 

code are given explicitly in [Arēkan, 2009]. The complexity of this decoding scheme 

is also ὕὔÌÏÇὔ . 

Another decoding technique is called as the belief propagation (BP) decoding. Arēkan 

introduces this technique for polar codes [Arēkan, 2010b]. The structure of BP 

decoding is explained in the next section which is about the Reed Muller codes. It is 

shown that BP decoding of polar codes have a better BER performance over SC 

decoding [Akdoĵan, 2018; Chen, Niu, & Lin, 2012; Korada, 2009]. 

 

 

Figure 2.11. Successive cancellation (SC) decoder for polar code of code length 2. 
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2.4. Reed Muller Codes 

As mentioned in Chapter 1 of this thesis, Reed Muller (RM) codes are one of the 

oldest, yet simplest codes in Coding Theory. They belong to the class of linear block 

codes over Galois field (GF(2)) with flexible parameters, thus draw attention due to 

ease of their decoding algorithms. 

RM codes can be constructed in two ways: either inductively or using the Kronecker 

product. We start with the prior case, as given by Blahut [Blahut, 1984]. Denoting the 

element-wise (Hadamard) product of two vectors by ṩ, we can write 

═ṩ║ ╪╫ȟ╪╫ȟȣȟ╪ ╫  

where ═

╪
╪
ể
╪

 and ║

╫
╫
ể
╫

, with ╪ and ╫ are single row vectors of the same 

length. When constructing the generator matrix of the RM code, one simply takes all 

possible row products defined by ṩ. Specifically, the generator matrix ╖  of the 

ὶth-order RM code, constructed inductively, with codelength ὔ ς is given as 

╖

╖
╖
ể
╖

 

where ╖  is the all-ones vector of length ὔ, ╖  is a ὲ-by-ὔ matrix consisting of all 

binary ὲ-tuples in its columns, and all other ╖ ôs ς ά ὶ are constructed from 

all possible ά-row products from ╖  yielding ╖  to be an 
ὲ
ά

-by-ὲ matrix. The 

minimum distance Ὠᶻ of RM codes is ς  (see [Blahut, 1984] for proof) and since 

there are В
ὲ
Ὥ

 such rows, the number of information bits ὑ in the ὔȟὑ  RM code 

is  

 
ὑ

ὲ
Ὥ

ρ
ὲ
ρ

Ễ
ὲ
ὶ

 (2.31) 
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Note that RM codes can also be represented by  
ὲ
ὶ
  pair instead of ὔȟὑ . However, 

due to notation used throughout the thesis, we will be using the ὔȟὑ  notation for 

the RM codes, as well. 

As an example, if one wants to construct a (16, 11) RM code, then from (2.32) the 

order of this RM code is found to be ὶ ς. Then, the generator matrix of the (16, 11) 

RM code is ╖
╖
╖
╖

 with  

¶ ╖  is the all-ones vector: 

╖ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ╪             

¶ ╖  consists of all binary ὲ τ-tuples its columns: 

╖

π π π π π π π π ρ ρ ρ ρ ρ ρ ρ ρ
π π π π ρ ρ ρ ρ π π π π ρ ρ ρ ρ
π π ρ ρ π π ρ ρ π π ρ ρ π π ρ ρ
π ρ π ρ π ρ π ρ π ρ π ρ π ρ π ρ

╪
╪
╪
╪

     

¶ ╖  is constructed by taking all  ά ς-row products defined by ṩ: 

╖

ụ
Ụ
Ụ
Ụ
Ụ
ợ
π π π π π π π π π π π π ρ ρ ρ ρ
π π π π π π π π π π ρ ρ π π ρ ρ
π π π π π π π π π ρ π ρ π ρ π ρ
π π π π π π ρ ρ π π π π π π ρ ρ
π π π π π ρ π ρ π π π π π ρ π ρ
π π π ρ π π π ρ π π π ρ π π π ρỨ

ủ
ủ
ủ
ủ
Ủ

ụ
Ụ
Ụ
Ụ
Ụ
ợ
╪╪
╪╪
╪╪
╪╪
╪╪
╪╪Ứ

ủ
ủ
ủ
ủ
Ủ

 

 

Before mentioning the second construction method of RM codes, the rows of ╖  can 

be reordered by row echelon permutations, which have no effect on the code. Once 

that is performed, it can be observed that ╖  actually consists of Ὂ
ρ π
ρ ρ

  

mentioned for the Polar code construction, which naturally leads to the Kronecker 

power construction of RM codes. For the construction of RM codes with Kronecker 

power, the ὲ  Kronecker power of Ὂ is taken, and ὑ rows with minimum weight Ὠᶻ 
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are chosen. As an example, for the above (16, 11) RM code,  Ὠᶻ τ and the rows of 

Ὂṧ  of weight at least 4 are chosen as the rows of the generator matrix ╖ : 

╖

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ
ρ
ρ
ρ
ρ
ρ
ρ
ρ
ρ
ρ
ρ
ρ

ρ
ρ
π
ρ
ρ
π
ρ
π
ρ
π
ρ

ρ
π
ρ
ρ
π
ρ
ρ
π
π
ρ
ρ

ρ
π
π
ρ
π
π
ρ
π
π
π
ρ

π
ρ
ρ
ρ
π
π
π
ρ
ρ
ρ
ρ

π
ρ
π
ρ
π
π
π
π
ρ
π
ρ

π
π
ρ
ρ
π
π
π
π
π
ρ
ρ

π
π
π
ρ
π
π
π
π
π
π
ρ

π
π
π
π
ρ
ρ
ρ
ρ
ρ
ρ
ρ

π
π
π
π
ρ
π
ρ
π
ρ
π
ρ

π
π
π
π
π
ρ
ρ
π
π
ρ
ρ

π
π
π
π
π
π
ρ
π
π
π
ρ

π
π
π
π
π
π
π
ρ
ρ
ρ
ρ

π
π
π
π
π
π
π
π
ρ
π
ρ

π
π
π
π
π
π
π
π
π
ρ
ρ

π
π
π
π
π
π
π
π
π
π
ρỨ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

 

It can be seen clearly that ╖ ╖  once the suitable row permutations are 

performed. 

Similar to decoding of polar codes, a recursive decoding algorithm for RM codes was 

proposed [Dumer, 2017]. It is pointed out by Korada [Korada, 2009] that this 

algorithm is similar to the successive cancellation algorithm proposed by Arēkan 

[Arēkan, 2009]. RM codes are proven to be capacity achieving on both erasure and 

error channels [Abbe, Shpilka, & Wigderson, 2015; Kudekar et al., 2017] and 

outperform polar codes when MAP decoding is used [Mondelli, Hassani, & Urbanke, 

2014], however they fall behind when SC decoding is used [Hashemi, Doan, Mondelli, 

& Gross, 2018]. Mondelli, Hassani and Urbanke thus use the two in a hybrid structure 

and benefit from both under certain channel conditions [Mondelli et al., 2014]. Forney 

proposes another decoding called ñBelief Propagationò (BP) decoding for codes on 

graphs [Forney, 2001], among which RM codes also belong. BP decoding 

performance lies nearly halfway between that of MAP and SC decoding, and in fact, 

SC decoder is a particular instance of BP decoder [Korada, 2009]. BP decoding can 

be used for both RM and polar codes, but it is shown that performance of polar codes 

under BP decoding is better than that of RM codes [Arēkan, 2010a]. 

