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Head of Department, Computer Engineering

Assist. Prof. Dr. Emre Akbaş
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ABSTRACT

ACTIVITY PREDICTION FROM AUTO-CAPTURED LIFELOG IMAGES

Belli, Kader
M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Emre Akbaş

Co-Supervisor: Prof. Dr. Adnan Yazıcı

July 2019, 58 pages

The analysis of lifelogging has generated great interest among data scientists because

large-scale, multidimensional and multimodal data are generated as a result of lifel-

ogging activities. In this study, we use the NTCIR Lifelog dataset where daily lives of

two users are monitored for a total of 90 days, and archived as a set of minute-based

records consisting of details like semantic location, body measurements, listening

history, and user activity. In addition, images which are captured automatically by

cameras located at users’ chests are available for each minute together with text an-

notations, which promotes the multimodal nature of the dataset. We train and evalu-

ate several classification methods on the text and image data separately, and on their

combination as well. Specifically, for text data, we encode the words using a one-hot

encoding, and train SVM and MLP models on bag-of-words representations of min-

utes. For image data, we train two different convolutional neural networks (CNN)

in two different ways: training from scratch and fine-tuning an ImageNet [1] pre-

trained model. Finally, we propose a multi-loss, combined CNN-MLP model which

processes image and text data simultaneously, uses fusion methods to merge the two

sub-models, and can handle missing input modalities. We also put effort into a con-
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tribution to the NTCIR LifeLog dataset by manually labeling 90,000 images into 16

activity classes.

Keywords: lifelog, multimodal classification, machine learning, deep learning
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ÖZ

OTOMATİK YAKALANMIŞ HAYAT GÜNLÜĞÜ GÖRÜNTÜLERİNDEN
FAALİYET TAHMİNİ

Belli, Kader
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Emre Akbaş

Ortak Tez Yöneticisi: Prof. Dr. Adnan Yazıcı

Temmuz 2019 , 58 sayfa

Hayat günlüğü analizi, veri bilimcilerinin büyük ölçüde ilgisini çeken bir konu başlığı

haline gelmiştir, çünkü hayat günlüğü faaliyetleri sonucunda büyük, çok boyutlu ve

çok modlu veriler üretilmektedir. Bu çalışmada, iki kullanıcının günlük yaşamlarının

toplamda 90 gün boyunca izlendiği ve konum, vücut ölçümleri, müzik dinleme geç-

mişi ve kullanıcı faaliyeti gibi ayrıntılardan oluşan dakika bazlı kayıtlar halinde arşiv-

lendiği NTCIR Lifelog veri setini kullanıyoruz. Ayrıca her dakika için, kullanıcıların

göğüs hizasına yerleştirilmiş kameralar tarafından otomatik olarak çekilen görüntüler,

metin açıklamaları ile birlikte veri setinin çok modlu yapısını destekleyecek şekilde

verilmektedir. Bu çalışmada, çeşitli sınıflandırma yöntemlerini metin ve resim verileri

ile bunların kombinasyonları üzerinde eğiterek, öğrenme performanslarını değerlen-

dirdik. Metin verileri için, kelimeleri tek boyutlu vektörler halinde düzenledik; SVM

ve MLP modellerini bu vektörler üzerinde eğittik. Görüntü verileri için ise, iki farklı

evrişimsel sinir ağı (CNN) mimarisini iki farklı şekilde eğittik: sıfırdan eğitme ve

ImageNet [1] veri seti üzerinde önceden eğitilmiş mimariye hassas ayar yapma. Son

olarak, görüntü ve metin verilerini aynı anda işleyen, iki alt modeli birleştirmek için
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füzyon yöntemlerini kullanan ve eksik verileri telafi edebilen birleşik bir CNN-MLP

modeli önerdik. Ayrıca, 90.000 görüntüyü 16 faaliyet sınıfı ile etiketleyerek NTCIR

LifeLog veri setine katkı sağladık.

Anahtar Kelimeler: hayat günlüğü, çok modlu sınıflandırma, makine öğrenmesi, derin

öğrenme
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Advances in computer miniaturization and the investigation of wearable devices have

led to the rise of the concept of lifelogging, which has been an active research topic

in various domains since the 1970s.

Lifelogging enables people to create digital archives of their daily lives, which can in-

clude, but not limited to, body measurements, first-person imagery, location tracking

and the history of various activities such as listening, reading, watching, browsing,

etc. Research has been conducted on the design of user-friendly hardware and soft-

ware components for lifeloggers. In addition, the concept of lifelogging is of great

interest to data scientists because large-scale, multidimensional and multimodal data

are generated as a result of lifelogging activities [2, 3].

The main objective of lifelogging research is to monitor and provide insights into

users’ daily lives by understanding the relationships between user activities and dif-

ferent dimensions of the collected data (See Figure 1.1). The progress starts with the

description of lifelog records, which is achieved by classification of archived data into

activity classes. Since lifelog data have various dimensions, it is possible to approach

the classification problem from different perspectives, which increases the complexity

of the problem, significantly.

Lifelog records are bare figures with a set of image attachments before they are de-

scribed by activity definitions. Activity prediction comes into the picture to interpret

these figures and images, and to draw the baseline for lifelogging research by explain-
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Figure 1.1: Lifelogging Research

ing the relationship between activities and different dimensions of the data.

The extent of this study could be interpreted as a contribution to the lifelogging re-

search baseline. In this study, the main objective is to apply different classification

algorithms to different modalities of the lifelog data and make a comparison between

their performance in predicting user activities. Next, we propose a multi-loss, com-

bined learning model to process image and text data simultaneously, and merge find-

ings from the two modalities using fusion methods. The proposed model is able to

handle missing input modalities thanks to the custom loss function we used for train-

ing the model, and it shows better classification performance than the naive activity

prediction method in the presence of missing values.
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1.2 The NTCIR Lifelog Dataset

The NTCIR Lifelog dataset was published for the first time by Gurrin et al. in [4] in

2016. The first test collection consists of lifelog data from three users and includes

images which are captured automatically from a wearable camera, location, and activ-

ity definition, which are recorded on a minute-by-minute basis for one month per user.

Lifeloggers gathered data in an all-day gathering process, resulting in a wide range of

daily activities. The collected data is presented as an XML document, which is also

designed in a minute-based structure, and a folder containing image files, which are

referenced by their relative file paths in the XML document [4].

