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ABSTRACT 

 

COMPARISON OF MULTI-CAVITY ARRAYS FOR ON-CHIP WDM 

APPLICATIONS 

 

Erdinç, Havva 

Master of Science, Electrical and Electronics Engineering 

Supervisor: Assist. Prof. Dr. Serdar Kocaman 

 

June 2019, 86 pages 

 

Researches about the interaction of single atoms with electromagnetic field create the 

foundation of cavity quantum electrodynamics (CQED) technology. Microlasers, 

photon bandgap structures and quantum dot structures in cavities are the initial 

examples of Cavity Quantum Electrodynamics. This thesis is focused on the 

comparison of multi-cavity arrays for on-chip wavelength division multiplexing 

(WDM) applications in the weak coupling regime.  

Firstly, single QD embedded cavity (cavity QD EIT) and cavity-cavity array (classical 

EIT) systems are compared in the weak coupling regime in terms of transmission, 

group delay, quality factor, and full width half maximum (FWHM) characteristics. 

Identical transmission characteristic is observed for both systems whereas group delay 

values of classical EIT is two times higher than the cavity-QD EIT surprisingly. Then, 

single QD embedded cavity-cavity array and triple cavity array systems are compared 

in the weak coupling regime. These structures are simulated with several different 

variables many times and results are compared with the calculations for both systems. 

Results show that it is possible to get different WDM characteristic with different 

configurations. Taking advantage of the unique capabilities of quantum technologies, 

on-chip WDM applications can create new opportunities for the latest developments 

in designing communication infrastructure. 
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ÖZ 

 

ÇOKLU KAVİTE DİZİLERİNİN ÇİP ÜSTÜ WDM UYGULAMALARI İÇİN 

KARŞILAŞTIRILMASI 

 

Erdinç, Havva 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Danışmanı: Dr. Öğr. Üyesi Serdar Kocaman 

 

Haziran 2019, 86 sayfa 

 

Tekli atomların elektromanyetik alanla etkileşimi araştırmaları, Boşluk Kuantum 

Elektrodinamiği (CQED) teknolojisinin temelini oluşturur. Mikrolaserler, foton bant 

aralığı yapıları ve boşluklardaki kuantum nokta yapıları, Boşluk Kuantum 

Elektrodinamiğinin ilk örnekleridir. Bu tez, zayıf bağlanma rejiminde çip üzerinde 

dalga boyu bölmeli çoğullama (WDM) uygulamaları için çok boşluklu dizilerin 

karşılaştırılmasına odaklanmaktadır.  

İlk olarak, kavite sistemine gömülmüş tek QD (kavite QD EIT) ve kavite-boşluk 

dizisi (klasik EIT) yapılarının, zayıf bağlanma rejiminde iletim, grup gecikmesi, 

kalite faktörü ve tam genişlikte yarım maksimum (FWHM) karakteristikleri 

açısından karşılaştırılmıştır. Her iki sistem için de benzer iletim karakteristiği 

gözlenirken, klasik EIT'nin grup gecikme değerleri, boşluk-QD EIT'den şaşırtıcı 

şekilde iki kat daha yüksektir. Daha sonra, boşluk kavite dizisi sisteminde gömülmüş 

tek QD ve üçlü boşluk dizisi zayıf bağlanma rejiminde karşılaştırılmıştır. Bu yapılar 

birçok farklı değişkenle pek çok kez simüle edilmiş ve sonuçlar her iki sistem için de 

hesaplamalarla karşılaştırılmıştır. Sonuçlar, farklı konfigürasyonlarla farklı WDM 

karakteristiklerin elde edilmesinin mümkün olduğunu göstermektedir. Kuantum 

teknolojilerinin benzersiz özelliklerinden yararlanarak, çip üzerinde WDM 
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uygulamaları, iletişim altyapısının tasarlanmasında en son gelişmeler için yeni 

fırsatlar yaratabilir. 

 

Anahtar Kelimeler: Boşluk Kuantum Elektrodinamiği, Kuantum Noktalar, Çip 

Üzerinde WDM 
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CHAPTER 1  

 

1. INTRODUCTION 

 

Nanotechnology is a key research field to control and understand the behavior of the 

basic unit of matter that is to say atoms. The first appearance of the nanotechnology 

notion in our life made real by Richard Feynman in 1959 during his famous Caltech 

lecture that "There is plenty of room at the bottom: an innovation to enter a new field 

of physics." was the pioneer sentence of this lecture [1]. Richard Feynman believed 

that the formation of new structures by banding single atoms together was possible. 

His theory required the comprehensive understanding of fundamental laws of 

quantum physics to define a single atom behavior.  

Another point is that the nanotechnology has actually been used for centuries with 

unawareness of this term. When we look at the ancient history, nanoparticles were 

used to create a sword with exceptionally sharp edges and craft glassware materials 

by Romans. On the other hand, the term of nanotechnology was used for the first 

time by Japanese scientific Norio Taniguchi in 1974 in his paper which describes a 

feature of an object with the nanometer scale [2]. Scientists have been studying 

about nanoparticles for decades but their research was ineffective because of not 

seeing the detailed structure of the nanoparticles. Then intervention of scanning 

tunneling microscope and atomic force microscope speeded up the 

nanotechnological research field since these devices allowed one to observe 

materials at an unprecedented atomic level [3]. With the help of detailed modeling 

and simulations of powerful computers production, atomic scaling visualization of 

nanoscale structures and characterization of material properties can be done easily 

[4]. These developments brought along the discovery of carbon nanotubes, 

semiconductor nanocrystals, and quantum dots [4]. Nanotechnology involves the 

synthesis, characterization, application, and design of materials on the nanometer 
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scale. At the nanometer scale, the behavior of individual molecules and interacting 

groups of molecules are more important than the macroscopic properties of the 

materials since scientists can affect the properties of materials in nanometer scale 

directly. 

In normal life flow of the day, a single atom interacts with a single photon countless 

times which is the basic form of the interaction of matter and light. This 

entanglement is a promising activity for quantum communication and quantum 

computation. Atom-photon entanglement is the main research field of atomic 

physics and quantum optics for especially in the last century [5]. Lasers, 

photodiodes, detectors, light sources, light emitting diodes, and solar cells are 

invented out of the interaction between light and matter [5]. 

Light behavior is a controversial discussion since the seventeenth century [6]. 

Newton claimed that light rays consist of particles according to his mechanics' laws 

[7]. On the other hand, Huygens claimed that light rays consist of waves [7]. 

Scientists have been discussing what is light for centuries: particle or wave. In fact, 

light sometimes acts as a particle, sometimes as a wave [5].    

Atom-photon entanglement initiated with the strongly coupled cavity quantum 

electrodynamics. There is an interaction between single atom with the photons in 

single-mode cavities [8]. In addition, it is possible that qubit entanglement between 

single atoms and an optical single photon. Cavity quantum electrodynamics (CQED) 

field has emerged as a result of these studies. In this thesis, we focus on cavity 

quantum electrodynamics and quantum dot device characteristics in large-scale 

optical communication applications. In addition, some of the studies in this thesis 

have been published as an article in Turkish Journal of Physics [9]. 
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1.1. Quantum Dots 

A quantum dot is about 2-10nm dimension nanoparticle and consists of 10-50 atoms 

[10]. Designing artificial atoms (quantum dots) and molecules (coupled quantum 

dots) is possible with the help of nano-fabrication technology with external voltages 

[11]. Electrically defined QDs, self-assembled QDs, and nanocrystals or colloidal 

QDs are the types of the quantum dot technology [12][13][14]. Electrically defined 

QD is realized by trapping an electron or a hole but there is no possibility for light 

interaction [12]. Self-assembled QDs and colloidal QDs have similarities in terms of 

optical characteristic. Self-assembled QDs have narrower homogenous broadening 

and higher electric dipole moment than colloidal QDs, therefore self-assembled QDs 

are more suitable than colloidal QDs for the applications of single emitter CQED 

[12]. In self-assembled QDs, cavity is constructed by removing holes from the 

structure and QD is embedded in the cavity. Also, this cavity is used to enclose light 

in-plane by distributed Bragg reflection and out-of-plane by total internal reflection 

as an optical cavity. 

The growth of the self-assembled QD is not a well controllable activity that results in 

non-decisive spatial design [12]. This is why the size of the QD is uncontrollable. 

This results in differentiation in QD resonances and leads to a rather large 

inhomogeneous expansion of QD. It is generated by covering a low-band 

semiconductor with a surrounding material which has a higher bandgap [12]. This 

results in a three-dimensional coating for electrons and holes and the formation of 

discrete energy levels. With the ability to trap single atoms at discrete energy levels, 

semiconductor quantum dots provide predictive features for the quantum 

computation and single-photon sources. Application fields of quantum dots are 

memory chips, quantum computation, quantum cryptography, and quantum dot laser 

[14][15].   
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Figure 1.1. Size and Emission Wavelength of Quantum Dots ( Figure has been prepared by using the 

corresponding figure in  [16] ) 

 

Different size of quantum dots have their maximum emission values at different 

wavelength values [14]. The emission wavelength of the QD for size-dependent 

color is shown in Figure 1.1 [17]. There is a size-tunable symmetrical fluorescent 

emission as function of QD size. When the size of the QD is increasing, it results in 

lower energy levels which consequently increases the emission wavelength. 

A QD is characterized by discrete atomic-like states with energies that are 

determined by the QD radius R. These discrete QD states can be labeled as 

notations, such as 1S, 1P, and 1D which is shown in Figure 1.2 [14]. This represents 

the discrete absorption spectrum of a QD. 
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Figure 1.2. Quantum Dot Bandgap (Figure has been prepared by using the corresponding figure in 

[10] ) 

 

Quantum dots are manipulated by Coulomb blockade and 3D confinement electrical 

effects. When the quantum dot devices are too small Coulomb blockade can be 

observed. The electrons inside the quantum dots generate strong Coulomb 

propulsion flowing of other electrons. So the devices will no longer follow Ohm’s 

law [18]. Bandgap of quantum dot (Figure 1.2) is resizable by adding or removing 

electrons [19].  

Scientists can calculate the bandgap of quantum-dot precisely in despite of the small 

size. When we assume that diameter of the QD is R, the difference between the 

lowest unoccupied energy level and highest occupied energy level is called bandgap 

of the QD [Eg(QD)]. The formula of the quantum dot bandgap is shown in Equation 

1.1. This equation is called as Brus equation [20]. 

 
Eg(QD) ≈ Eg0 +

ℏ2π2

2mehR
2
 (1.1) 

 meh =
memh
me+mh

 
(1.2) 

where meis the excited electron effective mass, mh is the excited hole effective 

mass, ℏ is Planck’s constant and Eg0 is bandgap energy of bulk semiconductor. 
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1.2. Optical Cavity 

Optical cavities (resonators) allow the input light to circulate within the structure and 

then radiate the output light at a specific frequency or wavelength depending on the 

space parameters. Optical gain is obtained by using cavities. The control of the 

optical emission characteristics can be achieved by the materials placed inside these 

structures [20]. The conventional two-mirror resonator is referred to Fabry–Perot 

cavity which is shown in Figure 1.3. 

 

 

Figure 1.3. Fabry-Perot Optical Cavity (Figure has been prepared by using the corresponding figure 

in [13] ) 

 

Optical cavity structure is shaped by two parameters: volume of the laser mode 

inside the active medium and stability of the optical cavity. In a stable resonator, the 

light beams on the axis remain in the resonator after multiple bounces, and very few 

off-axis axes are reflected in the orientation to bring them back into the center of the 

holes. The blue-colored regions correspond to stable cavities, the light regions are 

unstable in Figure 1.4. Six stable cases are marked in the diagram that all cases are 

on the borders of the stability regions. Geometric parameter of two-mirror optical 

cavities (M1 and M2) is defined as g1 = 1-L/R1 and g2 = 1-L/R2. R1 and R2 are the 

radii of the curvature of the mirrors and L is the distance between the mirrors. Then 
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we can sketch the stability diagram according to this inequality. Resonator stability 

condition is provided by 0 ≤ g1g2 ≤ 1 equation [21]. 

