
EVENT DETECTION ON SOCIAL MEDIA USING TRANSACTION BASED
STREAM PROCESSING ENGINE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HÜSEYIN ALPER ÇINAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JUNE 2019





Approval of the thesis:

EVENT DETECTION ON SOCIAL MEDIA USING TRANSACTION BASED
STREAM PROCESSING ENGINE

submitted by HÜSEYIN ALPER ÇINAR in partial fulfillment of the requirements
for the degree of Master of Science in Computer Engineering Department, Mid-
dle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Pınar Karagöz
Supervisor, Computer Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. İsmail Sengor Altıngövde
Computer Engineering, METU

Prof. Dr. Pınar Karagöz
Computer Engineering, METU

Assist. Prof. Dr. Orkunt Sabuncu
Computer Engineering, TEDU

Date:



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Hüseyin Alper Çınar

Signature :

iv



ABSTRACT

EVENT DETECTION ON SOCIAL MEDIA USING TRANSACTION BASED
STREAM PROCESSING ENGINE

Çınar, Hüseyin Alper

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Pınar Karagöz

June 2019, 87 pages

The aim of this study is detecting events on social media by improving current solu-

tions in terms of accuracy and time performance. An event is something that occurs

in a short duration of time in a certain place. In this thesis, the problem is modelled

as a streaming transaction process. Three different event detection method is adapted

to our solution. First one is the keyword-based event detection method that looks

for bursty keywords in a period. The second one is the clustering-based event de-

tection method which is a version of the hierarchical clustering algorithm. And the

last one is the hybrid event detection method of keyword-based and clustering-based

algorithms. To specify the problem as streaming transaction process, all algorithms

are implemented on top of S-Store. S-Store is a streaming OLTP engine having dis-

tributed, scalable and guaranteed ordered delivery features. All of the event detection

methods are run and evaluated their performance with a real data set obtained from

Twitter.

v



Keywords: Online event detection, Streaming online transaction processing, Dis-

tributed systems, Keyword-based event detection, Clustering-based event detection,

Twitter, S-Store

vi



ÖZ

İŞLEM TABANLI AKIŞ İŞLEME MOTORU İLE SOSYAL MEDYA
ÜZERİNDEN OLAY ALGILAMA

Çınar, Hüseyin Alper

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Pınar Karagöz

Haziran 2019 , 87 sayfa

Bu çalışmanın amacı sosyal media üzerindeki olayları mevcut çözümlerin doğruluk

ve süre performanslarını arttırarak algılamaktır. Bir olay, belirli bir yerde belirli bir

zaman aralığında gerçekleşen şeyler olarak tanımlanabilir. Bu tezde, bu sorun işlem

tabanlı akış işleme problemi olarak modellenmiştir. Üç değişik olay algılama yöntemi

bizim problemimize uyarlanmıştır. Bunlardan ilki anahtar kelimeye dayalı olay algı-

lamadır. Kısa süre içerisinde sayısal olarak fazla artışa sahip olan anahtar kelimeleri

bulur. İkincisi kümelemeye dayalı olay algılamadır. Bunu hiyerarşik kümelemenin bir

versiyonu olarak da tanımlayabiliriz. Son olarak, hibrid olay algılama yöntemi ile ilk

iki yöntem birleştirilmiştir. Problemimizi işlem tabablı akış işleme problemi olarak

tanımladığımız için tüm yöntemler S-Store üzerinde uygulanmıştır. S-Store, dağıtık,

ölçeklenebilir ve garantili sıralı iletim özelliklerine sahip bir işlem tabanlı akış iş-

leme moturudur. Tüm olay algılama yöntemleri Twitter’dan alınan gerçek veri seti ile

çalıştırılmış ve performansları değerlendirilmiştir.

vii



Anahtar Kelimeler: Çevirimiçi olay algılama, İşlem tabanlı akış işleme, Dağıtık sis-

temler, Anahtar kelimeye dayalı olay belirleme, Kümelemeye dayalı olay belirleme,

Twitter, S-Store

viii



to my beloved adigepsase...

ix



ACKNOWLEDGMENTS

First of all, I’d like to thank Prof. Dr. Pınar Karagöz, my thesis advisor. She was

always patient and supportive during the whole study. She involved every part of this

thesis. She encouraged me and show me the right direction to get better results in this

thesis.

I thank Nesime Tatbul for her suggestions and comments when re-modelling event

detection methods to comply with S-Store. Her feedbacks on this thesis helped to

enhance this work.

Of course, I thank Özlem Ceren Şahin for helping me to understand the internals of

her event detection methods. She spent so many hours to support me in this work. I

also thank John Meehan for supporting me technically when using S-Store.

I am grateful to my thesis defence jury members Assoc. Prof. Dr. İmail Sengör

Altıngövde and Assist. Prof. Dr. Orkunt Sabuncu for evaluating this thesis with their

valuable feedback.

I’d like to thank Güneş Sucu and my brother Arda Çınar for helping me extend ground

truth events used on evaluation.

The special thanks go to my wife, Feyza Yılmaz Çınar. She gave all her support and

help during this work. I owe her countless events and activities that she postponed

because I was working on this thesis.

Lastly, I thank my mother, Ayşin Gökşin, who devoted her life to raise me and my

brother and to support our education.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 S-STORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 EVENT DETECTION METHODS . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Keyword-Based Event Detection Method . . . . . . . . . . . . . . . 11

4.2 Clustering-Based Event Detection Method . . . . . . . . . . . . . . 13

4.3 Hybrid Event Detection Method . . . . . . . . . . . . . . . . . . . . 14

xi



4.4 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 EVENT DETECTION ON SOCIAL MEDIA USING S-STORE . . . . . . 19

5.1 S-Store Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Common S-Store Procedures . . . . . . . . . . . . . . . . . . . . . . 19

5.2.1 Feed Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2.2 Tokenizer Procedure . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.3 Word Count Procedure . . . . . . . . . . . . . . . . . . . . . 20

5.2.4 Burst Detector Procedure . . . . . . . . . . . . . . . . . . . . 20

5.2.5 Burst Report Procedure . . . . . . . . . . . . . . . . . . . . . 20

5.2.6 Tweet Filter Procedure . . . . . . . . . . . . . . . . . . . . . 20

5.2.7 Local Clustering Procedure . . . . . . . . . . . . . . . . . . . 21

5.2.8 Cluster Merge Procedure . . . . . . . . . . . . . . . . . . . . 21

5.2.9 Clustering Event Detector Procedure . . . . . . . . . . . . . . 21

5.3 Procedure Input Outputs . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4 Keyword-Based Event Detection . . . . . . . . . . . . . . . . . . . . 22

5.4.1 Non-Distributed Implementation . . . . . . . . . . . . . . . . 23

5.4.2 Distributed Implementation . . . . . . . . . . . . . . . . . . . 23

5.5 Clustering-Based Event Detection . . . . . . . . . . . . . . . . . . . 24

5.5.1 Non-distributed Implementation . . . . . . . . . . . . . . . . 24

5.5.2 Distributed Implementation . . . . . . . . . . . . . . . . . . . 25

5.6 Hybrid Event Detection . . . . . . . . . . . . . . . . . . . . . . . . 25

5.6.1 Non Distributed Implementation . . . . . . . . . . . . . . . . 26

5.6.2 Distributed Implementation . . . . . . . . . . . . . . . . . . . 26

xii



5.7 Adapting to S-Store . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.4 Ground Truth Construction . . . . . . . . . . . . . . . . . . . . . . . 30

6.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.5.1 Accuracy Evaluation Metrics . . . . . . . . . . . . . . . . . . 31

6.5.2 Time Performance Evaluation Metrics . . . . . . . . . . . . . 32

6.6 Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.6.1 Parameter Tuning for Clustering-Based Event Detection of USA 33

6.6.2 Parameter Tuning for Clustering-Based Event Detection of
Canada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.6.3 Parameter Tuning for Hybrid Event Detection of USA . . . . . 35

6.6.4 Parameter Tuning for Hybrid Event Detection of Canada . . . 35

6.7 Event detection accuracy . . . . . . . . . . . . . . . . . . . . . . . . 36

6.7.1 Accuracy Comparison Among Event Detection Methods . . . 37

6.7.2 Accuracy Comparison with the Previous Solution . . . . . . . 38

6.8 Event Detection Time Performance . . . . . . . . . . . . . . . . . . 40

6.8.1 Keyword-Based Event Detection Time Performance . . . . . . 40

6.8.1.1 Non-Distributed Configuration . . . . . . . . . . . . . . 41

6.8.1.2 Distributed Configuration . . . . . . . . . . . . . . . . 42

6.8.2 Clustering-Based Event Detection Time Performance . . . . . 43

xiii



6.8.2.1 Non-Distributed Configuration . . . . . . . . . . . . . . 43

6.8.2.2 Distributed Configuration . . . . . . . . . . . . . . . . 43

6.8.3 Hybrid Event Detection Time Performance . . . . . . . . . . . 44

6.8.4 Comparison Among Event Detection Methods . . . . . . . . . 45

6.8.5 Comparison with the Previous Solution . . . . . . . . . . . . . 46

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A STREAM AND TABLE DEFINITIONS . . . . . . . . . . . . . . . . . . . 53

A.1 Common Streams for All Event Detection Methods . . . . . . . . . . 53

A.1.1 Stream: tweets_s . . . . . . . . . . . . . . . . . . . . . . . . 53

A.2 Streams for Keyword-Based Event Detection . . . . . . . . . . . . . 53

A.2.1 Stream: tokenized_word_counts_s . . . . . . . . . . . . . . . 53

A.2.2 Stream: word_counts_s . . . . . . . . . . . . . . . . . . . . . 54

A.2.3 Stream: burst_words_s . . . . . . . . . . . . . . . . . . . . . 54

A.3 Streams of Clustering-Based Event Detection . . . . . . . . . . . . . 55

A.3.1 Stream: local_cluster_results_s . . . . . . . . . . . . . . . . . 55

A.3.2 Stream: merged_cluster_results_s . . . . . . . . . . . . . . . 55

A.4 Streams and Tables of Hybrid Event Detection . . . . . . . . . . . . 56

A.4.1 Table: tweet_words . . . . . . . . . . . . . . . . . . . . . . . 56

A.4.2 Stream: filtered_tweets_s . . . . . . . . . . . . . . . . . . . . 56

B GROUND TRUTH EVENTS . . . . . . . . . . . . . . . . . . . . . . . . . 59

C PARAMETER TUNING RESULTS . . . . . . . . . . . . . . . . . . . . . 61

D OUTPUTS OF KEYWORD-BASED EVENT DETECTION METHOD . . 73

xiv



E OUTPUTS OF CLUSTERING-BASED EVENT DETECTION METHOD . 79

F OUTPUTS OF HYBRID EVENT DETECTION METHOD . . . . . . . . . 85

xv



LIST OF TABLES

TABLES

Table 4.1 Sample Dataset for Illustrative Example . . . . . . . . . . . . . . . 16

Table 4.2 Illustrative Example: Keyword-Based Event Detection Flow . . . . 17

Table 4.3 Illustrative Example: Clustering-Based Event Detection Flow . . . . 18

Table 5.1 Inputs and Outputs of Procedures . . . . . . . . . . . . . . . . . . . 22

Table 6.1 Sample Input and Output for Prepocessing . . . . . . . . . . . . . . 30

Table 6.2 Parameter Tuning Results for USA Clustering Based Event Detection 34

Table 6.3 Parameter Tuning Results for Canada Clustering Based Event De-

tection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 6.4 Parameter Tuning Results for USA Hybrid Event Detection . . . . . 35

Table 6.5 Parameter Tuning Results for Canada Hybrid Event Detection . . . . 36

Table 6.6 Silhouette Coefficients of Parameter Tuning Results for Canada Hy-

brid Event Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Table 6.7 Results of Keyword-Based Event Detection Method . . . . . . . . . 37

Table 6.8 Results of Clustering-Based and Hybrid Event Detection Method . . 38

Table 6.9 Accuracy of Event Detection Methods . . . . . . . . . . . . . . . . 38

Table 6.10 Re-calculated Results of the Previous Keyword-Based Event Detec-

tion Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xvi



Table 6.11 Re-calculated Results of Previous Clustering-Based and Hybrid Event

Detection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 6.12 Accuracy of the Previous Event Detection Methods . . . . . . . . . 41

Table 6.13 Keyword-Based Event Detection Speedup from Non-Distributed to

Distributed Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 6.14 Clustering-Based Event Detection Speedup from Non-Distributed

to Distributed Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 6.15 Time Performance Comparison of Event Detection Methods . . . . 45

Table 6.16 Time Performance Comparison with the Previous Solution . . . . . 46

Table B.1 Existing Ground Truth Events . . . . . . . . . . . . . . . . . . . . . 59

Table B.2 New Events Added to Ground Truth . . . . . . . . . . . . . . . . . 60

Table C.1 Parameter Tuning Results of All Configurations for USA Clustering

Based Event Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table C.2 Parameter Tuning Results of All Configurations for Canada Clus-

tering Based Event Detection . . . . . . . . . . . . . . . . . . . . . . . . 64

Table C.3 Parameter Tuning Results of All Configurations for USA Hybrid

Event Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table C.4 Parameter Tuning Results of All Configurations for Canada Hybrid

Event Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table D.1 Keyword Based Event Detection Outputs of USA . . . . . . . . . . 73

Table D.2 Keyword Based Event Detection Outputs of Canada . . . . . . . . . 77

Table E.1 Clustering-Based Detection Outputs of USA . . . . . . . . . . . . . 79

Table E.2 Clustering-Based Detection Outputs of Canada . . . . . . . . . . . 82

xvii



Table F.1 Hybrid Event Detection Outputs of USA . . . . . . . . . . . . . . . 85

Table F.2 Hybrid Event Detection Outputs of Canada . . . . . . . . . . . . . . 87

xviii



LIST OF FIGURES

FIGURES

Figure 4.1 Keyword-Based Event Detection Steps . . . . . . . . . . . . . . 13

Figure 4.2 Clustering-Based Event Detection Steps . . . . . . . . . . . . . 14

Figure 4.3 Hybrid Event Detection Steps . . . . . . . . . . . . . . . . . . . 15

Figure 5.1 Keyword-Based Event Detection: Non Distributed Configuration 23

Figure 5.2 Keyword-Based Event Detection: Country-Wise Distributed Con-

figuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 5.3 Clustering Based Event Detection: Non-Distributed Configuration 25

Figure 5.4 Clustering Based Event Detection: Distributed Configuration . . 25

Figure 5.5 Hybrid Event Detection Configuration: Non-Distributed Con-

figuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 5.6 Hybrid Event Detection Configuration: Distributed Configuration 26

xix



LIST OF ABBREVIATIONS

AWS Amazon Web Services

CSV Comma Seperated Values

EC2 Elastic Compute Cloud

NLP Natural Language Processing

OLTP Online Transaction Processing

tf-idf term frequency-inverse document frequency

xx



CHAPTER 1

INTRODUCTION

1.1 Overview

As the number of people using social media is increased through the years, it became

one of the most reliable sources to gain insight about people’s expressions, thoughts

and events occurring around them. Since the content on social media is widely public,

it gives data scientists an organic, objective data set to perform analysis.

Twitter is one of the most popular microblogging services. In the latest report [1],

it is stated that Twitter has 330 million monthly active users. These users post 500

million daily tweets [2]. One of each contains a maximum 280 character length.

These tweets also contain some valuable meta-data like geo-location, which obtained

from the devıce that is used for sending these tweets.

Social media used in many of academic researches [3, 4, 5, 6, 7, 8]. In this work we

will focus on enhancing Sahin’s previous work [7, 8, 9] which proposes solutions for

online event detecting on social media. We use the same terminology for an event,

which is an activity occurring at a specific time and place, attracting attention in a

short time [7].

The previous solution [7] achieved performance in manners of both accuracy and

speed. This work aims to overcome the previous results by these manners. To make

a decent comparison, the same data-set and similar configurations are used in experi-

ments.

