
ATTENTIVE DEEP REGRESSION NETWORKS FOR REAL-TIME VISUAL
FACE TRACKING IN VIDEO SURVEILLANCE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SAFA ALVER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JULY 2019

Approval of the thesis:

ATTENTIVE DEEP REGRESSION NETWORKS FOR REAL-TIME
VISUAL FACE TRACKING IN VIDEO SURVEILLANCE

submitted by SAFA ALVER in partial fulfillment of the requirements for the degree
of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ilkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Uğur Halıcı
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering Department, METU

Prof. Dr. Uğur Halıcı
Electrical and Electronics Engineering Department, METU

Prof. Dr. Alptekin Temizel
Modelling and Simulation Department, METU

Assist. Prof. Dr. Elif Vural
Electrical and Electronics Engineering Department, METU

Assist. Prof. Dr. Tolga İnan
Electrical and Electronics Engineering Department, Çankaya Uni.

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: SAFA ALVER

Signature :

iv

ABSTRACT

ATTENTIVE DEEP REGRESSION NETWORKS FOR REAL-TIME
VISUAL FACE TRACKING IN VIDEO SURVEILLANCE

Alver, Safa
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Uğur Halıcı

July 2019, 113 pages

Visual face tracking is one of the most important tasks in video surveillance systems.

However, due to the variations in pose, scale, expression and illumination and the

occlusions in cluttered scenes, it is considered to be a difficult task. To address these

challenges, in this thesis, we propose an end-to-end tracker named Attentive Face

Tracking Network (AFTN) that is build on top of the GOTURN tracker. Additionally,

to overcome the scarce data problem in visual face tracking, we also provide bounding

box annotations for the publicly available ChokePoint dataset and thus make it avail-

able for further studies in face tracking under surveillance conditions. Our test results

show that our proposed tracker outperforms all the other trackers that are primitive

versions of itself. Furthermore, it runs at speeds that are far beyond the requirements

of real-time tracking.

Keywords: Channel Attention, Convolutional Neural Networks, Deep Learning, Video

Surveillance, Visual Face Tracking, Visual Object Tracking

v

ÖZ

VİDEOLU GÖZETİMDE GERÇEK ZAMANLI GÖRSEL YÜZ TAKİBİ İÇİN
DİKKAT ODAKLAMALI DERİN REGRESYON AĞLARI

Alver, Safa
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Uğur Halıcı

Temmuz 2019 , 113 sayfa

Videolu gözetim sistemlerinde gerçekleştirilen en önemli işlerden birisi görsel yüz

takibidir. Ancak poz, ölçek, ifade ve aydınlatmadaki değişiklikler ve karışık sahne-

lerdeki kapanmalar nedeniyle, zor bir iş olarak kabul edilir. Bu zorlukların üstesinden

gelmek için, bu tez çalışmasında, GOTURN takipçisinin üzerine inşa edilen Dikkat

Odaklamalı Yüz Takip Ağı (DOYTA) adlı uçtan uca bir takipçi öneriyoruz. Ek olarak,

görsel yüz takibinde mevcut olan yetersiz veri probleminin üstesinden gelmek için ka-

muya açık ChokePoint veri kümesinin sınırlayacı kutu açıklamalarını sağlıyoruz ve

böylece gözetim koşulları altında yüz takibi konusunda daha ileri çalışmalar için kul-

lanılabilir hale getiriyoruz. Test sonuçlarımız, önerilen takipçimizin, ilkel sürümleri

olan diğer tüm takipçileri geride bıraktığını gösteriyor. Ayrıca, gerçek zamanlı takip

gereksinimlerinin çok ötesinde olan hızlarda çalışmaktadır.

Anahtar Kelimeler: Kanal Odaklaması, Evrişimsel Sinir Ağları, Derin Öğrenme, Vi-

deo Gözetimi, Görsel Yüz Takibi, Görsel Nesne Takibi

vi

To my beloved family and beautiful country...

vii

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor Prof. Dr. Uğur Halıcı for her support, guid-

ance, motivation and patience throughout this thesis study. Her easygoing attitude has

helped me a lot in exploring the different areas of machine learning during my M.Sc.

studies.

But must of all, I would like to express my gratitude to my family for their never-

ending support and the freedom they gave me to pursue my dreams. Thank you. My

father, Prof. Dr. Ümit Alver, also probably deserves a co-supervision credit for the

many hours he spent listening to my ideas and for the inspiration he has been to me

throughout my whole life.

viii

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGEMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF ABBREVIATIONS . xx