 

 

Figure 1.4. Stability Diagram of two-cavity ( Figure has been prepared by using the corresponding figure 

in  [16] ) 

 

These types of resonators differ in their focal lengths of the mirrors and in their 

distances between the mirrors. Some beams have different shapes within the cavity 

and are thus chosen for different purposes. Five different types of stable two-mirror 

optical cavities are shown in Figure 1.5.  

- plane-parallel R1= R2=∞  

- concentric (spherical) R1+R2=L  

- confocal R1+R2=2L  

- hemispherical R1=L, R2=∞  

- concave-convex R1>>L, R2=L- R1  
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Figure 1.5. Types of  two-mirror Optical Cavities ( Figure has been prepared by using the corresponding 

figure in  [16] ) 
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Optical microcavities are very useful for studying the basic physics of interaction 

between materials with the electromagnetic radiation, precise measurement science 

and quantum information processing [20]. Cavities are generally used in laser 

frequency stabilization applications. In addition, the spectral width of the lasers can 

be stabilized and it is possible to change the rate of spontaneous emission. When the 

frequency indecision of a laser in the visible region is reduced to 10
-18

, the resulting 

laser strips are several MHz [20]. This makes a great contribution to the production 

of new generation precision measurements.  

Transverse modes and frequency components of laser light are dependent to the 

optical cavity [22]. For this reason, sending light to an external optical space is a 

well-known laser light characterization method. At separate optical space, we can 

investigate the laser light as so we know the properties of the external space. In a 

sense, we use an optical space to characterize the other by sending laser light to an 

external resonator. 

Cavity performance depends on factors including Q factor, loss of coupling and 

internal loss [20]. Laser light spectrum and resonator quality factor are decisive 

factors of optical cavity transmission function. The cavity transmission for a laser 

input with an extremely narrow optical spectrum is the maximum transmission of 

Tmax (depends on reflection of the mirror), F (fineness), cavity subtlety and ∆φrt, the 

round path optical phase [16]. 

 
𝑇 =

𝑇𝑚𝑎𝑥

1 + (
2𝐹
𝜋
)
2

𝑠𝑖𝑛2(∆∅𝑟𝑡/2)

 
(1.3) 

Fineness is defined as: 

 
𝐹 =

𝜋√𝑟

1 − 𝑟
 (1.4) 

At each round-trip factor (r) diminishes the wave amplitude. In consideration of the 

density reflection coefficients (R1 and R2), we have r = √𝑅1𝑅2. Planar mirror plane 

length (L) of a plane wave in the cavity equals to L = ∆φrt/2k where k= n2π / λ and n 
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is the refractive index of the material in the cavity. At ∆φrt / 2 = qπ, the cavity 

transmission is maximum, where q is an integer or equivalent when 2kL = 2πq. 

The resonance condition is then L / λ= q / 2 (where q = 1, 2, 3 ...). That is, half of the 

wavelength of the cavity length input light should be an integer. This means that the 

resonance monitoring of the optical cavity is a great way to detect small changes in 

the cavity length (in order of λ). The resonance condition at the wavelength or 

frequency of the input beam at a fixed cavity length: 

 
λ𝑞 =

2𝐿

𝑞
 (1.5) 

 υ𝑞 =
𝑐𝑞

2𝐿
= 𝑞υ𝐹𝑆𝑅 (1.6) 

 

wherein the "free spectral range" is υFSR= c / 2L and the light speed in the cavity is c 

= c0 / n. c0 is the velocity of the light in a vacuum. The rotation of a photon from 

mirror 1 (M1) to mirror 2 (M2) and back to M1 (round-trip time) is only τrt = 1 / 

υ𝐹𝑆𝑅. The input laser and the laser FSR period are periodic to the laser of space. In 

contrast, the resonance condition in the cavity length should be an integer half-

wavelength at a fixed laser frequency. 

 
L𝑞 = 𝑞

λ

2
 (1.7) 

Resonance width characterization is realized by finding the transmission peak full 

width half maximum values. Since we can vary the input cavity length to take off the 

cavity through the resonance and the laser, we obtain the following conditions on the 

resonance width:  

 υ𝐹𝑊𝐻𝑀 =
υ𝐹𝑆𝑅
𝐹

 (1.8) 

For large finesse (large survival probabilities), the photon lifetime is 

 
𝜏𝑝 =

1

2𝜋υ𝐹𝑊𝐻𝑀
 (1.9) 

The resonator quality factor is 2π times the ratio of the total energy stored in the 

cavity divided by the energy lost in a single cycle. We can write the quality factor as  
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 𝑄 = 2𝜋υ𝑞𝜏𝑝 =
υ𝑞

υ𝐹𝑊𝐻𝑀
= 𝑞𝐹 (1.10) 

 

1.3. Photonic Crystal Cavities 

Photonic crystals (PhCs) are the class of optical media generated using the periodic 

modulation method of refractive index. PHCs are divided into three groups as one-

dimensional (1D), two-dimensional (2D) and three-dimensional (3D) according to 

their geometrical structure [23]. Examples of these geometric constructs are shown 

in Figure 1.3. 

 

 

Figure 1.6. Examples of 1D (a), 2D (b), and 3D (c Photonic Crystals) ( Figure has been prepared by 

using the corresponding figure in  [16] ) 

 

The geometric property of 1D PhCs permits periodic modulation only in one 

direction. Multi-layer film can be given as an example of 1D PhC structure that 

consists of alternating material layers with different dielectric constant [23]. It 

performs a mirror (a Bragg mirror) function for a specific frequency range and 

determines its location if there is a defect. 1D PhCs are used to improve the quality 

of the optical structure in structures such as lenses, dielectric mirrors and optical 

filters. 2D PHCs have a wider range of applications due to their optical transmittance 

in two directions. An example of 2D PHC is a bar system arranged periodically. 
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Another example of 2D PhC is a periodically arranged dielectric rod system.3D PHC 

has a permeability in all three directions so the number of applications that can be 

implemented is much more than 1D PhCs and 2D PhCs. 

There are important similarities between solid state physics and PhC which are: 

- Refractive index periodic modulation in a PhC creates a solid-state atomic lattice-

like mesh 

- The behavior of photons in a PhC provides due to lattice periodicity resemblance to 

electron and cavity behavior in an atomic lattice 

Photonic bandgap is the most critical feature of determining the importance of a 

PhC. The photonic bandgap is used to express the energy or frequency range in 

which the light in the PhC is forbidden. If a complete periodic defect is observed, the 

defect has the same effect as a defect introduced to a semiconductor. 

Building a defect around a single point is used to create an electromagnetic cavity, as 

we limit the waveguide to form a linear defect. As mentioned before, there is no way 

for light to escape because of the bandgap. The structure will limit the light only in 

the periodic plane, so there is a need for another method to prevent the light from 

escaping in the third direction. 

Cavity is useful when it is desired to control the light evenly over a narrow 

frequency range or evenly over a long period of time. Besides, cavities are also used 

to release a particular photon corresponding to escape energy, or to influence the rate 

of atomic transitions associated with the absorption. Such transitions can suppress 

the atom by placing it in a photonic crystal where no suitable photon states exist, or 

it can be expanded by placing the atom in a cavity with a tightly concentrated photon 

state at exactly the transition frequency. This topic falls under the title of cavity 

quantum electrodynamics.  

There is no point in catching the light finally if we do not confine the light in a 

cavity. For this reason, it is usually ensured that the cavity oscillations will have a 
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certain life time, meaning a way to escape the light will be provided. The easiest way 

to do this is placing a photonic crystal waveguide near the cavity. 

The electric field E⃗⃗  inside a resonator of volume a V is given by [11]: 

 

E⃗⃗ (r ) = √
ℏω

2cV
(â(t) + â† (t) )u(r )û (1.11) 

ϵ = ϵ(r ) is the dielectric function of the material  

u(r ) is the single photon wave function normalized spatial part  

û is the polarization of the field  

ω is the photon frequency  

â(t) is the annihilation operator 

â†(t) is the creation operator 

V is the cavity mode volume 

Interaction Hamiltonian HI of the dipole can be written in the form of optical 

transitions [11]: 

 HI = −μ⃗ ∙ E⃗⃗ = ℏg(σ+ + σ−)(â(t) + â†(t)) (1.12) 

The vacuum Rabi frequency inside the cavity 

 

g =  −
μ⃗ ∙ û

ℏ
√
ℏω

2ϵV
u(r ) (1.13) 

σ+ = |e〉〈g| = σ−
†  are the driven dipole lowering and raising operator that is taken to 

have an ground |g〉 and excited |e〉 states which determines the dipole-field coupling 

rate. Retaining only the energy conservation terms: 

 HI = ℏg(σ
+â(t) + â†(t)σ−) (1.14) 

The mode volume V is defined as: 

 
V =

∫d3r ϵ|E|2

max{ϵ|E|2}
= ζ (

λ

n
)
3

 (1.15) 
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There is a strong interaction between matter and light in applications of photonic 

crystal cavities [24]. In addition, the small mode volume and high Q factor are other 

basic features of the photonic crystal cavities. The main research fields of photonic 

crystal cavities are low threshold lasers, space quantum electrodynamics, high-fine 

filters, detection and sensing applications [25]. 

Spontaneous emission defines the stationary qubit to flying qubit conversion. In free 

space, one-electron atom decay or fall from level e to f by the emission of a photon 

and this situation is defined as spontaneous emission. In the beginning, enclosing 

domain of atom can modify the spontaneous emission rate and then there are 

different emitter properties that affect emission features [26]. Managing the 

spontaneous light emission is a crucial point for quantum optics because there are 

many application fields that emission affects the performance such as light-emitting 

diodes, miniature laser, solar energy harvesting. Indeed, manipulation of 

electromagnetic vacuum fluctuations should be supplied to control spontaneous 

emission [27]. Introduction of photonic crystals gives this advantage and has an 

impact to slow down or accelerate emitted light by adjusting vacuum of 

electromagnetic modes [28]. 

 

1.4. Cavity Quantum Electrodynamics 

When the light is trapped in small mode volume using optical cavities, there is a 

strong electric field inside the cavity. This results in a very strong matter-light 

interaction. When the interaction strength is much lower than the system loss, the 

coupling between the cavity and the emitter field is called as weak coupling [12]. 

Conversely, strong interaction regime is achieved when the interaction strength is 

much higher than the system loss. Weak coupling results in low Q (quality factor.)  

Cavity quantum electrodynamics (CQED) investigates the interaction between a 

single radiation field mode and a quantum emitter. The history of cavity quantum 

electrodynamics is based on nearly fifty years ago. Purcell is the pioneer of the 
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CQED [13]. The quantized matter with a quantized electromagnetic field defines the 

system.  

There are possible applications of cavity-CQED:  

1. Single-mode photon sources realization  

2. All-optical (single photon) switches 

3. Light standards based on quantum effects  

4. Ultra-low threshold lasers 

5. Coherent interfaces between matter and light (stationary and flying qubits) 

In the beginning, CQED studies is realized by confining laser cooled atoms into 

Fabry-Perot cavities mostly. Experiments based on this system supply enviable 

controlling capability. Also, quantum computing and long-distance communication 

have been reported as an evidence of key displays of new technologies [12]. For this 

reason, atomic COED maintains to be an encouraging system for finding out basic 

physics and precise metrology. On the other hand, macroscopic dimension of Fabry-

Perot and atom cooling and trapping needs of these systems make it difficult to scale 

these systems or develop integrated devices [12]. 

In quantum optics, the interaction of matter and light is the basic research topic. The 

interaction can be increased by trapping atoms in very thin cavities with small 

volume. The power of this interaction is determined by the atomic position of the 

light. As an advantage, higher intensity fields can be obtained with fewer photon 

numbers. This method is the basic approach of cavity quantum electrodynamics 

(CQED). In the first studies in CQED technology, the strong interaction excitation 

can be realized by passing atoms through the cavity. 