The problem considered for event detection in this study is a distributed streaming

online transactional processing problem. It aims to enhance the proposed event detec-

1



tion methods which are keyword based, clustering based and hybrid event detection

methods [7]. Keyword-based event detection method analyzes the burst of tweets,

while clustering-based event detection method analyzes the tweets by their similar-

ity. In addition to these 2 methods, there is a hybrid event detection which combines

keyword based and clustering based event detection methods.

1.2 Contributions

The main aim of this thesis is enhancing a previous solution for event detection meth-

ods applied on social media using a distributed streaming OLTP engine. For this

purpose, the implementation of three different event detection algorithms hypothe-

sized in previous solution [7] is modelled as a streaming OLTP problem. These meth-

ods are namely keyword-based, clustering-based and hybrid event detection methods.

Keyword-based event detection method looks for bursty keywords in a short time. Is

the fastest method among these three, however it cannot find a relation between re-

sulted keywords. On the other hand, clustering-based event detection method groups

tweets contextually which makes it easier to deduct an event. However, its accuracy is

not high as keyword-based event detection method although it runs in a longer time.

To improve the accuracy of clustering-based event detection, hybrid event detection

is implemented which is clustering tweets only containing bursty keywords.

To increase the time performance, in addition to performance enhancement methods

used in the previous solution like implementing a distributed system, using S-Store,

we were able to use an in-memory relational database which makes a huge impact on

runtime duration. The runtimes of all of the event detection methods are significantly

decreased.

To adapt the previous solution to S-Store, some other features are implemented on

top of it. For example, reading streamed data and processing these data is split into

different worker threads to eliminate data loss. The data limits of S-Store is also a

challenge to fit the implementations. To overcome this, the corresponding portion of

the data is extracted when data is received instead of splitting before sending.

In the experiments, pre-fetched twitter data used in the previous solution is also used

2



in this thesis. It makes the results of event detection methods to be comparable with

both among each other and with the previous solution. When compared with the

previous solution, we may now express results using minutes instead of long hours.

1.3 Organization of Thesis

This thesis consists of 7 chapters. This is the first chapter making an introduction. S-

Store and the reasons to be used in this thesis is explained in the 2nd Chapter. Previous

relevant studies about event detection methods are given on the 3rd Chapter. In Chap-

ter 4, three different event detection methods are described with illustrative figures.

The implementation details of these event detection methods with S-Store are given in

detail in Chapter 5. Distributed and non-distributed configurations of event detection

methods are also given in Chapter 5. In Chapter 6, the experiments with implemented

event detection methods, comparison among those methods and comparison with the

previous solution. Both accuracy and time performance are compared. Lastly, this

thesis is concluded in Chapter 7.

3



4



CHAPTER 2

S-STORE

The event detection methods applied in this study are based on transactional online

streaming processing system called S-store. The purpose of S-store is meeting the

requirements of high-velocity streaming inputs while providing transactional robust-

ness [10]. For that purpose, S-Store was built as an extension of H-Store which is a

main-memory OLTP platform with strong support for state and transaction manage-

ment [11]. With its streaming enhancements, S-store performs better than H-Store on

a variety of streaming workloads [12].

One of the reasons for using S-store in this study is that it guarantees ordered execu-

tion which is necessary to ensure correct results [13]. With this feature, we always

get the same result when a benchmark is executed with the same parameters and data

set. This helps us evaluate the results more accurate.

Another reason is the speed of S-store. Since S-store uses main memory for streaming

and transactions, it provides low latency. S-Store has built-in support for Volt DB

which is an in-memory relational database. With this support, S-Store optimizes

the scheduling of the DB transactions and streams itself, which helps to speed up the

execution. Although it requires more memory when executing an S-Store benchmark,

proper cleanup methods and optimization help us not to reach the memory limits in

this study.

Lastly, its distributed structure is another factor contributing to execution speed. Run-

ning procedures in different hosts or partitions help to decrease the runtime duration.

Also, designing the configuration of event detection methods for a distributed system,

helped us set our mindset to encapsulate the data within a procedure and flatting the

5



output of a procedure when sending to next procedure. The details of the implemen-

tation and S-Store adaptations can be found in the following chapters.

6



CHAPTER 3

RELATED WORK

Today, social media is the most important communication channel that people use to

make their voices heard. Lots of people share their thoughts, moods, activities and

the events around them. By the help of the Twitter API researchers start to mine

the tweets to detect the events of any size from worldwide sports activities to local

fairs. Some of these researchers focused on a specific type of events while others

focus on more generic perspective. Moreover, some studies investigate and classify

these studies. Atefeh and Khreich [5] classified event detection techniques by their

types, detection technique and detection task and proposes application areas for these

techniques. Becker et al. [14] helped to reveal important information about real-

world events by proposing an approach to distinguish Tweets about the real-world

events from other events. According to Atefeh and Khreich [5] this approach is

suitable for general event detection. Another study about distinguishing real-world

events is conducted by Walther and Kaisser [15]. Their aim was identifying real-

world events and presenting them to the users on a map which makes the information

more actionable.

The geotagging feature of Twitter is a great feature to identify and segment Tweets

by location. However, only 0.7% of documents are geotagged [16]. To resolve this

lack, Jasmine [16] proposed an automatic geotagging method and the number of ge-

ographic groups increased dramatically with this method.

Aiello et al. [17] compared the performance of different topic detection algorithms on

Twitter streams and found that standard NLP techniques performed better on focused

topics while novel techniques perform better on heterogeneous streams.

7



Li et al. [18] compared their segment-based event detection technique “Twevent"

with the state-of-the-art method and found out Twevent outperforms in terms of both

precision and recall. Petrovic et al. [19] adapted locality sensitive hashing to the first

story detection and experimented with a truly large scale data (160 Million Tweets).

Mathioudakis and Koudas [20] created a trend detection system “TweetMonitor”

which is based on detecting and grouping bursty keywords. Similarly the work of

Sankaranarayanan et al. [21] called “TwitterStand”, focuses on cleaning noisy data

from the Tweets and detecting late-breaking news from them.

About emerging topics on Twitter, Cataldi et al. [22] proposed an approach using

ageing theory to mine terms that frequently used in specified time interval while they

are not popular at other times.

Ritter et al. [23] describes the first open domain event-extraction and categorization

system for Twitter called “TwiCal” which is based on natural language processing.

Another system developed about event detection is TEDAS [24] which has offline

and online processing mechanisms. Its offline processing mechanism determines

and stores Crime and Disaster-related Events from Twitter API while online process-

ing mechanism answers user’s queries by generating visual results. EvenTweet [25]

uses an online detection algorithm which works in a similar manner of TEDAS’s and

shows detected localized events according to the user’s search queries. The study of

Becker et al. [14] is also an example of an online event detection mechanisms since

they use an online clustering technique.

Cordeiro and Frias [26] studied on an event detection method using wavelet signal

analysis of hashtags in tweets and combined them with Latent Dirichlet Allocation

topic inference model for a better description of the events. Weng and Lee [27] con-

ducted another event detection study based on wavelet-based signals called EDCoW

(Event Detection with Clustering of Wavelet-based Signals).

Lee and Sumiya [28] proposed Geo-social Event Detection Method to detect location

based expected or unexpected events by using 21 million geo-tweets found around

Japan between a specific time interval.

8



While the above studies focus on general event detection using Twitter API, there

are some studies focused on special event detection like traffic event detection from

Twitter streams [29]. Sakaki et al. [30] also focused on a specific event and proposed

an algorithm to monitor tweets and to detect a target event such as an earthquake. The

system detects earthquakes and notifies users much faster than broadcasts.

In this work, we searched for the approaches that would fit into our model. We used

geotagging to separate our dataset into countries to focus on regional events. NLP

techniques are highly used in the pre-processing phase to extract only root words to

help our similarity calculations. Similar to previous works, this work is also focused

on keyword bursts. Additionally, this work also handles a group of tweets by building

tweet clusters and tries to detect events among those clusters. However, the main

difference of this study is that we use a transactional streaming model to detect events.

This work is the first event detection system that uses S-Store. With S-Store, we

process a group of tweets as an atomic unit in a stream easily.

9



10



CHAPTER 4

EVENT DETECTION METHODS

In this chapter, two different event detection methods and the hybridization of these

two methods are explained in detail. First keyword-based and clustering-based event

detection methods are discussed. Lastly, the hybrid event detection method is ex-

plained in detail.

Tweets are grouped by the publishing times with a predefined time interval. These

time intervals will be called rounds on the remaining chapters. All of the event detec-

tion methods depend on the difference of the state of the processed data between two

consecutive rounds.

4.1 Keyword-Based Event Detection Method

The main interest of this event detection method is to find uncommonly common

words within each round. These words are treated as events. By looking for uncom-

monly common words, we eliminate the words that are common and words that are

slightly used in every round.

Marking a word to be an uncommonly common word, term frequency-inverse doc-

ument frequency, or tf-idf, algorithm is used. Since tf-idf algorithm is mainly used

for documents, we may treat all tweets in a round as one whole document to use this

algorithm.

11



Tf-idf can be calculated with the following equation:

tfidf(t, d,D) = tf(t, d) · idf(t,D) (41)

Where,

• t: the corresponding term

• d: the document containing t

• D: the set of documents of the corpus

• tf(t, d): term frequency of t in d (See Equation 42)

• idf(t,D): inverse document frequency of t in D (See Equation 43)

Term frequency can be found by the following equation:

tf(t, d) =
|{t ∈ d}|
|d|

(42)

Where,

• |{t ∈ d}|: the number of times that t occurs in d

• |d|: the total number of terms in d

And inverse document frequency can be calculated by the following equation:

idf(t,D) = log
|D|

|d ∈ D : t ∈ d|
(43)

Where,

• |D|: total number of documents

• |d ∈ D : t ∈ d|: the number of documents containing t

12



As proposed in [7], to increase performance we use tweets of last 2 rounds as docu-

ments in equation 43. However, using such number of documents causes the idf(t,D)

formula to result either log(1) or log(2). To have more precise idf value, we used the

following equation when calculating idf value instead of equation 43:

idf(t,D) = log

∑
d∈D |d|∑
d∈D |td|

(44)

Where,

• |d|: total number terms in document d

• |td|: total number of term t in document d

After finding tf-idf value for each word, we compare each value with the tf-idf cal-

culated on the previous round. Words having an increased rate of tf-idf value for a

certain threshold are considered as events.

Figure 4.1 shows the steps of keyword based event detection method using tweets.

Figure 4.1: Keyword-Based Event Detection Steps

4.2 Clustering-Based Event Detection Method

In this method, an event is defined by the cluster of tweets having the highest growth

rate. Clusters are constructed by words of similar tweets where cosine similarity is

used for the measurement for similarity. Both tweets and clusters are represented by

vectors to calculate cosine similarity with the following formula:

cos(θ) =
~T1 · ~T2
| ~T1|| ~T2|

(45)

Where,

13



• ~T1 first tweet as vector

• ~T2 second tweet as vector

• cos(θ) cosine similarity between ~T1 and ~T2

In the beginning, this method starts with zero clusters and increases to an undefined

number. There are two types of clusters created in this method. First one is the

local cluster. A local cluster is a cluster containing tweets from only one specific

round. The other one is the global cluster. A global cluster consists of one or multiple

local clusters that are similar. After a round is completed, eligible local clusters may

become a global cluster or merge into an existing one. Eligibility of a local cluster is

defined by the number of tweets contained.

After global clusters are extended at the end of each round, ones that grow with a

certain threshold rate are defined as events.

Figure 4.2 shows the steps of clustering based event detection method using tweets.

Figure 4.2: Clustering-Based Event Detection Steps

4.3 Hybrid Event Detection Method

In the last method, the first two methods are applied consecutively. First keyword

based event detection method is applied to find bursty keywords as explained in 4.1.

After finding bursty keywords, tweets containing these keywords in the current round

are supplied to the clustering-based event detection method instead of all tweets.

Then, the clustering-based event detection method is run to find events as explained

in 4.2.

By filtering tweets by having only burst keywords, it is aimed to increase the perfor-

mance by reducing the number of operations when creating local and global clusters.

14



Since cluster operations are costly, the reduction of the number of tweets impacts

efficiency.

Figure 4.3: Hybrid Event Detection Steps

4.4 Illustrative Example

In this section, an illustrative example is given to have a better understanding of event

detection methods. We’ll go through the steps of keyword-based and clustering-based

event detection methods with the sample dataset given in Table 4.1. There are 9 tweets

and 3 rounds on this dataset. For the sake of simplicity, we keep tweets as simple as

possible.

First, we describe keyword-based event detection. For this example, we make the

following assumptions:

• the increase rate of tf-idf value of keyword should be at least 1.05 to be detected

as a bursty keyword.

• If a given keyword does not exist on the previous round, its tf-idf should at least

be 0.375 to considered as a bursty keyword.

Based on those assumptions, there is no bursty keyword on the first round since none

of the keywords has required tf-idf value. When it comes to the second round, we see

that the increase rate of tf-idf value of "kobe" is 1.05, which fits our requirements. We

may say that "kobe" is a bursty keyword. In addition, "concert" is a keyword having

0.389 tf-idf value and has no previous value. Therefore "concert" is another bursty

15



Table 4.1: Sample Dataset for Illustrative Example

Round No Tweet Id Tweet

1 t1 kobe shot

1 t2 caramel tasty

2 t3 kobe shot

2 t4 kobe layup

2 t5 concert great

2 t6 kobe night

2 t7 concert rock

3 t8 kobe best

3 t9 concert end

3 t10 kobe video

3 t11 dance good

keyword. On the third round, there is no keyword matching our criteria. Table 4.2

shows the calculations of each round.

For clustering based event detection method, we make the following assumptions:

• A cluster should have at least 2 tweets to considered as a global cluster

• A global cluster should have at least 3 tweets to represent an event

• A global cluster should grow at least 2 times or new structured to represent an

event

On first round, 2 local clusters L1 and L2 are constructed with 1 tweets. Those local

clusters do not match the criteria to be a global cluster. Therefore no event is detected

on the 1st round. On the 2nd round, 2 local clusters L3 and L4 are generated and both

of them are eligible to be a global cluster. Since L3 is new structured and has 3 tweets,

we may mark L3 as an event. On 3rd round, 3 new clusters are structured but only L5

is eligible to be a global cluster. Since L5 and L3 are similar clusters, L5 merges into

L3, which makes L3 1.66 times larger. However, although L3 has enough number of

16



Table 4.2: Illustrative Example: Keyword-Based Event Detection Flow

Round No Word Count tf-idf tf-idf rate

1 kobe 1 0.347 -

shot 1 0.347 -

caramel 1 0.347 -

tasty 1 0.347 -

2 kobe 3 0.376 1.05

shot 1 0.195 0.56

layup 1 0.264 -

concert 2 0.389 -

rock 1 0.264 -

great 1 0.264 -

night 1 0.264 -

3 kobe 2 0.320 0.85

best 1 0.361 -

concert 1 0.224 0.58

end 1 0.361 -

dance 1 0.361 -

good 1 0.361 -

video 1 0.361 -

tweets to be an event, since its growth rate is less than specified, it does not represent

an event on this round.

These steps for keyword-based and clustering-based event detection methods are also

applied in hybrid event detection method. The only difference for the hybrid is, less

number of tweets passes to clustering-based event detection phase since most of the

tweets are eliminated on the clustering-based event detection phase.

17



Table 4.3: Illustrative Example: Clustering-Based Event Detection Flow

Round No Local Clusters Global Clusters Cluster Growth Rate

1 L1 : {t1} - -

L2 : {t2} - -

2 L3 : {t3, t4, t6} L3 : {t3, t4, t6} -

L4 : {t5, t7} L4 : {t5, t7} -

3 L5 : {t8, t10} L3 : {t3, t4, t6, t8, t10} 1.66

L6 : {t9} L4 : {t5, t7} 1.0

L7 : {t11} -

18



CHAPTER 5

EVENT DETECTION ON SOCIAL MEDIA USING S-STORE

In this chapter, we will show our efforts when implementing event detection methods

with S-Store. First, we will cover the elements of S-Store and then details about

non-distributed and distributed implementations of event detection methods. Lastly,

we will talk about our challenges and workarounds when adapting event detection

methods to S-Store.