CHAPTERS

1 INTRODUCTION . 1

1.1 Problem Definition . 2

1.2 Contributions . 3

1.3 Outline . 4

2 BACKGROUND ON DEEP LEARNING 5

2.1 A Brief Overview of Machine Learning 5

2.2 A Brief History of Neural Networks 7

2.3 Neural Networks . 11

2.3.1 Activation Functions . 13

2.3.2 Neural Networks as Universal Function Approximators 15

ix

2.3.3 Deep Networks against Shallow Networks 17

2.4 Optimization in Neural Networks 18

2.4.1 Loss Functions . 18

2.4.2 Gradient Computation in Neural Networks 19

2.4.2.1 The Finite Differences Method 19

2.4.2.2 Backpropagation . 20

2.4.3 Gradient-Based Optimization Algorithms 24

2.4.3.1 Stochastic Gradient Descent 24

2.4.3.2 Stochastic Gradient Descent with Momentum 25

2.4.3.3 RMSProp . 25

2.4.3.4 Adam Optimizer . 26

2.4.3.5 Choosing the Right Optimization Algorithm 27

2.4.4 Training Neural Networks - The Overall Picture 27

2.5 Convolutional Neural Networks . 28

2.5.1 Convolutional Layer . 30

2.5.2 Pooling Layer . 35

2.5.3 Fully-Connected Layer . 36

2.6 Practical Tricks for Training Neural Networks 37

2.6.1 Data Preprocessing . 37

2.6.2 Weight Initialization . 38

2.6.3 Regularization . 38

2.6.4 Batch Normalization . 39

2.7 Transfer Learning . 41

x

3 LITERATURE SURVEY . 43

3.1 Visual Object Tracking . 43

3.1.1 Traditional Methods . 43

3.1.2 Deep Learning Based Methods 45

3.2 Attention Mechanisms in Visual Object Tracking 49

3.3 Visual Face Tracking in Video Surveillance 50

3.4 The Place of Our Tracker . 52

4 PROPOSED METHOD . 55

4.1 Network Architecture . 55

4.2 Channel Attention Mechanism . 58

4.3 Offline Training . 59

4.4 Online Tracking . 60

5 EXPERIMENTAL RESULTS AND DISCUSSION 63

5.1 Dataset . 63

5.2 Evaluation Metrics . 67

5.2.1 Center Error . 68

5.2.2 Region Overlap . 69

5.2.3 Tracking Length . 70

5.2.4 Failure Rate . 70

5.2.5 The Two Complementary Measures: Accuracy and Robustness 70

5.3 Test Network Architectures . 74

5.4 Testing Procedure . 78

5.5 Quantitative Analysis . 78

xi

5.5.1 Effect of a Fusion Network in the Regression Network 79

5.5.2 Effect of the Low Level Features 79

5.5.3 Effect of All Level Features 80

5.5.4 Effect of the Channel Attention Mechanism 83

5.5.5 Effect of Using Only the Current Frame 83

5.5.6 The Overall Comparison of the Trackers 85

5.6 Speed Analysis . 86

5.7 Which Tracker to Use? . 88

5.8 Qualitative Analysis: Learning to Select Useful Features 89

5.9 Comparison with Other Surveillance Face Trackers 90

6 CONCLUSION . 95

REFERENCES . 99

APPENDICES

A ARCHITECTURAL DETAILS OF THE TEST NETWORKS 111

xii

LIST OF TABLES

TABLES

Table 5.1 The two distinct groups G1 and G2 in the baseline verification pro-

tocol for the ChokePoint dataset. 65

Table 5.2 Architectural details of all the test networks. 75

Table 5.3 Accuracy and robustness values of all the test trackers. The overall

score is obtained by averaging the accuracy and robustness values. 87

Table 5.4 Speed values of all the test trackers. 88

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 Left: A random 28×28 hand-written image of 3 from the famous

MNIST dataset. Right: The same image that is viewed by a computer

which is just a bunch of numbers on a grid. 6

Figure 2.2 Left: Simplified drawing of a biological neuron. Right: The

artificial neuron which is a simplified model of the biological neuron.

The weights wi of the artificial neuron models the synaptic connection

strengths between axon terminals and dendrites of the biological neuron. 8

Figure 2.3 A perceptron with two inputs. 9

Figure 2.4 Left: A linearly separable problem. Middle: A non-linearly

separable problem. Right: The XOR problem that cannot be solved by

a linear line. At least one hidden layer is required to solve it. 10

Figure 2.5 An example feed-forward neural network architecture with two

hidden layers each having sigmoid activation functions. 11

Figure 2.6 Common activation functions used in neural networks. 13

Figure 2.7 Gradients of common activation functions used in neural net-

works. Notice how the gradients of the sigmoid and the tanh vanish as

their input moves away from zero. 14

Figure 2.8 Left: Two non-weighted offset sigmoid hidden units forming a

local bump function around −4. Right: Three weighted local bump

functions f1, f2 and f3 approximating an arbitrary function f 16

Figure 2.9 The same bird in three different parts of an image. 29

xiv

Figure 2.10 An example CNN architecture with two convolutional layers fol-

lowed by a fully-connected layer. 30

Figure 2.11 An example convolution operation where a 3×3 kernel slides

across a 4×4 input feature map to produce a 2×2 pre-feature map.

There is no zero-padding and the stride is 1. 31

Figure 2.12 An example convolution operation where a 3×3 kernel slides

across a zero-padded 3×3 input activation map to produce a 3×3 output

pre-feature map. The zero-padding preserves the input’s dimensional-

ity. If no padding was used, the output would be 1×1. 33

Figure 2.13 The effect of stride on the computation speed. Top Row: The

kernel moves one step at a time, i.e., s = 1. Bottom Row: The kernel

moves two steps a time, i.e., s = 2. 34

Figure 2.14 The effect of zero-padding on the output size. Top Row: The

kernel moves on the p = 0 padded input. Bottom Row: The kernel

moves on the p = 1 padded input. 34

Figure 2.15 An example max pooling operation where a 2×2 window slides

across a 4×4 input feature map with stride 2 to produce the 2×2 output

feature map. 35

Figure 2.16 Left: Data before preprocessing. Middle: Data after mean sub-

traction. Right: Data after normalization. 38

Figure 3.1 Methods for single-target visual object tracking. 44

Figure 4.1 The network architecture of the proposed AFTN. After the fea-

tures are extracted by the FENs, they are passed as input to the CANs

to get weighted. After the explicit weighting, the weighted features are

concatenated in the channel dimension via the FAN and then they are

passed to the RN for regressing the bounding box annotations. 56

xv

Figure 4.2 The soft channel attention mechanism that generates the weight-

ing coefficient ωi for the i-th channel. After Channel i is passed through

an MLP with a sigmoid output, it gets weighted by its own weight co-

efficient ωi and then it is passed as input to the next module in the tracker. 58

Figure 4.3 Two random consecutive frames from the ChokePoint dataset.

The green box is the ground-truth bounding box of the previous frame

and the red boxes, twice the size of the green one, are the regions that

are cropped, resized and then fed into the network. 59

Figure 5.1 The original recording setup used for the ChokePoint dataset in

the portal 1 entering (P1E) scenario. 3 different cameras are used for

recording the entry of a subject from 3 different viewpoints. This 3

camera setting allows near-frontal face capture by at least one of the

cameras. Source: [118] . 64

Figure 5.2 Example shots from the ChokePoint dataset that show entering

and leaving scenarios from the two portals with various backgrounds.