Two-level approximated atom interaction with a single electromagnetic mode in the 

cavity is presented in Figure 1.7. Interaction results in quantum oscillation when the 

coupling strength (g) between an electromagnetic field and atom is higher than the 
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spontaneous emission rate (γ), the photon loss (κ) from the cavity,  and the atom 

inverse transit time through the cavity [29]. 

 

 

Figure 1.7. Cavity Quantum Electrodynamics ( Figure has been prepared by using the corresponding figure 

in  [16] ) 

 

CQED research field is discrete photon modes coupling to atoms properties under 

high Q cavities. Quantum information processing and transmission quantum states, 

quantum mechanics of open systems, and measurement-induced decoherence are 

popular topics which can be realized with CQED systems. 

All real physical systems are open systems which are partially coherent. Cavity 

quantum electrodynamics show quantum mechanics' coherence and decoherence 

[30]. The interaction between the quantized electromagnetic modes and the atoms 

inside the cavity is studied by the cavity quantum electromagnetic. Recent 

achievements in the nanofabrication studies of CQED systems have led to the 

application of these studies in the semiconductor field. In such systems, quantum 

wells and quantum dots are used as matter, and nanophotonic cavities are used to 

limit the light [31].  The mode volume of a nanophtonic cavity ∼(λ/n)
3
 is much 

smaller than a volume that can be obtained with Fabry-Perot and the dipole moment 
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of QD (∼ 30D) is much greater than an atom (∼ 1D) [12]. In brief, achievement in 

semiconductor technology is promising in terms of scalability. 

The growth of the QD is not a well controllable activity and this results in 

nonhomogeneous construction. This randomness presents challenges for the 

scalability of the QD-CQED platform, because it makes difficult to align the 

positioning and QDs spectrally to the spacing of the QDs, which prefers QDs as 

determinants. Although the large inhomogeneous expansion of QD represents a 

significant challenge for the scalability of the solid-state platform, there are several 

interesting ways to overcome a problem such as phonon coupling to circumvent the 

gap between QD and cavity.  

Initial experiments in solid state CQED were focused on quantum well use in DBR 

cavities [12]. If there are fewer photons, the system does not show linearity even if 

there is strong interaction in the structure. Reaching a strong coupling regime with a 

single quantum emitter is more difficult than a quantum well as a result of a smaller 

total moment. To increase the coupling strength between the emitter and the optical 

field, cavities with very small mode volumes must be produced. A strong coupling 

between a single QD and an optical cavity can be provided with semiconductor 

nanocavities which leads to a new way to make optical CQED. 

The coupling between the single quantum emitter and the optical cavity is studied in 

detailed by Jaynes Cummings Hamiltonian. Hamiltonian dynamics is described in 

Chapter 2.   Cavity quantum electrodynamics yield is calculated with Q/V value. V 

is the mode volume of the cavity and Q is the quality factor of the factor of the 

cavity which is shown as ω0/Δω (where ω0 is the resonance frequency and Δω is the 

cavity of the line width). 

Photonic crystals have the highest yield among all nanophotonic cavities. The most 

important advantage of photonic crystals is that the mode volume is quite low. 

Considering efficiency equation of cavity quantum electrodynamics, increasing the 

Q value directly increases the efficiency, however, it decreases the processing speed 
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which is very important in information processing. Therefore, to improve cavity 

performance, reducing the mode volume would be better than increasing quality 

factor for computing applications. 

 

1.5. Cavity Quantum Electrodynamics 

Quantum technology gives opportunities for accomplishing fast computation, 

reliable communication, and high accuracy metrology. Cavity arrays, quantum dots, 

and spin chains are the physical systems which are utilized for performing quantum 

networks. Moreover, they play a role in realizing quantum technology devices. 

Quantum technology offers to manage classical computations with quantum 

computing, successful cryptosystem, the higher data rate of classical communication 

through quantum channels and solving capability of complicated problems easily 

[32]. Information technology and quantum physics alliance brought a new start of 

quantum information technology devices such as quantum cryptosystems and 

quantum computers [33]. Quantum cryptography devices are promising for reliable 

communication and quantum computers supply. 

During the data transmission from the transmitter to the receiver, the signal is 

attenuated and there is a loss of information over the fiber optic cable. The loss of 

photons results in data transmission errors over the entire communication. In 

classical communication, an amplifier solves the problem but quantum states of 

photons cause disturbance according to no-cloning theorem [34]. Quantum repeaters 

are developed to surpass the photon loss by reducing the required distance that a 

single photon needed to be travel [35]. 

Optical fibers can be used as quantum channels entanglement between photons up to 

50 km fiber. Quantum cryptography provides a quantum key distribution of up to 

100 km, but these developments have a distance limitation for quantum 

communication. 
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Quantum systems manipulation, storage, and communication of data are the main 

interest field of quantum information technology. Superposition and entanglement 

properties make the system better than classical communication. In large-scale 

quantum communication, fixed quantum bits (qubits) are the building blocks of the 

stable and addressable quantum memories. It is possible to move and entangle 

quantum information between memories for even macroscopic distance.  

Designing quantum memories with the atomic systems have superior results since 

qubits can be accumulated during a long time by the internal electronic states.  When 

transferring the quantum information among qubits, photons are crucial carrying 

elements with low perturbation capability.  

Quantum communication is provided by entangling the quantum memories (atom) 

with the communication channel (photon). The main aim of the quantum information 

technology is building a reliable bridge for quantum data transmission between a 

quantum channel and quantum memory. For this reason long distance quantum 

communication, quantum teleportation of matter and quantum internet are allowed to 

be realized [36]. Store, process, and communication flows of quantum information 

technology is realized according to the quantum physics law. 

In quantum information technology, data is transported from input state to output 

state with a quantum state with an external electromagnetic field for a while. 

Quantum information processing technology takes advantage of coupled-cavity 

arrays.  

Quantum physics and quantum mechanics developments take advantage of 

information technology because they are the basic tools for quantum information 

process. Electrons and photons are basic building blocks for encoding information of 

transportation and processing information through a single photon. Confidential 

messages can be transmitted firmly by quantum communication [37].  
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1.6. Wavelength Division Multiplexing 

In long-distance communication (>1000km), a high amount of data signals is sent 

between cities, lands and through the mountains. This amount of data transmission 

with classical communication is expensive and hard. To find a solution to this 

problem, fiber optic cables have been started to use at the first time 1970's [34]. 

Fiber optic technology has replaced the classical information system and figures a 

pioneer in telecommunication infrastructure. Speed, distortion, signal losses, 

capacity and power limitation are basic disadvantages of communication networks 

but fiber optic suppresses many of them [38]. 

Fiber optic cable is consisting of core, cladding and plastic coating. The core is 

central material and the light flow area of the transmission. Fiber optic cable is as 

thin as about 10 μm diameter.  It has a high bandwidth capability so it is suitable for 

high load large scale communication. 

Wavelength division multiplexing (WDM) is a way of receiving or sending multiple 

data streams in a single optical fiber at the same time. Speed, latency or bandwidth 

values do not change during the operation because the transmission operation is 

made simultaneously. WDM can consist of multiple wavelengths at the same time. 

Also, addition and subtraction data channels give flexibility to WDM system which 

is comprised of the multiplexer for combining optical signals and demultiplexer for 

separating optical signals. Transmission of fiber optic line between WDM 

transmitter and receiver is shown in Figure 1.8. 

 



 

 

 

21 

 

 

Figure 1.8. WDM Multiplexer and Demultiplexer Scheme ( Figure has been prepared by using the 

corresponding figure in  [16] ) 

 

There are two types of WDM: DWDM (dense wavelength division multiplexing) 

and CWDM (coarse wavelength division multiplexing) as shown in Figure 1.6. 

CVDM provides 4, 8 or 18 channel variation for the fiber variation capacity [39]. 

The space between the channels is 20 nm over the full range of 1260 to 1670 nm 

[40]. The capacity of the channel number is low but the cost of the application is 

cheaper than the DWDM. DWDM has a capacity of up to 32 channels for passive 

and up to 160 channels for active applications of DWDM [41]. Especially for long 

distance communication like submarine cables and the high number of channels 

DWDM are more suitable than CWDM. 
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Figure 1.9. WDM Types ( Figure has been prepared by using the corresponding figure in  [16] ) 

 

Especially large scale communication, increasing the network capacity without 

laying additional fiber cable is an advantage for telecommunication companies [38]. 

DWDM increases the capacity of submarine cables and broaden the lifetime of fiber 

optic cables being used. This situation decreases the cost of the infrastructure work. 

 

1.7. Outline of the Thesis 

Generally, the thesis aims to compare and analyze a single embedded QD cavity-

cavity array and triple cavity array systems in terms of transmission spectrum and 

the generated temporal group delays characteristic. Simulation results of the systems 

are discussed and give suggestions for optimum performance in the on-chip WDM 

system application. Chapter 2 gives detailed theoretical model about the cavity 

quantum dot and multi-cavity subsystem dynamics.  The interactions between the 
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quantum dots and cavities are examined by using these techniques. Then in chapter 3 

both systems are compared and the equations of the theoretical models are solved. 

We applied the same spectrum characteristic for appropriate comparison. Also, the 

simulation results are figured and discussed in this chapter. Finally, in chapter 4 the 

results and on-chip WDM application of this system are given and discussed. 
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CHAPTER 2  

 

2. THEORY OF QUANTUM DOT-CAVITY QED SYSTEMS  

 

Quantum mechanics is a branch of physics that studies the behavior of atom and 

light in atomic and subatomic level. Electrodynamics studies the classical theory of 

electric and magnetic phenomena. Quantum electrodynamics is the combination of 

quantum mechanics and electrodynamics. In this chapter, the fundamental working 

theory of coupled QD-cavity system is studied.  

 

2.1. Theory of Operation 

In small cavities, atoms and photons behaviors are totally different than in free 

space. Comprehensive understanding of the interaction between the cavity and 

excited atoms requires both classical and quantum physics. Quantum physics studies 

about atomic and subatomic levels of matter and energy behavior nature. It is the 

science of the very small world. With developing technology atoms and ions can be 

placed the desired location inside the cavity to realize strong atom-cavity interaction. 

 

 

Figure 2.1. Absorption (a) and Spontaneous Emission (b) Optical Transition Between Quantized 

Energy Levels 
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When the two measured energy levels (E2-E1) surrounding an atom jump between E1 

and E2, the angular frequency of light (ω) is absorbed or emitted. While the 

absorption process is seen as the photon destruction from the light beam by 

simultaneous stimulation of the atom (Figure 2.1 (a)). The emission process 

corresponds to the addition of a photon to the light field and simultaneous excitation 

of the photon. We imagine that the atom is initially low and at the time t = 0, the 

angular frequency of light beam is on. At a later time, the atom evokes the jump, and 

a photon is absorbed from the light beam. Similarly, in the emission process shown 

in Figure 2.1 (b), the atom is removed at time t = 0. Typically, a photon of the 

angular frequency is ignored after a period equals to the radiation life of the excited 

state. After these processes are completed, it is said that the atom passes a level 1→ 

2 and vice versa. Stimulated emission processes are not considered in these figures.  

 

 

Figure 2.2. Two-Level Atom 

 

Atom and light interaction is generally improved in terms of the two-level atomic 

approach in quantum operation. This approach can be applied when the frequency of 

the light runs across atom optical transition. The condition is specified in equation 

(E2-E1=ħω) and schematically shown in Figure 2.2. There are many quantum levels 

of atoms and there will be many possible optical transitions between them. However, 

it is paid regard to only the specific transition in the two-level atom approach that 

provides equivalents and ignores all other levels. It is customary to label the upper 

(Ee) and lower (Eg) levels 1 and 2, respectively. 
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When evaluated physically, the two-level approach mainly deals with resonance 

properties. The light beam induces dipole emissions at the atom and then re-emits at 

the same frequency in classical light-atom interaction. When the light frequency is 

equal to the atom natural frequency, the interaction between the atom and light will 

be strong. In addition, the power of dipole oscillations will be large. On the other 

hand, when the frequency of light is not close to the atom natural frequency, then the 

applied oscillations will be small and the atom-light interaction will be small. In 

other words, atom-light interaction is quite strong in the resonance state. Therefore, 

it is a good approach to ignore situations in which there is no resonance. 