The version analyzed in this paper is called the NTCIR-13 Full Phase-2 Lifelog-2

dataset. This version contains 90 days of lifelog data, generated by activities of two

users; i.e. 60 days of data from the 1st user and 30 days of data from the 2nd user. In

addition to the features available in the first test collection, the Full Phase-2 Lifelog-

2 dataset contains minute-based biometric data generated by a smartwatch, which

lifeloggers are expected to wear during the day. This version also includes daily

health logs (blood pressure, cholesterol, weight, etc.), food and beverage logs, as well

as users’ listening history for a couple of minutes [5].

Attached to the XML document, visual concept annotations for images are provided

as pairs of (image ID, concept) in a CSV file. An example image from the dataset,

together with visual annotations and the corresponding lifelog record are available in

Figures 1.2 and 1.3, respectively.

1.3 NTCIR Lifelog Tasks

The NTCIR Lifelog dataset, which was first published at the 12th NTCIR conference

in 2016, was the first test collection for lifelogging research, and introduced with two

initial sub-tasks:

• Lifelog Semantic Access Task (LSAT): Retrieve specific moments from life

loggers’ archive according to given query sentences.
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Figure 1.2: An example image and corresponding annotations from the NTCIR

Lifelog Dataset
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Figure 1.3: Minute description for the image in Figure 1.2

Example 1.3.1. Find the moments when the user was watching television.

• Lifelog Insight Task (LIT): Generate effective visualizations and insights from

life loggers’ everyday life.

Example 1.3.2. Provide insights on how diet affects life loggers’ blood sugar

level [4].

The extended Full Phase-2 Lifelog-2 dataset was introduced at the 13th NTCIR con-

ference in 2017, together with two additional sub-task, the LSAT and LIT remaining

unchanged:

• Lifelog Event Segmentation Task (LEST): Develop approaches to event seg-

mentation from continuous activities.

Example 1.3.3. Moments when the user was preparing meals at any location

are segmented into the "cooking" event.

• Lifelog Annotation Task (LAT): Develop approaches to annotate activity and

visual environment of the user at any moment.
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Example 1.3.4. At minute id 441, the user was walking, and the context of the

image taken at that minute contained ocean, shore, sky, and water. [5]

Recently, in the 14th NTCIR conference which was held in June 2019, the organizers

introduce a new task as a substitute for the LEST and LAT tasks:

• Lifelog Activity Detection Task (LADT): Develop approaches to the annotation

of multimodal lifelog data in terms of activities of daily living.

In order to reduce the level of subjectivity, the following 16 predefined activity classes

are provided in the description of the LADT task:

• Cooking: Preparing meals or making tea or coffee at any location

• Creative Activities: Creative endeavors, e.g. writing, art, music, etc.

• Eating: Eating meals in any location, excluding moments when drinking alone

• F2F Interacting: Face-to-face interaction with people at home or in the work-

place, excluding social interactions

• Gaming: Playing computer games

• Houseworking: Working in the home, e.g. cleaning, gardening, etc.

• Physical Activities: Physical activities and sports, e.g. walking, playing sports,

cycling, rowing, etc.

• Praying: Praying, worshipping or meditating

• Reading: Reading any form of paper

• Relaxing: Relaxing at home, e.g. watching TV, having a drink, etc.

• Shopping: Shopping in a physical shop, i.e. not online

• Socialising: Socialising outside the home or office

• Time with Children: Taking care of children or playing with children

• Traveling: Traveling by car, bus, boat, airplane, train, etc.
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• Using A Computer: Using a desktop computer, laptop or tablet

• Other Activities: Any other activity not represented by the fifteen labels above

The work we present in this thesis was not first designed to provide a complete so-

lution to any of the tasks listed above; however, our approach could be viewed as

an initial perspective for LSAT and LAT tasks. In addition, together with the newly

introduced LADT task, we could propose our methodology as a solution to this task.

In fact, we build our experimentation on activity prediction from lifelog images over

the 16 classes provided in the definition of the LADT task.

1.4 Proposed Methods and Models

In this paper, the NTCIR Lifelog dataset, which is described in detail in Section 1.2,

is analyzed and processed for lifelogging research. Among many different features of

the archived data, minute-based images captured from the first-person perspective are

used to classify lifelog records, which are minute descriptions, into activity classes. In

order to classify minutes into activity classes, images are processed in three different

ways:

1. Using image annotations with text-based classification algorithms

2. Using plain color images with image classification algorithms

3. Using color images together with their annotations, which is performed using a

combined classification algorithm

Thus, analysis on the NTCIR Lifelog dataset is performed using machine learn-

ing and deep learning methodologies. More specifically, Support Vector Machines

(SVM) and Multilayer Perceptrons (MLP) are used to perform text-based classifi-

cation, whereas deep neural networks, i.e. custom Convolutional Neural Network

(CNN) models, are used for image classification.

Next, a multi-loss, combined learning model is proposed to be able to make use of

images together with their annotations on a single learning model. This combined
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model is trained using a masked loss function so that it could compensate for missing

data, which is frequently observed in the NTCIR Lifelog dataset.

The classification performance of the multi-loss combined model is evaluated in com-

parison with the naive method for predicting activities in the presence of missing in-

put modalities. In the naive method, text-based, image-based and combined learning

models are trained separately and the suitable model for activity prediction is deter-

mined during test time according to the nature of the individual test record.

The proposed multi-loss combined learning model shows better prediction perfor-

mance than the naive method both in the absence and presence of the missing data.

1.5 Contributions and Novelties

Our contributions are as follows:

• The original version of the NTCIR Lifelog dataset has 5 activity classes, namely

airplane, cycling, running, transportation and walking. With the intuition that

these classes are not capable of describing the whole life of lifeloggers, we ex-

tend the classification over 16 activity classes by manually classifying a subset

of approximately 90 000 images taken from the dataset, which requires an effort

of approximately 200 person-hours.

• As the dataset contains both textual and visual data, we are able to compare

the performance of text-based and image-based classification algorithms on the

same set of data.

• We propose a combined learning model, which could learn from text and image

data together on a single model.

• We propose a masked loss function, which enables the combined model to con-

tinue learning in the presence of missing values.

• We published a part of this thesis as a conference paper titled "Activity Learning

from Lifelogging Images" in the International Conference on Artificial Intelli-

gence and Soft Computing (ICAISC) 2019 [6].
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1.6 The Outline of the Thesis

This thesis is organized as follows. In the following chapter (Chapter 2), we discuss

some of the recent literature on the subject of learning from lifelog datasets, in partic-

ular from the NTCIR Lifelog dataset. In Chapter 3, we present the specific methods

and models we employ for processing and learning activities from the lifelog data.