5.1 S-Store Client

In S-Store, the client is the source of the input. It prepares input data and triggers the

initial procedure of the benchmark. In all of the event detection methods, the client

reads the tweets in CSV format from an input source and sends them to the initial

procedure.

5.2 Common S-Store Procedures

In this section, procedures used in keyword-based, clustering-based and hybrid event

detection methods are explained in detail. 9 different procedures in total are re-used

in different event detection methods.

5.2.1 Feed Procedure

Feed Procedure is the initial procedure of every event detection method. It is respon-

sible for reading raw data obtained from the client and structuring them to be used

19



in the next procedures. Feed Procedure streams the id, country, round and text of the

tweets with tweets_s stream defined in A.1.1.

5.2.2 Tokenizer Procedure

Tokenizer Procedure is a procedure to tokenize tweets into words within a round.

This procedure can be distributed and each of distributed instance sends its part to

next procedure with tokenized_word_counts_s stream defined in A.2.1.

5.2.3 Word Count Procedure

Word Count Procedure is responsible for merging tokenized tweets within a round.

It sends the merged results to next procedure with word_counts_s stream defined in

A.2.2.

5.2.4 Burst Detector Procedure

Burst Detector Procedure computes TF-IDF of words on the current round by compar-

ing them with the previous round. It sends bursty words with burst_words_s defined

on A.2.3

5.2.5 Burst Report Procedure

Burst Report Procedure is a procedure that reports the number of bursty words. This

procedure retrieves word counts of a given keyword for last 10 rounds and plots a

graph for the result. This is the last procedure of keyword-based event detection

method.

5.2.6 Tweet Filter Procedure

Tweet Filter Procedure is a procedure responsible for gathering tweets having bursty

keywords and streaming them to the next procedure. The output stream of this proce-

20



dure is the same as Feed Procedure and defined in A.4.2.

5.2.7 Local Clustering Procedure

Local clustering procedure is a procedure that can be distributed among different par-

titions. It is responsible for clustering a subset of tweets in a round and then streaming

clustered tweets to the next procedure. This cluster reads structured tweet data to gen-

erate clusters. It streams local clusters to the next round with local_cluster_results_s

defined on A.3.1.

5.2.8 Cluster Merge Procedure

Cluster Merge Procedure is a procedure that obtains cluster information from multiple

instances of Local Clustering Procedure. This procedure is responsible for merging

similar local clusters constructed in different partitions. It streams output clusters to

the next round with merged_cluster_results_s defined on A.3.2.

5.2.9 Clustering Event Detector Procedure

This is the final procedure of both clustering-based and hybrid event detection. Clus-

tering Event Detector Procedure reads latest clusters, compares them with the clusters

from previous rounds and marks events accordingly.

5.3 Procedure Input Outputs

The input and output of all procedures are given in Table 5.1. In addition to given

input and output, all of the procedure I/O contains country and round information.

21



Table 5.1: Inputs and Outputs of Procedures

Procedure Name Input Output

Feed Procedure Raw tweet Structured tweet

Tokenizer Procedure Structured tweet Words of tweets

Word Count Procedure Words of tweets Total counts for each word

Burst Detector Procedure Total counts for each word Bursty words

Burst Report Procedure Bursty words Historical word counts for previous rounds

Local Clustering Procedure Structured tweet Local clusters of tweets

Cluster Merge Procedure Local clusters of tweets Merged clusters of local clusters

Clustering Event Detector Procedure Merged cluster of tweets Clusters representing an event

Tweet Filter Procedure Bursty words Structured tweets containing bursty words

5.4 Keyword-Based Event Detection

In this section, we will discuss implementing the keyword-based event detection

method. 3 different configurations are implemented to perform this method. One

of them is non-distributed while the other two is distributed among different S-Store

hosts. In all of the implementations, Feed Procedure, Tokenizer Procedure, Word

Count Procedure, Burst Detector Procedure and Report Procedure is used. The out-

puts and performance of these implementations will be discussed in the next chapters.

The general flow of all implementations are as the following:

• S-Store client reads unstructured tweet data and forwards them to Feed Proce-

dure,

• Feed Procedure structures raw tweets and sends their country, round number

and text of the tweet to Tokenizer Procedure

• Tokenizer Procedure tokenizes incoming tweet text into words and groups them

by their country, round number and word counts

• Word Count Procedure merges all tokenized word counts and sends them to

Burst Detector Procedure when the corresponding round is completed

• Burst Detector Procedure performs bursty keyword detection and sends them

to Report Procedure. This procedure also writes word counts into the database

22



to be used when preparing the report.

• Report Procedure reads counts of bursty keywords from the database and pre-

pares a report.

The only constraint in these implementations is that Burst Report Procedure should

be in the same partition with Burst Detector Procedure to increase the performance

as they are using the same database table.

5.4.1 Non-Distributed Implementation

In the non-distributed implementation, all of the procedures are configured to run

sequentially in the same S-Store partition. This is our worst implementation since we

prevent procedures from running in parallel. The configuration is illustrated in Figure

5.1.

Figure 5.1: Keyword-Based Event Detection: Non Distributed Configuration

5.4.2 Distributed Implementation

For distributed implementation, our first option placing each procedure into different

nodes. There are some constraints we need to follow. Feed procedure cannot be

distributed since it is the initial procedure. We may distribute the Tokenizer Procedure

and Word Count procedure with multiple instances. The only way to distribute Burst

Detection Procedure is distributing it by country. Because we need the whole round

of data of a country to be able to run the Burst Detector Procedure. Therefore, we

may have at most 2 Burst Detector Procedure for USA and Canada. Since Report

Procedure is dependent on Burst Detector Procedure, they should be in the same

hosts. The configuration is represented in Figure 5.2.

23



Figure 5.2: Keyword-Based Event Detection: Country-Wise Distributed Configura-

tion

5.5 Clustering-Based Event Detection

The general flow of all implementations are as the following:

• S-Store client reads unstructured tweet data and forwards them to Feed Proce-

dure,

• Feed Procedure structures raw tweets and sends their country, round number

and text of the tweet to Local Clustering Procedure

• Local Clustering Procedure generates clusters for a round, labels every tweet

with a local cluster id and sends the to Cluster Merge Procedure

• Cluster Merge Procedure merges the clusters retrieved from Local Clustering

Procedure having same round and updates the cluster labels of every tweet ac-

cordingly and sends them to Cluster Event Detection Procedure

• Cluster Event Detection Procedure checks clusters to find an event

5.5.1 Non-distributed Implementation

Like in non-distributed implementation of keyword-based event detection, this imple-

mentation also runs all of the procedures sequentially in the same S-Store partition.

This configuration is shown in Figure 5.3.

24



Figure 5.3: Clustering Based Event Detection: Non-Distributed Configuration

5.5.2 Distributed Implementation

Again, we may start by distributing each procedure to different hosts. While Local

Procedure can have multiple instances in multiple hosts, Cluster Merge Procedure

and Event Detector Procedure can only have at most 2 instances since they can only

be distributed by country. This configuration can be observed on 5.4.

Figure 5.4: Clustering Based Event Detection: Distributed Configuration

5.6 Hybrid Event Detection

The general flow of all implementations are as the following:

• All of the procedures in Keyword-based event detection listed in 5.4 runs except

Report Procedure

• Instead of Report Procedure, Tweet Filter Procedure receives bursty words and

sends tweets having bursty words to next procedure

• All of the procedures in Clustering-based event detection listed in 5.5 runs ex-

cept Feed Procedure since the data is supplied from Tweet Filter Procedure

25



5.6.1 Non Distributed Implementation

For non-distributed configuration, we first call procedures of keyword-based event

detection method except Report Procedure. After keyword-based event detection pro-

cedures, we call Tweet Filter Procedure to find candidate tweets. Lastly, we call the

procedures of the clustering-based event detection method. This configuration is il-

lustrated in 5.5.

Figure 5.5: Hybrid Event Detection Configuration: Non-Distributed Configuration

5.6.2 Distributed Implementation

We follow a similar way we do for non-distributed configuration. The only constraint

we have is that Feed Procedure and Tweet Filter Procedure should share the same

node since Tweet Filter Procedure needs to access those tweets. Therefore we may

implement this configuration as seen in Figure 5.6.

Figure 5.6: Hybrid Event Detection Configuration: Distributed Configuration

26



5.7 Adapting to S-Store

Implementing event detection methods, S-Store provided us with the basic require-

ments including streaming, transaction scheduling, fast data flow and guaranteed or-

dering. However, we required more features to complete the implementation. In this

section, we’ll give details about the problems and challenges we have encountered

and our solutions.

First of all, since S-Store is an experimental tool, we have encountered some unex-

pected issues that we could not found a solution from the documentation. In these

situations, we needed to contact the S-Store developers directly to get help and feed-

back for our implementation. This was the most time-consuming part since we needed

to schedule a meeting.

One of the challenges is that fitting the implementation to the limitations of S-Store.

In S-Store, the number of rows to downstream the next procedure is limited by 1000.

This is fine when the data is processed row by row. However, we process the data

round by round and we cannot pass the whole round to the next procedure. Therefore

we split the rounds into rows of 1000s and track when a round is completely passed

to the next procedure. And when a round is completely passed, we process that round

and put the output of procedure in a queue so that we send them 1000 by 1000 on

next transaction.

Since we need to wait for a round to be completed to run a procedure’s main work,

most of the times the procedure produces nothing as output when a new data arrives.

However, S-Store needs at least one tow to be sent to the next procedure to continue

the execution. In this scenario, we pass a null row to the next procedure.

Another problem we have encountered is the rejection of procedures. If a procedure is

currently busy when new data arrives, that procedure rejects new data and causes data

loss. It generally occurs on long-running procedures like Cluster Merge Procedure

or Event Detection Procedure. The first solution decreasing the rate of the input

stream, however, it increases the runtime duration. To minimally effect the procedure

duration, we just receive data and write them to a temporary place. When a round

of data is completely received from the previous procedure, we create an additional

27



thread to process the data so that it does not block the streaming and thus decreases

the rejection. To eliminate the rejection, we both tuned the input rate and run the

procedures main work in a different thread.

28



CHAPTER 6

EXPERIMENTS

6.1 Setup

All of the experiments in this chapter have run the on AWS t3.2xlarge EC2 instance.

• CPU: 8 vCPU, Intel Xeon Platinum 8000 3.1 GHz

• Memory: 32 GB + 16 GB Swap

• Storage: 250MB/s Read/Write throughput

6.2 Data Set

To make a decent comparison between event detection methods and configurations,

all of the experiments listed in this chapter have used the same data set. This data set

contains about 12M tweets gathered from the USA and Canada between May 31 and

June 6, 2016. The previous solution also uses exactly the same data set. Therefore

we can make a fair accuracy comparison with the previous solution.

To simulate a real tweet stream, all of these tweets are written into a CSV file ordered

by publishing time. This CSV file is served through a socket to S-Store client using

an intermediate program, namely, stream ingestor.

29



6.3 Preprocessing

Preprocessing is applied before all of the experiments to merge words with the same

root and eliminate unnecessary words, URLs, mentions and punctuation marks as

proposed in [7]. Table 6.1 shows some examples of preprocessed tweets.

Table 6.1: Sample Input and Output for Prepocessing

Input Output

I love shopping online for things I don’t love shopping online thing

need it makes me feel fulfilled need make feel fulfil

Success - located fried chicken on a stick success located fried chicken

at Sasquatch to feed my addiction!! stick sasquatch feed addiction #sasquatch

#Sasquatch2016 #chickencrawl #chickencrawl

STEPH!!!!!!!!!!!!!! steph

4 3’s and it’s tied.. tie

@Kellinquinn I thought you would enjoy this think enjoy video talk copeland

video of you talking to Copeland at the concert oregon

@SWStheband concert in Oregon :)

I’m at @BigChefsCafe in Ankara -

6.4 Ground Truth Construction

To evaluate the accuracy of event detection methods explained in Chapter 4, first we

need to have a set of events that occurred between May 31 and June 6, 2016. Since

we cannot possibly know all of the events in that interval, we used the events detected

by our event detection methods. At the initial point, we used events already proposed

on [7]. These events are determined and cross-checked by different judges. There are

20 events and these events are listed on Table B.1.

In addition to existing events, there are more events detected in our experiments. Like

on [7] the outputs of experiments are reviewed by 3 different judges and the individual

results are discussed in a session which all of the judges are attended. These events

are constituted by searching among tweets, news and videos between the date interval

30



of data set using the words obtained from event detection methods. As a result of this

session, 23 events are accepted and these events are listed on Table B.2.

As a result, a total number of 43 events are used as ground truth when evaluating

event detection methods. While 41 of these events except 24th and 28th are detected

in the USA, only 19 events are detected in Canada. The event indices detected in

Canada are 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 17, 18, 20, 23, 24, 28, 29, 39 and 42.

6.5 Evaluation Metrics

In this section, metrics used for evaluating accuracy and time performance are dis-

cussed.

6.5.1 Accuracy Evaluation Metrics

To evaluate the accuracy of benchmarks, we used three metrics, namely Precision,

Recall and F-measure.

To find a precision of the results we use different units for different event detection

methods. Since the output of the keyword-based event detection is bursty words, we

consider the number of keywords corresponding an event while having clusters as the

output of clustering based and hybrid methods, we consider the number of clusters.

Precision for keyword-based event detection method is given in the equation 61.

precisionk =
# of keywords matching an event

Total # of keywords
(61)

Precision for clustering-based and hybrid event detection method is given in the equa-

tion 62.

precisionc =
# of clusters matching an event

Total # of clusters
(62)

Another metric used when evaluating the accuracy of event detection method is recall,

which is essentially the ratio of outputs corresponding to an event and the total number

31



of events. Since we cannot know all of the events in the time interval of our dataset,

we consider only the events we defined in section 6.4. Therefore, the formula for

recall becomes the following:

recall =
# of detected events

Total # of events in ground truth
(63)

The last metric, F-measure, is calculated as the harmonic mean of precision and recall.

It gives us a more comparable value since it combines both of two other metrics. F-

measure is calculated with the following formula:

f-measure = 2 ∗ precision ∗ recall
precision + recall

(64)

6.5.2 Time Performance Evaluation Metrics

To evaluate the time performance of benchmarks, we used three metrics namely

Tweets per Second, Rounds for Minute and Total Execution Time.

6.6 Parameter Tuning

In this section, efforts to find the best parameters for clustering and hybrid methods

are shown. As explained in Chapter 5, there are 3 parameters defined for clustering-

based and hybrid event detection methods. These are the following:

• p1: Minimum cosine similarity between tweets and clusters used when assign-

ing a tweet into a cluster, and between two clusters used when merging them.

• p2: Minimum number of tweets that a local cluster needs to have to be marked

as a global cluster.

• p3: Minimum number of tweets that a global cluster needs to have to be ac-

cepted as an event.

32



We defined a set of these parameters and run them one by one to find out the best

result. The set of parameters are defined is the following, where a combination of

(P1, P2, P3) are defined differently on clustering-based and hybrid event detection

methods for USA and Canada. The details are in following subsections.

(p1, p2, p3) = {p1 ∈ P1} × {p2 ∈ P2} × {p3 ∈ P3}

There will be a high number of combinations for {p1, p2, p3} tuple. However, for

parameter tuning, we may keep the parameter p3 minimum and run the benchmark

only for {p1, p2}. We may then post-process the output and filter out clusters that do

not fit the other values for p3.

6.6.1 Parameter Tuning for Clustering-Based Event Detection of USA

(P1, P2, P3) is defined by the following

• P1: {0.45, 0.5, 0.55, 0.6, 0.65, 0.7}

• P2: {40, 60, 80, 100, 120}

• P3: {75, 100, 125, 150}

After running all of the configurations combinations the followings are observed:

• When p1 = 0.7, the number of clusters are between 8 and 20, which are far less

than the total number of events. We may safely eliminate these configurations.