While the recording environments of P1E, P1L and P2L are indoor, P2E

is recorded outdoor. Source: [118] . 65

Figure 5.3 Histogram for the video sequence lengths (in frames) in G1 and

G2. The number of bins is 50. G1 has an average of 95.6 and G2 has

an average of 77.1. 66

Figure 5.4 An illustration of the tracker’s predicted region overlapping with

the ground-truth region. 69

Figure 5.5 The correlation matrix for all of the evaluation metrics in the

study of C̆ehovin et al. Red regions are higher in value. 71

Figure 5.6 Two theoretical trackers visualized on an Accuracy vs. Robust-

ness plot. The closer the tracker is to the top-right corner, the better it

is. 72

xvi

Figure 5.7 True Positive vs. Region Overlap Threshold plot of an arbitrary

tracker. The filled blue area accounts for its accuracy. 73

Figure 5.8 Failure Rate vs. Reinitialization Threshold plot of an arbitrary

tracker. The filled green area accounts for its robustness. 73

Figure 5.9 The TP vs. ROT plot for theC5
no att/cp−C0−F 4 andC5

no att/cp−
C1 − F 3 trackers. The accuracy value of the trackers is given next to

their name in the legend. 79

Figure 5.10 The FR vs. RT plot for the C5
no att/cp−C0−F 4 and C5

no att/cp−
C1 − F 3 trackers. The robustness value of the trackers is given next to

their name in the legend. 80

Figure 5.11 The TP vs. ROT plot for theC5
no att/cp−C1−F 3 andC3,5

no att/cp−
C1 − F 3 trackers. The accuracy value of the trackers is given next to

their name in the legend. 81

Figure 5.12 The FR vs. RT plot for the C5
no att/cp−C1−F 3 and C3,5

no att/cp−
C1 − F 3 trackers. The robustness value of the trackers is given next to

their name in the legend. 81

Figure 5.13 The TP vs. ROT plot for theC3,5
no att/cp−C1−F 3 andC1,2,3,4,5

no att /cp−
C1 − F 3 trackers. The accuracy value of the trackers is given next to

their name in the legend. 82

Figure 5.14 The FR vs. RT plot for theC3,5
no att/cp−C1−F 3 andC1,2,3,4,5

no att /cp−
C1 − F 3 trackers. The robustness value of the trackers is given next to

their name in the legend. 83

Figure 5.15 The TP vs. ROT plot for theC1,2,3,4,5
no att /cp−C1−F 3 andC1,2,3,4,5

att /cp−
C1 − F 3 trackers. The accuracy value of the trackers is given next to

their name in the legend. 84

Figure 5.16 The FR vs. RT plot for theC1,2,3,4,5
no att /cp−C1−F 3 andC1,2,3,4,5

att /cp−
C1 − F 3 trackers. The robustness value of the trackers is given next to

their name in the legend. 84

xvii

Figure 5.17 The TP vs. ROT plot for the all of the test trackers. The accuracy

value of the trackers is given next to their name in the legend. The

trackers that do not use FEN-p are represented with dashed lines. 85

Figure 5.18 The FR vs. RT plot for the all of the test trackers. The accuracy

value of the trackers is given next to their name in the legend. The

trackers that do not use FEN-p are represented with dashed lines. 86

Figure 5.19 The A vs. R plot for all of the test trackers. 87

Figure 5.20 Entering and leaving scenarios of person 18 from P1. The leav-

ing scenario (P1L) contains more distracting objects in the background. 90

Figure 5.21 The average channel weight outputs of the AFTN network by

the attention mechanism for the same person with ID 18 in the video

sequences P1E_S4_C1 and P1L_S4_C1. Channels are sorted according

to their weights. There is no correspondence between channel numbers

for the two sequences. 91

Figure 5.22 The TP vs. ROT plot for the IVT, GOTURN, AFTN and AFTN-

c trackers. The accuracy value of the trackers is given next to their name

in the legend. 92

Figure 5.23 The FR vs. RT plot for the IVT, GOTURN, AFTN and AFTN-c

trackers. The accuracy value of the trackers is given next to their name

in the legend. 93

Figure A.1 The network architecture of the C5
no att/cp − C0 − F 4 tracker.

It has the same architecture with the GOTURN tracker. However, a

pretrained VGG-Face network is used for feature extraction rather than

an AlexNet. 111

Figure A.2 The network architecture of the C5
no att/cp− C1 − F 3 tracker. . . 112

Figure A.3 The network architecture of the C3,5
no att/cp− C1 − F 3 tracker. . . 112

Figure A.4 The network architecture of the C1,2,3,4,5
no att /cp− C1 − F 3 tracker. . 113

xviii

Figure A.5 The network architecture of the C1,2,3,4,5
att /cp− C1 − F 3 tracker. . 113

xix

LIST OF ABBREVIATIONS

1D 1 Dimensional

2D 2 Dimensional

AAC Area Above Curve

Adam Adaptive Moment Estimation

AUC Area Under Curve

CAN Channel Attention Network

CNN Convolutional Neural Network

FC Fully Connected

FAN Feature Adaptation Network

FEN Feature Extraction Network

FR Failure Rate

GOTURN Generic Object Tracking Using Regression Networks

LSTM Long Short-Term Memory

MLP Multilayer Perceptron

NN Neural Network

RMS Root Mean Square

RN Regression Network

RNN Recurrent Neural Network

ROT Region Overlap Threshold

RT Reinitialization Threshold

SGD Stochastic Gradient Descent

TP True Positive

VGG Visual Geometry Group

VOT Visual Object Tracking

xx

CHAPTER 1

INTRODUCTION

Video surveillance systems are widely deployed in both public and private places for

the purpose of verifying or recognizing the individuals of interest. However, most of

these systems are monitored by human operators and thus have problems in reliability

and scalability. Hence, an automated approach in security monitoring is required. In

these automated approaches, the faces of the individuals have to be first detected

and then tracked before the higher level recognition or verification tasks. Thus face

tracking is one of the crucial elements in automated video surveillance systems. Due

to the variations in pose, scale, expression and illumination and the occlusions in

cluttered scenes, it is considered to be a difficult task by itself.