In Chapter 4, we present our methodology and the results of our experimentation

with different classification algorithms, i.e. we compare their performance in terms

of classification accuracy. In this chapter, we explain the training and test phases on

the dataset after we go through data analysis and preprocessing steps. Finally, in the

last chapter (Chapter 5), we present our conclusions.
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CHAPTER 2

RELATED STUDIES

2.1 Recent Literature on the NTCIR Lifelog Task

From the day the NTCIR Lifelog dataset was introduced, researchers have focused

more on the LSAT, among the tasks listed in Section 1.3.

In 2016, Xia et al. published their research on the integration of location information

into images to improve the accuracy of segmentation. They state their finding that

the location is an important component in the information retrieval process, and they

use artificial neural networks together with a custom ranking function to learn from

locations and visual concepts of images. They report that the proposed approach

performs well in simple LSAT queries; however, a more complex architecture would

be necessary for more complicated scenarios [7].

Safadi et al. offers a framework that uses CNNs to index images, and then pretrained

Multiple-SVMs (MSVM) to assign classes to images. In their study, they consider

both visual and temporal concepts of the data. They extract visual concepts annota-

tions using well-known network models. Next, they index images according to time,

location and activity information. The proposed method appears to give promising

results, according to their two-level evaluation criteria [8].

Lin, H. et al. propose a method that uses a deep learning toolkit that allows them

to apply several modern deep learning algorithms to the dataset and calculate the

correlation between images and classes. They make an effort to find the relevance

between images and semantic content by using natural language processing (NLP)

tools. They report that image recognition methods with more complex models should
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be employed for better performance in learning activities [9].

In 2017, Lin, J. et al. design a framework using CNNs to query images and min-

utes of life loggers. They make an effort to find a solution to close the gap between

images and event-level query topics specified by the organizers. They use CNNs for

feature extraction from images; then, build a matching between features and relevant

events. Together with feature selection and temporal smoothing methods, they obtain

considerably good performance in classification. [10].

Recently, Yamamoto et al. introduce a common approach to solve the three tasks

of the NTCIR Lifelog research: LAT, LSAT, and LEST. They analyze both images

and locations using visual indexing and location indexing methods. They describe

their approach to using the proposed methodology commonly for the three tasks.

Query processing, relevance score calculation, and temporal smoothing are some of

the methods they employ for the study, in which they demonstrate high performance,

and clarify the effectiveness and limitations of their approach [11].

2.2 Recent Literature on Lifelog Research

The related studies listed in Section 2.1 are the main studies which have been pub-

lished for NTCIR Lifelog tasks. In addition to NTCIR Lifelog, ImageCLEF Lifelog

and UbiqLog are some of the well-known datasets which have been published in re-

cent years as a contribution to lifelogging research and have generated considerable

interest among researchers.

The ImageCLEF Lifelog dataset is quite similar to the NTCIR Lifelog dataset in

nature. It consists of data from three lifeloggers for a period of one month each.

The dataset is presented as images (approximately two images per minute) and an

XML file specifying semantic location and activity of lifeloggers. Visual concept

annotations for images are also made available for the use of researchers, and attached

to the dataset as metadata. The dataset is introduced with two information retrieval

tasks, namely Lifelog Retrieval Task (LRT) and Lifelog Summarization Task (LST),

which are also similar in nature to LSAT and LIT tasks from the NTCIR Lifelog tasks

(See Section 1.3) [12].
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UbiqLog is announced as the first smartphone based lifelog dataset in 2013, and gen-

erated by using a lifelogging framework on mobile devices. The dataset contains

user calls, SMS headers, application use, network devices, geographical location, and

physical activities as data attributes, which are presented in JSON format. In addition,

the data collection framework contains a data model and architecture, which can be

used as a baseline for further lifelogging applications [13, 14].

Some of the recent works of literature on lifelog research are listed below.

In 2015, Amlinger published his study in which he compares the performance of dif-

ferent clustering algorithms on small and large size lifelog datasets. In this study,

various branches of clustering algorithms are used for activity detection in geospa-

tial datasets, namely partitioning-based, hierarchy-based, and density-based cluster-

ing algorithms. The performance of the algorithms are compared using Silhouette

coefficient interpretation [15].

Similarly, Del Molino et al. propose a clustering pipeline for the ImageCLEF Lifelog

task to summarize the lifelog data. They use image processing techniques to eliminate

uninformative images. Next, they assign scores to images representing their relevancy

to query events by making use of images itself together with location and activity

information given in the metadata. They cluster images into query events according to

their relevance score and report that using multiple features of data usually improves

clustering performance [16].

Bolaños et al. provide an overview of the leading-edge research published for the task

of story-telling from lifelogging data. First, they list improvements and capabilities of

current hardware used for collecting lifelog data. Next, they provide a comprehensive

categorical catalog of most recent studies on the subject of storytelling from visual

lifelogging, which has been a valuable guide for researchers studying in the field [17].

In 2018, Truong et al. propose semantic concepts fusion approach to retrieve mean-

ingful information from lifelogging data. They state that the purpose of their method-

ology is to efficiently assist users to retrieve events and memories from lifelog data.

The query system they develop supports different types of query conditions and uses

fusion techniques for information retrieval from lifelog data [18].
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Ben Abdallah et al. publish their study in which they propose their multilevel deep

learning-based processing for lifelog image retrieval in IEEE International Confer-

ence on Systems, Man, and Cybernetics (SMC), 2018. They use deep learning meth-

ods at five different phases including data preprocessing, enhancement of metadata

image description, semantic segmentation, query - concept matching and image re-

trieval. This multilevel approach is shown to perform well on some of the well-known

learning tasks on the lifelogging research [19].

Recently, Dimicolli et al. publish their study in which they summarize state of the art

methods together with their limitations, and future challenges in the subject of activity

recognition from visual lifelogs. This study is similar to the one written by Bolaños et

al. [17] in nature, but it can be perceived as an updated and extended catalog of current

literature on activity recognition from visual lifelogs and is a valuable resource for

researchers [20].