• When p1 = 0.45, the number of clusters are between 109 and 1285, which are

far more than the total number of events. This parameter can also be safely

eliminated.

All of the (p1, p2, p3) where p1 ∈ {0.5, 0.55, 0.6, 0.65} is run and configurations hav-

ing the best performance are listed in Table 6.2. Although (0.6, 80, 75) has the highest

precision and f-measure it has very low recall. Then may choose (0.5, 120, 125) since

its f-measure value is close to (0.6, 80, 75) and its precision and recall are more uni-

form. The complete table with all configurations can be found on C.1.

33



Table 6.2: Parameter Tuning Results for USA Clustering Based Event Detection

p1 p2 p3 Event # Precision Recall F-Measure

0.6 80 75 12 0.780 0.293 0.426

0.5 120 125 15 0.470 0.366 0.411

0.5 120 100 15 0.447 0.366 0.402

0.5 120 75 15 0.447 0.366 0.402

0.5 120 150 12 0.633 0.293 0.400

6.6.2 Parameter Tuning for Clustering-Based Event Detection of Canada

Since the data set of Canada is smaller than the USA’s, smaller values for P2 and P3

is chosen as follows:

• P1: {0.5, 0.55, 0.6, 0.65}

• P2: {10, 15, 20, 25, 30}

• P3: {18, 25, 31, 37}

The results of the configurations are listed in Table 6.3. As we can see, (0.5, 30, 31) is

accepted since it has the highest f-measure. The complete result list of configurations

can be found in C.2

Table 6.3: Parameter Tuning Results for Canada Clustering Based Event Detection

p1 p2 p3 Event # Precision Recall F-Measure

0.5 30 31 10 0.351 0.526 0.421

0.5 25 31 11 0.318 0.579 0.411

0.5 30 25 10 0.333 0.526 0.408

0.5 30 18 10 0.333 0.526 0.408

0.5 25 25 13 0.266 0.684 0.383

34



6.6.3 Parameter Tuning for Hybrid Event Detection of USA

For hybrid event detection of USA, (P1, P2, P3) is defined by the following

• P1: {0.5, 0.55, 0.6, 0.65}

• P2: {20, 30, 40, 50, 60}

• P3: {30, 50, 60, 75}

Since the filtered tweet number is far less than the original tweet number, low val-

ues are used for P2 and P3. As seen on 6.4, the winner in this case undoubtedly

(0.5, 30, 30) since it has the maximum of both precision and recall. The complete

table with all configurations can be found on C.3.

Table 6.4: Parameter Tuning Results for USA Hybrid Event Detection

p1 p2 p3 Event # Precision Recall F-Measure

0.5 30 30 25 0.618 0.610 0.614

0.5 20 30 23 0.611 0.561 0.585

0.5 40 30 20 0.591 0.488 0.534

0.55 30 30 18 0.578 0.439 0.499

0.55 20 30 18 0.565 0.439 0.494

6.6.4 Parameter Tuning for Hybrid Event Detection of Canada

Lastly, for Canada we used the following options for the configuration of hybrid event

detection:

• P1: {0.5, 0.55, 0.6, 0.65}

• P2: {5, 7, 10, 12, 15}

• P3: {7, 12, 15, 18}

35



As you may be noted, since tweets having bursty keywords in Canada is the smallest

data set so we used the smallest options for the parameters. As seen in Table 6.5 all

top 5 configurations have similar f-measure values so we need another criterion to

pick the best configuration. By checking silhouette coefficients of resulting clusters

on Table 6.6, we may choose one of (0.5, 7, 7) and (0.5, 5, 7) since they have the

maximum average silhouette coefficient and has the same result. The full table of

configurations can be found in Table C.4

Table 6.5: Parameter Tuning Results for Canada Hybrid Event Detection

p1 p2 p3 Event # Precision Recall F-Measure

0.5 7 7 3 0.833 0.158 0.265

0.5 5 7 3 0.833 0.158 0.265

0.55 7 7 3 0.800 0.158 0.264

0.55 5 7 3 0.800 0.158 0.264

0.5 7 18 3 0.750 0.158 0.261

Table 6.6: Silhouette Coefficients of Parameter Tuning Results for Canada Hybrid

Event Detection

p1 p2 p3 Max Min Average Standard Deviation

0.5 7 7 1.0 0.05 0.46 0.34

0.5 5 7 1.0 0.05 0.46 0.34

0.55 7 7 1.0 0.11 0.57 0.33

0.55 5 7 1.0 0.11 0.57 0.33

0.5 7 18 1.0 0.39 0.60 0.28

6.7 Event detection accuracy

In this section, we analyze and compare the accuracy of event detection methods.

First, we show the accuracy results of event detection methods of our implementation.

Then, we compare those accuracy results. Lastly, we compare our results with the

36



previous solution.

6.7.1 Accuracy Comparison Among Event Detection Methods

On the result of keyword-based event detection, 212 bursty keywords are found in

total. 196 of these keywords are from the USA while 16 of them are from Canada.

After matching the keywords with the events listed as ground truth, we see that 96

of these keywords points to 36 different events. The list of bursty keywords and

corresponding events are listed on Table D.1 for USA, and Table D.2 for Canada. As

a result Table 6.7 is constructed by the summary of keyword-based event detection

results.

Table 6.7: Results of Keyword-Based Event Detection Method

Country Bursty Keyword # Detected Undetected

Keyword # Matching an Event Event # Event #

USA 196 88 30 11

Canada 16 10 6 13

All 212 98 36 24

We have run various configurations when tuning parameters for clustering-based and

hybrid event detection on Section 6.6. Considering the best performing configuration,

we have found 140 event clusters for clustering-based event detection. 83 of them are

for the USA while 57 of them are for Canada. After assigning ground truth events for

each cluster, we see that 59 different events mapped to resulting clusters. The cluster

and event mapping can be found on Table E.1 for USA and E.2 for Canada. Similarly,

60 clusters are found containing 38 different events for hybrid event detection, which

can be seen in Table F.1 for USA and Table F.2 for Canada. The summary of the

clustering based and hybrid event detection results are shown in Table 6.8.

With the numeric results listed in Table 6.7 and Table 6.8 we may calculate their

precision, recall and f-measure values with equations given in section 6.5. The results

are shown in 6.9, we see that in overall hybrid event detection method has the highest

f-measure. Hybrid event detection method has the highest f-measure for the USA,

37



Table 6.8: Results of Clustering-Based and Hybrid Event Detection Method

Method Country Total Event Detected Undetected

Cluster # Cluster # Event # Event #

Clustering USA 83 39 15 26

Clustering Canada 57 20 10 9

Clustering All 140 59 25 35

Hybrid USA 55 34 25 16

Hybrid Canada 5 4 3 16

Hybrid All 60 38 28 32

while clustering-based and keyword-based methods have the highest f-measure for

Canada.

Table 6.9: Accuracy of Event Detection Methods

Method Country Precision Recall F-measure

Keyword USA 45% 73% 56%

Keyword Canada 63% 32% 42%

Keyword All 46% 60% 52%

Clustering USA 47% 37% 41%

Clustering Canada 35% 53% 42%

Clustering All 42% 42% 42%

Hybrid USA 62% 61% 61%

Hybrid Canada 80% 16% 26%

Hybrid All 63% 47% 54%

6.7.2 Accuracy Comparison with the Previous Solution

We have compared accuracy results on the previous sub-section. Now we can com-

pare our results with the previous solution [7] and [8]. To make a decent comparison,

first, we needed to re-calculate the result of the previous solution with the extended

38



ground truth events listed in Table B.2.

After finding the accuracy results of the previous solution for keyword-based event

detection method, found on Table 6.10, we see that the number of detected events are

the same as our solution for both USA and Canada. Therefore, we have the same

recall values for both solutions which are 73% for the USA, 32% for Canada and

60% for overall results. The difference between the result of the two solutions is the

number of total keywords detected. Hence, the determining factor is precision and

f-measure. By looking at these factors, we may say that both the previous solution

and this one have very similar accuracy performance. F-measure for USA results is

increased from 54% to 56% and Canada results are increased from 41% to 42%. In

overall, f-measure is slightly increased from 51% to 52%.

Table 6.10: Re-calculated Results of the Previous Keyword-Based Event Detection

Method

Country Bursty Keyword # Detected Undetected

Keyword # Matching an Event Event # Event #

USA 220 95 30 11

Canada 17 10 6 13

All 237 105 36 24

When we mapped the result of the previous solution with extended ground truth

events, we see that none of the clusters can be mapped to new ground truth events

for clustering-based and hybrid event detection methods. Therefore we may summa-

rize the result of the previous solution as stated in Table 6.11.

After calculating the accuracy metrics, Table 6.12 is constructed. As seen on this

table, f-measure of clustering-based event detection has decreased for the USA and

overall results, while f-measure for Canada has increased from 33% to 42%.

A significant improvement can be seen in hybrid event detection results. While pre-

vious solution and our solution has very similar accuracy for Canada, f-measure of

USA has increased from 48% to 61%. Similarly, overall f-measure result is increased

from 42% to 54%.

39



Table 6.11: Re-calculated Results of Previous Clustering-Based and Hybrid Event

Detection Method

Method Country Total Event Detected Undetected

Cluster # Cluster # Event # Event #

Clustering USA 74 39 20 21

Clustering Canada 7 5 4 15

Clustering All 81 44 24 36

Hybrid USA 87 53 16 25

Hybrid Canada 3 3 3 16

Hybrid All 90 56 19 41

6.8 Event Detection Time Performance

In this section, we’ll show and compare time performance of event detection methods

explained in 5.4, 5.5 and 5.6.

While comparing non-distributed and distributed implementations, we calculated speedup

by their duration with the following equation:

speedup =
told
tnew

(65)

Where,

• t is the runtime duration

6.8.1 Keyword-Based Event Detection Time Performance

To measure and evaluate the time performance of keyword based event detection we

have run non-distributed configuration and different distributed configurations with

USA, Canada and mixed dataset.

40



Table 6.12: Accuracy of the Previous Event Detection Methods

Method Country Precision Recall F-measure

Keyword USA 43% 73% 54%

Keyword Canada 59% 32% 41%

Keyword All 44% 60% 51%

Clustering USA 53% 49% 51%

Clustering Canada 71% 21% 33%

Clustering All 54% 40% 46%

Hybrid USA 61% 39% 48%

Hybrid Canada 100% 16% 27%

Hybrid All 62% 32% 42%

6.8.1.1 Non-Distributed Configuration

For this experiment, we have run the benchmark with the configuration explained in

Section 5.4.1.

To validate our non-distributed implementation, we first run our experiment with data

set of each country separately. When we run experiment for only Canada, the bench-

mark processed whole data within 01:47 minutes, while data set of USA is processed

in 07:25 minutes. This result is expected since the size of dataset is different for each

country.

Later, we have run the experiment with whole data set by expecting it to be last

about the sum of the first two experiment, and it did. The experiment with whole

data set processed in 09:33 minutes, which is nearly the sum of the duration of the

experiments with individual countries.

Comparing the output of these 3 experiments, experiment with USA data set has 196

keywords as output while experiment with Canada data set has 16 keywords. Like the

duration, the output of experiment with whole data set gave the union of the outputs

of country data set experiments.

41



6.8.1.2 Distributed Configuration

For distributed configuration, we have tried different numbers of procedure instances

explained in Section 5.4.2.

First, we run different experiments for country datasets separately. We got exactly

the same accuracy results with non-distributed configuration. Table 6.13 shows the

number of different procedures and their time performance. We experimented using

1, 2 and 4 instances of Tokenizer Procedure and 1 and 2 instances of Word Count

Procedure for Canada, USA and mixed dataset. Since Burst Detector procedure can

only distributed by country we run 2 instances only on mixed dataset. As a result

we got maximum speedup by 206% when we used 1 instance for each procedure.

Splitting and merging the data introduced more overhead than processing it together.

Table 6.13: Keyword-Based Event Detection Speedup from Non-Distributed to Dis-

tributed Configuration

Data Set Tokenizer Word Count Burst Detector Duration Speedup

Canada 1 1 1 0:57 187%

Canada 2 1 1 1:03 169%

Canada 4 1 1 1:20 133%

Canada 1 2 1 1:09 155%

USA 1 1 1 3:57 187%

USA 2 1 1 3:55 189%

USA 4 1 1 4:34 162%

USA 1 2 1 4:22 169%

All 1 1 1 4:38 206%

All 2 1 1 4:44 201%

All 4 1 1 5:52 162%

All 1 2 1 5:08 186%

All 1 1 2 4:53 195%

42



6.8.2 Clustering-Based Event Detection Time Performance

We applied the same methodology that we used on Section 6.8.1 to evaluate time per-

formance of clustering based event detection implementation. First we have run USA

and Canada data set separately and after run the whole data set with different con-

figurations. Later we examine the results and the performance improvement between

distributed and non-distributed implementations.

6.8.2.1 Non-Distributed Configuration

First we run the non distributed implementation defined on Section 5.5.1 to create a

base results to evaluate the speedup value of distributed implementations.

When we run this configuration with only Canada data set, the benchmark have com-

pleted in 3:00 minutes, while it lasted 1:34:28 hours with USA data set. Unlike the

keyword based event detection method, the duration of the benchmarks are not pro-

portional with the size of the data set since the time complexity of this implementation

grows exponentially.

When we run the whole data set, we see that the duration is 1:49:46 hours which is

just a bit longer that the sum of the duration of USA and Canada data sets. This is

expected since there is only one partition to compute the data sets of both countries.

6.8.2.2 Distributed Configuration

For distributed configuration, we experimented different number of procedure in-

stance explained in Section 5.5.2.

Similar to keyword-based event detection experiments, we first run different experi-

ments for country datasets separately. This time the only time we got the same result

with non-distributed configuration is when we used one instance for each procedure.

For other number of procedures, we needed to change the clustering parameters to

get similar results. We experimented 1, 2, 4 and 8 instances for Local Clustering

Procedure. Since Cluster Merge and Event Detection Procedures can be distributed

43



by country, we only used at most 2 instances. Table 6.14 shows the performance and

speedup results for different number of procedure instances. Canada configuration

starts to slow down if it has more than 2 Local Clustering Procedures while USA gets

the best speedup with 8. As a result when we select 10 Local Clustering Procedure, 8

for USA and 2 for Canada, and one Cluster Merge and Event Detector Procedure for

each country, we got 222% speedup.

Table 6.14: Clustering-Based Event Detection Speedup from Non-Distributed to Dis-

tributed Configuration

Data Set Local Clustering Cluster Merge Event Detection Duration Speedup

Canada 1 1 1 2:39 113%

Canada 2 1 1 1:32 195%

Canada 4 1 1 1:57 153%

Canada 8 1 1 2:41 111%

USA 1 1 1 1:46:36 90%

USA 2 1 1 1:24:17 114%

USA 4 1 1 52:46 182%

USA 8 1 1 40:14 239%

All 1 1 1 1:51:49 86%

All 10 2 2 43:24 222%

6.8.3 Hybrid Event Detection Time Performance

To measure time performance of hybrid event detection performance, we first run

non distributed configuration. When picking distributed configuration, for keyword-

based event detection phase, we used 1 instance for each procedure. Since we are

using tweets having only bursty keywords for clustering based event detection, we

also used 1 instance for clustering-based event detection phase. Because there are

only 32602 tweets having bursty keywords. As the dataset gets smaller, increasing

number of procedure instances decreases the time performance. We got exactly the

same results on both non-distributed and distributed configuration.

44



When we run non-distributed configuration, the experiment lasted 30:27 minutes

while distributed configuration lasted 28:12 minutes. With this results, we had 108%

speedup on hybrid event detection method. The reason we have a lower speedup with

hybrid event detection method when compared to keyword based and clustering based

is that our bottleneck is Tweet Filter Procedure and we could not manage distribute it

since it requires to be in same partition with Feed Procedure.

6.8.4 Comparison Among Event Detection Methods

Running all of the experiments, we may now compare the time performance of our

event detection implementations. In this section, we will only compare the result of

running the whole data set, not the countries separately as we did in previous sections.