BP decoding is a message passing algorithm on factor graphs, and it is based on 

Gallagerôs LDPC decoding [Elkelesh, Cammerer, Ebada, & Ten Brink, 2017]. It 
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consists of ὲ ÌÏÇὔ stages and ÌÏÇὔ  processing elements (PE) depicted with 

dashed box in Figure 2.12 and detailed in Fig.1b. Figure 2.12 is also called as ñfactor 

graphò. Denoting the nodes of PE with ὭȟὮ where Ὥ is the stage ρ Ὥ ὲ ρ and 

Ὦ is the bit index ρ Ὦ ὔ , at each PE, messages are passed from left to right 

(denoted as ὒȟ)  and from right to left (denoted as Ὑȟ) by 

 ὒȟ Ὢὒ ȟȟὒ ȟ Ὑȟ  

ὒȟ ὒ ȟ Ὢὒ ȟȟὙȟ  

Ὑ ȟ ὪὙȟȟὒ ȟ Ὑ ȟ  

Ὑ ȟ Ὑȟ ὪὙȟȟὒ ȟ  

(2.32) 

where ὔ ς , ὸ πȟρȟȣ is the time index and Ὢὥȟὦ ÌÏÇ .  

 

 

Figure 2.12. Belief propagation (BP) decoder construction for RM codes of code length 8. The 

dashed line shows a processing element (PE) 
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Figure 2.13. Details of a processing element (PE) used in a BP decoder 

 

The initial leftmost Ὑ ȟ messages, denoting the a priori information at the decoder, 

and the rightmost ὒ ȟ  messages, denoting the channel output, are initialized as  

 
ὒ ȟ ÌÏÇ

ὖὼ πώ

ὖὼ ρώ
 

Ὑ ȟ

πȟ ÉÆ Ὦ ÉÓ ÉÎÆÏÒÍÁÔÉÏÎ ÉÎÄÅØ
Њȟ ÉÆ Ὦ ÉÓ ÆÒÏÚÅÎ ÉÎÄÅØ

 

(2.33) 

while all other nodes at time ὸ π are set to 0. The decoding iteratively continues 

until a predefined number of iterations ὔ  are performed. Assuming the decoding 

is finished at ὸ Ὕ, the LLRs of the estimates ◊ of the input ◊ and the transmitted 

codeword ●  are calculated as 

 
ό

πȟÉÆ ὒȟ Ὑȟ π

ρȟ ÏÔÈÅÒ×ÉÓÅ
 

ὼ ὒ ȟ Ὑ ȟ 

 

(2.34) 

Since ὔ  may result in decoding latency, the iterations may also be stopped when 

early stopping conditions are met. Although suggested primarily for the polar codes, 

we prefer to mention these in this section due to the given context of BP decoding, yet 

without giving too much detail. Elkelesh, Ebada, Cammerer and Ten Brink describe 3 

stopping criteria called as the practical, perfect knowledge-based, and CRC-aided 

stopping conditions [Elkelesh, Ebada, Cammerer, & Ten Brink, 2018a]. The first one 

is simply the generator matrix-based (╖ ï based) condition where the iterations stop 
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when ● ◊╖ is satisfied and thus ◊ is a valid estimate. The second one continues 

iterating until ◊ ◊ is satisfied, which requires the knowledge of the information bit 

and thus may be called as ñgenie-aidedò, and the last one requires an outer high rate 

cyclic redundancy check (CRC) code that checks upon the information bits. Yuan and 

Parhi propose a minimum LLR-based criterion that stops the iteration when all LLRs 

of ◊ exceed a given threshold value [Yuan & Parhi, 2014]. Furthermore, an adaptive 

stopping condition that is based on channel condition estimation that determines this 

threshold with respect to the channel SNR is proposed. In summary, both of the 

aforementioned proposals improve the performance of BP decoders.  

 

2.5. The Wireless Fading Channel 

As mentioned before, propagation of signals in wireless channel is by electromagnetic 

waves. Assuming no phase offset, we can denote the band pass input signal as ίὸ

ᴘόὸὩ  where όὸ is the complex envelope of ίὸ and Ὢ is the carrier 

frequency. Due to reflection, diffraction and scattering, there are many paths of a 

single transmitted signal, each with different delays and Doppler phase shifts. Then, 

the resulting received signal is sum of all delayed and attenuated replicas of the 

transmitted signal: 

 

ὶὸ ᴘ  ὸόὸ † ὸὩ  (2.35) 

where ὲ denotes the ὲth path (ὲ π denotes the line-of-sight (LOS) path);   ὸ 

being the attenuation factor (which is a function of path loss), † ὸ being the time 

delay and ‰  being the Doppler phase shift of ὲth path (Note that the Doppler shift 

on ὲth path is Ὢ ὸ Ὢ† ὸ and ‰ ᷿ ς“ Ὢ ὸὨὸ ). Letting ‰ ὸ

ς“Ὢ† ὸ ‰  so that it represents both delay and Doppler phase shift, the 

simplified version of received signal is 
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ὶὸ ᴘ  ὸὩ όὸ † ὸ Ὡ  (2.36) 

On the other hand, if we model the channel as a linear time varying system with a 

baseband channel impulse response Ὤὸȟ†, we can simply write  ὶὸ

ᴘ ᷿ Ὤὸȟ†όὸ †Ὠ†Ὡ . Comparing this to (2.37), we have the impulse 

response for a fading channel as 

 

Ὤὸȟ†  ὸὩ † † ὸ  (2.37) 

where Ͻ is the dirac delta function. For the discrete case, we can naturally write 

ώὲ ВὬάὼά ὰ such that Ὤά  is the ὰth channel filter tap at time ά 

[Rappaport, 1996]. We will not go into further detail as it is sufficient to keep in mind 

that the channel impulse response is a function of attenuation, delay and phase shifts 

for the scope of this thesis.  

As mentioned before, fading is variation in signal power over time and frequency, and 

can be divided into two: large-scale and small-scale propagation effects. The former 

effect is mainly due to path loss and blocking of objects, i.e. shadowing, in relatively 

large distances and time durations, while the latter effect characterizes the rapid signal 

power fluctuations that happen in much shorter distances and time. Both propagation 

effects are modeled statistically. Without loss of generality, the term fading alone is 

used for small-scale propagation effects and we will be concerned small-scale fading 

in the simulations performed in Chapter 3.   

Factors affecting small-scale fading can be stated as multipath propagation, speed of 

the mobile station with respect to base station or the surrounding objects, and the 

transmission bandwidth of the signal [Rappaport, 1996]. From (2.35), due to 

randomness and dependency on delay and Doppler shift, it is evident that there would 

some key parameters when defining a fading channel such as how fast the channel 
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changes over time or frequency. Coherence time represents how fast the channel is 

changing over time and is a function of Doppler shifts of different paths contributing 

to the same filter tap Ὤά : If we denote Doppler spread as maximum difference of 

Doppler shifts, i.e. ὈḊÍÁØ
ȟ
Ὢ†ὸ †ὸ , then the coherence time is Ὕ

ρȾτὈ. When the codeword length spans multiple channel fades, or equivalently many 

coherence periods Ὕ, we have the fast fading channel. In fast fading channel, the  

channel changes are fast that the bit errors for the individual bits are independent [Lee, 

2004]. Going further, if channel tap Ὤά  remains constant over Ὕ symbols, we have 

the simple block fading channel that can be thought as parallel channels with filter 

taps being constant within the block, while being i.i.d. among different blocks.  We 

assume the block fading channel model throughout the simulations in Chapter 3. 

 

2.6. Further Notes and Literature Review 

In this section, we give some further notes and try to summarize the existing work 

related to our work presented in this thesis. 

2.6.1. Decoders for RM and Polar Codes 

From the point of view of Kronecker product construction of RM codes, it is obvious 

that RM and polar codes are very similar, in terms of their generator matrices. The 

difference is that RM codes use minimum distance rule while the polar codes use 

minimum Bhattacharyya parameter-rule. In other words, polar codes are channel-

specific whereas the RM codes are channel-independent. It is shown that for ὲ τ, 

the generator matrices of the two codes are exactly the same, but after ὔ σς, the 

rows of the generator matrices start to differ [Arēkan, 2008]. Nonetheless, they can be 

decoded using the same decoders. As a result, due to the similarities in both encoding 

and decoding, they remain to be close relatives and they are often compared in terms 

of error rate performance. While doing so, further decoding techniques that can be 

used in decoding either of the two codes are used: 
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i. CRC-aided Decoding 

CRC code is an error-detecting code that is based on cyclic codes and checks the data 

by adding some redundancy. It is commonly used in various areas such as 

telecommunication standards such as 3GPP or GSM, mobile networks or computer 

architectures. They are denoted as CRC-n where n is the number of redundancy bits. 