While the current learning-based video surveillance face tracking systems [1] per-

form up to certain degrees, they cannot run at speeds that are required (>25 FPS)

for real-time tracking. Additionally, these learning-based methods cannot avoid the

drifting problem caused by learning the background or occlusion. Although a color

histogram-assisted face tracker proposed in [2] can perform real-time tracking (>100

FPS), it makes use of the semantically weak color information where any similarly

colored distractor around the face can lead to tracking the wrong target. Importantly,

none of the face trackers in these studies make use of the learned rich hierarchical

features that can serve very well in representing and thus tracking human faces under

various harsh conditions.

Most recently, deep learning based approaches has yielded significant performance

increase in a wide variety of computer vision tasks as image classification [3–5], ob-

ject detection [6], semantic segmentation [7–9], image question answering [10], face

verification [11], pose estimation [12], as well as object tracking [13–15]. Such great

1

successes of deep learning based approaches is attributed mostly to their generaliza-

tion capability, representation power and topological biases to exploit the structure of

the data. These properties make them very suitable and adaptable for a wide variety

of problems both in computer vision and other fields as natural language processing

and reinforcement learning.

Despite the difficulties and challenges present in face tracking and object tracking in

general, these deep learning based approaches have also shown state-of-the-art results

in the recent visual object tracking (VOT) challenges1. Starting from 2015, the deep

learning based trackers as MDNet [13], TCNN [16], SiamFC [15] and SiamRPN [17]

have performed among the top in the VOT challenges [18–21]. Further, the ones that

are trained in an offline manner can reach speeds that surpass the real-time tracking

requirements.

Motivated by this, we propose an end-to-end deep learning based method for the task

of visual face tracking under surveillance conditions. Evaluation results show that

our tracker outperforms all of the other trackers where the GOTURN tracker [14] is

used as a baseline. It also outperforms one of the best [1] surveillance face tracker

named Incremental Visual Tracking (IVT) [22] by a very large margin. Furthermore,

it runs at speeds (∼140 FPS or ∼180 FPS) that are very far beyond the requirements

of real-time tracking.

1.1 Problem Definition

In this thesis, we address the problem of face tracking under surveillance conditions

where the input is a sequence of raw video frames and the output is a tuple that

describes the location and size of the target’s bounding box for each of these frames.

More specifically, given the bounding box of a face in the first frame, the objective of

a tracker is to report the bounding box annotations in all of the following frames in the

video sequence. Different from the task of face detection where the face is located

independently in each frame, in face tracking, the previous location information is

1 The VOT challenges provide the visual object tracking community with a precisely defined and repeatable
way of comparing short-term trackers as well as a common platform for discussing the evaluation and advance-
ments made in the field of visual tracking.

2

also used as a prior for localizing the target. A good face tracker must not only

keep track of the face as long as they is present in the video frame, but it must also

do it well, i.e., the tracker’s predictions should match closely to the ground-truth

annotations since small errors in each frame can easily lead to a target loss.

1.2 Contributions

The main contributions of this thesis is as follows:

• Investigation of an end-to-end deep learning method for the task of visual

face tracking under surveillance conditions: We showed that an improved

end-to-end deep learning based generic object tracker that directly regresses

the bounding box annotations from raw video frames can be trained to track

faces under surveillance conditions. A thorough search of the relevant litera-

ture had yielded no published study on using deep learning methods that are

trained in a fully end-to-end manner for the task of visual face tracking in video

surveillance.

• An improved attentive network for real-time single-target visual object

tracking: We took the real-time single-target GOTURN tracker [14] as our

baseline and improved it using several useful extensions as using a fusion net-

work in the regression network, making use of the lower level features and

using a channel-wise attention mechanism for adaptive channel selection. Al-

though we have used this network to track faces, it can be used for any real-time

single-target visual object tracking task without further modification in the ar-

chitecture. It just needs to be trained in an offline manner with the domain

specific dataset.

• Bounding box annotations for the ChokePoint dataset: We provided accu-

rate bounding box annotations for the G1 and G2 sets of the publicly available

ChokePoint dataset [23] and thus made it available for further studies in visual

face tracking under surveillance conditions. The original dataset only has per-

son ID and eye location annotations which are not compatible with the task of

visual tracking.

3

1.3 Outline

The rest of this thesis is organized as follows:

• Chapter 2 presents a historical, practical and theoretical background in neural

networks and deep learning that is essential in understanding the work done

in this thesis. After a brief overview of machine learning and neural network

history, it discusses vanilla neural networks and their optimization methods. It

then moves on to more complicated models called convolutional neural net-

works. Finally, it presents some of the common practical tricks that are used in

neural network training and moves on to transfer learning.

• Chapter 3 starts by presenting the traditional and deep learning based methods

for the general task of single-target visual object tracking and then moves on to

the studies that incorporate additional attention mechanisms for adaptive chan-

nel selection. Afterwards, it goes over the studies on the specific task of visual

face tracking under surveillance conditions. Lastly, it discusses the similarities

and differences between our proposed face tracker with each of the presented

studies.

• Chapter 4 starts by describing the details of the proposed network architec-

ture and then moves on to the details of the employed channel-wise attention

mechanism. Afterwards, it presents the details of the offline training and online

tracking procedures.

• Chapter 5 starts by describing the face dataset that is used in this thesis. It then

moves on to the details of the evaluation metrics that are used in comparing the

test trackers. After the description of the evaluation metrics, it continues by pre-

senting the details of the test network architectures together with their testing

procedures. It then presents the quantitative accuracy, robustness and speed re-

sults using several informative plots and tables. Lastly, it provides a qualitative

analysis to visualize the effect of the channel-wise attention mechanism.