It is clear that the assumption that only resonance levels are important is an 

approach. In most cases, the approximation is very good. By the way, the presence 

of non-resonance levels may be indirectly significant. When the atom is at level 2, it 

can also switch to lower levels. This causes atomic loss from the system of thought 

and effectively reduces the atom-light interaction. Thus, the simplest way to 

incorporate other levels into analysis is to include damping terms. 

 

2.2. Hamiltonian Dynamics 

Generally, in a molecular, atomic and solid-state environment there are a number of 

energy eigenstates. The spectral lines are associated with permissible transitions 

between the two of these energy eigenstates. According to many physical thoughts, it 

is sufficient to take into account only two of these possible energy values. Laser 

transition can be shown as example, phenomenological relaxation processes between 

the upper laser level to lower laser level is produced by laser pumping. This simple 

model indicates a two-level atom that is mathematically equivalent to a spin 1/2 

particle in an external magnetic field since the spin can only be parallel or parallel to 

this field. It has two areas: energy levels and eigenvalues of energy. 

Hamiltonian Dynamics clarifies a two-level atom interaction with a single 

electromagnetic field mode. The total Hamiltonian equation is [42]: 
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 ℋ = ℋfield +ℋatom +ℋint (2.1) 

The total Hamiltonian equation consists of three pieces: field (ℋfield), atom (ℋatom), 

and interaction (ℋint). 

 ℋfield = ℏωCâ
+â (2.2) 

 ℋatom =  ℏωAσ̂egσ̂ge (2.3) 

 ℋint = −d̂. Ê = gℏ(âσ̂eg + â
+σ̂ge) (2.4) 

 ℋ = ℏωCâ
+â + ℏωAσ̂egσ̂ge + gℏ(âσ̂eg + â

+σ̂ge) (2.5) 

Longitudinal quasi-mode in the cavity where ωC is the resonant frequency of the 

cavity and ωA is the frequency spacing between the atoms' ground and excited states.  

Non-interacting two level atom:  

Spin-flip operator: σ̂ge = |g⟩⟨e| 

 Ê = ε sin(kx) (â + â+) (2.6) 

 

ε = √
ℏωc

2ϵ0V
 (2.7) 

The interaction energy in the dipole approximation: 

 ℋint = −d̂. Ê = −℘ε sin(kx) (σ̂
eg
+ σ̂ge)(â + â

+) (2.8) 

Rotating wave approximation: 

 ℋint = gℏ(âσ̂eg + â
+σ̂ge)  (2.9) 

Single photon frequency: 

 
g = −

℘ε

ℏ
sin(kx) 

(2.10) 

 ℘ = ⟨e|er ̂|g⟩ (2.11) 

â is the annihilation operator [43] 

 

2.3. Quantum Dot and Coherent Light Interaction 

In this section, the model system created by a single emitter will be considered. 

Under ideal conditions, cavity losses and emitter relaxation are negligible, which is 

known to produce a Rabi oscillation of the coupled system. In this case, spontaneous 
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emission is becoming a reversible process. In other words, the cavity can be 

reabsorbed and diffused again when the emitted photon is emitted by the emitter. 

The angular frequency of the Rabi oscillation is proportional to the force of the 

atom-field combination [13]. Consequently, the vacuum field at the emitter's site is 

directly related to the volume of impact of the omega cavity. At a specific location, 

vacuum field fluctuations concentration ability is allowed to measure thanks to this 

event. 

Practically, microcavity has not an excellent structure. Mirrors limited reflection due 

to the absorption and conduction allows the photon leakage through the cavity. An 

open cavity leads to another way for the radial relaxation of the spontaneous 

emission at the emitter to the continuity of non-resonant modes. This kind of 

decoherence is slow enough on the scale of the period of Rabi oscillation that affects 

the emitter throughout the process. The unified system has an extinguished Rabi 

oscillation. 

Rapid decoherence processes cause excessive damping where the transmitter is 

regularly loosened to the ground state. However, while the cavity damping results in 

decoherence process, it is possible to adapt the quality factor value of the emitter to 

the spontaneous emission value of the emitter, and in particular the spontaneous 

emission speed, by adjusting the force of both the transmitter-field coupling and the 

cavity loss. 

Cavity quantum electrodynamics (CQED) studies and controls the simplest light-

matter interaction. Firstly, in relation to quantum optics, an emitter is an atom or a 

collection thereof, while the electromagnetic field is limited to a high fineness [44]. 

There are many applications of CQED such as sources of decoherence and are 

radiative and dissipation non-radiative decays, internal loss processes in the emitter, 

propagation and plasmons leakage losses the in the resonator. 

The vacuum Rabi frequency of the quantum dot which is also called as coupling 

strength (g) must be higher than the dipole decay rate of quantum dot and cavity for 
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a full switch between quantum dot and cavity that depends on position and dipole 

alignment [45]. When a quantum dot (transition frequency ωd) resonates to the PC 

cavity on the ωc frequency, the dot emission is changed depend on the g, γ and field 

decay rate κ = ωc / (2Q) parameters [46]. Coupled cavity-QD system eigenfrequency 

equation is acquired by solving Interaction Hamiltonian [46]: 

 

ω± =
ωc + ωd

2
− 𝒾

(κ+ γ)

2
± √(

κ− γ+ 𝒾(ωc − ωd)

2
)

2

− g2 (2.12) 

Up to the square root is real or imaginary, the equation has two limits, one real and 

the other imaginary. If the square root is imaginary, quantum dot interaction is called 

as strong coupling regime. In this case, there is an oscillation at two frequencies with 

single decay rate. If both of the eigenvalues are real, it results in cavity and quantum 

dot decay rates. This phenomenon is called as weak coupling regime.  

 

2.3.1. Strong Coupling  

A single mode of cavity is suitable for transition in the initial state. The atomic and 

vacuum field pair generate in a quantity of quantum energy shifting back and forth 

between this vacuumed atom and mode at the frequency [47]. Cavity and atomic 

mode interaction force is linear in the field, and therefore smaller cavity volumes 

intensify the vacuum area of the mode and generate wider frequencies. The basic 

dynamics of the atom-field system is reversible so as the system is isolated. 

Similarly, the atomic transition binds to continuous radiation modes and thus 

encounters spontaneous deterioration of the population as well as reduced 

polarization. Strongly connected systems are systems in which the Rabi dynamics 

can exist even though there is a short period of time despite the fact that dispersion. 

In strong interaction, atomic field coupling force g (half of the Rabi frequency) is 

faster than any basic distributor speed. Also, there are high-Q cavities. Photon 

transitions between atoms and radiation field can be observed periodically. This 
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situation results in entanglement of atoms and photons and contributes to the base of 

many quantum information processing procedures.  

The eigenvalues of the coupled cavity-QD can be found from Equation 2.12 

regarding g ≥
κ

2
 under strong coupling regime [48]. When square root must be  

 

ω± =
ωc + ωd

2
− 𝒾

(κ + γ)

2
± √g2 − (

κ− γ+ 𝒾(ωc − ωd)

2
)

2

 (2.13) 

In strong coupling regime, cavity-QED allows modifying light emitters optical 

properties in a unique way such as modifying the dynamics from incoherent to 

coherent and non-linear interaction at low intensities. Atom number detection, 

nonlinear optics and conditional phase shifts on single photons operations require 

strong coupling interaction between the cavity and dipole emitter [45]. 

 

2.3.2. Weak Coupling  

In the weak coupling regime, both eigenenergies have the same true fraction so that 

Rabi oscillation disappears [13]. Spontaneous emission is a nonreversible process 

and the emitter experiences a monotonic relaxation towards the baseline when it is in 

empty space. However, it is possible to control the spontaneous emission adaptation 

and the spontaneous emission rate of the emitter. Under weak coupling regime, 

cavities are in low-quality factor-Q and it results in level shifts and spontaneous 

transition adjustment [46]. 

Weak coupling situation occurs when dissipation suppresses coherent coupling in 

QD-cavity systems [47][49]. For this reason, decay rate is the dominant factor. In 

this systems, eigenfrequency equations can be found with Equation 2.12 regarding 

κ ≫ (ωc−ωd, g) ≫ γ. 

Under weak coupling, eigenfrequencies are represented as: 
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ω+ = ωd + 𝒾

g2

κ
 (2.14) 

  ω− ≈ ωc + 𝒾κ (2.15) 

In weak coupling regime, optical properties of light emitters can be modified by 

cavity-QED in a unique way such as manipulating spatial emission pattern and 

natural lifetime. 

 

2.4. Purcell Factor 

A two-level system is spontaneously weakened by interacting with vacuum 

continuity at a rate proportional to the spectral density of the modes per volume at 

the transition frequency [50]. When the intensity of the modes in the space is 

changed, large oscillations may occur in the amplitude. The maximum intensity of 

modes in terms of cavity modes occurs at quasi-mode resonance frequencies and can 

substantially surpass the corresponding free space density. Normalizing an increased 

mode density of the space per unit volume to the free space mode density gives the 

spontaneous emission to increase Purcell factor. The refractive index (n) should be 

added to this statement to account for emissions within the dielectric.  

An atom falling along the transition mode width will show an improvement in the 

rate of spontaneous deterioration by the Purcell factor. Proper cavity design and self-

distortion can be prevented to work at these resonance frequencies. The rigorous 

developments of Purcell's physical model are presented on the basis of calculating 

the continuity mode density. In order to cover the Purcell effect, the corresponding 

atomic transition characteristics must be considered in the design of the micro-

cavities. It is important to use a small volume because improvements with Q 

manipulation alone are limited by the spectral width of the transition. 

Transition rate of an excited emitter when there is an interaction with the continuum 

of vacuum modes is [51]: 

 𝑑𝑃𝑒(𝑡)

𝑑𝑡
= (

2𝜋

ℏ2
) |〈𝜇12𝐸〉|

2𝐷𝑓𝑟𝑒𝑒(𝜔) (2.16) 
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𝜇12 is dipole moment and there is free space density of states: 

 
𝐷𝑓𝑟𝑒𝑒 =

𝜔2𝑉

𝜋2𝑐3
 (2.17) 

In free space, spontaneous emission can be represented as: 

 
Γ𝑓𝑟𝑒𝑒 =

𝜔0
3𝜇12
2

3𝜋휀0ℏ𝑐
3
 (2.18) 

When the emitter is encircled by a cavity, the vacuum density of states is changed.  

Dfree is changed with Dcav: 

 
𝐷𝑐𝑎𝑣(𝜔) =

𝜅

2𝜋𝑉

1

(𝜅 2⁄ )2 + (𝜔𝑐𝑎𝑣 − 𝜔)
2
 (2.19) 

Spontaneous emission results in: 

 
Γ𝑐𝑎𝑣 =

3𝑄𝜆3

4𝜋2𝑉

𝜅2

4(𝜔 − 𝜔𝑐𝑎𝑣)
2 + 𝜅2

|𝜇12�̂�|
2

|𝜇12|
2
Γ𝑓𝑟𝑒𝑒 (2.20) 

Quality factor (Q) of cavity is: 

 𝒬 = 𝜔𝑐𝑎𝑣 𝜅⁄  (2.21) 

When there is a perfect matching between dipole orientation and in resonance, 

spontaneous emission enhancement is shown as: 

 
Γ𝑐𝑎𝑣 =

3

4𝜋2
(
𝜆0
3

𝑉
)𝑄Γ𝑓𝑟𝑒𝑒 (2.22) 

When there is a perfect matching between dipole orientation and off resonance, 

spontaneous emission enhancement is shown as: 

 
Γ𝑐𝑎𝑣 =

3

16𝜋2
(
𝜆0
3

𝑉
)𝑄−1Γ𝑓𝑟𝑒𝑒 (2.23) 

The result is showed that excited emitter natural lifetime is not a constant. It can be 

modified using high-Q cavities. Inside a cavity or resonator, spontaneous emission 

rate enhancement is called as Purcell factor.  