Since all of the decoding techniques may well be improved with the help of a CRC 

code, we will not be going much further in detail here (and also in the following 

described decoding techniques), except mentioning that it was shown that a SCL 

decoding of polar codes with CRC-16 outperformed state-of-the-art LDPC codes [Tal 

& Vardy, 2015]. For other applications of CRC codes used in decoding of polar codes, 

preferred readers may read [B. Li, Shen, & Tse, 2014; Murata & Ochiai, 2017; Niu & 

Chen, 2012]. 

ii.  Permuted Decoding 

Due to iterative construction of polar codes, one can easily manipulate the stages of 

the factor graph, such that the stages are permuted. It was Hussami, Korada and 

Urbanke [Hussami et al., 2009] and Korada alone [Korada, 2009] to first mention 

permutation of layers of the factor graph for decoding of the polar codes, leaving it as 

an open problem. Since there are ὲ ÌÏÇὔ layers in a factor graph, there are ὲȦ ways 

to construct it, irrespective of the type of decoder used. As a result, we will mention 

the permuted SC and BP decoding (PSCD and PBPD, respectively) here. 

Vangala, Viterbo and Hong give the proof of encoderôs permutation-invariance and 

uses the permutation over the SC decoder. They show that although the performance 

is degraded when PSCD is used for the polar codes designed for the standard SC-

decoder (which is the bit-reversed decoding order as given in the original construction 

of polar codes), the PSCD performance is exactly the same as SCD when the polar 

code construction is matched to the permutation used at the decoder (i.e., the order of 

Bhattacharyya parameters of the bit channels are in the same order as the decoding 

order) They also conclude that using the latter case, if exactly the opposite order of 

the layers (with respect to Arēkanôs original construction) is used with a matched 
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construction, the decoding order becomes the natural order which results in less 

complexity and latency of the decoder [Vangala, Viterbo, & Hong, 2014]. 

Permutation on the BP decoder is also used [Akdoĵan, 2018; Doan, Hashemi, 

Mondelli, & Gross, 2018; Elkelesh et al., 2018a]. Elkelesh, Ebada, Cammerer and Ten 

Brink use these different permutations in series such that if one permuted factor graph 

fails to decode the received codeword, a permuted version of it is used until a 

predefined number of maximum permutations is reached. They conclude that using 

more than one representation (i.e., permutation) of the factor graph results in improved 

decoding performance, and even outperforms SCL decoder when a proper stopping 

criterion (for example, perfect knowledge-based one) is used [Elkelesh et al., 2018a]. 

Unlike the random choice of permutation used in the previously mentioned work, 

Doan, Hashemi, Mondelli and Gross propose a method to construct a predetermined 

set of permutations, which consists of only the good permutations of the original factor 

graph, and it is shown to improve FER performance. Interestingly, they also mention 

that the good permutations are those which are obtained by permuting the leftmost 

side of the factor graph [Doan et al., 2018] (Although the authors conclude it as 

ñrightmostò instead of ñleftmostò, the factor graph they take as reference is the 

opposite of the one used in this thesis, as shown in Figure 2.12. Thus, we give their 

result the opposite way, without loss of information). This conclusion is also verified 

by numerical calculations by Akdoĵan, who also investigates the use of multiple factor 

graphs, both dependently (by letting the newly constructed factor graphôs erasures to 

be filled by that of previous factor graph) and independently (by sending the 

undecoded codewords to the next factor graph), and concludes that dependent use of 

multiple factor graphs outperform the independent use under BP decoding [Akdoĵan, 

2018]. 

Another way of using the factor graph permutations both for the polar and RM codes, 

referred to as Successive Permutation SC List Decoding (SPSCL), is discussed by 

Hashemi, Doan, Mondelli and Gross. Using the code partitioning described by 

Hassani et al. [Hassani et al., 2018], it is pointed out that there are actually more than 
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ὲȦ permutations, and thus they propose a method that constructs the best permutation 

ñon the flyò, i.e. during the course of decoding, that picks the permutation with the 

most reliable LLR values. Once conducted both for the SC and SCL decoders, this 

scheme shows improved FER performance in decoding both of the codes [Hashemi et 

al., 2018].  

iii.  List Decoding 

List decoding was actually mentioned for RM codes  using their recursive encoding 

structure called as the Plotkin construction [Dumer & Shabunov, 2017]. Arēkan also 

mentions this construction for Polar codes [Arēkan, 2008] and [Arēkan, 2010a]. Plotkin 

construction basically decomposes the  
ὲ
ὶ
  code onto subblocks  

ὲ ρ
ὶ
  and 

 
ὲ ρ
ὶ ρ

  until the repetition codes  
Ὣ
π
  for any Ὣ ρȟȣȟὲ ὶ and full spaces   

Ὤ
Ὤ
  

for any Ὤ ρȟȣȟὶ are reached. As a result, tree-like construction is formed and 

recursive encoding and decoding can be performed (for details, see [Dumer, 2004, 

2006]). 

List decoding of polar codes are considered both for the SC and BP decoders. Tal and 

Vardy propose list decoding to the SC decoder, referring to as SCL decoding with a 

parameter ὒ called the list size [Tal & Vardy, 2015]. The decoding is performed 

successively one-by-one as in the original SC decoder, but the SCL decoder takes ὒ 

decoding paths into account when decoding the next information bit: When decoding 

an unfrozen bit ό , the decoder splits the previous ὒ decoding paths (used for the 

decoding of the previous information bits ◊  into two such that ό  can either be 0 

or 1, and then keeps the most likely ὒ paths for the next decoding phase.  At the end, 

the decoder chooses the most likely path among ὒ paths, giving a single decoded 

codeword. When ὒ ρ, the SCL decoder is simply the original SC decoder where it 

decides a decoded information bit to be 0 or 1 instantly at each decoding phase 

(without keeping track of decoding paths). It is observed that error rate performance 

is improved with increasing list size, with a cost of increased complexity and latency.  

Hardware improvements regarding this issue, such as partitioning the decoding paths 
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(referred to as partitioned-SCL (PSCL) to reduce memory requirements  exist 

[Hashemi, Balatsoukas-Stimming, Giard, Thibeault, & Gross, 2016], but hardware 

implementation considerations are not within scope of this thesis. Nonetheless, the 

performance is comparable to state-of-the art LDPC and Turbo codes, and indeed SCL 

decoding of Polar codes outperforms LDPC codes used in WiMAX when CRC 

precoding is used [Tal & Vardy, 2015].  

Unlike the serial use of permuted factor graphs discussed in PBP decoders, Elkelesh, 

Ebada, Cammerer and Ten Brink use the BP decoders in parallel, resulting in the BP-

List (BPL) decoding of polar codes. The proposed method is to select ὲ ρ cyclic 

shifts among different factor graph representations, decode the received codeword 

using L parallel BP decoders, and finally picking the codeword closest (in terms of 

Euclidean distance) to the received codeword. They claim that this proposed scheme 

is the best iterative decoder, in terms of soft-decoding and low latency [Elkelesh, 

Ebada, Cammerer, & Ten Brink, 2018b]. They also use RM and polar codes together, 

which is described in Chapter 4 of this thesis. 

 

2.6.2. Fading Channels and Polar Codes 

Existing work relating to polar codes and fading channels do not date far back. Our 

underlying motivation to investigate this relationship is mainly due to the work of Liu, 

Hong and Viterbo [Liu, Hong, & Viterbo, 2017]. As the probability of error in a fading 

channel is inversely proportional to the channel gain (or fading coefficient), they claim 

that the fading channels are naturally polarized, which they refer to as ñfading 

polarizationò. They propose a new method to calculate the Bhattacharyya parameters 

specifically for the fading channel thus match the polar code construction to the fading 

channels. This method is found to provide 1.5 dB gain over LDPC codes at block error 

rate 10-4. 