Table 6.15 is constructed by these results.

Table 6.15: Time Performance Comparison of Event Detection Methods

Event Detection Method Duration Tweets per Second Rounds per Minute

Keyword Based 4:38 46700 362

Clustering Based 43:24 5000 39

Hybrid 28:12 7650 59

As we may see on Table 6.15, the fastest event detection method is keyword based

event detection method. It processes 46700 tweets per second which means it con-

sumes 362 rounds or 36:12:00 hours of tweets in a minute.

Clustering-based event detection method is the slowest method. It processes 5000

tweets per seconds, consuming 39 rounds or 3:54:00 hours of tweets in a minute.

The hybrid event detection method is the second fast yet the most accurate event

detection method. It processes 7650 tweets per seconds, consuming 59 rounds or

6:54:00 hours of tweets in a minute.

45



6.8.5 Comparison with the Previous Solution

We can now proceed to compare our results with the previous solution [7]. The pre-

vious solution is implemented with Apache Storm using the Cassandra database. The

timing results are given using approximate hours. Therefore we will give speedup

values approximately. Table 6.16 consists of timing results of our solution, previous

solution and the speedup values. Please note that the experiments of the previous so-

lution have run on a different computer, which has 3.2 GHz Intel Core i5 CPU with 4

threads and 16GB of RAM. It has slightly more CPU clock speed and half of our CPU

threads and RAM. Since the previous solution relies on disk database, the amount of

RAM would not affect the run-time. Therefore the speedup values will be slightly

lower when all experiments are run on the same setup.

Table 6.16: Time Performance Comparison with the Previous Solution

Event Detection Method Previous Solution Our Solution Speedup

Keyword Based ∼ 3:00:00 4:38 ∼ 3884%

Clustering Based ∼ 11:00:00 43:24 ∼ 1520%

Hybrid ∼ 3:30:00 28:12 ∼ 744%

Keyword-based event detection is the fastest event detection in previous solution like

our solution. It lasted approximately 3:00:00 hours. Running our keyword-based

event detection in 4:38 minutes, makes our implementation having 3884% speedup,

or almost 39 times faster.

Clustering-based event detection is the slowest event detection in previous solution. It

lasts about 11:00:00 hours. In our solution it lasts 43:24 minutes. This results makes

our solution to have 1520% speedup, or 15 times faster.

When it comes to hybrid event detection method, we see that its duration is less

than the clustering-based event detection method and much more than the keyword-

based event detection method. Lasting 3:30:00 hours on previous solution makes our

solution to have 744% speedup, or 7 times faster.

46



CHAPTER 7

CONCLUSION

In this work, we aimed to enhance the time and accuracy performance of online event

detection methods proposed by Sahin [7] by using a transactional online processing

system, S-Store. We re-modelled the proposed methods to fit S-Store and analyzed

the results in terms of accuracy and time.

To enabling a fair comparison, the same data set is used as the data set used by the

previous solution. This data set is collected from twitter for a week and divided into

windows, called rounds. The events are detected at the end of each round. We have

streamed the same data set to observe accuracy and time performance for each method

proposed.

We have compared the results of experiments through time and accuracy. For accu-

racy, although we got similar performance with the previous solution for keyword

based and clustering based, we got better results for hybrid event detection method.

When we compare time performance, we observed a dramatic decrease in run-time

for all event detection methods.

For the future, there are 3 main works may be addressed. First, to enhance accuracy,

new parameters can be added and tuned for all event detection methods. Second,

time performance of hybrid event detection can be enhanced by experimenting new

distributed setup. And lastly, the whole system may be distributed among different

physical devices and use twitter API to work in a real-world environment.

47



48



REFERENCES

[1] @TwitterIR, “Q1 2019 letter to shareholders.” https://s22.

q4cdn.com/826641620/files/doc_financials/2019/q1/

Q1-2019-Shareholder-Letter.pdf, April 2019.

[2] S. A. Mughal, “Twitter by the numbers (2019): Stats, demo-

graphics & fun facts.” https://www.omnicoreagency.com/

twitter-statistics/, Jan 2019.

[3] M. Cordeiro and J. Gama, “Online social networks event detection: A survey,”

in Solving Large Scale Learning Tasks. Challenges and Algorithms of Lecture

Notes in Computer Science (S. Michaelis, N. Piatkowski, , and M. Stolpe, eds.),

vol. 9580, p. 1–41, Cham: Springer.

[4] M. F. Mokbel and A. Magdy, “Microblogs data management systems: Querying,

analysis, and visualization (tutorial),” in ACM SIGMOD International Confer-

ence on Management of Data (SIGMOD), p. 2219–2222.

[5] F. Atefeh and W. Khreich, “A survey of techniques for event detection in twitter,”

Computational Intelligence, vol. 31, no. 1, pp. 132–164, 2015.

[6] V. Gulisano, Z. Jerzak, S. Voulgaris, and H. Ziekow, “The debs 2016 grand

challenge,” in Proceedings of the 10th ACM International Conference on Dis-

tributed and Event-based Systems, DEBS ’16, (New York, NY, USA), pp. 289–

292, ACM, 2016.

[7] O. C. Sahin, “Online event detection from streaming data,” Master’s thesis, Mid-

dle East Technical University, 5 2018.

[8] O. C. Sahin, P. Karagoz, and N. Tatbul, “Streaming event detection in mi-

croblogs: Balancing accuracy and performance,” in Web Engineering - 19th In-

ternational Conference, ICWE 2019, Daejeon, South Korea, June 11-14, 2019,

49

https://s22.q4cdn.com/826641620/files/doc_financials/2019/q1/Q1-2019-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2019/q1/Q1-2019-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2019/q1/Q1-2019-Shareholder-Letter.pdf
https://www.omnicoreagency.com/twitter-statistics/
https://www.omnicoreagency.com/twitter-statistics/


Proceedings (M. Bakaev, F. Frasincar, and I. Ko, eds.), vol. 11496 of Lecture

Notes in Computer Science, pp. 123–138, Springer, 2019.

[9] O. C. Sahin, N. Tatbul, and P. Karagoz, “Using a stream processing platform

for event detection: Advantages and limitations,” Turkish National Software

Engineering Symposium, 2018.

[10] U. Cetintemel, J. Du, T. Kraska, S. Madden, D. Maier, J. Meehan, A. Pavlo,

M. Stonebraker, E. Sutherland, N. Tatbul, K. Tufte, H. Wang, and S. B. Zdonik,

“S-store: a streaming newsql system for big velocity applications,” very large

data bases, vol. 7, no. 13, pp. 1633–1636, 2014.

[11] N. Tatbul, “S-store: Real-time analytics meets transaction

processing.” http://istc-bigdata.org/index.php/

s-store-real-time-analytics-meets-transaction-processing/,

2014.

[12] J. Meehan, “S-store: A big-velocity database sys-

tem.” http://istc-bigdata.org/index.php/

s-store-a-big-velocity-database-system/, 2014.

[13] J. Meehan, N. Tatbul, S. B. Zdonik, C. Aslantas, U. Cetintemel, J. Du, T. Kraska,

S. Madden, D. Maier, A. Pavlo, M. Stonebraker, K. Tufte, and H. Wang, “S-

store: streaming meets transaction processing,” Very Large Data Bases, vol. 8,

no. 13, pp. 2134–2145, 2015.

[14] H. Becker, M. Naaman, and L. Gravano, “Beyond trending topics: Real-world

event identification on twitter,” in Fifth International AAAI Conference on We-

blogs and Social Media, 2011.

[15] M. Walther and M. Kaisser, “Geo-spatial event detection in the twitter stream,”

in ECIR’13 Proceedings of the 35th European conference on Advances in Infor-

mation Retrieval, pp. 356–367, 2013.

[16] K. Watanabe, M. Ochi, M. Okabe, and R. Onai, “Jasmine: a real-time local-

event detection system based on geolocation information propagated to mi-

croblogs,” in Proceedings of the 20th ACM international conference on Infor-

mation and knowledge management, pp. 2541–2544, 2011.

50

http://istc-bigdata.org/index.php/s-store-real-time-analytics-meets-transaction-processing/
http://istc-bigdata.org/index.php/s-store-real-time-analytics-meets-transaction-processing/
http://istc-bigdata.org/index.php/s-store-a-big-velocity-database-system/
http://istc-bigdata.org/index.php/s-store-a-big-velocity-database-system/


[17] L. M. Aiello, G. Petkos, C. J. Martín, D. Corney, S. Papadopoulos, R. Skraba,

A. Göker, I. Kompatsiaris, and A. Jaimes, “Sensing trending topics in twitter,”

IEEE Transactions on Multimedia, vol. 15, no. 6, pp. 1268–1282, 2013.

[18] C. Li, A. Sun, and A. Datta, “Twevent: segment-based event detection from

tweets,” in Proceedings of the 21st ACM international conference on Informa-

tion and knowledge management, pp. 155–164, 2012.

[19] S. Petrovic, M. Osborne, and V. Lavrenko, “Streaming first story detection with

application to twitter,” in Human Language Technologies: The 2010 Annual

Conference of the North American Chapter of the Association for Computa-

tional Linguistics, pp. 181–189, 2010.

[20] M. Mathioudakis and N. Koudas, “Twittermonitor: trend detection over the twit-

ter stream,” in Proceedings of the 2010 ACM SIGMOD International Confer-

ence on Management of data, pp. 1155–1158, 2010.

[21] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and J. Sper-

ling, “Twitterstand: news in tweets,” in Proceedings of the 17th ACM SIGSPA-

TIAL International Conference on Advances in Geographic Information Sys-

tems, pp. 42–51, 2009.

[22] M. Cataldi, L. D. Caro, and C. Schifanella, “Emerging topic detection on twitter

based on temporal and social terms evaluation,” in Proceedings of the Tenth

International Workshop on Multimedia Data Mining, p. 4, 2010.

[23] A. Ritter, O. Etzioni, and S. Clark, “Open domain event extraction from twitter,”

in Proceedings of the 18th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, pp. 1104–1112, 2012.

[24] R. Li, K. H. Lei, R. Khadiwala, and K. C.-C. Chang, “Tedas: A twitter-based

event detection and analysis system,” in 2012 IEEE 28th International Confer-

ence on Data Engineering, pp. 1273–1276, 2012.

[25] H. Abdelhaq, C. Sengstock, and M. Gertz, “Eventweet: online localized event

detection from twitter,” Very Large Data Bases, vol. 6, no. 12, pp. 1326–1329,

2013.

51



[26] M. Cordeiro and R. Frias, “Twitter event detection: combining wavelet analysis

and topic inference summarization,” 2011.

[27] J. Weng and B.-S. Lee, “Event detection in twitter,” in Fifth International AAAI

Conference on Weblogs and Social Media, 2011.

[28] R. Lee and K. Sumiya, “Measuring geographical regularities of crowd behav-

iors for twitter-based geo-social event detection,” in Proceedings of the 2nd

ACM SIGSPATIAL International Workshop on Location Based Social Networks,

pp. 1–10, 2010.

[29] E. D’Andrea, P. Ducange, B. Lazzerini, and F. Marcelloni, “Real-time detec-

tion of traffic from twitter stream analysis,” IEEE Transactions on Intelligent

Transportation Systems, vol. 16, no. 4, pp. 2269–2283, 2015.

[30] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes twitter users: real-

time event detection by social sensors,” in Proceedings of the 19th international

conference on World wide web, pp. 851–860, 2010.

52



Appendix A

STREAM AND TABLE DEFINITIONS

A.1 Common Streams for All Event Detection Methods

A.1.1 Stream: tweets_s

tweets_s stream is used for streaming structured tweet data to next procedure. All of

the event detection methods uses this stream.

CREATE STREAM tweets_s (

tweet_id BIGINT NOT NULL,

country VARCHAR(3) NOT NULL,

round INT NOT NULL,

tweet VARCHAR (2048) NOT NULL,

batch_id BIGINT NOT NULL,

part_id INT NOT NULL

);

A.2 Streams for Keyword-Based Event Detection

A.2.1 Stream: tokenized_word_counts_s

tokenized_word_counts_s stream is used for streaming word counts gathered from a

partition for each round of each country. These word counts are intermediate results

since it should be merged with the word counts of other partitions.

53



CREATE STREAM tokenized_word_counts_s (

country VARCHAR(3) NOT NULL,

round INT NOT NULL,

word VARCHAR(1024) NOT NULL,

word_count INT NOT NULL,

batch_id BIGINT NOT NULL,

part_id INT NOT NULL

);

A.2.2 Stream: word_counts_s

word_counts_s stream is used for streaming merged word counts of tokenized_word_conts_s

gathered from different partitions.

CREATE STREAM word_counts_s (

country VARCHAR(3) NOT NULL,

round INT NOT NULL,

word VARCHAR(1024) NOT NULL,

word_count INT NOT NULL,

batch_id BIGINT NOT NULL,

part_id INT NOT NULL

);

A.2.3 Stream: burst_words_s

burst_words_s stream is used for streaming detected bursty words to next procedure.

CREATE STREAM burst_words_s (

country VARCHAR(3) NOT NULL,

round INT NOT NULL,

word VARCHAR(1024) NOT NULL,

batch_id BIGINT NOT NULL,

part_id INT NOT NULL

54



);

A.3 Streams of Clustering-Based Event Detection

A.3.1 Stream: local_cluster_results_s

local_cluster_results_s is used for streaming clusters has been constructed in a single

partitions to next procedure. This is intermediate clusters that needs to be merged

with local clusters of other partitions.

CREATE STREAM local_cluster_results_s (

country VARCHAR(3) NOT NULL,

round INT NOT NULL,

local_cluster_id INT NOT NULL,

tweet_id BIGINT NOT NULL,

tweet_text VARCHAR(2048) NOT NULL,

batch_id BIGINT NOT NULL,

part_id INT NOT NULL

);

A.3.2 Stream: merged_cluster_results_s

merged_cluster_results_s is used for streaming merged local clusters to next proce-

dure.

CREATE STREAM merged_cluster_results_s (

country VARCHAR(3) NOT NULL,

round INT NOT NULL,

cluster_id INT NOT NULL,

tweet_id BIGINT NOT NULL,

tweet_text VARCHAR(2048) NOT NULL,

batch_id BIGINT NOT NULL,

55



part_id INT NOT NULL

);

A.4 Streams and Tables of Hybrid Event Detection

A.4.1 Table: tweet_words

tweet_words table is used as a look-up table holding tweet id and word mapping. It is

used when filtering tweets having bursty keywords. It is indexed by country, round,

word and part_id since it is called frequently.

CREATE TABLE tweet_words (

tweet_id BIGINT NOT NULL,

country VARCHAR(3) NOT NULL,

round INT NOT NULL,

word VARCHAR(1024) NOT NULL,

tweet VARCHAR (2048) NOT NULL,

part_id INT NOT NULL

);

CREATE INDEX tweet_words_idx

ON tweet_words(country, round, word, part_id);

A.4.2 Stream: filtered_tweets_s

filtered_tweets_s stream is used for streaming tweets having bursty keywords to next

procedure. It has the same structure as tweets_s stream.

CREATE STREAM filtered_tweets_s (

tweet_id BIGINT NOT NULL,

country VARCHAR(3) NOT NULL,

round INT NOT NULL,

56



tweet VARCHAR (2048) NOT NULL,

batch_id BIGINT NOT NULL,

part_id INT NOT NULL

);

57



58



Appendix B

GROUND TRUTH EVENTS

Table B.1: Existing Ground Truth Events

# Date (2016) Event

1. May 31 Klay Thompson breaks NBA record by 11 3-pointers in NBA Western

Conference Finals

2. May 31 Draymond Green kicks Steven Adams in groin in NBA Western

Conference Finals

3. May 31 Steven Adams called Warrior’s guards as quick little monkeys

4. May 31 Penguins won NHL Stanley Cup by defeating Sharks on final game

5. May 31 Golden State Warriors complete comeback to reach NBA Finals

6. May 31 - June 2 2016 NBA champion predictions

7. May 31 Trailer of "The Guest" movie is released

8. June 1 - June 6 FDB Ringtone by Ztro is released

9. June 3 National Anthem is sung by John Legend in NBA Finals

10. June 3 Stephen Curry fouls Tristian Thompson in NBA Finals

11. June 3 Kevin Love gets an offensive foul in NBA Finals

12. June 3 Matthew Dellavedova fouls on Andre Iguodala in NBA Finals

13. June 3 Game I of NBA Finals was the lowest scoring game for Curry and

Thompson. Warriors won the game easily.