• Chapter 6 concludes the main contributions of this thesis and discusses the

limitations and some of the possible future directions that can be further inves-

tigated.

4

CHAPTER 2

BACKGROUND ON DEEP LEARNING

This chapter provides a historical, practical and theoretical background in neural net-

works and deep learning. After giving a brief overview of machine learning and

neural network history, vanilla neural networks and their optimization methods will

be discussed. Then more complicated models, which are frequently used in computer

vision, called convolutional neural networks and their arithmetic will be explained.

Finally, some practical tricks for training these networks and transfer learning meth-

ods will be presented.

2.1 A Brief Overview of Machine Learning

Machine learning is a subfield of Artificial Intelligence (AI) which studies the algo-

rithms and statistical models that computers use to learn specific tasks from expe-

rience and without being explicitly programmed. These tasks usually require some

level of intelligence and are very hard to solve by rule-based programs. Machine

learning algorithms build mathematical models from the training data to make pre-

dictions or decisions on unseen data to solve these hard tasks. Visual recognition is

one of these hard tasks. For instance, although it is obvious for a human being that

the MNIST [24] image on the left side of Figure 2.1 is a 3, what the computer sees

is just a bunch of integers on a grid as in the right side of it. Writing a rule-based

program to recognize all types of hand-written 3 images is nearly impossible and this

is where the statistical models of machine learning come in.

Based on the information available during training, machine learning algorithms can

be grouped into three main categories:

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

61

208

208

49

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

5

183

252

252

157

7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

75

252

252

252

252

103

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

45

45

0

0

0

9

29

147

252

252

235

0

0

0

0

0

0

0

0

0

43

178

109

4

0

0

0

32

222

223

31

0

0

0

0

134

252

252

252

0

0

0

0

0

0

0

0

0

139

252

252

29

0

0

0

125

252

253

123

0

0

0

0

134

252

252

172

0

0

0

0

0

0

0

0

38

224

252

252

29

0

0

0

193

252

253

52

0

0

0

0

134

252

252

103

0

0

0

0

0

0

0

0

43

226

252

230

24

0

0

0

193

252

253

44

0

0

0

0

134

252

217

24

0

0

0

0

0

0

0

0

105

252

252

132

0

0

0

0

193

252

253

44

0

0

0

18

203

252

207

0

0

0

0

0

0

0

0

0

255

253

253

133

0

0

0

91

253

253

255

44

0

0

0

92

253

253

146

0

0

0

0

0

0

0

0

0

253

252

252

132

0

0

0

212

252

252

253

44

0

0

98

239

252

230

45

0

0

0

0

0

0

0

0

0

253

252

252

132

0

0

88

247

252

252

253

143

15

86

242

252

252

153

0

0

0

0

0

0

0

0

0

0

253

252

252

189

14

85

189

252

252

252

253

252

252

252

252

252

188

8

0

0

0

0

0

0

0

0

0

0

253

252

252

252

226

243

252

252

238

177

253

252

252

252

252

243

83

0

0

0

0

0

0

0

0

0

0

0

253

252

252

252

252

252

252

252

102

0

74

74

74

74

74

65

0

0

0

0

0

0

0

0

0

0

0

0

174

252

252

252

252

252

252

204

28

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

6

158

252

252

172

144

14

9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

14

59

59

7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 2.1: Left: A random 28×28 hand-written image of 3 from the famous MNIST

dataset. Right: The same image that is viewed by a computer which is just a bunch

of numbers on a grid.

• Supervised Learning: In supervised learning, training data comes with labels,

i.e., for each training example there is a corresponding label and the goal is

to learn a function that maps the training examples to these labels. Object

detection/tracking/classification are common examples of supervised learning

in which the image is the training example and the bounding box / object class

is the label.

• Unsupervised Learning: In unsupervised learning, training data has no labels

and the goal is to model the data distribution. Clustering and dimensionality

reduction are among the common examples of unsupervised learning.

• Reinforcement Learning: In reinforcement learning, training data comes with

a numerical reward signal instead of a direct label. Specifically, the training data

and reward comes from the interaction of the agent with its environment and the

goal is to learn a policy that maximizes the expected cumulative reward. Learn-

ing to play games and learning to drive cars are among the common examples

of reinforcement learning. In fact, many of the sequential decision problems

can be formulated in a reinforcement learning setting.

Although they can be incorporated in several ways, unsupervised learning and rein-

forcement learning are out of the scope of this study. In this thesis, only the super-

vised learning paradigm will be used to perform one of the hard tasks described above.

More specifically, parametric machine learning models inspired by mammalian brains

6

called neural networks will be used to perform the visual face tracking task.

Two of the most popular tasks performed in supervised learning are classification and

regression:

• Classification: Classification is the task of predicting the class label of a given

data. The machine learning model acts as a function f(.) mapping n dimen-

sional inputs to a discrete space of k categories, i.e., f : Rn → {1, . . . , k}.
Given a dataset containing images of cats and dogs, predicting which image

has a dog or a cat can be thought of a classification task.

• Regression: Regression on the other hand, is the task of predicting real-valued

labels of a given data. In these tasks, the machine learning model acts as a

function f(.) mapping n dimensional inputs to m dimensional outputs, i.e.,

f : Rn → Rm. Predicting the bounding box annotations of the cats and dogs in

a given cat-dog dataset is an example of a regression task.

This section provided a brief overview of machine learning. However, it is by no

means a formal and in-depth view to the topic. Interested readers can find more

information in the Machine Learning book of Bishop [25] and in Part I of the Deep

Learning book of Goodfellow et al. [26].

2.2 A Brief History of Neural Networks

Although the history of neural networks can be dated back at least to the 1800s stud-

ies of Legendre [27] and Gauss [28, 29] on linear regression, these studies were not

explicitly trying to model the neurons in the brain. Thus, this section will start with

the artificial neuron.