Bravos-Santos and Trifonov both narrow the fading channels to only the Rayleigh 

fading and consider the polar codes for such channels [Bravo-Santos, 2013; Trifonov, 
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2015]. Bravo-Santos constructs polar codes assuming the channel statistics such as 

either channel distribution or channel state information; i.e. CDI or CSI, is known for 

binary input- and for block Rayleigh fading channels. Compared to Turbo and LDPC 

codes, it is shown that the suggested scheme is closer to the theoretical limit when 

large codelengths are used [Bravo-Santos, 2013]. Similar to fading polarization 

mentioned by Liu et al. [S. Liu et al., 2017], Trifonov models the polarized 

subchannels as fading channels whose gains have Chi … distribution which is a 

general case of Rayleigh distribution. It is noted that this modelling can be used to 

estimate the error probabilities in the polarized subchannels. Furthermore, it is pointed 

out that classical polar codes perform poorly in the fading channels unless the code is 

optimized for the Rayleigh channel, frozen bits are dynamically set to linear 

combinations of other symbols, and sequential or list decoding is used. For the latter 

case, it is shown that use of dynamic frozen symbols provides significant gain over 

similar LDPC code [Trifonov, 2015].  

Continuing with the block fading channels, Boutros and Biglieri state that unlike the 

natural construction of polar codes which is deterministic; in block fading channels, 

the channel polarization can be thought as multiple parallel channels having different 

mutual information. Within a block of ὔ symbols, they assume only two fading states 

with no specific distribution and affecting ὔȾς symbols irrespective of the order, 

which they refer to as ñmultiplexingò. As a result, they observe the polarization effect 

on 3 different such multiplexed structures by analyzing the mutual information outage 

probabilities [Boutros & Biglieri, 2013]. 

Similar to the work of Boutros and Biglieri, Si, Kºyl¿oĵlu and Vishwanath propose a 

hierarchical polar coding scheme for block fading binary symmetric and additive 

exponential noise channels without CSI at the transmitter. For the block fading BSC 

case, they start with two channel states that one block can be in, and generalize to S 

states [Si, Kºyl¿oĵlu, & Vishwanath, 2014]. Observing that this work is mainly 

theoretical, we leave the details of it to Chapter 3 where we try to investigate the bit 

error rate performance of this proposed scheme.   
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CHAPTER 3  

 

3. HIERARCHICAL POLAR CODING SCHEME  

FOR FADING BINARY SYMMETRIC CHANNELS  

 

In this chapter, we compare the hierarchical polar coding scheme for binary fading 

channels proposed by Si, Kºyl¿oĵlu and Vishwanath in 2014 [Si et al., 2014] with 

Arēkanôs original polar code scheme [Arēkan, 2009]. We first briefly explain the 

scheme and then compare the BER (bit error ratio) performance of the hierarchical 

polar coding scheme in [Si et al., 2014] with that of the plain polar coding [Arēkan, 

2009] under similar conditions. 

 

3.1. Proposed Scheme by Si, Kºyl¿oĵlu and Vishwanath 

Si, Kºyl¿oĵlu and Vishwanath propose a hierarchical coding scheme that uses 

multiple polar coding phases for block fading channels with additive binary and 

exponential noise channels. In this thesis, we call this code the ñSKV-codeò; and we 

focus on the fading BSC case as the model of the AWGN block fading channel with 

BPSK modulation. The authors assume that only the decoder knows the channel state 

information (in short we will denote this as CSI-D as ñchannel state information at the 

decoderò), while the transmitter only knows the channel state statistics. For simplicity, 

we focus on the case of two-state fading channel, where there are only two fading 

states that a block may encounter, although in [Si et al., 2014], generalization to S 

states is also given. 

Referring to Figure 2.3(b), the output ὣ of a fading BSC with input ὢ can be 

represented as  

 ὣȟ ὢȟṥὤȟȟ Ὥ ρȟȣȟὔȟ ὦ ρȟȣȟὄȟ   (3.1) 
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where ὔ is the block length, ὄ is the number of blocks, and ὤȟôs are identically 

Bernoulli distributed within a block and independent over fading blocks. As 

mentioned before, we assume only two states; that is, with probability ήȟ the block ὦ 

can be in State 1 and with probability ή ρ ή, it can be in State 2. For the blocks 

in State 1, the noise ὤȟ is Bernoulli distributed with parameter ὴ. Likewise, for the 

blocks in State 2, the noise ὤȟ is Bernoulli distributed with parameter ὴ ὴ. These 

probabilities will be used to model the AWGN channel with BPSK modulation as 

discussed below. 

As mentioned in Section 2.5, when we talk about fading channels, for the discrete 

AWGN case, we have ὣ Ὤὢ ὤ, where Ὤ is the channel gain and ὤ is the Gaussian 

noise. With BPSK modulation, this channel can be considered as a binary input and 

binary output channel with transition probability relating to the AWGN channel state. 

In other words, since the channel is assumed to be constant over a block, the channel 

gain Ὤȟ Ὤ, Ὥᶅ ρȟȣȟὔȟ with probability ή for ίɴ ρȟς and the equivalent 

fading BSCs have the crossover probabilities 

 ὴḯὖὤȟ ρ ρ ɮὬЍὛὔὙȟ ίɴ ρȟς (3.2) 

 

where ɮὼ is the cumulative normal function of the Gaussian distribution (See 

Appendix A for proof). As a result, the two fading blocks are equivalent to two BSCs: 

ὡ "3#ὴ  and  ὡ "3#ὴ . 

The overall capacity for the 2-state fading BSC is 

 

                       ὅ ήρ Ὄὴ

ήρ Ὄὴ ρ ή ρ Ὄὴ  

 

(3.3) 

and the authors state that the proposed polar coding scheme achieves this capacity 

without channel state information at the transmitter [Si et al., 2014]. 
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It is assumed that 0.5 ὴ ὴ, so we will call ὡ  as the bad (or degraded) channel 

and ὡ  as the good (or superior) channel. Since Bhattacharyya parameters for the 

construction of polar codes are required, the information bit indices of the bad channel 

are a subset of that of the good channel. This is given in Lemma 1 of [Si et al., 2014]. 

After reordering the indices, they are grouped into three sets as shown in Fig.3.1.  

1. Set ꞉  where both channelsô capacities tend to 1 (i.e. both are good channels). 

2. Set ִי  where the degraded channelôs capacity tends to 0, while that of the 

superior tends to 1. 

3. Set ꞈ  where both channelsô capacities tend to 0. 

 

 

Figure 3.1. Choice of information bits in a codeword of length N according to the encoding scheme 

proposed in [Si et al., 2014] for two fading states (reproduced from [Si et al., 2014]). 

 

Then, if we denote the sets of information bits as ꜝ  and ꜝ  for the degraded and 

superior channels, respectively, we can write ꜝ  ꞉ and ꜝ ꞉᷾  ȟ and theיִ

following relations are formed considering the sizes of these sets: 

 ȿ꞉ȿ ȿꜝ ȿ ρ Ὄὴ ὔ 

ȿִיȿ ȿꜝ ȿ ȿꜝ ȿ Ὄὴ Ὄὴ ὔ 

ȿꞈȿ ὔ ȿꜝ ȿ Ὄὴ ὔ 

(3.4) 
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where ὌϽ is the binary entropy function and the offset  in πȟρ approaches 0 as 

ὔᴼЊ. One should notice that, the overall code rate is Ὑ ήὙ ρ ή Ὑ, 

where Ὑ ȿ꞉ȿȾὔ ρ Ὄὴ  and Ὑ ȿ꞉ȿ ȿִיȿȾὔ ρ Ὄὴ . 