  
P =

3

4π2
(
λ

n
)
3 Q

V
 (2.24) 

Purcell factor formula is consisting of quality factor (Q) and refractive index (n) 

within a cavity volume (V). Higher Q-factor, smaller mode volume and smaller 



 

 

 

34 

 

spectral width of the emitter than the cavity width results in large Purcell factor 

values. High Q-factor and small mode volume of the cavities must be required to 

detect the cavity QED effects. While designing microcavities Purcell factor must be 

considered.   

 

2.5. Rabi Splitting 

Vacuum Rabi splitting describes the high anticrossing between cavity-mode 

dispersion relations and atom-like emitter. When the coupling strength surpasses the 

system dissipation and the energy, there is an energy change between atom and 

cavity photon. Quantum coherent oscillation from coupled systems to quantum 

superposition at different quantum states pave the way for quantum information 

processing thanks to Rabi splitting. Also, emission, scattering, absorption, 

transmission and reflection properties are comprehensively investigated in quantum 

and semi-classical systems. Plasmon quantization deepens the concept of Rabi 

splitting into plasmon-plasmon coupling systems and plasmon-cavity.   

Jaynes-Cummings-Hamiltonian equation is used to determine the single emitter 

interaction in a single cavity. 

 
𝐻𝑗𝐶 =

1

2
ℏ𝜔0𝜎𝓏 + ℏ𝜔𝑎

+𝑎 + ℏ𝑔(𝑎𝜎+ + 𝑎+𝜎−) (2.25) 

The equation comprises of coupling constant (g), Pauli spin operator (σ𝓏), cavity 

resonance frequency (ωa), transition frequency (ω0), and atomic state lowering 

operator (σ−). The excited state (|e>), ground state (|g>) and photon number state 

(|n>) of the two-level system is regarded by Hamiltonian to couple states |n,e> with 

|n+1,g> . Therefore, H is defined as: 

 
𝐻𝑛 = ℏ(𝑛 +

1

2
)𝜔 (

1 0
0 1

) + ℏ(
−𝛿 2⁄ 𝑔√𝑛 + 1

𝑔√𝑛 + 1 𝛿 2⁄
) (2.26) 

The detuning is shown as: 

 δ = ω0 −ω (2.27) 



 

 

 

35 

 

There are eigenenergies in resonance: 

  
E2n = ℏ(n +

1

2
)ω −  ℏg√n + 1 (2.28) 

  
E1n = ℏ(n +

1

2
)ω +  ℏg√n + 1 

(2.29) 

The eigenstates (dressed states) are represented in resonance: 

  |2n⟩ = (|e, n⟩ − |g, n + 1⟩)/√2 (2.30) 

  |1n⟩ = (|e, n⟩ + |g, n + 1⟩)/√2 (2.31) 

cen(t) and cgn+1(t) coefficients are motion coupled equations which are shown as: 

  
ċen = −i

δ

2
cen − ig√n + 1cgn+1 (2.32) 

  
ċgn+1 = i

δ

2
cgn+1 − ig√n + 1cen 

(2.33) 

This gives a state initially in the upper state: 

  |cen(t)|
2 = cos2(g√n + 1t) (2.34) 

  |cgn+1(t)|
2
= sin2(g√n + 1t) (2.35) 

Even if n = 0 (no photon or interaction with the vacuum) there is: 

  |ce0(t)|
2 = cos2(gt) (2.36) 

g is called vacuum Rabi-frequency. 

Rabi oscillation is defined as quantum energy transfer between the emitter and field 

mode in striking difference to the irreversible exponential decay into free space of an 

excited atom. Periodic energy transfer has an analogy with two coupled pendula. 

Under the high Q factor regime, the coupling constant g is called as Rabi frequency.  

 

2.6. Coherent Interaction in Cavity Array 

Photonic cavity arrays are used for producing wide-range photonic integrated 

circuits [52]. To calculate the interaction equation of cavity array systems, ĉ 

represents the basonic annihilation operator of the cavity and κ1 is the external 

cavity decay rate. Input and output relations are given as: 



 

 

 

36 

 

 âout = b̂in −√κ1ĉ (2.37) 

 b̂out = âin −√κ1ĉ (2.38) 

The motion equations are: 

 
dĉ

dt
=  −i[ĉ,Η] − Γĉ +  √κ1(âin + b̂in) (2.39) 

 
dσ̂−

dt
=  −i[σ̂−,Η] − γσ̂− + √γ̇σ̇̂

′
 (2.40) 

 H = ωcĉ
†ĉ + ωrσ̂−σ̂+ + [ gσ̂+ĉ + h. c] (2.41) 

In this formula σ̂−|e⟩ = |g⟩ and σ̂+|g⟩ = |e⟩, so σ̂− = |g⟩⟨e| and σ̂+ = |e⟩⟨g|. This 

means that σ̂− = σ̂+. 

When we rewrite the Hamiltonian equation: 

 H = ωcĉ
†ĉ + ωrσ̂−σ̂+ + [gσ̂+ĉ + g

∗ĉ†σ̂−] (2.42) 

If Hamiltonian equation is transformed into commutation relations: 

 [ĉ, H] = ωc[ĉ, ĉ
†ĉ] + ωr[ĉ, σ̂−σ̂+] +  g[ĉ, σ̂+ĉ] + g

∗[ĉ, ĉ†σ̂−] (2.43) 

  [σ̂−, H] = ωc[σ̂−, ĉ
†ĉ] + ωr[σ̂−, σ̂−σ̂+] +  g[σ̂−, σ̂+ĉ] + g

∗[σ̂−, ĉ
†σ̂−] (2.44) 

Under single mode standard normalization, annihilation operator and ascending 

(descending) operators are: 

 [ĉ, σ̂+] = [ĉ, σ̂−] = 0 (2.45) 

 [ĉ, ĉ†] = 1 (2.46) 

The total cavity decay rate is represented as 2Γ and relevant to intrinsic cavity decay 

(κ0). Their relation is showed as Γ = (κ0 + 2κ1)/2. σ̂− and σ̂+ are descending and 

ascending operators of two-level QD interaction with transition frequency ωr . The 

vacuum noise operator (σ̇̂′) and total decay rate (γ̇) are between quantum dot and 

cavity. H is the Hamiltonian operator which consists of g coupling strength between 

the cavity mode and the dipolar transition from excited (|e〉) to ground (|g〉) states of 

the QD. ωc and ωr represent the resonant frequency of cavity mode and transition 

frequency proportionally. The Hamiltonian equation is given as:  
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Commutation relations can be simplified as:  

 [ĉ, H] = ωcĉ + g
∗σ̂− (2.47) 

 [σ̂−, H] = ωr[σ̂−, σ̂+]σ̂− +  g[σ̂−, σ̂+]ĉ (2.48) 

If there is a weak excitation limit: 

 [σ̂
−
, σ̂+] = 1 − 2σ̂+σ̂

−
 (2.49) 

 [σ̂−, H] = ωrσ̂− +  gĉ (2.20) 

Motion equations are simplified when the noise term is ignored: 

 dσ̂−

dt
= −iωrσ̂− − igĉ − γσ̂− (2.51) 

 dĉ

dt
= −i(ω

c
ĉ + g∗σ̂−) − Γĉ + √κ1(âin + b̂in) (2.52) 

 

2.7. Multi Cavity-QD Transport Matrix Rabi Splitting 

 

 

Figure 2.3. (a) N Side Coupled Cavities at a Distance L Periodic Waveguide-Resonator Structure. (b) 

The jth QD-Cavity Subsystem (Figure has been prepared by using the corresponding figure in [47])  
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An isolated QD subsystem and single cavity interaction are derived from the 

Heisenberg equations of motion derived as 2.32 and 2.33. 

 dσ̂−,j

dt
= −i[σ̂−,j, Hj] − γjσ̂−,j −√γj

′σj′
′  (2.53) 

 dĉj

dt
= −i[ĉ−,j, Hj] − Γjc−,j + i√κ1,j(âin

(j)
+ b̂in

(j)
) (2.54) 

In the weak coupling regime, we can omit the Langevin noises [53]. When the 

motion equations are solved, here is the matrix form consist of transport relation in 

frequency domain  

 

(
b̂in
(j)
(ω)

b̂out
(j)
(ω)

) = Tj (
âin
(j)
(ω)

âout
(j)
(ω)

) (2.55) 

The transport matrix is written as: 

 
Tj =

1

aj + κ1,j − Γj
(

−κ1,j αj − Γj
αj − Γj  + 2κ1,j κ1,j

) (2.56) 

where aj = i(ω − ωc,j) + |gj(r )|
2
/[i(ω − ωr,j) − γj] 

(ω − ωc,j) and (ω − ωr,j) presents the detuning between cavity mode and the input 

field. δj ≡ ωc,j − ωr,j represents cavity-QD detuning. N-coupled cavity-QD 

transportation equation system can be derived by cascading transport matrix. The 

generalized transportation equation is shown as: 

 

(
b̂in
(N)(ω)

b̂out
(N)(ω)

) = TNT0…T0T2T0T1 (
âin
(1)(ω)

âout
(1) (ω)

) (2.57) 

T0 represents the transport matrix from the waveguide with a phase propagation θ. 

Multicavity array transportation equations can be written with Figure 2.2. 
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2.8. Cavity-QD Transport Matrix  

After the Fourier transform applied, equations turn into: 

 −iωσ̂−(ω) = −iωrσ̂−(ω) − igĉ(ω) − γσ̂−(ω) (2.58) 

 
−iωĉ(ω) = −iωcĉ(ω) − igσ̂−(ω) − Γĉ(ω) + √κ1(âin(ω) + b̂in(ω)) (2.59) 

If the motion equations are solved regarding weak excitation limits [50], the 

transport relation in the frequency domain becomes as follows:  

If  ĉ(ω) is solved: 

 

ĉ(ω) =
√κ1 (âin(ω) + b̂in(ω))

−i(ω − ωc) + Γ −
|g|2

i(ω − ωr1) − γ

 (2.60) 

The input-output relations are:  

 

âout(ω) = b̂in(ω) −
κ1 (âin(ω) + b̂in(ω))

−i(ω − ωc) + Γ −
|g|2

i(ω − ωr1) − γ

 (2.61) 

 

b̂out(ω) = âin(ω) −
κ1 (âin(ω) + b̂in(ω))

−i(ω − ωc) + Γ −
|g|2

i(ω − ωr1) − γ

 (2.62) 

Relations are simplified into: 

 
b̂in(ω) = (

κ1
−α + Γ − κ1

) âin(ω) + (
−α + Γ

−α + Γ − κ1
) âout(ω) (2.63) 

 
b̂out(ω) = (

α − Γ + 2κ1
α − Γ + κ1

) âin(ω) + (
κ1

α − Γ + κ1
) âout(ω) (2.64) 

where α = i(ω − ωc) +
|g|2

i(ω−ωr)−γ
 

If the motion equations are solved regarding weak excitation limits, the transport 

relations in the frequency domain becomes as follows:  

 
(
b̂in(ω)

b̂out(ω)
) =

1

α − Γ+ κ1
(

−κ1 α − Γ

α− Γ+ 2κ1 −κ1
) (
âin(ω)

âout(ω)
) (2.65) 
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where α = i(ω− ωc) +
|g|2

i(ω−ωr)−γ
 

This matrix form represents a single QD embedded in a cavity. In chapter 3, cavity-

cavity array, single embedded QD cavity-cavity array and triple cavity array matrix 

equations are formulated with the same form.  
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CHAPTER 3  

 

3. IMPLEMENTATION AND CHARACTERIZATION OF MULTICAVITY 

QUANTUM ARRAYS 

 

Electromagnetically induced transparency (EIT) was suggested by Harris et al in 

1990 [54]. Quantum systems optical properties can be manipulated by quantum 

interference effects [54]. EIT removes the effect of a medium on an electromagnetic 

radiation propagating beam [55]. The basic philosophy of removing the effect of a 

medium can be supplied by stopping of electrons when moving under applied field 

at specific frequencies. An immobile electron does not make a contribution to the 

dielectric constant [56]. Electromagnetically induced transparency (EIT) provides 

use of many technologies like quantum information, lasing without inversion, optical 

delay, nonlinearity enhancement, precise spectroscopy, pushing frontiers in quantum 

mechanics and photonics [57] 

Also, slow light definition arose from EIT by decreasing the speed of light in an 

atomic gas. In an ultracold atomic gas, light speed is reduced to 17 m/s [58]. This 

development brings to mind the question that if it can be possible to stop the light. 