The artificial neuron is a simplified mathematical model of the biological neuron in

animal brains (see Figure 2.2) that is proposed by McCulloch and Pitts [30] in 1943.

The artificial neuron proposed in their study was able to solve some simple binary

problems by using preset parameters; however, it was not able to adapt its parameters

towards a specific goal, i.e., it was not able to learn. The first (unsupervised) learning

7

Direction of information flow

Axon

Axon Terminal

Inputs to
Cell Body

Dendrite Dendrite

Cell Body

Axon

Figure 2.2: Left: Simplified drawing of a biological neuron. Right: The artificial

neuron which is a simplified model of the biological neuron. The weights wi of the

artificial neuron models the synaptic connection strengths between axon terminals

and dendrites of the biological neuron.

rule was proposed by Hebb in 1949 [31] which simply strengthened the connection

between two neurons if they fired simultaneously and weakened otherwise. However,

its requirement on input orthogonality placed serious limitations on it. After nearly

a decade, in 1958, Hebb’s learning rule inspired Rosenblatt to come up with the Per-

ceptron [32] which was the first artificial neuron that was able to learn (by supervised

learning) the parameters required to output a desired outcome.

The perceptron first takes a weighted sum of each dimension of an n dimensional in-

put vector x = (x0, . . . , xn) with its corresponding weight vector w = (w0, . . . , wn)

to compute z as in equation 2.1. Note the simplified notation where x0 is set to 1 and

the bias term b is replaced by wo, i.e., x0 = 1 and w0 = b. The weighted sum can also

be written as a dot product between w and x as in equation 2.1.

z =
n∑
i=1

wixi + b =
n∑
i=0

wixi = wT · x (2.1)

It then passes this weighted sum z through a step activation function to obtain the

8

+1

x1

x2

Input

Layer

Output

Layer

Figure 2.3: A perceptron with two inputs.

binary output y as in equation 2.2.

y =

1, if z ≥ 0

0, otherwise
(2.2)

Although the preceptron was initially used as a binary classifier, it can also be ex-

tended to multiple classes by simply adding more dimensions to the output y. An

example perceptron with two inputs is given in Figure 2.3.

The most remarkable contribution of the perceptron was perhaps the learning algo-

rithm it introduced that was able to learn from data. Given a perceptron with param-

eters w and a training data pair (x, y), the parameter update rule of the perceptron is

as in equation 2.3,

w := w − η(ŷ − y)x (2.3)

where y is the desired output, ŷ is the perceptron output and η is the learning rate.

With the introduction of the perceptron in 1958, a new era in neural network research

has started. However, approximately a decade later, in 1969, Minsky and Papert pub-

lished a book called “Perceptrons” [33] which showed that the perceptron was only

able to solve linearly separable problems and failed at learning non-linearly separa-

ble ones including basic logical binary functions as XOR (see Figure 2.4). Although,

they showed that a perceptron with intermediate layers could solve the XOR problem,

they stated that the learning algorithm of the perceptron is limited to perceptrons with

9

Figure 2.4: Left: A linearly separable problem. Middle: A non-linearly separable

problem. Right: The XOR problem that cannot be solved by a linear line. At least

one hidden layer is required to solve it.

just a single layer. With this book, lots of the researchers working on neural networks

stopped working on them and research funds were cut which led to the era commonly

known as the first AI winter. Although it should be noted that Ivakhnenko, known

by some as the “Father of Deep Learning” [34], was already performing learning in

large multilayer perceptron-like networks in 1968 by a method named group method

data handling and its code was shared [35, 36].

The first AI winter lasted approximately a decade and in the early 1980s research on

neural networks gained popularity again. In 1982, Hopfield presented a recurrent neu-

ral network with associative memory that was useful in both understanding the work-

ing mechanism of the brain and in practical applications [37]. With the 1986 paper

of Rumelhart et al. [38] showing that neural networks trained with backpropagation

can generate useful representations, the interest in the field was restored. However,

the expectations were set too high and shortly thereafter the era known as the second

AI winter started.

Despite the winter, many researchers kept working on neural networks and by 2006

neural networks established the state-of-the-art in many important pattern recognition

competitions, gaining popularity again that lasted until today.

Lastly, it should be noted that although neural networks were inspired by the biolog-

ical neural networks in animal brains, today’s research on neural networks is mostly

guided by several quantitative disciplines as mathematics, statistics, computer sci-

ence and engineering. These disciplines treat neural networks as powerful function

10

Hidden

Layer 1

Input

Layer

Hidden

Layer 2

Output

Layer

Figure 2.5: An example feed-forward neural network architecture with two hidden

layers each having sigmoid activation functions.

approximators and do not care much about their inspiration source.

2.3 Neural Networks

Neural networks (articifial neural networks, multilayer perceptrons) can be consid-

ered as perceptrons with multiple layers. The intermediate layers are called the hid-

den layers and each of the neurons (units) in a hidden layer is connected to all of the

neurons in the previous and next layer. The role of these hidden layers is to provide

useful inputs to the next layer by combining the information from the previous layers

in a hierarchical manner. An example neural network architecture with two hidden

layers is given in Figure 2.5.

In a neural network, each layer l applies a linear transformation to the activation

vector a(l−1) coming from its previous layer l − 1. This transformation is done with

the layer’s parameters w(l)
ij that determines the connection strength between the i-th

neuron in layer l − 1 and j-th neuron in layer l. For compactness, these parameters

are stored in the parameter matrix W (l). The biases are also stored as w(l)
0j inside

this matrix in a similar way that was described in Section 2.2. This transformation is

11

given in equation 2.4.

z(l) = W (l)a(l−1) (2.4)

This linearly transformed input z(l) (pre-activation) is then passed through a non-

linear element-wise activation function f(.) to obtain the activation a(l) of layer l as

in equation 2.5.

a(l) = f(z(l)) (2.5)

After performing these subsequent linear transformations followed by non-linearities

the overall relation between the input vector x and the output vector y of a neural

network with L layers becomes as in in equation 2.6.

y = f(W (L) . . . f(W (2)f(W (1)x)) . . .) (2.6)

The number of hidden layers, the number of neurons in a hidden layer and the choice

of the activation functions are all called the hyperparameters1 of the neural network

and they are often chosen according to performance of the network on a predefined

validation set.