So, the code rate Ὑ is less than the 2-state fading channel capacity ὅȿ ρ

Ὄὴ  given by (3.3) and Ὑ is less than ὅȿ ρ Ὄὴ  only for nonzero values 

of the offset Ȣ  

Looking at Fig.3.1, regardless of the fading state, the channel with indices in the set  ꞉

always polarizes to a good channel (the capacity tends to 1) and in the similar manner, 

the channel with indices in the set  ꞈalways polarizes to a bad channel (the capacity 

tends to 0). Then, we can send the information bits at indices belonging to set  ꞉

reliably, while we can ñfreezeò the indices belonging to the set .ꞈ However, the 

indices over the set ִי  behave differently: With probability ή, the constructed 

channel is in the degraded state, while with probability ρ ή, the constructed channel 

is in the superior state. In other words, the information bits are sent unreliably with 

probability ή. So, the channels in set ִי  can be modeled as a BEC with erasure 

probability of ή: ὡḯὄὉὅή Ȣ As a result, the uncertainty in layer ִי  can be 

overcome by exploiting an overlaid BEC over the fading BSCs. 

With this being said, the encoder hierarchically uses two phases to construct a 

codeword of length ὔὄ as explained in the next section, followed by the block fading 

channel modelling and finally the three-phased decoder to decode the information bits. 

 

3.1.1. Hierarchical Encoding 

3.1.1.1. Phase 1 ï BEC Encoding 

In this phase, ȿִיȿ polar codewords specified by the parameter ὄȟꜝ ȟꜝ ȟπ are 

constructed by setting the frozen variables to 0, where ꜝ  is the information set for 

ὡ ὄὉὅή  such that 
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 ꜝ ρ ή  ὄ (3.5)

   

where π Ḻρ ή and vanishes as ὄ gets large enough. The encoder generates 

ȿִיȿ  ὄ bits denoted as ╤ such that  

╤ 

ό ό ό
ό ό ό
ể ȣ ȣ

    
ȣ ȣ ό
ȣ ȣ ό
ȣ ȣ ể

     όȿִיȿ όȿִיȿ όȿִיȿ    ȣ ȣ όȿִיȿ

╤
╤
ể
╤ȿִיȿ

   

 

3.1.1.2. Phase 2 ï BSC Encoding 

In this phase, ὄ polar codewords specified by the parameter ὔȟȿ꞉ȿȟ꞉ִ᷾יȟπ, where 

 ꞉is the information set for ὡ ὄὛὅὴ , are produced. Unlike setting all of the 

frozen bits to 0, the output of the first phase is transposed and used as frozen bits, 

along with the remaining zeros. The encoder thus encodes “ ╤  ╤   (where 

“(.) is the permutation to order the Bhattacharyya parameters in ascending manner, 

for the degraded channel) and generates an overall codeword of length ὔὄ. The 

overall encoding scheme is shown in Fig.3.2. 

 

Figure 3.2. Polar encoder proposed in [Si et al., 2014] for a fading binary symmetric channel with 

two states (reproduced from [Si et al., 2014]) 
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3.1.2. The Block Fading Channel 

The output of the encoder denoted as ╧

ὼ ὼ ὼ
ὼ ὼ ὼ
ể ȣ ȣ

    
ȣ ȣ ὼ
ȣ ȣ ὼ
ȣ ȣ ể

ὼ ὼ ὼ     ȣ ȣ ὼ

╧
╧
ể
╧

 

such that ╧ ὢȟȟὦ ρȡὄȟὭ ρȡὔ   is transmitted from the fading BSCs as 

follows:  

 
ὣȟ ὢȟṥὤȟ such that 

ὤȟͯ Bernὴ ȟÃÈÁÎÎÅÌ ÓÔÁÔÅͼÂÁÄͼ

  ὤȟͯ Bernὴ ȟÃÈÁÎÎÅÌ ÓÔÁÔÅͼÇÏÏÄͼ
 (3.6) 

In other words, if the block ὦ is in the degraded (ñbadò) channel state (which happens 

with probability ή), the noise added to this block is distributed as Bernoulli random 

variable with probability ὴȟ and if the block is in the superior (ñgoodò) channel state 

(with probability ή ρ ή), the noise added to this block is distributed as Bernoulli 

random variable with probability ὴ. After ╧ is transmitted from the fading channel, 

the received codeword ╨ such that ╨ ὣȟȟὭ ρȡὔȟὦ ρȡὄ is decoded using 

three phases, with the channel state information being known at the receiver as shown 

in Figure 3.3.  

 

3.1.3. Hierarchical Decoding 

3.1.3.1. Phase 1 ï BSC Decoding 1 

In the first phase of decoding, the decoder uses the classical BSCὴ -SC (successive 

cancellation) polar decoder with parameter ὴ: 

 
ό ḯ

π

Ὠȟώȡȟόȡ  ȟ
ÉÆ Ὥɴ ꞈ

ÉÆ Ὥɴ ꞉᷾ יִ
ȟ Ὥ ρȡὔ 

Ὠȟώȡȟόȡ  ḯ

ừ
Ừ

ứ
πȟ  ÉÆ 

ὡȟ ώȡȟόȡ π

ὡȟ ώȡȟόȡ ρ
ρ

ρȟ                 ÏÔÈÅÒ×ÉÓÅȢ                

 

(3.7) 
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This procedure decodes the information bits in blocks with respect to the superior 

channel states reliably; however, the ones with respect to the degraded channel states 

cannot be decoded reliably, because the frozen bits of the degraded channel states 

יִ) ᷾ )ꜞ are unknown due to the unknown set ִי . Thus, a ὄ ȿִיȿ matrix ╤ is 

constructed by choosing the rows corresponding to the superior state directly from this 

phaseôs output and the rows corresponding to the degraded state are set to erasures, 

which are then sent to the next phase. 

 

3.1.3.2. Phase 2 ï BEC Decoding 

In this phase, the frozen bits with respect to the degraded channel states are decoded 

using the classical BEC(ή -SC decoder with parameter ή: 

 
ὺ ḯ

π

Ὠ όȡȿִיȿ ȟὺȡ
  ȟ ÉÆ Ὥɴ ꜝ

ÉÆ Ὥɴ ꜝ
ȟ Ὦ ρȡὄ 

Ὠ όȡȿִיȿ ȟὺȡ ḯ

ừ
Ừ

ứ
πȟ  ÉÆ 

ὡ όȡȿִיȿ ȟὺȡ π

ὡ όȡȿִיȿ ȟὺȡ ρ
ρ

ρȟ                      otherwise.                

 

(3.8) 

   

The output is the estimate of the information bits constructed in Phase 1 of encoding, 

reconstructing the erased bits in ╤. Then the blocks corresponding to the degraded 

channel states, which are not decoded in the previous phase, can be decoded using the 

next phase. 

 

3.1.3.3. Phase 3 ï BSC Decoding 2 

Finally, in Phase 3, the remaining blocks corresponding the degraded channel states 

can be decoded using the BSCὴ -SC decoder with parameter ὴȡ 
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ό ḯ

π
ό

Ὠȟώȡȟόȡ  
  ȟ
 ÉÆ Ὥɴ ꞈ
   ÉÆ Ὥɴ יִ
ÉÆ Ὥɴ ꞉

ȟ Ὥ ρȡὔ 

Ὠȟώȡȟόȡ  ḯ

ừ
Ừ

ứ
πȟ  ÉÆ 

ὡȟ ώȡȟόȡ π

ὡȟ ώȡȟόȡ ρ
ρ

ρȟ                 otherwise.                

 

(3.9) 

   

For the indices in set ִי , the frozen bits are set to the values in ╤, which is constructed 

from the estimate ╤ from the previous phase, and for the indices in set ,ꞈ they are set 

to 0. For the indices in set ꞉, LLR calculations are done, just as if a classical BSC-SC 

was used. The overall decoding scheme is shown in Figure 3.3. 

In Phase 1, only the blocks in the superior state are decoded; while in Phase 3, only 

the blocks in the degraded state are decoded. In Phase 2, all blocks are decoded using 

a BEC(ή)-SC decoder. 