Storing light in an optical medium can be possible when the light is stopped. 

Quantum memories have been built with single atoms recently [59]. Encoding 

quantum bits with this method is a realizable technique by taking advantage of the 

light stop feature. Quantum communication and quantum computing technology can 

be developed by the discovery of EIT technology. 

Applications of EIT can be listed as: 

1. Quantum memory 

2. Optical switches 
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3. Quantum information processing 

4. Lasing without inversion  

5. Reduction of the speed of light 

6. All-optical wavelength converters for telecommunication  

7. EIT commercial and fundamental applications in quantum optics and atomic 

physics include 

High-quality optical semiconductor cavity production techniques provide an 

opportunity to analyze cavity-quantum electrodynamics effects in solid-state 

materials. Quantum dots inside a photonic crystal, micropillar, and microdisk 

resonators are up-and-coming systems in cavity-quantum electrodynamics in solid-

state materials.  

There are two interaction types between cavity and QD: strong and weak excitation 

regimes which are varying according to coupling strength (g) value [42][49]. If the 

cavity decay rate (2Γ) is much higher than the coupling strength, the interaction 

between the quantum dots and cavities is weak coupling (|g(r)| < κ, γ) [12]. In the 

opposite case, strong coupling excitation (|g(r)| > κ, γ) regime is valid [12]. Strong 

coupling has many application fields such as conditional phase shifts on single 

photons, atom number detection and nonlinear optics [45]. In strong coupling, high 

transmission to high reflection transform of the cavity is realized with a dipole that 

results in conditional phase shifts on single atoms. On the other hand, a dipole can 

convert the cavity between high transmission to high reflection in weak excitation 

regimes too. 

 

3.1. Cavity-QD EIT and Classical EIT 

At first, one cavity interacting with a quantum dot subsystem is examined. In chapter 

2.5, the motion equations are solved regarding weak excitation limits. Single QD 
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embedded cavity (cavity-QD EIT) and cavity-cavity array (classical EIT) 

subsystems are represented in Figure 3.1.  

 

 

Figure 3.1. Cavity-QD (a) and Classical EIT (b) 

 

The transport matrix relation of cavity-QD EIT in the frequency domain becomes as 

follows:  

 
(
b̂in(ω)

b̂out(ω)
) =

1

α− Γ+ κ1
(

−κ1 α− Γ

α − Γ+ 2κ1 −κ1
) (
âin(ω)

âout(ω)
) (3.1) 

where α = i(ω− ωc) +
|g|2

i(ω−ωr)−γ
 

Transportation equation of classical EIT is obtained regarding the coupling strength 

value equals to zero because there is any QD in this system.  Thus, waveguide 

transport relation needs to be added in phase form as θ=2π. When we regard this 

explanation, the transport matrix follows: 

 
(
b̂in(ω)

b̂out(ω)
) =

1

β
1
− Γ+ κ1

(
−κ1 β

1
− Γ

β
1
− Γ+ 2κ1 −κ1

) ( 0 ej2π

ej2π 0
)  

 
                      

1 

β
2
− Γ+ κ2

(
−κ2 β

2
− Γ

β
2
− Γ+ 2κ2 −κ2

) (
âin(ω)

âout(ω)
) (3.2) 

where β
j
= i(ω− ωcj) 

The spectral character of the cavity-QD subsystem should be analyzed to understand 

the physical behavior of the systems. The transmission and reflection values can be 
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calculated by  t = âout b̂in⁄  and r = âout âin⁄ , respectively. In addition, the 

transmitted field phase is defined as ϕ = ∠ (b̂out âin)⁄ . 

Extrinsic cavity decay rate (κ1) value is taken as 50 times of the intrinsic cavity 

decay rate (κ0) in Figure 3.2.  To make the equations into a simpler form, extrinsic 

cavity decay rates are accepted as equal to each other in all single cavity calculations 

thereafter in this thesis (κ2=κ1=κ).  

 

 

Figure 3.2. The transmission spectrum for classical EIT (Cavity-QD EIT), a(b). The generated group 

delay and calculated phase (insets) corresponding to Classical EIT (Cavity-QD EIT), c(d). The 

transmission spectrum in a(b) is differentiated for various detuning, e(f). 
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In Figure 3.2, single QD embedded cavity (cavity-QD EIT) and cavity-cavity array 

(classical EIT) systems are compared in terms of transmission spectra, the phase of 

the transmitted fields and group delay (dϕ/dω) values. The transmission 

characteristics [Figure 3.2 (a) and Figure 3.2 (b)] and the corresponding phase/group 

delay values [Figure 3.2 (c) and Figure 3.2 (d)] look similar for both the cavity-QD 

EIT and classical EIT cases. 

Figure 3.2 (a) shows the spectral transmission characteristic of the classical EIT 

case. The coupling strength value is assumed to be zero because the coherent 

interaction occurs if and only if the bus waveguide phase accumulations is an integer 

multiple of 2π. The group delay corresponding to calculated transmission spectra is 

given in Figure 3.2 (c). The resonant frequencies (-Δω/2, Δω/2) are modified by 

varying first cavity (ωc1) and second cavity (ωc2) resonant frequencies. Δω values 

are changed as 0.5Γ, 1.33Γ and 5Γ which are shown for the red, black and blue lines, 

respectively [Figure 3.2 (f)].  

Figure 3.2 (b) shows the spectral transmission characteristic of the cavity-QD EIT 

case. The group delay corresponding to calculated transmission spectra is given in 

Figure 3.2 (d).  

Transmission and phase group delay equations of classical EIT and cavity QD EIT 

should be analyzed in detail to comment and understand the simulation results in 

Figure3.2. First of all, Equation 3.1 is solved for cavity-QD EIT transmission in 

phase form: 

 

t(ω) =
ω2 − g2 −

γκ0
2
+ iω(γ +

κ0
2
)

ω2 − g2 −
γκ0
2
− γκ1 + iω(γ +

κ0
2
+ κ1)

 (3.3) 

In the transmission spectrum, transmission peaks at ω=0 so we should look at 

transmission values at this point. 

 

t(ω = 0) =
g2 +

γκ0
2

g2 +
γκ0
2
+ γκ1

 (3.4) 
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Derivation of transmission (Equation 3.3) at transparency peak value (ω=0) gives the 

phase delay. The equation is normalized with total cavity decay rate (1/2Γ): 

 τc
τlife

(ω = 0) =
κ(g2 − γ2)(2κ + κ0)

(g2 +
κκ0
2
+ κγ) (g2 +

κκ0
2
)
 (3.5) 

Then, the same calculations are repeated for triple cavity system. Then, the 

transmission equation is derived from Equation 3.2 at t(ω = 0). The normalized 

detuning between the cavities is Δω so first and second resonant cavities are -Δω/2 

and Δω/2, respectively. 

 

t(ω = 0) =
(
κ0
2

4 +
∆ω2

4 )

(κκ0+
κ0
2

4
+
∆ω2

4 )
 (3.6) 

 
τc
τlife

(ω = 0) =
κ (
∆ω2

4 −
κ0
2

2 ) (2κ + κ0)

(
∆ω2

4
−
κ0
2

4 ) (
∆ω2

4
−
κ0
2

4
+ κκ0)

 (3.7) 

Extrinsic cavity decay rate is quietly higher than intrinsic cavity decay rate (κ ≫ κ0). 

Total decay rate (γ) is assumed that equal to κ0 [53]. The transmission equations of 

cavity-QD EIT and classical EIT in a simpler form of peak values is shown as: 

 
t(ω = 0) ≈

g2

g2 + κκ0
 (3.8) 

 
t(ω = 0) ≈

∆ω2/4

κκ0 + ∆ω
2/4

 (3.9) 

When we compare the Equation 3.8 and Equation 3.9, Classical EIT and Cavity QD 

EIT transmission coefficient values converge to each other at g=Δω/2 

 
−

τc

τlife
(ω = 0) ≈

κ(2κ+ κ0)

(g2 + κκ0)
 (3.10) 

 τc

τlife
(ω = 0) ≈

2κ(2κ+ κ0)

(∆ω2/4 + κκ0)
 (3.11) 

Phase delay equations of classical EIT and cavity-QD EIT in Equation 3.15 and 

Equation 3.16 show that classical EIT is two times higher than the cavity-QD EIT 
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system. This interesting result gives a chance to the designer for better results in 

wavelength division multiplexing (WDM). 

After that, transmission and group delay values are calculated for both systems with 

various coupling strength and normalized detuning values. In Figure 3.3 (a) and 

Figure 3.3 (b) extrinsic cavity decay rate, κ, is adjusted from 10κ0 to 250κ0. 

Normalized detuning between the resonant cavities, Δω, is adjusted to 0.5Γ and 

coupling strength, g, is adjusted to 0.25Γ. Simulation results show that extrinsic 

cavity decay rate variation affects transmission and generated group delay values 

directly. As expected, transmission values are identical for cavity-QD EIT and 

classical EIT cases. In addition, group delay values of classical EIT system are two 

times higher than the cavity-QD EIT system as it is shown in Equation 3.15 and 

Equation 3.16. 

Then, the coupling strength value is adjusted from 0.1Γ to 0.75Γ for cavity-QD EIT 

case and the normalized detuning between the resonant cavities are adjusted from 

0.2Γ to 1.5Γ in classical EIT case. At the same time, extrinsic cavity decay rate value 

is taken as 50κ0. 
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Figure 3.3. Comparison of transmission spectrum (a) and generated group delay (b) of single 

embedded QD in cavity array and cavity-cavity array with the coupling strength of 0.5Γ. Same 

transmission (c) and group delay (d) graphs are repeated for κ=50 κ0 

 

Afterward, the simulations showed in Figure 3.3 (a) and Figure 3.3 (b) are 

recalculated with smaller coupling strength (0.1Γ) and normalized detuning (0.2Γ) 

values. Calculations of the transmission and group delay values are figured in Figure 

3.4 (a) and Figure 3.4 (b). The calculations show that smaller coupling strength and 

normalized detuning result in smaller transmission values. On the other hand, group 

delay values are higher than the previous results. Also, the transmission values of 

both systems are identical to each other and group delay of classical EIT is two times 

higher than the cavity-QD EIT.  

In Figure 3.4 (c) and Figure 3.4 (d), the extrinsic cavity is equaled to κ=10κ0 and the 

calculations are repeated with Figure 3.4 (a) and Figure 3.4 (b) intervals. Lower 

extrinsic cavity decay rate values result in smaller transmission value and group 

delay. When we analyzed the results the transmission and group delay rates of the 
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systems are destroyed when smaller extrinsic cavity decay rate is smaller than as we 

expected. 

 

 

Figure 3.4. Comparison of transmission spectrum (a) and generated group delay (b) of single 

embedded QD in cavity and cavity-cavity array with the coupling strength of 0.2Γ. Same transmission 

(c) and group delay (d) graphs are repeated for κ=10κ0. 

 

In this thesis, discussed systems are the types of optical filters which result in 

limitation restrictions on the broadband optical delays [50]. Then bandwidth of 

transparency window for cavity-QD EIT and classical EIT are analyzed. Short-range 

optical pulses which are less than the inverse of the resonance's bandwidth is 

distorted at higher resonances. For this reason, higher peak values result in smaller 

resonance bandwidth at generated group delay. 
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Figure 3.5. Cavity-QD EIT (a) and Classical EIT (b) bandwidth of the transparency peaks and the 

corresponding quality factor. 