Lastly, depending on the direction of information flow, neural networks can be di-

vided into two groups. The neural network in Figure 2.5 is a feed-forward neural

network because information flows from its input layer to its output layer. There are

no feedback connections where the output of the network is fed back to itself. When

feed-forward neural networks are extended to have feedback connections, they are

called recurrent neural networks. These networks are usually used when the input is

a time series. Although these recurrent neural networks can be incorporated in sev-

eral ways, they are out of the scope of this thesis. Thus the following sections will

continue with regular feed-forward neural networks.

1 Hyperparameters are the parameters that are set prior to the training process.

12

−2 −1 0 1 2

−1

0

1

2 sigmoid

tanh

ReLU

Figure 2.6: Common activation functions used in neural networks.

2.3.1 Activation Functions

Activation functions are non-linear functions that are element-wisely applied to the

pre-activation vectors in each layer. These non-linearities map non-linearly sepa-

rable problems into spaces that are linearly separable. If there were no activation

functions, neural networks would just be linearly transforming their inputs and their

output would be equivalent to a single linear transformation, i.e., a neural network

with one or more hidden layers could have been replaced by a network with no hid-

den layers at all.2 As a result, this transformation would have failed in non-linearly

separable problems.

The most commonly used activation functions are sigmoids (logistic, σ), hyperbolic

tangents (tanh) and rectified linear units (ReLU) and their input-output relationship

is depicted in Figure 2.6. The sigmoid function is a squashing function that maps

its real-valued inputs into the range between 0 and 1. The mathematical form of the

sigmoid and its gradient is given in equation 2.7..

σ(x) =
1

1 + e−x
,
∂σ(x)

∂x
= σ(x)(1− σ(x)) (2.7)

The tanh function is like the sigmoid function, except that it squashes its real-valued
2 This is a result of multiple steps of linear transformations being equivalent to a single linear transformation.

13

−2 −1 0 1 2
−1

0

1

2

sigmoid

tanh

ReLU

Figure 2.7: Gradients of common activation functions used in neural networks. No-

tice how the gradients of the sigmoid and the tanh vanish as their input moves away

from zero.

inputs into the range between −1 and 1. The mathematical form of tanh and its

gradient is given in equations 2.8. It is important to note that the tanh function is just

the scaled and translated version of the sigmoid function, i.e., tanh(x) = 2σ(x)− 1.

tanh(x) =
ex − e−x
ex + e−x

,
∂ tanh(x)

∂x
= 1− tanh2(x) (2.8)

Sigmoid activations used to be the canonical activation functions in neural networks

due to their interpretation as the firing rate of biological neurons; however, they have

fallen out of favor because of their gradient killing property. When the inputs to

the sigmoid activation are far from 0, the local gradient becomes very small during

backpropagation and this kills all the gradients flowing to the parameters of itself

and its inputs. This usually results in a significant drop in learning speed and it may

even cause no learning at all. tanh activations also suffer from the same problem (see

Figure 2.7). One advantage of tanh over sigmoid however is its outputs are zero-

centered.

Finally, the ReLU activation thresholds the activation at zero resulting in a positive

output only if the pre-activation is positive. The mathematical form of the ReLU

14

activation and its gradient is given in equations 2.9.

ReLU(x) = max(0, x),
∂ReLU(x)

∂x
= step(x) (2.9)

As of today, ReLU is the most widely used activation function in feed-forward neural

networks. Its importance in learning was first demonstrated by Jarrett et al. [39]

and then by Glorot et al. [40]. It has several advantages than the other activations

presented above. First, ReLU is computationally cheap because its output is either

zero or the input itself. There is no need to compute time consuming exponentials as

in sigmoid and tanh. Second, the linear region of ReLU provides constant gradients of

1 that speeds up the training process. Third, ReLU induces sparsity that allows better

representations. One major problem with ReLU however is that too large gradients

can cause the weights to change in such a way that will result in the pre-activations

of the ReLU neuron to move to the far negative side, resulting in its local gradients

to be zero for the entire training period. This is commonly known as the dying ReLU

problem and it can be prevented by using small learning rates. Lastly, it should be

noted that although ReLU is the popular choice of activation functions nowadays,

which activation functions to use with different network architectures and different

tasks is still an active area of research.

2.3.2 Neural Networks as Universal Function Approximators

One of the remarkable properties of neural networks is that they can approximate

any arbitrary function to a desired degree of accuracy. This is called the universal

function approximation property of neural networks. One hidden layer with a non-

linear activation function is enough for this property to hold. Although approximating

continuous functions with other simpler continuous functions can be dated back to the

1957 study of Kolmogorov [41], this study was not in the context of neural networks.

Two of the important studies on this universality theorem in the context of neural

networks are the studies from Cybenko [42] and Hornik et al. [43]. For the sake of

brevity, rather than providing a concrete mathematical derivation of the theorem, a

visual explanation will be provided instead. Figure 2.8 illustrates one way of this

15

−10 −5 0

0

1

2

3

4
u1

u2

u1 − u2

−10 −5 0 5 10

0

1

2

3

4
f1

f2

f3

f

Figure 2.8: Left: Two non-weighted offset sigmoid hidden units forming a local bump

function around −4. Right: Three weighted local bump functions f1, f2 and f3 ap-

proximating an arbitrary function f .

approximation process for an arbitrary 1D function.

On the left side of Figure 2.8, two non-weighted offset sigmoid hidden units u1 and

u2 form a local bump function. Other hidden units can also form weighted and trans-

lated versions of this bump function as f1, f2 and f3 which are depicted on the right

side of Figure 2.8 and then they can all be used together to approximate an arbitrary

function f . The more bump functions the neural network has, the more closely it will

approximate the desired function.