The performance of this scheme is intuitively discussed in [Si et al., 2014], finalized 

with a theorem stating that as long as the designed rates of polar codes do not exceed 

the corresponding channel capacities, all information bits are decoded with 

ὕὔὄÌÏÇὔὄ  complexity. 

 

3.2. Simulation Results 

In this part, we compare the multi-phase polar coding scheme proposed by Si, 

Kºyl¿oĵlu and Vishwanath [Si et al., 2014] that we call the ñSKV-codeò with Arēkanôs 

original polar code [Arēkan, 2009], which we simply call ñArēkanôs polar codeò or the 

ñpolar codeò. We construct a polar code at the overall code rate ήὙ ρ ή Ὑ 

with respect to both the degraded channel probability ὴ and the superior channel 

probability ὴ for performance comparison. The SKV-decoder is assumed to know 

the channel states, so that the appropriate blocks are decoded in Phase 1 and Phase 3 

[Si et al., 2014]. Such information is redundant for Arēkanôs polar code, because the 
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selection of blocks ñwith respect to channel casesò does not exist, and the decoder 

works on all blocks irrespective of their fading states. In the simulations, the SKV-

code and the Arēkanôs polar code are subjected to exactly the same channel states and 

channel noise.  

 

 

Figure 3.3. Polar decoder proposed in [Si et al., 2014] for a fading binary symmetric channel with 

two states (reproduced from [Si et al., 2014]) 

 

It should be noted that, from (3.4) and (3.5), one can see that the design parameters of 

the SKV-code result in code rates very close to the channel capacities which need to 

be decreased for practical code applications. Explicitly speaking, the BSC encoderôs 

code rate is Ὑ ȿ꞉ȿȾὔ ρ Ὄὴ  whose channel capacity is ὅ ρ

Ὄὴ ; and the code rate of the first BSC decoder (which is with respect to the good 

channel) is Ὑ ȿ꞉ȿ ȿִיȿȾὔ ρ Ὄὴ  whose channel capacity is 

ὅ ρ Ὄὴ . Similarly, the code rate of the BEC encoder is Ὑ ꜝȾὄ

ρ ή and the channel capacity of ὡ  ὄὉὅή  is ὅ ρ ή. As can be 



 

 

 

46 

 

seen, proper offsets  and  are needed so that the code rates are smaller than the 

channel capacities.  

We determine these offsets uniformly by fixing the code rate Ὑ to a percentage of the 

capacity ὅ, such that Ὑ ὅ, where π  ρ. This implies ὅ  ὅ ; 

hence,  ρ ὅ  for the BSCs ὡ  and ὡ ; similarly  ρ ὅ  for the 

BEC, ὡ. 

¶ For the SKV-code; Ὑ ὑȾὔ ὅ , Ὑ ὑȾὔ ὅ  and Ὑ

ὑȾὄ ὅ . As a result, the overall code rate, Ὑ ήὙ ρ ή Ὑ is 

settled as  times the overall capacity ὅ given by (3.3); i.e., Ὑ ὅ.  

o For the BSCs ὡ  and ὡȟ the initial sets ȿ꞉ȿȟȿִיȿ and ȿꞈȿ given by (3.4) 

become ȿ꞉ȿ ρ Ὄὴ ὔ ὑ, ȿִיȿ ρ Ὄὴ ὔ ὑ

ὑ ὑ  and  ȿꞈȿ ὔ ὑ. 

o For the BEC ὡ, ꜝ  ρ ή ὄ ὑ.  

¶ For the polar code denoted by ὔȟὑ  the rate is also adjusted such that Ὑ

Ὑ ὅ.  

o Corresponding number of information bits of the polar code is found as 

ὑ ήὑ ρ ή ὑ Ὑὔ.  

In the figures of this section, we plot the BER performances of the SKV-codes and 

Arēkanôs polar codes versus ή, the probability of being in the degraded channel; for 

a code length ὔ  256 and number of blocks ὄ  256. On each figure, we add the 

uncoded BER performance, ήὴ ρ ή  ὴ, as a green reference curve.  

We fix the crossover probability of the degraded channel ὴ to 0.1 and assign 

probabilities ὴ  0.1, 0.05, 0.02, 0.01 and 0.001 to the superior channel; to observe 

probability ratios of 1, 2, 5, 10, and 100, respectively. We start by choosing the 

coefficient  ὙȾὅ as 0.6 for all values of ὴ and ὴ.  

Firstly, the case of ὴ ὴ  0.1 is simulated but not plotted, to confirm that the SKV 

and polar codes become the same when there is only one channel state. Specifically 
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speaking, the erasure channel ὡ does not exist when ὴ ὴ, since the set ȿִיȿ shown 

in Figure 3.1 vanishes. As a result, there is no BEC encoder and decoder in the SKV-

code. Its Phase 2 encoder is equal to the polar encoder; and its Phase 1 and Phase 3 

decoders are equal to the polar decoder. Hence, the SKV and polar codes perform 

exactly the same when the crossover probabilities of the BSCs are equal, which is 

verified by the simulation results as well.  

Comparison figures of BER performance begin with a superior channel of transition 

probability ὴ  0.05; i.e., ὴȾὴ ς. In Table 3.1, the channel capacities ὅ , ὅ , 

ὅ  and the overall channel capacity ὅ corresponding to ὴ  0.1, ὴ  0.05 for 

different values of ή are tabulated, along with the adjusted values for ὑ, ὑ, ὑ and 

ὑ  which yield code rates equal to 60% of the related capacity. 

 

Table 3.1. Channel capacities ὅ ȟὅ ȟὅ , the overall channel capacity ὅ for ὴ  0.1, ὴ  0.05, 

corresponding number of information bits ὑ, ὑ, ὑ and ὑ  for   0.6. 

ή ὅ  ὅ  ὅή  ὅ  ὑ ȿ꞉ȿ ὑ ȿ꞉ȿ ȿִיȿ ὑ ꜝ  ὑ  

0.1 

0.531 0.714 

0.695 0.9 

82 110 

138 107 

0.2 0.677 0.8 123 104 

0.3 0.659 0.7 108 102 

0.4 0.641 0.6 92 99 

0.5 0.622 0.5 77 96 

0.6 0.604 0.4 61 93 

0.7 0.586 0.3 46 90 

0.8 0.568 0.2 31 88 

0.9 0.549 0.1 15 85 

 

 

Notice that the maximum value of the capacity is ὅ ρ Ὄὴ  for ή  0; i.e., 

when the channel is always in the superior state, and the minimum capacity value is 

ὅ ρ Ὄὴ  for ή  1, when the channel always remains in the degraded state. 

Therefore, the overall channel condition deteriorates as ή increases. 
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In Figure 3.4, we plot the BER performance of the SKV-code with ὑ  82, ȿִיȿ

ὑ ὑ  28 (red curve), and the polar codes designed both with respect to the 

degraded channel ὡ  (blue curve) and the superior channel ὡ (pink curve), against 

increasing values of  ή. Recall that the overall code rate is a function of  ή, thus it 

does not remain constant at each step of  ή. This also yields varying polar code rates 

(from 0.43 to 0.32 as ή goes from 0 to 1), as well. However, the code rates of the 

SKV-codes for the individual channels ὡ  and ὡ  are 0.32 and 0.43 respectively. 

 

 

Figure 3.4. BER performance of the SKV-code and polar codes for different probabilities of the 

degraded state, ὔ ὄ  256,  ὴ  0.1,  ὴ  0.05, with code rates Ὑ  0.6ὅ 

 

From Figure 3.4, one observes that for  ή  0.53, the SKV-code performs much better 

than the polar codes. For the smallest value of  ή  0.1, the SKV-code provides 3 

times better BER performance over the polar codes, and it is about 20 times better 

than the uncoded case. However, for  ή  0.53, the performance of the SKV-code 

starts to become worse than those of the polar codes and it approaches the uncoded 

BER performance at ή  0.9; where polar codes provide 10 times better BER 

performance over the uncoded case and the SKV-code. It is also observed that the 
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choice of the design parameter for the polar code (i.e., ὴ  0.1 or  ὴ  0.05) does 

not make an appreciable difference. 