2.3 Recent Literature on Multimodal Classification

In their recent study, Baltrusaitis et al. emphasize that our experience of the world is

multimodal, i.e. we see objects, hear sounds, feel textures, smell odors, and taste fla-

vors. They define modality as the way in which something happens or is experienced,

and a research problem is defined as multimodal when it includes multiple modalities.

In this study, recent advances and possible future research topics in the field of multi-

modal machine learning are presented by a new common taxonomy, which serves as

a valuable resource for the field [21].

In the field of multimodal classification, Liu et al. propose a two-component learning

model which jointly learn multimodal matching and classification, which they call

MMC-Net. The model first learns visual and textual features in the matching compo-

nent; then, generates discriminative multimodal representations in the classification

component. The effort to minimize the loss function of both components on a single

model, i.e. multiloss training, results in improved classification performance [22].

Similarly, Zahavy et al. propose their multimodal fusion architecture which uses vi-

sual and textual data together for product classification in e-commerce. They train
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two separate CNN structures for text and image dimensions and suggests a multi-

modal decision-level fusion approach, which outperforms state-of-the-art classifica-

tion methods. Finally, they express their anticipation that multimodal classification

will attract considerable interest from researchers in near future [23].

2.4 Summary

A summary of the recent literature on lifelogging research is given in Table 2.1 in

comparison with the methodology proposed in this thesis.
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Amlinger, 2015 [15] 7 7 7 7 7 7

Ben Abdallah, 2018 [19] 7 3 3 3 7 7

Del Molino, 2017 [16] 7 7 7 3 7 3

Lin H., 2016 [9] 3 3 7 7 7 7

Lin J., 2017 [10] 3 7 3 3 7 7

Liu, 2018 [22] 7 3 3 3 7 7

Safadi, 2016 [8] 3 3 3 3 7 3

Truong, 2018 [18] 7 3 3 3 7 7

Xia, 2016 [7] 3 3 7 3 7 7

Yamamoto, 2017 [10] 3 3 7 3 7 7

Zahavy, 2018 [23] 7 3 3 3 3 7

Proposed Approach 3 3 3 3 3 3
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CHAPTER 3

METHODS AND MODELS

3.1 Text-Based Classification

Text classification is defined as the task of classifying documents into predefined

classes. More formally, if di is a document in the document set D and {c1, c2, ..., cn}
is the set of classes, text classification is the task of assigning one class cj to each

document di in the document set D [24].

In our problem domain, a document is the sequence of visual concept annotations

associated with a lifelog image, and the classes are activities.

We use bag-of-words model vector representation in the preprocessing phase of our

study to convert image annotations into input vectors for text-based classifiers. Next,

we train SVM and MLP models to learn activities from image annotations.

3.1.1 Vector Representation

In text classification terminology, a document is a sequence of words which is often

represented by an array of words. The list of all the words which appear in a set of

documents is called vocabulary, or feature set. Hence, a document can be converted

to a binary vector, assigning the value 1 if the feature-word appears in the document

or 0 in the case of no appearance.

The bag-of-words model is a simplified version of the vector representation, in which

each document is represented by a batch of its words, ignoring grammar and word

order, but preserving the number of appearances of words in the document.
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Figure 3.1: Vector Representation of Visual Concepts Annotations

During the preprocessing phase of our study, documents are processed to form a bag-

of-words model vector representation since the word sequence, which are the visual

concept annotations associated with lifelog images, does not show a specific order

of appearance in our data. In our case, however, because every object is stated only

once in the list of visual concept annotations, there is no word count either. Hence,

the bag-of-words representation results in a set of binary vectors having the size of

the vocabulary of image annotations.

A simple sketch of the vector representation is available in Figure 3.1.

3.1.2 Support Vector Machine (SVM)

SVMs were first introduced by Vapnik and Cortes in [25] in 1995. They have been a

significant text classifier since they were shown to achieve substantial improvements

in text classification by Joachims in 1998 [26].

The idea behind SVM is to find a hypothesis h that will minimize the upper bound

on the true error, i.e. the probability of error on a randomly selected sample from the

dataset, by efficiently and effectively controlling the Vapnik-Chervonenkis Dimen-

sion (VC-Dimension) of the hypothesis space. The VC-Dimension of a function F is

defined as the cardinality of the largest dataset that can be shattered by F [26].
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Figure 3.2: Structure of A Simple Perceptron

SVMs can learn linear bounding functions in the simplest form; however, more com-

plex threshold functions can be learned by simply introducing the proper kernel func-

tion [26].

Sigmoid function, radial basis function (RBF) and polynomial function are the kernel

options which are trained and used in this study together with the linear SVM.

3.1.3 Multilayer Perceptron (MLP)

MLP is a class of fully connected feed-forward artificial neural network, which should

be composed of at least three layers: one input layer, one output layer, and one or

several hidden layers. In the concept of a fully connected network here, each node is

connected to every single node in the following layer [27]. The structure of a simple

node, i.e. perceptron, is visualized in Figure 3.2.

In this study, an MLP model with two hidden layers is designed using ReLU (31) as

activation function between the hidden layers, and Softmax (32) in the output layer.

Additional dropout layers with a loss rate of 0.5 are inserted in order to avoid overfit-

19



ting; resulting in higher classification accuracy on the test data.

f(x) = max(0, x) (31)

g(x) =
ex∑m
i=0 e

xi
, i = 0, 1, 2, ...,m (32)

The structure of the proposed MLP model is shown in Figure 3.3. The model per-

formance is measured using categorical cross-entropy (33) as the loss function, and

accuracy as the performance metric for classification of minutes into activity classes.

CCE(y, ŷ) = −
N∑
i=0

M∑
j=0

(yij ∗ log(ŷij)) (33)

where;

y : Ground truth label

ŷ : Predicted label

M : Number of categories

N : Number of records

3.2 Image Classification

Image classification refers to the task of assigning an input image a class label from a

predefined set of categories according to its visual content, i.e. pixel values. Although

it is a simple task in nature, it has various practical applications. Moreover, a number

of different computer vision tasks (such as object recognition and segmentation) can

be reduced to the task of image classification. These are the main reasons why image

classification has been one of the core problems in the field of computer vision [28].

In this study, we analyze and use CNN and ResNet, which is a customized version of

CNN, models as a solution proposal for the image classification problem.
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Figure 3.3: The MLP model

3.2.1 Convolutional Neural Network (CNN)

CNN is a customized version of neural network which leverages three important ideas

that can help improve a machine learning system: sparse interactions, parameter shar-

ing and equivariant representations.