14. June 3 Shaun Livingstone scored 20 points in NBA Finals.

15. June 4 Muhammad Ali died

16. June 5 Brock Lesnar is returns to NFC.

17. June 6 Carlos Santana sung National Anthem in NBA Finals.

18. June 6 Lebron James Travels travels but uncalled on Game II of NBA Finals.

19. June 6 Cavaliers matched with Hawks on playoffs.

20. June 6 Kyle Jenner’s Twitter acount is hacked.

59



Table B.2: New Events Added to Ground Truth

# Date (2016) Event

21. May 31 Bryan Rust scores a goal and had a great performance on NHL playoffs.

22. May 31 Steph Curry crosses Andre Robertson with ankle breaker

23. May 31 Curry holds his knee after a layup

24. May 31 National Donut Day

25. May 31 Shaun Livingstone dunks over 3 players in NBA Western Conference Finals

26. May 31 Speights had a bad performance on NBA Western Conference Finals

27. June 2 Mookie Betts became the first leadoff hitter in franchise history to hit

three home runs in a single game

28. June 3 Katy Parry’s Twitter account is hacked

29. June 3 Leandro Barbosa scored 11 points coming from bench in the first game of

the NBA Finals.

30. June 3 Golden State Warriors’ coach Steve Kerr lost his cool and shattered his

whiteboard with his marker.

31. June 3 Gang member Denzel Barbosa sentenced 45 years in prison for shooting his

rival.

32. June 3 Draymont Green flops in NBA Finals.

33. June 3 Anderson Varejao flops in NBA Finals.

34. June 3 Kobe Bryant plays on Ghostbusters Commercial

35. June 4 USA lost to Colombia 2-0 where James Rodriguez scores the 2nd goal.

36. June 5 Braun scores a inevitable goal against Murry in NHL game.

37. June 5 Conor McGregor vs Nate Diaz match announced officially.

38. June 6 Iman Shumpert gets new hairstyle.

39. June 6 Kevin love suffered a concussion after elbow to the head by Harrison Barnes

in the second match of the NBA finals.

40. June 6 Game of Thrones S6E7 The Hound is released.

41. June 6 Verizon released new ad.

42. June 6 Mexico beat Uruguay 3-1 in Copa America Group C

43. June 6 Miss USA event and performance of Backstreet Boys

60



Appendix C

PARAMETER TUNING RESULTS

Table C.1: Parameter Tuning Results of All Configurations for USA Clustering Based

Event Detection

p1 p2 p3 Event # Precision Recall F-Measure

0.6 80 75 12 0.780 0.293 0.426

0.5 120 125 15 0.470 0.366 0.411

0.5 120 100 15 0.447 0.366 0.402

0.5 120 75 15 0.447 0.366 0.402

0.5 120 150 12 0.633 0.293 0.400

0.6 60 75 14 0.448 0.341 0.388

0.6 80 100 10 0.926 0.244 0.386

0.55 120 125 11 0.633 0.268 0.377

0.55 120 100 11 0.627 0.268 0.376

0.55 120 75 11 0.627 0.268 0.376

0.6 60 100 13 0.456 0.317 0.374

0.55 100 100 12 0.500 0.293 0.369

0.55 100 75 12 0.500 0.293 0.369

0.5 100 125 16 0.348 0.390 0.368

0.55 100 125 11 0.577 0.268 0.366

0.65 80 75 9 0.960 0.220 0.357

0.55 80 100 13 0.407 0.317 0.357

0.5 100 150 13 0.398 0.317 0.353

0.55 80 125 12 0.438 0.293 0.351

61



Continued C.1: Parameter Tuning Results of All Configurations for USA Clustering

Based Event Detection

p1 p2 p3 Event # Precision Recall F-Measure

0.65 60 75 9 0.857 0.220 0.350

0.55 80 75 16 0.283 0.390 0.328

0.6 60 150 8 0.913 0.195 0.322

0.5 100 100 19 0.240 0.463 0.316

0.5 100 75 19 0.240 0.463 0.316

0.6 60 125 10 0.435 0.244 0.313

0.6 120 100 7 1.000 0.171 0.292

0.6 120 75 7 1.000 0.171 0.292

0.6 100 100 7 1.000 0.171 0.292

0.6 100 75 7 1.000 0.171 0.292

0.6 80 125 7 0.909 0.171 0.287

0.65 60 100 7 0.885 0.171 0.286

0.65 60 125 7 0.875 0.171 0.286

0.55 120 150 7 0.710 0.171 0.275

0.55 100 150 7 0.583 0.171 0.264

0.55 80 150 8 0.404 0.195 0.263

0.6 120 125 6 1.000 0.146 0.255

0.6 80 150 6 0.889 0.146 0.251

0.55 60 150 10 0.256 0.244 0.250

0.55 60 125 17 0.172 0.415 0.243

0.55 60 75 19 0.152 0.463 0.229

0.55 60 100 17 0.158 0.415 0.229

0.65 100 125 5 1.000 0.122 0.217

0.65 100 100 5 1.000 0.122 0.217

0.65 100 75 5 1.000 0.122 0.217

0.6 120 150 5 1.000 0.122 0.217

0.65 60 150 5 1.000 0.122 0.217

0.65 80 125 5 1.000 0.122 0.217

62



Continued C.1: Parameter Tuning Results of All Configurations for USA Clustering

Based Event Detection

p1 p2 p3 Event # Precision Recall F-Measure

0.65 80 100 5 1.000 0.122 0.217

0.6 100 150 5 1.000 0.122 0.217

0.6 100 125 5 1.000 0.122 0.217

0.5 80 125 16 0.148 0.390 0.215

0.5 80 100 19 0.137 0.463 0.212

0.5 80 150 13 0.138 0.317 0.192

0.65 100 150 4 1.000 0.098 0.178

0.65 80 150 4 1.000 0.098 0.178

0.5 80 75 22 0.102 0.537 0.171

0.65 120 150 3 1.000 0.073 0.136

0.65 120 125 3 1.000 0.073 0.136

0.65 120 100 3 1.000 0.073 0.136

0.65 120 75 3 1.000 0.073 0.136

63



Table C.2: Parameter Tuning Results of All Configurations for Canada Clustering

Based Event Detection

p1 p2 p3 Event # Precision Recall F-Measure

0.5 30 31 10 0.351 0.526 0.421

0.5 25 31 11 0.318 0.579 0.411

0.5 30 25 10 0.333 0.526 0.408

0.5 30 18 10 0.333 0.526 0.408

0.5 25 25 13 0.266 0.684 0.383

0.5 25 18 13 0.266 0.684 0.383

0.55 20 18 12 0.255 0.632 0.363

0.6 20 18 8 0.304 0.421 0.353

0.6 30 31 5 0.500 0.263 0.345

0.6 30 25 5 0.500 0.263 0.345

0.6 30 18 5 0.500 0.263 0.345

0.55 25 25 7 0.321 0.368 0.343

0.55 25 18 7 0.321 0.368 0.343

0.6 15 18 9 0.260 0.474 0.336

0.55 30 25 5 0.462 0.263 0.335

0.55 30 18 5 0.462 0.263 0.335

0.55 30 31 5 0.458 0.263 0.334

0.5 25 37 7 0.300 0.368 0.331

0.55 20 25 7 0.290 0.368 0.325

0.5 30 37 6 0.324 0.316 0.320

0.55 15 25 8 0.252 0.421 0.316

0.55 10 31 9 0.232 0.474 0.311

0.55 15 18 11 0.212 0.579 0.310

0.6 30 37 4 0.583 0.211 0.309

0.55 15 31 7 0.263 0.368 0.307

0.6 25 31 5 0.364 0.263 0.305

0.55 10 25 11 0.204 0.579 0.302

0.55 30 37 4 0.533 0.211 0.302

64



Continued C.2: Parameter Tuning Results of All Configurations for Canada Cluster-

ing Based Event Detection

p1 p2 p3 Event # Precision Recall F-Measure

0.6 15 31 6 0.286 0.316 0.300

0.55 25 31 5 0.333 0.263 0.294

0.6 20 25 5 0.333 0.263 0.294

0.55 10 37 6 0.271 0.316 0.292

0.6 25 25 5 0.324 0.263 0.291

0.6 25 18 5 0.324 0.263 0.291

0.6 25 37 4 0.467 0.211 0.290

0.6 20 31 5 0.321 0.263 0.289

0.6 15 25 6 0.267 0.316 0.289

0.55 25 37 4 0.391 0.211 0.274

0.55 20 31 5 0.282 0.263 0.272

0.55 15 37 5 0.271 0.263 0.267

0.55 10 18 15 0.159 0.789 0.265

0.65 20 37 4 0.348 0.211 0.262

0.6 20 37 4 0.348 0.211 0.262

0.65 20 18 5 0.258 0.263 0.261

0.5 20 25 11 0.164 0.579 0.255

0.65 15 37 4 0.321 0.211 0.254

0.65 15 31 4 0.310 0.211 0.251

0.65 20 31 4 0.308 0.211 0.250

0.5 20 31 8 0.177 0.421 0.249

0.65 15 18 5 0.235 0.263 0.248

0.6 15 37 4 0.300 0.211 0.247

0.55 20 37 4 0.294 0.211 0.245

0.65 30 37 3 0.545 0.158 0.245

0.65 20 25 4 0.282 0.211 0.241

0.65 15 25 4 0.269 0.211 0.236

0.65 30 31 3 0.412 0.158 0.228

65



Continued C.2: Parameter Tuning Results of All Configurations for Canada Cluster-

ing Based Event Detection

p1 p2 p3 Event # Precision Recall F-Measure

0.65 30 25 3 0.412 0.158 0.228

0.65 30 18 3 0.412 0.158 0.228

0.65 25 37 3 0.400 0.158 0.226

0.5 20 18 14 0.133 0.737 0.226

0.65 25 31 3 0.300 0.158 0.207

0.65 25 25 3 0.257 0.158 0.196

0.65 25 18 3 0.257 0.158 0.196

0.5 10 37 9 0.117 0.474 0.188

0.5 20 37 5 0.145 0.263 0.187

0.5 10 31 13 0.105 0.684 0.182

0.5 10 25 14 0.085 0.737 0.152

0.5 10 18 15 0.072 0.789 0.132

66



Table C.3: Parameter Tuning Results of All Configurations for USA Hybrid Event

Detection

p1 p2 p3 Event # Precision Recall F-Measure

0.5 30 30 25 0.618 0.610 0.614

0.5 20 30 23 0.611 0.561 0.585

0.5 40 30 20 0.591 0.488 0.534

0.55 30 30 18 0.578 0.439 0.499

0.55 20 30 18 0.565 0.439 0.494

0.5 40 50 16 0.643 0.390 0.486

0.5 30 50 16 0.621 0.390 0.479

0.5 50 50 15 0.593 0.366 0.452

0.5 50 30 15 0.593 0.366 0.452

0.5 40 60 13 0.667 0.317 0.430

0.5 20 50 14 0.571 0.341 0.427

0.5 30 60 13 0.609 0.317 0.417

0.5 50 60 12 0.632 0.293 0.400

0.6 20 30 13 0.541 0.317 0.400

0.55 40 30 13 0.533 0.317 0.398

0.5 20 60 12 0.591 0.293 0.391

0.6 30 30 12 0.571 0.293 0.387

0.5 30 75 11 0.688 0.268 0.386

0.5 40 75 11 0.688 0.268 0.386

0.55 30 50 12 0.542 0.293 0.380

0.65 30 30 11 0.613 0.268 0.373

0.5 60 60 11 0.611 0.268 0.373

0.5 60 50 11 0.611 0.268 0.373

0.5 60 30 11 0.611 0.268 0.373

0.6 40 30 11 0.583 0.268 0.368

0.65 20 30 11 0.581 0.268 0.367

0.55 30 60 11 0.579 0.268 0.367

0.55 40 50 11 0.571 0.268 0.365

67



Continued C.3: Parameter Tuning Results of All Configurations for USA Hybrid

Event Detection

p1 p2 p3 Event # Precision Recall F-Measure

0.55 50 50 11 0.571 0.268 0.365

0.55 50 30 11 0.571 0.268 0.365

0.65 40 30 10 0.700 0.244 0.362

0.6 30 50 11 0.550 0.268 0.361

0.5 50 75 10 0.667 0.244 0.357

0.55 60 60 10 0.667 0.244 0.357

0.55 60 50 10 0.667 0.244 0.357

0.55 60 30 10 0.667 0.244 0.357

0.6 50 50 10 0.647 0.244 0.354

0.6 50 30 10 0.647 0.244 0.354

0.55 20 50 11 0.520 0.268 0.354

0.5 20 75 10 0.625 0.244 0.351

0.55 50 60 10 0.625 0.244 0.351

0.6 40 50 10 0.611 0.244 0.349

0.6 60 60 9 0.833 0.220 0.347

0.6 60 50 9 0.833 0.220 0.347

0.6 60 30 9 0.833 0.220 0.347

0.55 40 60 10 0.588 0.244 0.345

0.6 20 50 11 0.478 0.268 0.344

0.6 50 60 9 0.769 0.220 0.342

0.6 40 60 9 0.769 0.220 0.342

0.55 20 60 10 0.550 0.244 0.338

0.5 60 75 9 0.643 0.220 0.327

0.6 30 60 9 0.600 0.220 0.321

0.65 50 50 8 0.833 0.195 0.316

0.65 50 30 8 0.833 0.195 0.316

0.65 40 50 8 0.833 0.195 0.316

0.55 60 75 8 0.800 0.195 0.314

68



Continued C.3: Parameter Tuning Results of All Configurations for USA Hybrid

Event Detection

p1 p2 p3 Event # Precision Recall F-Measure

0.55 50 75 8 0.727 0.195 0.308

0.65 30 50 8 0.714 0.195 0.307

0.6 20 60 9 0.500 0.220 0.305

0.55 40 75 8 0.667 0.195 0.302

0.55 20 75 8 0.615 0.195 0.296

0.55 30 75 8 0.615 0.195 0.296

0.65 20 50 8 0.579 0.195 0.292

0.65 50 75 7 1.000 0.171 0.292

0.6 60 75 7 1.000 0.171 0.292

0.65 40 75 7 1.000 0.171 0.292

0.65 50 60 7 0.900 0.171 0.287

0.65 40 60 7 0.900 0.171 0.287

0.6 50 75 7 0.889 0.171 0.286

0.6 40 75 7 0.889 0.171 0.286

0.65 20 75 7 0.800 0.171 0.281

0.65 30 75 7 0.800 0.171 0.281

0.6 30 75 7 0.778 0.171 0.280

0.65 30 60 7 0.750 0.171 0.278

0.65 20 60 7 0.667 0.171 0.272

0.6 20 75 7 0.636 0.171 0.269

0.65 60 75 6 1.000 0.146 0.255

0.65 60 60 6 0.889 0.146 0.251

0.65 60 50 6 0.889 0.146 0.251

0.65 60 30 6 0.889 0.146 0.251

69



Table C.4: Parameter Tuning Results of All Configurations for Canada Hybrid Event