Next, we increase the gap between the channels and continue with ὴ  0.1 and ὴ  

0.02; i.e., ὴȾὴ  5, that would yield the channel capacities ὅ ȟὅ ȟὅ  and ὅ along 

with the adjusted values for the information bits given in Table 3.2.  

 

Table 3.2. Channel capacities ὅ ȟὅ ȟὅ , the overall channel capacity ὅ for ὴ  0.1, ὴ  0.02, 

corresponding number of information bits ὑ, ὑ, ὑ, ὑ  and rate Ὑ  0.6ὅ. 

ή ὅ  ὅ  ὅ ὅ  ὑ ὑ ὑ ὑ  Ὑ  

0.1 

0.531 0.859 

0.826 0.9 

82 132 

138 127 0.496 

0.2 0.793 0.8 123 122 0.477 

0.3 0.760 0.7 108 117 0.457 

0.4 0.728 0.6 92 112 0.438 

0.5 0.695 0.5 77 107 0.418 

0.6 0.662 0.4 61 102 0.398 

0.7 0.629 0.3 46 97 0.379 

0.8 0.597 0.2 31 92 0.359 

0.9 0.564 0.1 15 87 0.340 

 

 

Since the overall capacity is increased, the polar code rate Ὑ  is also increased. We 

plot the BER performances in Figure 3.5, where one observes similar curve shapes to 

Figure 3.4: the SKV-code curve that is below the polar code curves for small ή 

crosses them at ή  0.71. Polar codes outperform the SKV code for ή  0.71, but 

their performance is worse for small values of ή, where the code rate Ὑ  is higher. 

This declining behavior of polar codes for small ή implies that, although the channel 

is more likely to be in the superior state, yet the errors made in a few degraded blocks 

by over-rate polar decoders dominate the overall number of errors. Again, the SKV-

code approaches the uncoded BER curve as ή increases. 
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Figure 3.5. BER performance of the SKV-code and polar codes for different probabilities of the 

degraded state, ὔ ὄ  256,  ὴ  0.1,  ὴ  0.02, with code rates Ὑ  0.6ὅ 

 

Decreasing ὴ further to 0.01, we simulate a channel condition for ὴȾὴ  10. In 

Table 3.3, we tabulate the corresponding channel capacities and the number of 

information bits for these channels.  

 

Table 3.3. Channel capacities ὅ ȟὅ ȟὅ , the overall channel capacity ὅ for ὴ  0.1, ὴ  0.01, 

corresponding number of information bits ὑ, ὑ, ὑ, ὑ  and rate Ὑ  0.6ὅ. 

ή ὅ  ὅ  ὅ ὅ  ὑ ὑ ὑ ὑ  Ὑ  

0.1 

0.531 0.919 

0.880 0.9 

82 141 

138 135 0.527 

0.2 0.842 0.8 123 129 0.504 

0.3 0.803 0.7 108 123 0.480 

0.4 0.764 0.6 92 117 0.457 

0.5 0.725 0.5 77 112 0.438 

0.6 0.686 0.4 61 106 0.414 

0.7 0.647 0.3 46 100 0.391 

0.8 0.609 0.2 31 94 0.367 

0.9 0.570 0.1 15 88 0.344 
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Once we plot the performance curves for these codes, as shown in Figure 3.6, we 

observe two distinct changes as compared to Figure 3.4 and Figure 3.5:  

First, for smaller values of ή, the BER performances of both polar codes are above 

the uncoded case, while the SKV-code remains more than 10 times better. The reason 

may be explained as follows: The channel is more likely to have a capacity of ὅ  for 

lower values of ή and ὅ  for higher values of ή. Since the polar codes do not use 

CSI (so they do not know which state the block is in), the code rate Ὑ  should satisfy 

Ὑ ὅ ὅ  so that it may decode correctly. Once we check this for ή  0.1 (see 

the last column of Table 3.3, shown by red), we notice that the code rate is 135/256 = 

0.527, which is very close to ὅ . As a result, it is quite possible that degraded blocks 

cannot be decoded correctly. In addition, once such an error has been made, it is 

expected to be large; because with probability ή, assuming half of the information 

bits are incorrectly decoded, polar BER has an additive component ήȾς, which is 

comparable to the uncoded BER of ήὴ ρ ή  ὴ . Hence, one can reason the 

aforementioned dominance of degraded block errors over negligible amount of 

superior block errors.  

 

Figure 3.6. BER performance of the SKV-code and polar codes for different probabilities of the 

degraded state, ὔ ὄ  256,  ὴ  0.1,  ὴ  0.01, with code rates Ὑ  0.6ὅ 
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Second, for higher values of ή, we now observe that the performances of two polar 

codes diverge from each other. This is reasonable because as ή increases, the channel 

is more likely to be in the degraded state; and since the polar code designed for the 

degraded channel ὡ  performs better than the one designed for the superior channel 

ὡ , the separation of BER curves is enhanced with increasing ratio of ὴȾὴ. As a 

result, the pink curve starts to move away from the blue curve for ή  0.5, and the 

blue curve appears as the best performance among all codes for ή  0.73.  

Apart from these observations, one may also notice the intersections of the SKV-code 

and polar code performances (which are similar to Figure 3.4 and Figure 3.5) at ή  

0.73 for the blue curve of the polar code designed for the degraded channel, and at 

ή  0.77 for the pink curve of the polar code designed for the superior channel. At 

the largest value of ή  0.9, the SKV-code again approaches the uncoded 

performance. 

Next we pick a case where ὴȾὴ  100 by decreasing ὴ to 0.001, while keeping 

ὴ as 0.1. The parameters of this simulation are tabulated in Table 3.4. As the overall 

channel capacity is increased by using a better superior channel than before, the rates 

used in this simulation are the highest among the ones given in this chapter. Since the 

erasure channel ὡ is a function of ή only, there is no change in its rate Ὑ. 

 

Table 3.4. Channel capacities ὅ ȟὅ ȟὅ , the overall channel capacity ὅ for ὴ  0.1, ὴ  0.001, 

corresponding number of information bits ὑ, ὑ, ὑ, ὑ  and rate Ὑ  0.6ὅ. 

ή ὅ  ὅ  ὅ ὅ  ὑ ὑ ὑ ὑ  Ὑ  

0.1 

0.531 0.989 

0.943 0.9 

82 152 

138 145 0.566 

0.2 0.897 0.8 123 138 0.539 

0.3 0.851 0.7 108 131 0.512 

0.4 0.806 0.6 92 124 0.484 

0.5 0.760 0.5 77 117 0.457 

0.6 0.714 0.4 61 110 0.430 

0.7 0.668 0.3 46 103 0.402 

0.8 0.623 0.2 31 96 0.375 

0.9 0.577 0.1 15 89 0.348 
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In Figure 3.7, we plot the BER curves of the codes mentioned in Table 3.4. We witness 

the same two observations mentioned for Figure 3.6, but this time, the divergence of 

the two polar code curves is more pronounced as a result of the larger ratio of ὴȾὴ. 

The polar code designed with respect to the good channel functions poorly, remaining 

almost always above the uncoded case except at ή  0.9. When the channel is more 

likely to be in the degraded state, i.e., for ή  0.5, we observe that the SKV-code 

performs approximately 10 times better than the uncoded case. Again, the SKV-code 

performs 30-35 times better than the polar codes for ή  0.2. 