In traditional neural networks, every output unit interacts with every input unit. Con-

volutional networks, however, accomplish sparse connectivity by using kernels hav-

ing smaller size than the input. In this way, it becomes possible to detect small details

such as edges and corners within an image which consists of millions of pixels.

Parameter sharing refers to using the same parameter for more than one function in

a model. While each element of the weight matrix is used only once in a traditional

neural network, each member of the kernel is used at every position of the input in a

convolutional neural network, which results in reduced memory requirements of the

model.

The special form of parameter sharing in convolutional neural networks causes the

layer to gain the equivariance property, which means if the input changes, the output

will change in the same way. In other words, if an object in the input image is moved,

its representation will move the same amount in the output [29].
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Figure 3.4: A Symbolic Representation of Max-Pooling

CNNs benefit from the assumption of the input having grid-like topology, and con-

struct a model which will process the input more efficiently by making use of convo-

lution (34) and pooling (See Figure 3.4 for a symbolic representation of max-pooling)

operations at one or several layers of the network [30].

(f ∗ g)[n] =
∞∑

m=−∞

f [m]g[n−m] (34)

In this study, we use a common CNN structure to learn activities from grayscale and

RGB color images. The proposed CNN model consists of 3 convolutional layers, 2 of

which are followed by a max-pooling layer. After the last max-pooling layer, image

matrices are flattened into one-dimensional vectors. Following the flatten layer, 2

dense layers are added to increase the model depth. ReLU (31) is the activation

function which is used in each layer of the model, except for the output layer. In the

output layer, Softmax (32) is used as the activation function. In addition, 3 dropout

layers are inserted into the model with the purpose of avoiding overfitting.

The structure of the proposed CNN model is visualized in Figure 3.5. Similar to

our methodology for text-based classification using MLP, we evaluate the model per-

formance using categorical cross-entropy (33) as the loss function, and classification

accuracy as the performance metric.
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Figure 3.5: The CNN Model
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3.2.2 Residual Neural Network (ResNet)

Unlike traditional neural networks, in which each node is connected to nodes in the

next layer only, in a residual block of the ResNet model, each layer feeds the next

layer together with more nodes in subsequent layers. The residual learning method

increases depth and complexity of the learning network, which is shown to consider-

ably improve the learning performance in visual recognition tasks [31].

The residual neural network we use in this study is comprised of a series of identity

blocks (See Figure 3.6) and convolution blocks (See Figure 3.7), which are stacked

on top of each other to obtain a 50 layer learning model [31]. The model, which is

pretrained on the ImageNet dataset [1], is fine-tuned on the NTCIR Lifelog dataset,

and classification performance is evaluated using categorical cross-entropy (33) as

the loss function, and classification accuracy as the performance metric.

3.3 Learning from Image and Text Data

In the version of the NTCIR Lifelog dataset which is used in this study, approxi-

mately 50% of the available records have both text and image dimensions, so we have

an intuition that we could create a combined artificial neural network which will ex-

pect two inputs, the first one being textual input and the second one as visual input,

and learn from the two dimensions together on a single model to increase classifi-

cation performance. For this purpose, we extract layers before the Softmax layer

from the best performing text and image classifiers, which are MLP and ResNet-50

respectively, and concatenate them at the merged layer of the new combined network

structure. The resulting learning model is visualized in Figure 3.8. We use categorical

cross-entropy (33) loss to train the model and accuracy as the performance metric.

3.4 Handling Missing Values

In the NTCIR Lifelog dataset version which is used in this study, there exist records

of 4 categories:
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Figure 3.6: Symbolic Representation of An Identity Block
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Figure 3.7: Symbolic Representation of A Convolution Block
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Figure 3.8: Structure of the Combined Learning Model
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1. Images with annotations and corresponding minute record from the dataset

2. Images without annotations, with the corresponding minute record from the

dataset

3. Annotations, with the corresponding minute record from the dataset, but image

file not provided

4. Minute records without images or annotations

The combined learning model we propose in Section 3.3 expects both image and text

data to be provided for each record, which falls into the 1st category. Our study is

not capable of classifying records from the 4th category because there is no image or

text data; however, we could propose a classifier which can learn activity classes from

records of the other 2 categories. To this end, we first describe the naive method to

predict activities in the presence of missing modalities. Next, we introduce the multi-

loss combined model which can learn from text and image data together and handle

missing modalities thanks to the proposed custom loss function.

3.4.1 Naive Method for Activity Prediction

In the naive method for activity prediction, we train a text-based classifier (MLP), an

image classifier (ResNet-50) and a combined classifier on separate training sessions.

Next, we determine the proper prediction model for every single test record on run-

time according to the nature of the record (See Figure 3.9). In other words, if current

test record has only text data as in the 3rd category records, we predict the activity for

the record using text-based classifier. Similarly, if the test record has only image data

like a 2nd category record would have, we use ResNet image classifier. We use the

combined classifier for prediction only if both text and image data are available for

the test record, i.e. records from the 1st category.

Prediction performance of the naive method is calculated as the average classification

accuracy of the three classifiers.
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Figure 3.9: Symbolic Representation of the Naive Prediction Method

3.4.2 Multi-Loss Combined Model

The naive method for activity prediction has the drawbacks that we need to deal with

training and fine tuning of the three learning models separately, and manually inter-

fere in the testing to determine the right classifier.

In order to overcome these difficulties, we propose the multi-loss combined learn-

ing model, which is a multi-input and multi-output model, which takes images and

annotation vectors as input, and has two intermediate and one final output (See Fig-

ure 3.10)

In this model, in order to compensate the absence of images as in the 3rd category

records, a zero-image, i.e. an image of the same shape as other input images having

all pixels set to zero, is fed to the model. Similarly, in case of absence of annotations

as in the 2nd category, a zero-vector having the size of the number of words in the

vocabulary of annotations is fed to the MLP sub-section of the model.

It is necessary to prevent the model from learning from zero-input as it does not con-

tain any valuable information for the record being processed. To this end, while we
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Figure 3.10: Structure of the Multi-Loss Combined Model
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use categorical cross-entropy (33) as the loss function for the final output, we in-

troduce a masked version of the categorical cross-entropy, which makes use of the

input to create the mask, as loss function for the two intermediate outputs (See Equa-

tion (35) for the masked loss function devised for the ResNet-50 image classifier, and

Equation (36) for the masked loss function of MLP text-based classifier).