 

Full-Width Half-Maximum (FWHM) identifies the allowed range of light 

wavelength to pass through. The transmission spectrum of Figure 3.3 (c) and Figure 

3.3 (d) are used to obtain full width half-maximum (FWHM) at transparency peaks. 

The delay-bandwidth limitation values are demonstrated in Figure 3.5. The cavity-

QD [Figure 3.5 (a)] configuration has a wider bandwidth than the classical EIT 

[Figure 3.5 (b)] configuration leading to a lower transparency peak quality factor. In 

addition, when transmission peak value increases, transparency quality factors 

decrease.  
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3.2. Single QD Embedded in Cavity-Cavity Array and Triple Cavity Array 

Cavity-QD EIT and classical EIT systems comparison give important results in 

terms of phase delay and transmission. Another comparison is made between single 

QD embedded in cavity-cavity array [Figure 3.6 (a)] and triple cavity array [Figure 

3.6 (b)] in this part. 

 

 

Figure 3.6. Single QD embedded in cavity-cavity array (a) and triple cavity array (b). 

 

Equation for single quantum dot embedded in cavity-cavity array transportation 

equation is derived from the formula of cavity-QD EIT as follows:  

 
(
b̂in(ω)

b̂out(ω)
) =

1

α− Γ+ κ1
(

−κ1 α− Γ

α− Γ+ 2κ1 −κ1
) ( 0 ej2π

ej2π 0
)  

 
                      

1

β− Γ+ κ2
(

−κ2 β− Γ

β − Γ+ 2κ2 −κ2
) (
âin(ω)

âout(ω)
) (3.12) 

where α = i(ω − ωc) +
|g|2

i(ω−ωr)−γ
and β = i(ω − ωc) 

Triple cavity transportation matrix is represented in Equation 3.13. Triple cavity 

system has no QD so g1 = g2 = g3 = 0. 
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)  
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(
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− Γ
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2
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) ( 0 ej2π
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)  

 
                        

1

β
3
− Γ+ κ3

(
−κ3 β

3
− Γ

β
3
− Γ+ 2κ3 −κ3

) (
âin(ω)

âout(ω)
) (3.13) 

where β
j
= i(ω− ωj) 

In Figure 3.6, single quantum dot embedded cavity-cavity array and triple cavity 

array systems are compared in terms of transmission spectra, the phase of the 

transmitted fields and group delay (dϕ/dω) values. The transmission characteristics 

[Figure 3.7 (a) and Figure 3.7 (b)] and the corresponding phase/group delay values 

[Figure 3.7 (c) and Figure 3.7 (d)] look similar for both the single QD embedded 

cavity-cavity array and triple cavity array. 

Figure 3.7 (b) shows the spectral transmission characteristic of the triple cavity case. 

The coupling strength value is assumed to be zero because the coherent interaction 

occurs if and only if the bus waveguide phase accumulation is an integer multiple of 

2π. The group delay corresponding to calculated transmission spectra is given in 

Figure 3.7 (d). The resonant frequencies (-Δω, 0, Δω) are modified by varying the 

first and third cavity resonant frequencies. Δω values are changed as 0.5Γ, 1.33Γ and 

5Γ which are shown for the red, black and blue lines, respectively [Figure 3.7 (f)]. 

The same variation is applied to single QD embedded in cavity-cavity array [Figure 

3.7 (e)].   

Figure 3.7 (a) shows the spectral transmission characteristics for the case where a 

single QD embedded cavity-cavity array. The QD resonantly interacts with the first 

cavity in the presence of the QDs. The values of the intrinsic and extrinsic cavity 

decay rates are the same as the triple cavity case. In addition, the transition and 

resonant frequencies are equal. 
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In the following, extrinsic cavity decay rates are assumed to be the same values 

κ3=κ2=κ1=κ as a result Γ3=Γ2=Γ1=Γ to make the equations simpler. Total decay 

rate(γ) equals to κ0 as in the previous configuration. 

 

 

Figure 3.7. The transmission spectrum for single embedded QD in cavity-cavity array (triple cavity 

array) a (b). The corresponding phase and group delay c (d).Transmission variation for various 

detuning for single embedded QD in cavity-cavity array (triple cavity array) e (f) [9]. 
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3.3. Spectral Character and Group Delay Comparison 

Single QD embedded cavity-cavity array and triple cavity array systems 

transmission equations are analyzed below to compare the configurations with 

simulation results. 

Double cavity with QD transmission Equation 3.12 transforms into: 

 b̂out(ω)

âin(ω)
=
(κ + β2 − Γ). (κ + β1 − Γ)

[(β1 − Γ)(β2 − Γ) − κ
2]

 (3.14) 

Triple cavity transmission Equation 3.13 transforms into: 

 b̂out(ω)

âin(ω)
=

(κ + (β1 − Γ))(κ + (β1 − Γ))(κ + (β1 − Γ))

(β3 − Γ)(β2 − Γ)(β1 − Γ) − κ
2(β1+β2+β3 − 3Γ) − 2κ

3
 (3.15) 

First of all, β value is written to compare the transmission configurations. Equation 

3.14 is solved for t(𝜔): 

 

  (3.16) 

Then, similar steps are repeated for the triple cavity case and the detuning between 

the cavities is Δω. The transmission values are dependent to frequency spectrum and 

normalized group delay is shown as:   

 

  (3.17) 

When the extrinsic cavity is greater than the intrinsic cavity decay rate, transmission 

values are shown for double cavity and triple cavity, respectively. 

 

t(ω) =
(2ω2κ0 −

1
2
g2κ0) + iω(−ω

2 + g2)

(2ω2κ − κg2 − κκ0
2) + iω(−ω2 + g2 + 3κκ0)

 (3.18) 

 

t(ω) =
(
3
2
ω2κ0 −

1
2
κ0Δω

2) + iω(−ω2 + Δω2)

(3ω2κ − Δω2κ −
3
4
κκ0

2) + iω(−ω2 + Δω2 + 3κκ0)
 (3.19) 
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3.3.1. Simulation Results 

In this study, single QD embedded cavity-cavity array and triple cavity array cases 

are compared with various parameters. Firstly, the extrinsic cavity decay rate, κ, 

values are varied from 20κ0 to 250κ0 with equal steps. Group delay and transmission 

spectra values are calculated for both configurations in Figure 3.8 (a) and Figure 3.8 

(b). Resonant frequencies are -0.3Γ, 0 and 0.3Γ for the ωc1, ωc2, and ωc3 values, 

respectively. The coupling strength (g) value is set to 0.5Γ. Transmission values of 

the triple cavity array are higher than the single QD cavity-cavity array. As far as the 

group delay is considered, the triple cavity is higher than the double cavity when 

extrinsic cavity decay rate is smaller than the 55𝜅0, Beyond the 55𝜅0 transmission 

values of triple cavity is lower than the double cavity. 

 

 

Figure 3.8. Comparison of transmission spectrum (a) and generated group delay (b) of single 

embedded QD in cavity-cavity array and triple cavity array with the coupling strength of 0.5Γ. Same 

transmission (c) and group delay (d) graphs are repeated for κ=50κ0.   
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Then, the calculations in Figure 3.7 (a) and Figure 3.7 (b) are repeated with 

stationary extrinsic cavity decay rate in Figure 3.7 (c) and Figure 3.7 (d).  Coupling 

strength values are varied from 0.2Γ to 1.4Γ with equal steps. The transmission 

values of triple cavity decay rates are higher than the single QD embedded in cavity-

cavity array values. When the coupling strength value is nearly smaller than 0.5Γ, 

triple cavity group delay is higher than the single QD embedded cavity-cavity array. 

If we look at the higher values, triple cavity group delay values are smaller than the 

single QD embedded in cavity-cavity array group delay values.  

Furthermore, Figure 3.7 is repeated with different values to obtain more meaningful 

comments about transmission and group delay comparison in Figure 3.8. Coupling 

strength value is set to 0.3Γ. When we look at the transmission values, both of single 

QD embedded cavity-cavity array and triple cavity array are smaller than in Figure 

3.8 (a). Transmission values of triple cavity array are more comparable and greater 

than the single embedded QD cavity-cavity array in Figure 3.9 (a). Group delay 

intersection point is shifted to a higher normalized decay rate (κ1/ κ0) in Figure 3.9 

(b). Behind the intersection point, triple cavity group delay values are still higher 

than single QD embedded cavity-cavity array system. It is shown that decreasing the 

coupling strength value results in higher group delay values. 
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Figure 3.9. Comparison of transmission spectrum (a) and generated group delay (b) of single QD 

embedded in cavity-cavity array and triple cavity array with the coupling strength of 0.3Γ. Same 

transmission (c) and group delay (d) graphs are repeated for κ=150κ0.   

 

In Figure 3.9 (c) and Figure 3.9 (d), the extrinsic cavity decay rate is set to 150κ0. 

Increasing the extrinsic cavity decay rate leads to catching up the transmission 

difference between triple cavity array and single QD embedded cavity-cavity array 

at higher coupling strength values. Triple cavity array transmission values are still 

higher than the single QD embedded cavity-cavity array like previous examples. 

Both of the systems group delay values are increasing while coupling strength is 

increasing. On the other hand, group delay values of both systems are higher than the 

previous example. Group delay values of the triple cavity array are higher than the 

double cavity when coupling strength value is nearly 0.3Γ.  
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Figure 3.10. Triple cavity (a) and single embedded QD in cavity-cavity array (b) bandwidth of the 

transparency peaks and the corresponding quality factor   

 

The transmission spectrum of Figure 3.9 (c) and Figure 3.9 (d) are used to obtain full 

width half-maximum (FWHM) at transparency peaks. The delay-bandwidth 

limitation values are demonstrated in Figure 3.10. Single QD embedded in cavity-

cavity array [Figure 3.10 (b)] configuration has a wider bandwidth than triple cavity 

[Figure 3.10 (a)] configuration leading to a lower transparency peak quality factor.  

While varying the extrinsic cavity decay rate and coupling strength value, there is an 

intersection point of group delay values. Group delay simulations are repeated at 

different extrinsic cavity decay rates. Then the intersection point of triple cavity and 
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single QD embedded cavity-cavity array are gathered and showed in Figure 3.11 

separately. While extrinsic cavity decay rate is increasing, the intersection points of 

triple cavity and single QD embedded cavity-cavity array is decreasing. It shows us 

that if we increase the extrinsic cavity decay rate sufficiently, the group delay value 

of single QD embedded cavity-cavity is higher than the triple cavity array. When the 

extrinsic cavity decay rate is more comparable with intrinsic cavity decay rate, 

choosing the suitable system requires looking at the coupling strength values. 

Smaller coupling values make the group delay of the triple cavity is more effective 

than single QD embedded in cavity-cavity.  

 

 

Figure 3.11. Group delay intersection values for coupling strength (a) and normalized detuning (b)  

 

Group delay intersection values are found by varying extrinsic cavity decay rate 

from 20𝜅0 to 300𝜅0 in Figure 3.11. Under the intersection line, triple cavity group 

delay values are higher than single QD embedded cavity-cavity array. Moreover, 

triple cavity systems have larger coupling strength scale at low extrinsic cavity decay 

rates. On the other hand, when we increase the extrinsic cavity decay rate, triple 

cavity phase delay is higher than single QD embedded cavity-cavity array only for 

coupling strength values smaller than about 0.2Γ.  
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Furthermore, single QD embedded cavity-cavity array and triple cavity array 

subsystems analyzed above are simulated again in case the various parameters are 

tuned. Firstly, the extrinsic cavity decay rate (κ) value is varied from 20κ0 to 250𝜅0 

with equal steps and the group delay and transmission spectra values are calculated 

for both configurations. In Figure 3.12 (a) where the resonant frequencies are -0.7Γ, 

0 and 0.7Γ for the ωc1, ωc2 and ωc3 respectively and the coupling strength (g) value is 

set to 0.7Γ. Transmission values of the triple cavity and single QD embedded in 

cavity-cavity array systems are equal to each other at especially high extrinsic cavity 

decay rates.  As far as the group delay is considered, the results are quite interesting. 