Detection

p1 p2 p3 Event # Precision Recall F-Measure

0.5 7 7 3 0.833 0.158 0.265

0.5 5 7 3 0.833 0.158 0.265

0.55 7 7 3 0.800 0.158 0.264

0.55 5 7 3 0.800 0.158 0.264

0.5 7 18 3 0.750 0.158 0.261

0.5 7 15 3 0.750 0.158 0.261

0.5 7 12 3 0.750 0.158 0.261

0.5 5 18 3 0.750 0.158 0.261

0.5 5 15 3 0.750 0.158 0.261

0.5 5 12 3 0.750 0.158 0.261

0.55 10 15 3 0.750 0.158 0.261

0.55 10 12 3 0.750 0.158 0.261

0.55 10 7 3 0.750 0.158 0.261

0.55 15 15 3 0.750 0.158 0.261

0.55 15 12 3 0.750 0.158 0.261

0.55 15 7 3 0.750 0.158 0.261

0.55 12 15 3 0.750 0.158 0.261

0.55 12 12 3 0.750 0.158 0.261

0.55 12 7 3 0.750 0.158 0.261

0.55 7 15 3 0.750 0.158 0.261

0.55 7 12 3 0.750 0.158 0.261

0.55 5 15 3 0.750 0.158 0.261

0.55 5 12 3 0.750 0.158 0.261

0.5 12 18 3 0.750 0.158 0.261

0.5 12 15 3 0.750 0.158 0.261

0.5 12 12 3 0.750 0.158 0.261

0.5 12 7 3 0.750 0.158 0.261

0.5 15 18 3 0.750 0.158 0.261

70



Continued C.4: Parameter Tuning Results of All Configurations for Canada Hybrid

Event Detection

p1 p2 p3 Event # Precision Recall F-Measure

0.5 15 15 3 0.750 0.158 0.261

0.5 15 12 3 0.750 0.158 0.261

0.5 15 7 3 0.750 0.158 0.261

0.5 10 18 3 0.750 0.158 0.261

0.5 10 15 3 0.750 0.158 0.261

0.5 10 12 3 0.750 0.158 0.261

0.5 10 7 3 0.750 0.158 0.261

0.65 12 12 2 0.800 0.105 0.186

0.65 12 7 2 0.800 0.105 0.186

0.65 10 12 2 0.800 0.105 0.186

0.65 10 7 2 0.800 0.105 0.186

0.6 10 7 2 0.800 0.105 0.186

0.6 7 7 2 0.800 0.105 0.186

0.65 7 12 2 0.800 0.105 0.186

0.65 7 7 2 0.800 0.105 0.186

0.65 5 12 2 0.800 0.105 0.186

0.65 5 7 2 0.800 0.105 0.186

0.6 5 7 2 0.800 0.105 0.186

0.6 12 15 2 0.750 0.105 0.185

0.6 12 12 2 0.750 0.105 0.185

0.6 12 7 2 0.750 0.105 0.185

0.6 10 15 2 0.750 0.105 0.185

0.6 10 12 2 0.750 0.105 0.185

0.6 7 15 2 0.750 0.105 0.185

0.6 7 12 2 0.750 0.105 0.185

0.6 15 15 2 0.750 0.105 0.185

0.6 15 12 2 0.750 0.105 0.185

0.6 15 7 2 0.750 0.105 0.185

71



Continued C.4: Parameter Tuning Results of All Configurations for Canada Hybrid

Event Detection

p1 p2 p3 Event # Precision Recall F-Measure

0.6 5 15 2 0.750 0.105 0.185

0.6 5 12 2 0.750 0.105 0.185

0.55 10 18 2 0.667 0.105 0.182

0.55 15 18 2 0.667 0.105 0.182

0.55 12 18 2 0.667 0.105 0.182

0.55 7 18 2 0.667 0.105 0.182

0.55 5 18 2 0.667 0.105 0.182

0.6 12 18 1 0.667 0.053 0.098

0.65 15 15 1 0.667 0.053 0.098

0.65 15 12 1 0.667 0.053 0.098

0.65 15 7 1 0.667 0.053 0.098

0.65 12 15 1 0.667 0.053 0.098

0.65 10 15 1 0.667 0.053 0.098

0.6 10 18 1 0.667 0.053 0.098

0.6 7 18 1 0.667 0.053 0.098

0.65 7 15 1 0.667 0.053 0.098

0.65 5 15 1 0.667 0.053 0.098

0.6 15 18 1 0.667 0.053 0.098

0.6 5 18 1 0.667 0.053 0.098

0.65 15 18 1 0.500 0.053 0.095

0.65 12 18 1 0.500 0.053 0.095

0.65 10 18 1 0.500 0.053 0.095

0.65 7 18 1 0.500 0.053 0.095

0.65 5 18 1 0.500 0.053 0.095

72



Appendix D

OUTPUTS OF KEYWORD-BASED EVENT DETECTION METHOD

Keywords indicating events are highlighted with bold.

Table D.1: Keyword Based Event Detection Outputs of USA

Date (2016) Detected Keywords Ground Truth

May 31, 03:06 karlie -

May 31, 03:24 tommie -

May 31, 03:42 rust, rusty 21

May 31, 03:48 2-0, crosby, sheary 4

May 31, 03:54 anthem, national -

May 31, 04:06 adam, 2k17, steven, goldberg 3

May 31, 04:18 dion, waiter -

May 31, 04:24 ankle, roberson 22

May 31, 04:36 speight 26

May 31, 04:54 marleau, ddt, green, adam, rko, steven, dirty, 2

draymond

May 31, 05:00 ibaka, steph, knee, layup 23

May 31, 05:30 switch, tie -

May 31, 05:36 livingston, shaun 25

May 31, 05:42 andy, anderson, barbosa, varejao -

May 31, 05:48 bonino 4

May 31, 05:54 speight 26

May 31, 06:00 roberson 22

73



Continued D.1: Keyword Based Event Detection Outputs of USA

Date (2016) Detected Keywords Ground Truth

May 31, 06:18 ibaka, dagger -

May 31, 06:24 #nbafinals 6

May 31, 07:06 11:11 -

May 31, 09:06 11:11 -

May 31, 14:48 #careerarc -

Jun 01, 06:06 11:11 -

Jun 01, 06:18 seager -

Jun 01, 07:06 11:11 -

Jun 01, 09:06 11:11 -

Jun 01, 14:48 #careerarc -

Jun 01, 17:18 #careerarc, opening, #hiring, latest, recommend, -

click, #retail, #jobs, #job

Jun 01, 22:24 #diabetes, #diabetic, 1diabete, #type -

Jun 01, 22:36 hip, hop -

Jun 01, 23:24 #sales, #careerarc, opening, #hiring, latest, -

recommend, fit, #retail, #nursing, #hospitality,

#jobs, #job

Jun 02, 02:06 #greta -

Jun 02, 02:48 mookie 28

Jun 02, 03:48 lyft -

Jun 02, 04:30 hbk, bonino, kessel 4

Jun 02, 05:42 braun -

Jun 02, 05:48 #bucciovertimechallenge -

Jun 02, 06:06 sheary -

Jun 02, 07:06 11:11 -

Jun 02, 09:06 11:11 -

Jun 02, 14:30 #nbafinalsvote, #allin, nba, cavalier 6

Jun 02, 14:48 #careerarc -

Jun 03, 04:00 anthem, john, legend 9

Jun 03, 04:12 barne, harrison 13

74



Continued D.1: Keyword Based Event Detection Outputs of USA

Date (2016) Detected Keywords Ground Truth

Jun 03, 04:18 jab, step, slip 15

Jun 03, 04:30 kobe, clock, flop 32, 36

Jun 03, 04:42 barbosa, bench 29

Jun 03, 04:54 iggy 12

Jun 03, 05:06 andy, flop, varejao 33

Jun 03, 05:36 kerr 30

Jun 03, 05:48 delly 12

Jun 03, 05:54 replay, technical -

Jun 03, 06:00 denzel, barbosa 31

Jun 03, 06:06 livingston, shaun 14

Jun 03, 09:06 11:11 -

Jun 03, 14:48 #careerarc -

Jun 04, 05:18 2-0, jame 35

Jun 04, 05:54 lyft -

Jun 04, 06:06 11:11 -

Jun 04, 07:18 #muhammadali, #rip, legend, peace, rip, r.i.p, 15

muhammad, rest, ali, greatest, butterfly, alus

Jun 04, 09:06 11:11 -

Jun 04, 14:48 #careerarc -

Jun 04, 20:30 retweet -

Jun 05, 00:24 hack 20

Jun 05, 03:30 lovejoy -

Jun 05, 03:42 braun, murray 36

Jun 05, 05:30 ward -

Jun 05, 05:54 #bucciovertimechallenge -

Jun 05, 06:00 diaz, mcgregor 37

Jun 05, 06:06 11:11 -

Jun 05, 07:48 #andnew, bisping, bisp, michael -

Jun 05, 08:30 #방탄소년단, #lovebts -

75



Continued D.1: Keyword Based Event Detection Outputs of USA

Date (2016) Detected Keywords Ground Truth

Jun 05, 09:06 11:11 -

Jun 05, 14:48 #careerarc -

Jun 06, 00:48 div, -rsb-, 06/05, #toronto, ave -

Jun 06, 01:54 seager -

Jun 06, 03:00 anthem, santana, national 17

Jun 06, 03:18 #westvirginia -

Jun 06, 03:42 shump, shumpert 38

Jun 06, 03:54 elbow, ref, kevin 39

Jun 06, 04:00 hound 32

Jun 06, 04:18 answer -

Jun 06, 04:30 sprint, verizon 41

Jun 06, 04:36 vamo, guardado 42

Jun 06, 04:42 backstreet 43

Jun 06, 04:48 marquez, travels, rafa 42

Jun 06, 04:54 3-1, movement 42

Jun 06, 05:00 barbosa -

Jun 06, 06:06 11:11 -

Jun 06, 07:06 11:11 -

Jun 06, 09:06 11:11 -

Jun 06, 14:48 #careerarc -

Jun 06, 18:54 hack 20

Jun 06, 23:36 -lsb-, div, -rsb-, 06/06, #toronto -

76



Table D.2: Keyword Based Event Detection Outputs of Canada

Date (2016) Detected Keywords Ground Truth

May 31, 04:54 green, draymond, adam 2

May 31, 05:00 curry 23

May 31, 06:00 curry 22

May 31, 19:42 #agp -

Jun 01, 08:00 20:20 -

Jun 02, 05:48 #bucciovertimechallenge -

Jun 03, 04:42 barbosa 29

Jun 03, 06:06 livingston 14

Jun 04, 07:18 rip, muhammad, ali 15

Jun 04, 17:48 #agp -

Jun 04, 20:24 #justshowupshow -

Jun 05, 04:18 #mtvpopcd -

77



78



Appendix E

OUTPUTS OF CLUSTERING-BASED EVENT DETECTION METHOD

Table E.1: Clustering-Based Detection Outputs of USA

Date (2016) Tweet # Detected Keywords Ground

Truth

May 31, 00:42 127 get:0.99 -

May 31, 01:24 253 get:1.00 -

May 31, 03:24 384 get:1.00 -

May 31, 04:00 134 game:0.98, time:0.14, warrior:0.11 -

May 31, 04:06 269 game:0.99 -

May 31, 04:48 293 klay:0.92, thompson:0.38 1

May 31, 04:54 890 draymond:0.61, green:0.59, adam:0.44, get:0.17, steven:0.13 2

May 31, 05:00 135 curry:0.98, make:0.11, layup:0.11 23

May 31, 05:30 282 curry:0.86, adam:0.44, guard:0.18, get:0.11 -

May 31, 05:42 157 game:0.98, play:0.13 -

May 31, 05:48 277 game:0.97, win:0.13, warrior:0.12 5

May 31, 05:54 502 game:0.96, win:0.21 -

May 31, 06:12 132 game:0.99 -

May 31, 06:18 281 game:0.99 -

May 31, 06:18 128 curry:0.99 -

May 31, 06:24 481 warrior:0.77, win:0.41, cav:0.39, game:0.14, fan:0.14 5

May 31, 06:24 154 back:0.85, come:0.45, warrior:0.17, let:0.11 5

May 31, 06:24 176 golden:0.70, state:0.70 5

May 31, 16:00 130 latest:0.69, opening:0.51, view:0.28, read:0.25, open:0.18 -

May 31, 20:36 129 get:1.00 -

May 31, 21:18 261 get:1.00 -

Jun 01, 17:24 145 great:0.60, fit:0.60, interest:0.32, near:0.32, might:0.28 -

Jun 01, 18:00 125 latest:0.68, opening:0.55, read:0.28, view:0.24, team:0.16 -

Jun 01, 19:12 129 get:1.00 -

79



Continued E.1 Clustering-Based Detection Outputs of USA

Date (2016) Tweet # Detected Keywords Ground

Truth

Jun 01, 20:36 268 get:1.00 -

Jun 01, 23:36 139 get:1.00 -

Jun 02, 00:30 266 get:1.00 -

Jun 02, 14:30 127 take:0.46, nba:0.46, win:0.46, final:0.46, cavalier:0.29 6

Jun 02, 14:36 266 take:0.46, nba:0.46, win:0.46, final:0.46, cavalier:0.29 6

Jun 02, 18:00 138 latest:0.68, opening:0.48, join:0.25, see:0.25, team:0.25 -

Jun 02, 19:18 134 get:1.00 -

Jun 02, 20:00 132 get:1.00 -

Jun 02, 21:06 141 get:1.00 -

Jun 02, 22:12 214 take:0.46, nba:0.46, win:0.46, final:0.46, cavalier:0.23 6

Jun 02, 22:18 441 take:0.46, nba:0.46, win:0.46, final:0.46, warrior:0.23 6

Jun 02, 22:36 135 get:1.00 -

Jun 02, 22:48 137 get:1.00 -

Jun 02, 23:18 133 get:1.00 -

Jun 03, 01:24 130 get:0.99 -

Jun 03, 02:30 126 get:0.98 -

Jun 03, 03:30 250 final:0.49, nba:0.46, win:0.46, take:0.44, warrior:0.23 6

Jun 03, 03:30 154 get:1.00 -

Jun 03, 03:36 379 final:0.48, nba:0.46, win:0.46, take:0.44, warrior:0.23 6

Jun 03, 03:54 149 get:0.99 -

Jun 03, 04:00 322 get:0.99, let:0.12 -

Jun 03, 04:00 242 legend:0.70, john:0.69 9

Jun 03, 04:06 529 get:0.99, let:0.15 -

Jun 03, 04:18 142 step:0.64, jab:0.63, break:0.19, curry:0.19, thompson:0.18 22

Jun 03, 05:48 132 love:0.96, kevin:0.27 11

Jun 03, 05:54 219 ball:0.75, delly:0.59, play:0.17, wrong:0.13 12

Jun 03, 06:06 172 bench:0.73, warrior:0.54, cav:0.36, get:0.14, starter:0.12 29

Jun 03, 06:06 314 livingston:0.83, shaun:0.53 14

Jun 03, 06:12 251 love:0.92, kevin:0.39 11

Jun 03, 06:18 234 game:0.97, cav:0.12 -

Jun 03, 06:18 170 cav:0.93, play:0.19, warrior:0.18, bench:0.16 6

Jun 03, 06:30 310 game:0.95, win:0.20, cav:0.14 6

Jun 03, 06:36 534 game:0.94, win:0.22, cav:0.17, warrior:0.12 6

80



Continued E.1 Clustering-Based Detection Outputs of USA

Date (2016) Tweet # Detected Keywords Ground

Truth

Jun 03, 18:00 127 latest:0.69, opening:0.50, view:0.31, read:0.20, open:0.20 -

Jun 03, 20:06 259 get:1.00 -

Jun 04, 07:18 367 ali:0.66, muhammad:0.57, rip:0.45, rest:0.13, greatest:0.11 15

Jun 04, 07:24 1072 ali:0.65, muhammad:0.55, rip:0.49, greatest:0.14 15

Jun 04, 07:24 135 rip:0.74, greatest:0.55, time:0.29, alus:0.15, legend:0.12 15

Jun 04, 07:24 175 butterfly:0.52, sting:0.50, float:0.47, bee:0.47, rip:0.12 15

Jun 04, 07:24 139 get:1.00 -

Jun 04, 07:24 134 rest:0.74, peace:0.54, champ:0.25, ali:0.20, greatest:0.20 15

Jun 04, 07:30 2238 ali:0.64, muhammad:0.56, rip:0.49, greatest:0.14 15

Jun 04, 07:30 361 rip:0.70, greatest:0.58, time:0.32, alus:0.14, boxer:0.12 15

Jun 04, 07:30 464 butterfly:0.51, sting:0.50, bee:0.48, float:0.47, rip:0.13 15

Jun 04, 07:30 375 rest:0.71, peace:0.61, ali:0.24, champ:0.16, greatest:0.16 15

Jun 04, 07:30 144 alus:0.69, muhammad:0.63, pass:0.16, rip:0.14, away:0.13 15

Jun 04, 07:36 703 butterfly:0.51, sting:0.50, bee:0.48, float:0.47, rip:0.13 15

Jun 04, 08:12 130 get:1.00 -

Jun 05, 00:30 242 get:1.00 -

Jun 05, 18:00 132 latest:0.68, opening:0.44, view:0.28, join:0.26, see:0.26 -

Jun 05, 20:42 131 get:1.00 -

Jun 05, 21:36 265 get:1.00 -

Jun 06, 03:54 186 love:0.78, kevin:0.60, get:0.11, soft:0.11 39

Jun 06, 04:48 236 call:0.67, travel:0.55, lebron:0.42, travels:0.15, finally:0.13 18