The masks in Equations (37) and (38) ignore the contribution of the input record to

the loss function if all of the values in the record are equal to zero, i.e. it is a zero-

image or zero-vector. By this masks, we are able to safely feed zero-records in place

of missing values.

Loss1(x, y, ŷResNet) =−
N∑
i=0

(c(xi) ∗
M∑
j=0

(yij ∗ log(ŷResNet,ij))) (35)

Loss2(t, y, ŷMLP ) =−
N∑
i=0

(c(ti) ∗
M∑
j=0

(yij ∗ log(ŷMLP,ij))) (36)

c(xi) =

1, if sum(xi) > 0

0, otherwise
(37)

c(ti) =

1, if sum(ti) > 0

0, otherwise
(38)
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where each record can be represented as a tuple r;

r =(x, t, y, ŷResNet, ŷMLP , ŷ)

x : Image input

t : Text input

y : Ground-truth label

ŷResNet : Prediction generated by ResNet-50 sub-section of the model

ŷMLP : Prediction generated by MLP sub-section of the model

ŷ : Prediction generated by the complete model

M : Number of categories

N : Number of records
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CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 Environment Setup

Platforms, software, and libraries used for the development of our approach are listed

below:

• Programming Languages: Java programming language (JDK 1.8) is preferred

in the data preprocessing phase because of file I/O and database facilities, and

object-oriented nature. In the learning phase, Python language is used because

it provides a variety of library support for image processing and machine learn-

ing studies.

• Database Management Systems: The data are stored in a MySQL relational

database and a MongoDB NoSQL database with the purpose of better data

analysis on the lifelog dataset.

• Computer Vision Libraries: OpenCV is used for importing and reshaping im-

ages in the Python environment.

• Neural Network Libraries: Keras with Tensorflow support is used as the plat-

form to design, train and test deep neural networks for classification.

• Data Analysis and Machine Learning Libraries: Scikit-learn library is used to

process data and apply machine learning algorithms.

• Development Environment: Java programming is done on IntelliJ IDEA Com-

munity Edition. For Python programming, PyCharm IDE is used for small-size

33



Figure 4.1: The Object Oriented Model

calculations, whereas learning algorithms which require high-performance cal-

culation are run on Google Colab environment with GPU support.

4.2 Data Analysis and Preprocessing

In the NTCIR Lifelog dataset, the main component is the user. Each user is defined

by a list of days, each of which is then defined by a list of minutes, in addition to

several daily measurements. Each minute is defined by images taken at that minute,

together with additional minute-based measurements and details which can be seen

in Figure 1.3. From this point of view, the NTCIR Lifelog dataset can be considered

as an object-oriented model. Our first effort is therefore to extract an object-oriented

model, whose structure is illustrated in Figure 4.1, from the XML document describ-

ing the dataset. Next, this model is saved to MySQL and MongoDB databases with

the purpose of better data analysis and summarization.

During our efforts to understand the dataset, we realize that the dataset has a lot

of missing values, so it is necessary to analyze and preprocess the data to extract

significant features. A summary of the results of the numerical analysis of the dataset

is given in Table 4.1.

The figures extracted from the numerical analysis and the results of our preliminary

research on recent studies have led us to search for a solution for the problem of
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Table 4.1: Numerical Analysis of the NTCIR Lifelog Dataset

Feature Value

Number of users 2

Number of days 90

Number of minutes (per day) 1440

Number of minutes (total) 129 600

Minutes with location information 104 118

Minutes with activity definition 11 041

Minutes with body measurements 90 000 (Approx.)

Minutes with images 70 000 (Approx.)

Minutes with music information 763

Number of activity definitions 5

Number of image annotations 361

Frequency of image annotations Ranges from 2 to 4000

Size of the dataset on disk 26.5 GB (Approx.)

Image dimension 1024 x 768 pixels

Total number of images 110 000 (Approx.)

Number of annotated images 70 000 (Approx.)

Number of minutes having both activity definition and

annotated images

9058

35



Table 4.2: Activities and Frequencies in the NTCIR Lifelog Dataset

Activity Frequency

Airplane 994

Cycling 2

Running 1

Transportation 5743

Walking 2318

classifying minutes into activity classes by using images and image annotations in

the NTCIR Lifelog dataset.

In this task, three approaches are possible:

1. Text-based classification, i.e., using image annotations with activity definitions

to classify the images

2. Image classification, i.e., using original images with activity definitions for

classification

3. Multimodal classification, i.e. using images and image annotations together for

classification

In the dataset, 5 activity classes are available with frequencies given in Table 4.2.

Among these classes, cycling and running are eliminated from the dataset in the early

stages because they have very low frequencies (2 and 1 records, respectively). Thus,

during our initial experimentation, activity classification is performed based on three

activity classes; namely airplane, transportation and walking.

One major problem regarding the available activity classes is that the three classes

happen to be inadequate in expressing lifeloggers’ daily life, which can be inferred

from the figures in Table 4.1, as well. While the total number of minutes is ap-

proximately 130 000, the number of minutes with activity definition is almost 11 000,

which results in a ratio of 0.085, i.e. the three (or five) activity classes can represent

only 8.5% of the whole dataset.
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Figure 4.2: Activity Classes and Frequencies

The purpose of the lifelogging research is to provide insight on lifeloggers’ daily life,

so our research would be more substantive if the classification approach could be

generalized to a whole day of lifeloggers. With this initiative, we made an effort to

extend the available classification with more activity classes, so that it could better

represent daily life. We used the 16 activities which are specified in the definition of

the LADT task (See Section 1.3), so that our research progresses in parallel with the

NTCIR Lifelog research.

Finally, approximately 90 000 images are examined and manually assigned to the 16

activity classes, which requires an effort of approximately 200 person-hours. The

classified images are all taken from the images of the 1st user, and span a period of 60

days. The frequency distribution of activities is shown in Figure 4.2, and Table 4.3

gives a numerical summary of the 16-class version of the data.

The experimentation in this thesis, therefore, has two stages of classification. First,

we train and evaluate the performance of classification algorithms on the original 3-

class data. Next, we apply the same set of learning methods to the manually-classified

16-class data. Hence, we have a chance to observe the effect of increasing input size

on the performance of the proposed learning methods.
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Table 4.3: Numerical Analysis of the Improved Version of the NTCIR Lifelog Dataset

Feature Value

Size of the dataset on disk 1.5 GB (Approx.)