 

 

Figure 3.7. BER performance of the SKV-code and polar codes for different probabilities of the 

degraded state, ὔ ὄ  256,  ὴ  0.1,  ὴ  0.001, with code rates Ὑ  0.6ὅ 

 

The red BER curve of the SKV-code intersects the blue curve of the polar code 

designed for the degraded channel at ή  0.75, after which the polar code 

outperforms the SKV-code. For ή  0.65, one observes that both of the polar codes 

perform worse than the uncoded case. Once the code rate of the polar code is checked 

from the last column of Table 3.4, one notices that the rate at small ή values is not 

appropriate when the channel fades into the bad state. In other words, as ή is small, 



 

 

 

54 

 

the code rate Ὑ  is more likely to remain very close, or even above the channel 

capacity ὅ . This is explicitly tabulated and shown in red in Table 3.5. Although this 

rate is suitable when the channel is in the good state; i.e., ὙȾὅ is suitable for all ή 

values, the reason why the blue and pink curves remain above the uncoded curve is 

thus the rate being impractical for the degraded channel blocks. 

 

Table 3.5. Ratio of the polar code rate Ὑ  to capacities of the fading channels ὅ  and ὅ   

for ὴ  0.1, ὴ  0.001 

ή ὅ  ὅ  ὅή  ὑ  ὙȾὅ  ὙȾὅ  

0.1 

0.531 0.989 

0.943 145 1.066 0.572 

0.2 0.897 138 1.015 0.545 

0.3 0.851 131 0.964 0.518 

0.4 0.806 124 0.911 0.489 

0.5 0.760 117 0.861 0.462 

0.6 0.714 110 0.810 0.435 

0.7 0.668 103 0.757 0.406 

0.8 0.623 96 0.706 0.379 

0.9 0.577 89 0.655 0.352 

 

In order to compare the above four cases where ὴȾὴ takes the values 2, 5, 10 and 

100, we combine the four figures, 3.4 to 3.7 in a single figure. Examining the BER 

performances of the SKV-code and polar codes in Figure 3.8, one observes that,  

¶ SKV curve (of BER performance) remains almost the same in all four cases, 

with the rightmost end at ή  1 touching the uncoded BER of 0.1, but the polar 

code curves get worse as ὴȾὴ and Ὑ ὅ increase. 

¶ SKV-code is better than polar codes at small values of ή, but it becomes worse 

for ή ὴ, and ὴ increases from 0.53 to 0.75 with increasing ὴȾὴ. 

¶ Polar code designed for BSC(ὴ) is the best solution for ή 0.75, but Ὑ ὅ 

seems too high for polar codes, so  needs to be properly decreased.  
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Figure 3.8. BER performances of the SKV-codes and polar codes for different probabilities of the 

degraded state, ὔ ὄ  256,  ὴ  0.1,  ὴ  (a) 0.001, (b) 0.02, (c) 0.01 and (d) 0.001 with code 

rates Ὑ  0.6ὅ 

 

In the simulations discussed thus far, where ή is changed for fixed values of ὴ and 

ὴ, variation of Ὑ with respect to ή is decisive in the shape of the polar code BER 

performances. It is such that, as ή increases from 0 to 1, Ὑ decreases from Ὑ to Ὑ. 

So, the choice of the coefficient  ὙȾὅ seems to be crucial. While the constraint of 

Ὑ Ὑ, where Ὑ ὅ ήὅ ρ ή ὅ ήὙ ρ ή Ὑ, forms a 

rate-equivalence between the SKV and single polar code simulations, one also needs 

to guarantee that Ὑ ὅ , so that the polar code can decode the degraded blocks. To 

satisfy Ὑ ὅ ὙȾ is not easy at small values of ή, where ὅ approaches ὅ

ὅ  and Ὑ approaches Ὑ Ὑ. Fulfillment of Ὑ ὅ  puts a tighter restriction on 

 ὙȾὅ, such that  ὙȾὅ ρ. This inequality can be explained by 

employing the lower and upper bounds of ὅ ήὅ ρ ή ὅ  (that is ὅ

ὅ ὅ  as ρ ή π) on the ratio ὙȾὅ. So, one obtains 
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In the next simulation, we lower all code rates by choosing   0.4. Among the 

previous ὴ-ὴ pairs, we select the last one with  ὴ  0.001. New simulation 

parameters are given in Table 3.6, which shows that with   0.4, the constraint of 

Ὑ ὅ  is satisfied at small values of ή as well; and all code rates remain in 

practical limits irrespective of the code used and the channel state.  

 

Table 3.6. Channel capacities ὅ ȟὅ ȟὅ , the overall channel capacity ὅ for ὴ  0.1, ὴ  0.001, 

corresponding number of information bits ὑ, ὑ, ὑ, ὑ , and rate Ὑ  0.4ὅ. 

ή ὅ  ὅ  ὅ ὅ  ὑ ὑ ὑ ὑ  Ὑ  

0.1 

0.531 0.989 

0.943 0.9 

54 101 

92 96 0.375 

0.2 0.897 0.8 82 92 0.359 

0.3 0.851 0.7 72 87 0.340 

0.4 0.806 0.6 61 82 0.320 

0.5 0.760 0.5 51 78 0.305 

0.6 0.714 0.4 41 73 0.285 

0.7 0.668 0.3 31 68 0.266 

0.8 0.623 0.2 20 63 0.246 

0.9 0.577 0.1 10 59 0.230 

 

 

BER performances of the SKV and polar codes for  ὴ  0.1 and  ὴ  0.001 at the 

overall code rate shown in the last column of Table 3.6 are plotted in Figure 3.9. The 

SKV-code achieves a BER as small as 5 10-6 at ή  0.1 and instead of touching the 

uncoded curve at ή  0.9, it performs almost 10 times better. Polar code curves also 

remain below the uncoded case, because of the careful adjustment of all code rates.  
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Figure 3.9. BER performance of the SKV-code and polar codes for different probabilities of the 

degraded state, ὔ ὄ  256,  ὴ  0.1,  ὴ  0.001, with code rates Ὑ  0.4ὅ 

 

As ή; i.e., the percentage of the degraded blocks increases, the best choice is the polar 

code designed for the degraded channel (for ή  0.72 in this case). Polar code also 

has the advantage of not requiring any CSI, as opposed to the SKV-code. We find that 

the worsening of the SKV performance as ή increases is mainly because of the errors 

made by the BEC decoder, as an inspection of Table 3.7 reveals. 

 

Table 3.7. BER performance of the BEC decoder of the SKV-code for ὴ  0.1, ὴ  0.001,  

and  ὙȾὅ  0.4. 

ή 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

BER 0 0 0 0 0 0.000016 0.000087 0.000189 0.000361 

 

 

One may also wonder how the original polar code would behave, if it were allowed to 

work at the rate bounds Ὑ and Ὑ rather than the fairly chosen code rate Ὑ  that 
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increases from Ὑ to Ὑ, as ή goes from 1 to 0. As expected and also spotted in Figure 

3.10 (a), performances of the polar codes at rate Ὑ would produce lower bounds, and 

those at Ὑ would form upper bound to other BER performances. 

 

Figure 3.10. BER performances of the SKV-code and polar codes for different probabilities of the 

degraded state, ὔ ὄ  256,  ὴ  0.1,  ὴ  0.001, with code rates Ὑ  0.6ὅ. Additionally, (a) 

polar codes are designed with respect to the degraded channel ὡ , and (b) to the superior channel ὡ , 

at rates ὙȟὙ and Ὑ. 

 

Finally, we express durations of some simulations using Intel Xeon CPU E5-1620 v3 

@3.5 GHz, 32 GB RAM and 64-bit OS. For an ὔ ὄ block where ὔ ὄ  256, at 

ή  0.1, a single encoding and decoding of the SKV-code takes about 6 seconds, 

while it lasts 3 seconds for the polar code on the average. At ή  0.9, the SKV-codeôs 

duration increases to 21 seconds while that of the polar code remains the same. For 

the simulations in Figures 3.4 to 3.7, a simulation point is obtained in approximately 

22 minutes at ή  0.1 and 52 minutes at ή  0.9, where the decoding is performed 

over 120 channel realizations to measure BERs as low as 10-3, reliably. For the 

simulation in Figure 3.9, in order to obtain a reliable BER as low as 510-6, the 

decoding is performed over 1000 channel realizations. which takes about roughly 48 

hours. 




















































