Jun 06, 04:54 165 cav:0.93, play:0.28, look:0.14, warrior:0.13 6

Jun 06, 05:00 196 game:0.97, get:0.14, warrior:0.11, cav:0.11 6

Jun 06, 05:30 141 game:0.98 -

Jun 06, 08:12 125 hack:0.67, kylie:0.54, get:0.39, twitter:0.33 20

Jun 06, 08:42 258 get:1.00 -

81



Table E.2: Clustering-Based Detection Outputs of Canada

Date (2016) Tweet # Detected Keywords Ground Truth

May 31, 04:36 43 get:0.98 -

May 31, 04:48 82 get:1.00 -

May 31, 04:54 98 green:0.65, draymond:0.65, adam:0.36, steven:0.13 2

May 31, 05:00 32 curry:0.96, shot:0.15, knee:0.13 23

May 31, 05:12 44 get:0.99 -

May 31, 05:18 77 get:1.00 -

May 31, 05:30 65 curry:0.83, adam:0.48, get:0.15, guard:0.15, steven:0.15 3

May 31, 05:42 41 get:0.98, game:0.15 -

May 31, 05:54 79 get:0.99, game:0.11 -

May 31, 06:30 42 get:0.97, lebron:0.16 -

May 31, 06:36 80 get:0.99 -

May 31, 19:42 33 usa:0.38, june:0.38, greek:0.38, frat:0.38, every:0.38 -

May 31, 23:30 32 celebrate:0.45, global:0.45, june:0.45, day:0.45, parent:0.45 -

Jun 01, 03:06 31 get:0.98, back:0.15, love:0.13 -

Jun 01, 05:06 63 get:0.99 -

Jun 01, 05:42 95 get:0.99 -

Jun 01, 15:54 45 please:0.83, try:0.28, meet:0.28, chance:0.28, hard:0.28 -

Jun 02, 02:36 43 love:0.58, miss:0.32, hug:0.28, back:0.28, anytime:0.28 -

Jun 02, 04:18 34 love:0.34, get:0.34, twitter:0.34, deep:0.34, wave:0.34 -

Jun 02, 04:54 35 get:0.99 -

Jun 02, 05:00 67 get:0.99 -

Jun 02, 05:24 108 get:1.00 -

Jun 02, 08:18 32 love:0.81, much:0.30, thur:0.28, air:0.28, rock:0.21 -

Jun 02, 16:36 34 take:0.46, nba:0.46, win:0.46, final:0.46, cavalier:0.26 6

Jun 02, 16:54 71 take:0.46, nba:0.46, win:0.46, final:0.46, cavalier:0.24 6

Jun 02, 17:06 107 take:0.46, nba:0.46, win:0.46, final:0.46, cavalier:0.25 6

Jun 03, 02:18 49 guitar:0.58, many:0.58, lie:0.58 -

Jun 03, 02:24 99 guitar:0.58, many:0.58, lie:0.58 -

Jun 03, 03:36 60 get:1.00 -

Jun 03, 04:00 36 john:0.68, legend:0.68, anthem:0.19, national:0.13, sing:0.13 9

Jun 03, 04:06 31 love:0.39, get:0.39, deep:0.39, end:0.39, banger:0.38 -

Jun 03, 04:42 31 get:0.99, barbosa:0.12 -

Jun 03, 04:48 74 get:0.99 -

Jun 03, 06:06 41 livingston:0.88, shaun:0.37, barbosa:0.18, mvp:0.15, man:0.11 14

Jun 03, 06:06 33 bench:0.72, warrior:0.59, cav:0.33, starter:0.13 29

Jun 03, 06:18 40 get:0.99, cav:0.14 -

Jun 03, 06:24 75 get:1.00 -

Jun 03, 06:30 45 game:0.94, win:0.16, get:0.14, warrior:0.11, say:0.11 6

82



Continues E.2: Clustering-Based Detection Outputs of Canada

Date (2016) Tweet # Detected Keywords Ground Truth

Jun 03, 06:36 33 get:0.93, cav:0.30, game:0.12 -

Jun 03, 06:54 74 get:0.99, cav:0.14 -

Jun 03, 07:54 36 chapter:0.50, follow:0.50, since:0.50, please:0.50 -

Jun 03, 08:00 83 follow:0.50, since:0.50, please:0.50, chapter:0.49 -

Jun 04, 05:18 34 get:0.99, back:0.11 -

Jun 04, 07:18 38 ali:0.60, muhammad:0.59, rip:0.50, greatest:0.14 15

Jun 04, 07:24 134 ali:0.62, muhammad:0.58, rip:0.51 15

Jun 04, 07:30 279 ali:0.63, rip:0.55, muhammad:0.53, greatest:0.14 15

Jun 04, 07:30 31 rest:0.67, peace:0.56, ali:0.32, greatest:0.24, champ:0.15 15

Jun 04, 07:30 38 butterfly:0.50, bee:0.50, sting:0.50, float:0.49 15

Jun 04, 07:36 77 butterfly:0.51, float:0.49, sting:0.49, bee:0.49, rip:0.13 15

Jun 04, 07:54 34 butterfly:0.51, float:0.51, bee:0.47, sting:0.45, rip:0.16 15

Jun 04, 08:00 32 ali:0.67, muhammad:0.65, rip:0.31 15

Jun 04, 09:00 38 flow:0.69, height:0.69, brazo:0.11, trinity:0.11 -

Jun 06, 04:06 71 get:0.99 -

Jun 06, 04:48 32 travel:0.66, call:0.55, lebron:0.41, jame:0.14, finally:0.14 18

Jun 06, 05:06 34 get:0.98, cav:0.17 -

Jun 06, 05:12 67 get:0.99, cav:0.15 -

Jun 06, 08:00 73 fdb:0.41, official:0.41, ringtone:0.41, video:0.41, music:0.41 8

83



84



Appendix F

OUTPUTS OF HYBRID EVENT DETECTION METHOD

Table F.1: Hybrid Event Detection Outputs of USA

Date (2016) Tweet # Detected Keywords Ground Truth

May 31, 03:42 36 rust:0.76, bryan:0.60, score:0.17 21

May 31, 03:54 43 anthem:0.70, national:0.69, sing:0.11, get:0.11 -

May 31, 04:06 101 adam:0.73, steven:0.67 -

May 31, 04:18 33 waiter:0.79, dion:0.53, curry:0.29 -

May 31, 04:24 84 ankle:0.72, curry:0.55, break:0.40 22

May 31, 04:54 937 draymond:0.65, green:0.59, adam:0.39, get:0.18, dirty:0.11 2

May 31, 04:54 73 adam:0.82, steven:0.41, foul:0.25, get:0.23, call:0.15 2

May 31, 05:30 45 switch:0.68, adam:0.39, curry:0.36, stop:0.32, get:0.22 -

May 31, 05:36 46 livingston:0.78, shaun:0.59, let:0.13, dunk:0.11 25

May 31, 05:48 42 bonino:0.99, nick:0.11 4

Jun 01, 17:18 46 anyone:0.69, recommend:0.69, manager:0.12, service:0.11 -

Jun 01, 17:18 31 detail:0.70, click:0.70 -

Jun 01, 17:18 71 great:0.60, fit:0.60, interest:0.31, near:0.31, might:0.30 -

Jun 01, 17:18 40 apply:0.61, click:0.61, see:0.34, latest:0.34 -

Jun 01, 17:18 72 latest:0.67, opening:0.54, view:0.39, read:0.28, open:0.14 -

Jun 01, 23:24 99 anyone:0.70, recommend:0.70, manager:0.12 -

Jun 01, 23:24 71 detail:0.71, click:0.71 -

Jun 01, 23:24 153 great:0.60, fit:0.60, might:0.31, interest:0.30, near:0.30 -

Jun 01, 23:24 121 apply:0.61, click:0.61, see:0.36, latest:0.36 -

Jun 01, 23:24 190 latest:0.69, opening:0.52, view:0.28, read:0.25, open:0.18 -

Jun 02, 03:48 42 lyft:0.60, lyftontwitter:0.30, use:0.30, promo:0.30, ride:0.30 -

Jun 02, 04:30 33 hbk:1.00 4

Jun 02, 14:30 127 take:0.46, nba:0.46, win:0.46, final:0.46, cavalier:0.29 6

85



Continued F.1: Hybrid Event Detection Outputs of USA

Date (2016) Tweet # Detected Keywords Ground Truth

Jun 03, 04:00 47 anthem:0.66, national:0.64, sing:0.30, william:0.15, get:0.11 9

Jun 03, 04:00 248 legend:0.70, john:0.69, anthem:0.11 9

Jun 03, 04:12 58 harrison:0.72, barne:0.69 -

Jun 03, 04:18 136 jab:0.65, step:0.64, curry:0.18, break:0.18, thompson:0.18 10

Jun 03, 04:30 32 clock:0.69, shot:0.61, violation:0.31, cav:0.15 -

Jun 03, 04:30 55 flop:0.74, draymond:0.54, green:0.38 32

Jun 03, 04:30 36 kobe:0.75, commercial:0.48, ghostbuster:0.42 34

Jun 03, 04:42 37 barbosa:0.92, get:0.27, boy:0.20, move:0.12 29

Jun 03, 04:54 83 iggy:0.94, hand:0.18, get:0.17, mvp:0.14, final:0.14 12

Jun 03, 05:06 62 flop:0.96, andy:0.19 33

Jun 03, 05:36 32 steve:0.70, kerr:0.70, mad:0.13 30

Jun 03, 05:48 36 delly:0.79, get:0.53, ass:0.28 12

Jun 03, 06:00 31 denzel:0.70, movie:0.59, new:0.34, washington:0.16, look:0.11 31

Jun 03, 06:06 409 livingston:0.87, shaun:0.45, barbosa:0.11 14

Jun 04, 07:18 48 alus:0.66, muhammad:0.57, pass:0.34, away:0.27, age:0.11 15

Jun 04, 07:18 366 ali:0.65, muhammad:0.58, rip:0.45, greatest:0.12, rest:0.11 15

Jun 04, 07:18 42 rest:0.74, peace:0.55, greatest:0.26, champ:0.19, ali:0.17 15

Jun 04, 07:18 51 greatest:0.68, rip:0.56, time:0.39, boxer:0.18, alus:0.14 15

Jun 04, 07:18 33 butterfly:0.49, sting:0.49, bee:0.49, float:0.46, muhammad:0.14 15

Jun 05, 06:00 54 diaz:0.69, mcgregor:0.65, august:0.20, ufc:0.14 37

Jun 05, 07:48 32 holy:0.54, shit:0.54, bisping:0.51, michael:0.36, bisp:0.11 -

Jun 06, 00:48 47 ave:0.74, div:0.63, unknown:0.11, trouble:0.11 -

Jun 06, 03:00 119 anthem:0.69, national:0.66, play:0.17, santana:0.14, uruguay:0.13 17

Jun 06, 03:42 47 shumpert:0.72, hair:0.62, iman:0.27 38

Jun 06, 03:54 74 ref:0.80, call:0.41, get:0.28, golden:0.17, state:0.17 -

Jun 06, 03:54 164 love:0.70, kevin:0.68, get:0.16 39

Jun 06, 03:54 43 head:0.60, elbow:0.59, back:0.38, foul:0.23, get:0.21 39

Jun 06, 04:30 45 sprint:0.64, verizon:0.55, hear:0.40, switch:0.27, commercial:0.21 41

Jun 06, 04:36 59 vamo:0.58, con:0.58, nalgita:0.57 -

Jun 06, 04:42 74 boy:0.68, backstreet:0.68, miss:0.18, usa:0.16 43

Jun 06, 04:48 77 travels:0.66, call:0.64, lebron:0.32, finally:0.14, nba:0.12 18

Jun 06, 04:48 55 rafa:0.72, marquez:0.67 42

86



Table F.2: Hybrid Event Detection Outputs of Canada

Date (2016) Tweet # Detected Keywords Ground Truth

May 31, 04:54 83 draymond:0.65, green:0.63, adam:0.36, steven:0.14 2

May 31, 05:00 22 curry:0.96, shot:0.21 23

May 31, 19:42 33 usa:0.38, june:0.38, greek:0.38, frat:0.38, every:0.38 -

Jun 03, 06:06 8 barbosa:0.67, livingston:0.67, mvp:0.17 14

Jun 03, 06:06 17 shaun:0.70, livingston:0.70 14

87


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Overview
	Contributions
	Organization of Thesis

	S-Store
	Related Work
	Event Detection Methods
	Keyword-Based Event Detection Method
	Clustering-Based Event Detection Method
	Hybrid Event Detection Method
	Illustrative Example

	Event Detection on Social Media Using S-Store
	S-Store Client
	Common S-Store Procedures
	Feed Procedure
	Tokenizer Procedure
	Word Count Procedure
	Burst Detector Procedure
	Burst Report Procedure
	Tweet Filter Procedure
	Local Clustering Procedure
	Cluster Merge Procedure
	Clustering Event Detector Procedure

	Procedure Input Outputs
	Keyword-Based Event Detection
	Non-Distributed Implementation
	Distributed Implementation

	Clustering-Based Event Detection
	Non-distributed Implementation
	Distributed Implementation

	Hybrid Event Detection
	Non Distributed Implementation
	Distributed Implementation

	Adapting to S-Store

	Experiments
	Setup
	Data Set
	Preprocessing
	Ground Truth Construction
	Evaluation Metrics
	Accuracy Evaluation Metrics
	Time Performance Evaluation Metrics

	Parameter Tuning
	Parameter Tuning for Clustering-Based Event Detection of USA
	Parameter Tuning for Clustering-Based Event Detection of Canada
	Parameter Tuning for Hybrid Event Detection of USA
	Parameter Tuning for Hybrid Event Detection of Canada

	Event detection accuracy
	Accuracy Comparison Among Event Detection Methods
	Accuracy Comparison with the Previous Solution

	Event Detection Time Performance
	Keyword-Based Event Detection Time Performance
	Non-Distributed Configuration
	Distributed Configuration

	Clustering-Based Event Detection Time Performance
	Non-Distributed Configuration
	Distributed Configuration

	Hybrid Event Detection Time Performance
	Comparison Among Event Detection Methods
	Comparison with the Previous Solution


	Conclusion
	REFERENCES
	Stream and Table Definitions
	Common Streams for All Event Detection Methods
	Stream: tweets_s

	Streams for Keyword-Based Event Detection
	Stream: tokenized_word_counts_s
	Stream: word_counts_s
	Stream: burst_words_s

	Streams of Clustering-Based Event Detection
	Stream: local_cluster_results_s
	Stream: merged_cluster_results_s

	Streams and Tables of Hybrid Event Detection
	Table: tweet_words
	Stream: filtered_tweets_s


	Ground Truth Events
	Parameter Tuning Results
	Outputs of Keyword-Based Event Detection Method
	Outputs of Clustering-Based Event Detection Method
	Outputs of Hybrid Event Detection Method