As can be seen in Figure 3.12 (b), triple cavity system generates higher group delay 

values than single QD embedded cavity-cavity array system.  

Then, frequency detuning dependency of the spectral characteristics has also been 

analyzed. This detuning corresponds to the frequency spacing between different 

channels in the WDM systems. Frequency splitting in the transmission spectrum 

comes from the coupling strength between the QD and the cavities in the quantum 

dot embedded double cavity system and from the resonant frequency difference in 

the triple cavity array system. When the coupling strength changes, normalized 

detuning values differ with the same rate in the triple cavity array system. This 

tuning has been scanned from 0.2Γ to 1.4Γ and the results have been summarized in 

Figure 3.12 (c) and Figure 3.12 (d). The transmission values are increasing and the 

generated group delay is decreasing with increasing frequency detuning as expected 

from the fact that the delay-bandwidth product is constant unless there is a 

dynamical tuning [26]. In terms of the propagation delay value, triple cavity phase 

delay values are higher than the single QD embedded cavity-cavity array system.  
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Figure 3.12. Comparison of transmission spectrum (a) and generated group delay (b) of single 

embedded QD in cavity-cavity array and triple cavity array with the coupling strength of 0.7Γ. Same 

transmission (c) and group delay (d) graphs are repeated for κ=50κ0 [9]  

 

Next, the calculations in Figure 3.12 are repeated for a different set of parameters. In 

particular, extrinsic cavity decay rate scan has been run with a smaller detuning (g = 

0.3Γ and Δω= 0.3Γ) values and the results are shown in Figure 3.13.  The observed 

characteristics are still present previous characteristic but the exact values have been 

changed. Triple cavity transmission and phase delay values are still higher than 

single QD embedded cavity-cavity array system. On the other hand, smaller 

detuning results in higher phase delay values [Figure 3.13 (b)]. At the lower rate of 

extrinsic cavity decay rates, phase delay values are decreased quietly in Figure 3.13 

(d).  
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Figure 3.13. Comparison of transmission spectrum (a) and generated group delay (b) of single 

embedded QD in cavity-cavity array and triple cavity array with the coupling strength of 0.3Γ. Same 

transmission (c) and group delay (d) graphs are repeated for κ=10κ0 [9] 

 

Transmission values are calculated by using Equation 3.18 and Equation 3.19. Single 

QD embedded cavity-cavity array is calculated when coupling strength value is set 

to 0.5Γ and ω1=0.35Γ. Transmission calculations are shown in Equation 3.20 and 

Equation 3.21. 

 κ0(2(0.35Γ)2 − 0.5(0.5Γ)2) + i0.35Γ((0.5Γ)2 − (0.35Γ)2)

κ(2(0.35Γ)2 − (0.5Γ)2) + i0.35Γ((0.5Γ)2 − (0.35Γ)2 + 3κκ0)
 (3.20) 

 
t(ω1 = 0.35Γ) =

0.12Γ2κ0 + i0.04625Γ
3

−0.005Γ2κ + i(0.04625Γ3 + 1.05Γκκ0)
 (3.21) 

Triple cavity array is calculated when coupling strength value is set to 0.5Γ and 

ω2=0.2875Γ. The transmission calculations are shown in Equation 3.22 and Equation 

3.23. 
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(3.22) 

 

 

(3.23) 

Then calculated transmission equations are showed in Equation 3.21 and Equation 

3.23 are used to find the transmission rates. Transmission rate is used to represent 

triple cavity transmission value to single QD embedded cavity-cavity array. While 

increasing the extrinsic cavity rate, the transmission rate is getting closer to each 

other. If we observe the transmission graphs on Figure 3.12, transmission values 

converge to each other at higher extrinsic cavity decay rates. It proves that 

simulation results and calculations are matched up with each other. 

 

Table 3.1. Transmission rate of triple cavity to single QD embedded cavity-cavity 

K1 Transmission 

rate 

K1 Transmission 

rate 

K1 Transmission 

rate 

10K0 1.1144     110K0 1.0435     210K0 1.0259     

20K0 1.1207     120K0 1.0406 220K0 1.0250     

30K0 1.1033     130K0 1.0381     230K0 1.0241     

40K0 1.0885 140K0 1.0360     240K0 1.0233 

50K0 1.0771     150K0 1.0340     250K0 1.0225     

60K0 1.0682     160K0 1.0323 260K0 1.0218     

70K0 1.0612     170K0 1.0308     270K0 1.0212     

80K0 1.0555   180K0 1.0294     280K0 1.0206 

90K0 1.0508     190K0 1.0281     290K0 1.0200     

100K0 1.0468     200K0 1.0270 300K0 1.0195 

 

Transparency and normalized FWHM values of Figure 3.13 (c) and Figure 3.3 (d) 

are represented in Figure 3.14. 
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Figure 3.14. Triple cavity (a) and single QD embedded in cavity-cavity array (b) bandwidth of the 

transparency peaks and the corresponding quality factor  

 

The transmission spectrum of Figure 3.12 (c) and Figure 3.12 (d) are used to obtain 

full width half-maximum (FWHM) at transparency peaks. The delay-bandwidth 

limitation values are demonstrated in Figure 3.14. Triple cavity [Figure 3.14 (a)] 

configuration has a wider bandwidth than single QD embedded in cavity-cavity 

array [Figure 3.14 (b)] configuration leading to a lower transparency peak quality 

factor. 

 



 

 

 

65 

 

 

3.4. Results 

In summary, single embedded QD cavity-cavity array under weak coupling regime 

and triple cavity array systems are compared in terms of transmission spectrum and 

generated temporal group delay. When the extrinsic cavity decay rate is quite higher 

than the intrinsic cavity decay rate, the transmission values are converging to each 

other in case the coupling strength and the frequency detuning are equal to each 

other. In addition, triple cavity phase delay is higher than the single embedded QD 

cavity-cavity array. Higher extrinsic cavity decay rates and smaller coupling strength 

values result in higher phase delay values. Furthermore, if we choose the coupling 

strength values and normalized detuning values to get the maximum transmission 

values at the same frequency, transmission values of triple cavity are higher than 

single embedded QD in cavity-cavity array and there is an intersection point in terms 

of the propagation delay where the higher group delay system changes as the 

coupling strengths and extrinsic cavity decay rates vary. Therefore, both systems can 

be preferable for supplying group delays for the on-chip WDM applications 

depending on the component parameters.  
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CHAPTER 4  

 

4. CONCLUSION AND FURTHER WORK 

 

In this thesis work, single QD embedded cavity-cavity array and triple cavity array 

subsystems are compared in terms of transmission, phase delay, quality factor, and 

FWHM. The simulation results are proved with the equations which are derived 

from Hamiltonian dynamics and motion equations. The results showed that triple 

cavity array phase delay values and quality factor are higher than single QD 

embedded in cavity-cavity array at comparable higher extrinsic cavity decay rates.  

The aim of this comparison is to answer the question that how can we apply 

quantum communication basic principles to classical communication applications for 

WDM theory. When the system has smaller FWHM, it is possible to increase the 

number of the signals maintained in the same fiber cable. Demand on network 

capacity is growing faster day by day so WDM cost-effective applications give an 

opportunity to researchers for higher data transmission ability. 
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C. Single QD Embedded in Cavity-Cavity Array 
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=
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=
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=

(y
x⁄
)′

1
+
(y
x⁄
)2
=
y

′ x
−
x

′ y

y
2
+
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C. Triple Cavity  
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Γ
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â
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â
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Γ
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Γ
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Γ
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â
in
( ω
)
=

κ
3
−
3
κ
2
Γ
+
3
Γ
2
κ
−
3
ω
2
κ
+
3
ω
2
Γ
−
Γ
3
−
∆
ω
2
Γ
+
∆
ω
2
κ

( i
( ω
+
∆
ω
)
−
Γ
)(
i(
ω
−
∆
ω
)
−
Γ
) (
iω
−
Γ
)
−
κ
2
(i
( ω
+
∆
ω
)
+
i(
ω
−
∆
ω
)
+
iω
−
3
Γ
)
−
2
κ
3
 

tr
an
s(
ω
)
=

(3 2
ω
2
κ
0
−
1 8
κ
0
3
−
1 2
κ
0
Δ
ω
2
)
+
iω
(−
ω
2
+
3 4
κ
0
2
+
Δ
ω
2
)

(3
ω
2
κ
+
3 2
ω
2
κ
0
−
3 4
κ
κ
0
2
−
1 8
κ
0
3
−
Δ
ω
2
κ
−
1 2
κ
0
Δ
ω
2
)
−
iω
(ω

2
−
3
κ
κ
0
−
3 4
κ
0
2
−
Δ
ω
2
) 

τ c τ l
if
e
=
(
y

′ x
−
x

′ y

x
2
+
y
2
)
∗
(2
κ
+
κ
0
) 

x
=
(3 2
ω
2
κ
0
−
1 8
κ
0
3
−
1 2
κ
0
Δ
ω
2
)
(3
ω
2
κ
+
3 2
ω
2
κ
0
−
3 4
κ
κ
0
2
−
1 8

κ
0
3
−
Δ
ω
2
κ
−
1 2
κ
0
Δ
ω
2
) 

   
   
 +
ω
(−
ω
2
+
3 4
κ
0
2
+
Δ
ω
2
)
ω
(g
2
−
ω
2
+
3
κ
κ
0
−
5 4
κ
0
2
) 

x
′
=
( 3
ω
κ
0
)
(3
ω
2
κ
+
3 2
ω
2
κ
0
−
3 4
κ
κ
0
2
−
1 8
κ
0
3
−
Δ
ω
2
κ
−
1 2
κ
0
Δ
ω
2
)
+
(3 2
ω
2
κ
0
−
1 8
κ
0
3
−
1 2
κ
0
Δ
ω
2
)
( 6
ω
κ
+
3
ω
κ
0
)  

   
   
  +
( −
3
ω
2
) ω
(g
2
−
ω
2
+
3
κ
κ
0
−
5 4
κ
0
2
)
+
ω
(−
ω
2
+
3 4
κ
0
2
+
Δ
ω
2
)
( −
3
ω
2
)  

 



 

 

 

86 

 

 y
=
ω
(−
ω
2
+
3 4
κ
0
2
+
Δ
ω
2
)
(3
ω
2
κ
+
3 2
ω
2
κ
0
−
3 4
κ
κ
0
2
−
1 8
κ
0
3
−
Δ
ω
2
κ
−
1 2
κ
0
Δ
ω
2
) 

  −
(3 2
ω
2
κ
0
−
1 8
κ
0
3
−
1 2
κ
0
Δ
ω
2
)
(g
2
−
ω
2
+
3
κ
κ
0
−
5 4
κ
0
2
) 

y
′
=
( −
3
ω
2
)
(3
ω
2
κ
+
3 2
ω
2
κ
0
−
3 4
κ
κ
0
2
−
1 8
κ
0
3
−
Δ
ω
2
κ
−
1 2
κ
0
Δ
ω
2
)
+
ω
(−
ω
2
+
3 4
κ
0
2
+
Δ
ω
2
)
( 6
ω
κ
+
3
ω
κ
0
)  

t(
ω
)
=
(2
ω
2
κ
0
−
1 2
g
2
κ
0
)
+
iω
( −
ω
2
+
g
2
)

( 2
κ
ω
2
−
κ
g
2
)
+
iω
( g
2
−
ω
2
)

 

t(
ω
)
=
(3 2
ω
2
κ
0
−
1 2
κ
0
Δ
ω
2
)
+
iω
( −
ω
2
+
Δ
ω
2
)

( 3
ω
2
κ
−
Δ
ω
2
κ
)
+
iω
( Δ
ω
2
−
ω
2
)

 

−
[(
3
ω
κ
0
)
(g
2
−
ω
2
+
3
κ
κ
0
−
5 4
κ
0
2
)
+
(3 2
ω
2
κ
0
−
1 8
κ
0
3
−
1 2
κ
0
Δ
ω
2
)
(−
3
ω
2
)]

 