Image dimension 200 x 200 pixels

Number of users 1

Number of days 60

Number of activity definitions 16

Number of image annotations 570

Frequency of image annotations Ranges from 1 to 40 000

Number of records with activity definition 90 000 (Approx.)

Number of images with annotations 47 000 (Approx.)

Number of images without annotations 42 000 (Approx.)

Number of records with annotations, but no image file 96

Number of records without images or annotations 40 000 (Approx.)

For the training of the text-based classifier, image annotations are processed and trans-

formed into a vector representation, which is described in detail in Section 3.1.1.

Variable values for the representation in Figure 3.1 are realized as in Table 4.4 for the

case of 3-class classification, whereas they are upgraded as in Table 4.5 for 16-class

classification.

For the training of the image classifier, dataset images are resized to 200× 200 pixels

due to limited resources, and with the purpose of decreasing training and test duration.

Table 4.4: Values of Variables for 3-Class Classification

Variable Value

n 9055

k 356

activities

airplane

transportation

walking
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Table 4.5: Values of Variables for 16-Class Classification

Variable Value

n 90 753

k 570

activities

cooking

creative activities

eating

f2f interacting

gaming

houseworking

physical activities

praying

reading

relaxing

shopping

socialising

time with children

traveling

using a computer

other activities
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In the following sections, the two problem settings, namely 3-class classification and

16-class classification, and our experimentation with different learning algorithms

are briefly described. The classification performance of the algorithms is then stated

comparatively in the Results section (Section 4.6).

4.3 Training and Test Data

In the context of this study, we have two different problem settings, namely 3-class

classification and 16-class classification. The two versions of the dataset, which are

used for training and test on these different settings, both have missing modalities at

non-negligible ratios.

With this information on mind, we generated two different test sets for each of the two

problem settings, which we call complete and incomplete test sets. In the complete

test set, all of the records have both image and text data available. On the other hand,

incomplete test set has missing values in different modalities. A record we take from

the incomplete test set could have both image and text data, only image data missing

annotations, or only text data available. Our experiments run on both of these test sets

for each learning model for both of the 3-class and 16-class classification problems.

With the goal of getting the most out of the available data, we train our models using

the largest possible subset of the dataset for each learning model. To be more specific,

after we separate the test sets from the dataset, we obtain the training data which has

missing values in different modalities. In order to train the text-based classifier, we

use all of the training records which have image annotations. Similarly, we train

image classifiers using all of the training data having images. The combined model

is trained using records which have both image and image annotations. Finally, we

are able to feed all records which have at least one dimension, i.e. only image, only

image annotations or both, to the multi-loss combined model for training.

A numerical summary of the training and test sets is available in Table 4.6.
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Table 4.6: Number of Records in Training and Test Sets

Dataset Content Type 3-Class Classification 16-Class Classification

Training Data

Text-Only 60 58

Image-Only 5143 29 690

Image and Text 6329 32 966

Total 11 532 62 714

Test Data
Complete Data 2717 14 123

Incomplete Data 4943 26 878

4.4 3 - Class Classification

As explained in Section 4.2, the NTCIR Lifelog dataset has 5 activity classes, 2 of

which are eliminated due to very low frequency. In this problem setting, our experi-

mentation is carried out according to the details in Tables 4.4 and 4.6.

Results of the experimentation is presented in Section 4.6.

4.4.1 Text-Based Classification

Text-based classification is performed by using image annotations as input in the form

of a binary vector, and the activity class as the output to classification tools. We use

the SVM method and an MLP model for the text-based classification task. Details of

the proposed methods are stated in Section 3.1. Parameter values for different SVM

kernels are determined using cross-validation method.

4.4.2 Image Classification

Image classification is performed using all of the available images which are asso-

ciated with an activity class in grayscale and RGB color modes. Image files are

imported and processed using Python’s OpenCV library, and they are given as input

to the custom CNN and ResNet-50 models, details of which are given in Section 3.2.
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4.4.2.1 Classification Using Grayscale Images

Input images are converted into grayscale images for faster training and with the pur-

pose of understanding the effect of color dimension in image classification. Converted

images are then fed to the CNN model.

4.4.2.2 Classification Using RGB Images

Input images are fed to the CNN model without being converted to grayscale im-

ages. The model is trained using RGB images as input, and activity classes as output.

Classification accuracy of the model is recorded.

The common CNN structure which is used for learning from grayscale and RGB

images is introduced and described in detail in Section 3.2.1.

4.4.2.3 Classification using ResNet-50 Architecture

As a more structured classification approach, input images are fed into a sample of

ResNet-50 architecture, the structure of which is described in Section 3.2.2.

The training time for the ResNet-50 was longer than the regular CNN model, as

a result of the depth and complexity of the network. Correspondingly, ResNet-50

appeared to perform better classification than regular CNN models, which will be

shown in the following sections (Section 4.6).

4.4.3 Multimodal Classification

With the purpose of using image and text dimensions of data together to train a single

learning model, we use a naive activity prediction method, and two combined neural

networks, which are described progressively in Sections 3.3 and 3.4.
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4.4.3.1 Combined Learning Model

The combined neural network model expects one image and one text input, and pre-

dicts user activity as output. We train the combined model using records which have

both image and image annotations available. This is the reason why the size of the

training dataset appears to be relatively smaller than the other learning models, which,

in turn, affects the classification performance of the model.

4.4.3.2 Naive Prediction Method

In the naive method for predicting activities in the presence of missing values, we use

the weights of MLP, ResNet-50 and combined model which were previously trained

on separate training sessions. Next, for each record in the test set, we determine the

appropriate prediction model according to the content of the record with a simple if-

else statement. Thus, the performance of the naive prediction method depends heavily

on the performance of the three learning models.

4.4.3.3 Multi-Loss Combined Model

As it can be inferred from the explanations above, both the combined model and the

naive method have several disadvantages: The combined model is unable to handle

missing input modalities, and the naive method requires manual interference at many

different stages.

In order to be able overcome these drawbacks, we propose the multi-loss combined

learning model, which expects one image and one text input, but can continue learning

when one of the two inputs are not available thanks to the proposed custom-loss

function. By this way, we can use a single model to learn from text and image data

simultaneously, and still have a large training set.

When we compare the prediction performance of the multi-loss learning model with

the performance of the naive model, we observe that results of our experimentation

with the proposed multimodal and multi-loss model are promising on the NTCIR

Lifelog dataset.
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4.5 16 - Class Classification

In this problem setting, annotated lifelog images which are manually assigned to 16

activity classes are used to train artificial neural networks. We use the same set of

learning models which are used in 3-class classification, and have the opportunity to

observe the effect of increasing data size on performance of the proposed learning

models .

4.6 Experimentation Results

Results of our experimentation with 3-class and 16-class data are presented in Ta-

ble 4.8 and Table 4.9, respectively. Number of trainable parameters for learning mod-

els is specified in Table 4.7 as a reference to the size of the models. In addition, we

provide confusion matrices of complete and incomplete test sets in the two problem

settings in Figures 4.3, 4.4, 4.5 and 4.6.

As we can infer from the experimentation results, non-linear models are able to show

better performance than linear models in classifying image annotations. However, im-

age classification algorithms perform better than text-based classification algorithms

in our dataset. The color dimension is a factor which can increase classification ac-

curacy. In addition, as the depth and complexity of the network increase, we can

observe a significant increase in the performance of classification. Specifically, the

classification accuracy of the ResNet-50 architecture on the NTCIR Lifelog dataset is

considerably high.

As we can see in the results of both 3-class and 16-class problem settings, a combina-

tion of the image and text classification algorithms results in significant improvement

in classification accuracy.

Finally, the model which we propose with a masked loss function has the advantage of

both allowing learning in the presence of missing values and showing high accuracy in

classifying lifelog records into activity classes. The proposed model performs better

than the naive prediction method both for complete and incomplete test data.
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Table 4.7: Number of Trainable Parameters

Algorithm
Number of Trainable Parameters

3-Class Classification 16-Class Classification

Linear SVM 818 748 10 158 960

SVM with Sigmoid Kernel 1 011 161 11 354 560

SVM with RBF Kernel 1 003 941 10 151 120

SVM with Polynomial Kernel 877 591 10 279 360

MLP 27 523 41 104

CNN (Grayscale Images) 9 465 897 9 466 768

CNN (Color Images) 9 466 473 9 467 344

ResNet-50 23 540 739 23 567 376

Combined Model 23 841 475 23 855 888

Multi-Loss Combined Model 23 843 593 23 885 488

We can infer from the confusion matrices that the classes which have relatively low

frequencies are responsible for the decrease in classification performance. Thus, some

of the 16 activity classes could be redefined, eliminated or merged to be able to obtain

more accurate predictions.

In addition, the body measurements and location data from the NTCIR Lifelog dataset

could be included in our final learning model for better prediction.
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Table 4.8: Classification Performance on 3-Class Data
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Image

Annotations
5111 1278

Linear SVM 0.837 0.566

SVM with Sigmoid Kernel 0.832 0.563

SVM with RBF Kernel 0.848 0.572

SVM with Polynomial Kernel 0.850 0.574

MLP 0.850 0.574

Grayscale

Images

9178 2294 CNN 0.884 0.881

Color Images 9178 2294
CNN 0.892 0.890

ResNet-50 0.923 0.920

Images and

Annotations

5064 1265 Combined Model 0.909 0.891

- - Naive Prediction 0.909 0.914

9226 2306 Multi-Loss Combined Model 0.932 0.927
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Table 4.9: Classification Performance on 16-Class Data
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26 420 6604

Linear SVM 0.657 0.384

SVM with Sigmoid Kernel 0.635 0.372

SVM with RBF Kernel 0.662 0.386

SVM with Polynomial Kernel 0.657 0.384

MLP 0.663 0.406

Grayscale

Images

50 118 12 538 CNN 0.742 0.747

Color Images 50 118 12 538
CNN 0.770 0.774

ResNet-50 0.806 0.808

Images and

Annotations

26 376 6590 Combined Model 0.817 0.805

- - Naive Prediction 0.817 0.814

50 164 12 550 Multi-Loss Combined Model 0.856 0.857
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Figure 4.3: Confusion Matrix for 3-Class Complete Test Set
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Figure 4.4: Confusion Matrix for 3-Class Incomplete Test Set
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Figure 4.5: Confusion Matrix for 16-Class Complete Test Set
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Figure 4.6: Confusion Matrix for 16-Class Incomplete Test Set
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CHAPTER 5

CONCLUSION

In this thesis study, the NTCIR Lifelog dataset is described and analyzed from the

perspective of relationships between images and activity definitions. The original

version of the dataset has 3 activity classes, namely airplane, transportation and walk-

ing. With the intuition that these activities are inadequate for describing ligeloggers’

whole life, we make an effort to manually classify a subset of the dataset into more

generalized 16 activity classes. Next, we carry out a series of experiments on both the

original 3-class data and manually classified 16-class data.

In order to classify minute records from lifelog data into activity classes, the im-

ages are used with image annotations, with reference to the text-based classification

method, and as original images, using the image classification method. Different clas-

sification and learning algorithms are trained on input images and annotations. Next,

we propose a combined artificial neural network, which takes both images and image

annotations as input and learns from the two dimensions together for classification.

In both of the two different versions of the dataset, there are several records missing

image or text dimension. With the purpose of handling missing values in the data,

we propose a masked loss function to be used at intermediate levels of the combined

learning model. We feed zero-vector as input in place of missing dimensions. While

we use categorical cross-entropy loss to evaluate the final loss, our masked loss func-

tion calculate the loss at intermediate levels by ignoring the effect of the record if it

is a zero-vector.

Performance results show that using original images results in better performance

than using annotations for the classification problem. In other words, having color
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images and image annotations available on hand, better classification of images is

obtained by using color images itself on the NTCIR Lifelog dataset.

The combined model, which learns from images and annotations together on a single

model, usually performs better than both of the sub-components which learn sepa-

rately from a single dimension. However, the presence of missing input modalities

negatively affect the performance of the combined model by limiting the size of the

training data.

Finally, we propose a masked loss function which makes it possible to learn from

multimodal data in the presence of missing values in some of the dimensions. The

proposed multi-loss combined model is capable of learning from image and text data

simultaneously even when there are missing values within the data. The prediction

performance of the proposed model is better the naive activity prediction model which

can be used in presence of missing values. It also shows better performance than well-

known learning models which learn from single dimension.

We suggest that the definitions of the 16 activity classes could be revised, and the body

measurements and location data could be included in the learning model. These nu-

merical observations definitely hide lots of valuable information inside, which should

be investigated and revealed in some future studies.
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