It should be noted that forming local bumps using squashing functions is just one way

of approximating arbitrary functions. Other types of local bump functions can also

be formed by hidden units with different activation functions as ReLU. It should be

noted that the same approximation idea also applies to higher dimensions.

Lastly, it is important to note that neural networks without non-linearities are not uni-

versal function approximators as they can be reduced to simple linear models which

consist of just input and output layers. Another thing to note is that although neural

networks have the capacity to represent an arbitrary function, it is up to the learning

algorithm to learn the function. The approximation theorem guarantees nothing about

this and in fact the learning algorithm can fail to represent the desired function due to

16

the common problems as overfitting3 and underfitting4.

2.3.3 Deep Networks against Shallow Networks

In Section 2.3.2, it was stated that neural networks with single hidden layers are

enough to approximate arbitrary complex functions. This raises questions on the use-

fulness of using multiple hidden layers. A study by Barron [44] shows that if a single

hidden layer is used, the number of hidden units may have to be exponential in the

input dimensionality in the worst case which makes the neural network impractically

large. Besides making it impractical, having too many hidden units also increases the

probability of overfitting as it rapidly increases the number of parameters.

Rather than using shallow networks, using deep networks that have more than a single

hidden layer is a better choice for several reasons.5 First, as shown by Montufar et

al. [45] deep networks with ReLU activations can represent functions with a number

of regions that is exponential in the depth of that network whereas the number of

represented regions is just polynomial with the number of hidden units per layer.

This allows deep networks to have less hidden units in each of their layers and thus

makes them both practical and less prone to overfitting. Second, rather than just

using the activation functions as pieces of a complex function, deep networks can

form several functions from simpler ones to approximate a desired function. In fact,

this hierarchical representation building is one of the key ideas behind the success of

today’s deep neural networks.

In summary, deep networks express a useful prior over the space of possible functions

that the network can learn and they are more feasible solutions to the problem of

function approximation.

3 The case of learning a model which fits too closely to a particular set of data.
4 The case of learning a model fails to capture the underlying structure of the data.
5 There is no agreed certain depth among researchers that separates deep networks from shallow ones.

17

2.4 Optimization in Neural Networks

This section focuses on gradient-based optimization methods that make use of the

gradient of the loss function to optimize the parameters of a neural network. Af-

ter presenting the commonly used loss functions, an efficient gradient computation

method will be discussed. Then, some of the commonly used gradient-based opti-

mization algorithms will be explained. Lastly, the overall picture of neural network

training will be presented.

2.4.1 Loss Functions

In neural network training, the data is given and fixed; however, the parameters W ,

where W is the tensor containing all the network parameters, are adjustable and

the goal in training is to adjust these parameters in a way to achieve a desired task.

Specifically, in supervised learning, the desired task for a neural network is to produce

outputs that are consistent with the ground-truth labels of the training/test data. To

be able to adjust the parameters, the first step is to define a parametric loss function

L(W) (cost function, objective) that acts as a measure of a network’s performance.

This loss will be high when the network performs in an undesired way and low when

it performs in the expected way.

As explained in Section 2.1, two of the most popular supervised learning tasks per-

formed in machine learning are classification and regression. Classification was the

task of predicting the class labels of a given example, whereas regression was the task

of predicting real-valued labels. The most commonly used loss function for classifi-

cation tasks is the cross-entropy loss that is given in equation 2.10,

L(W) = − 1

N

N∑
i=1

log

(
eayi∑
j e

aj

)
(2.10)

where N is the number of training examples or batch size if the dataset is divided into

batches, ayi is the activation in the last layer that corresponds to the label of the i-th

example and aj is the j-th activation in the last layer. For regression tasks on the other

hand, the most commonly used loss functions are the L1 loss and the L2 loss (mean

18

squared error, MSE) that are given in equations 2.11 and 2.12 respectively,

L(W) =
1

N

N∑
i=1

|yi − ai| (2.11)

L(W) =
1

N

N∑
i=1

1

2
(yi − ai)2 (2.12)

where N is again the number of training examples or batch size, yi is the real-valued

label of the i-th example and ai is the activation in last layer that corresponds to the

i-th example.

After choosing the loss function, the next step is to choose an optimization algorithm

to adjust the parameters of the network in a desired direction. As of today, neural

networks are usually trained by gradient-based optimization methods that iteratively

adjust the parameters in the reverse direction of the gradient to minimize the loss func-

tion. This algorithm is known as gradient descent and it is the core idea behind many

state-of-the-art optimization algorithms. However, in order to use these algorithms,

the gradient has to be computed first. The next subsection will focus on discussing an

efficient way of computing this required gradient.

2.4.2 Gradient Computation in Neural Networks

In this subsection two different approaches to gradient computation will be discussed.

The former is a very naive approach that is not used in practice and it will only be

used for showing the efficiency of the latter one.

2.4.2.1 The Finite Differences Method

One very naive way of computing the gradient of a loss function L(W) with re-

spect to its parameter w(k)
ij is by using the classical finite differences method given in

equation 2.13, where ε is a very small positive number that is only added to a single

19

parameter whose gradient is to be computed.

∂L(W)

∂w
(k)
ij

= lim
ε→0

L(w
(k)
ij + ε)− L(w

(k)
ij)

ε
(2.13)

This method is conceptually simple as it requires just two forward passes to compute

the gradient of a single parameter. However, this operation has to be done for every

single parameter w(k)
ij . Considering the fact that today’s neural networks have tens of

millions of parameters, this method can be very slow and it is thus not used in practice.

Another downside of this method is that it computes the approximate gradient rather

than the exact one.

2.4.2.2 Backpropagation

Backpropagation (reverse-mode automatic differentiation) is an efficient method for

calculating the gradients using the chain rule from calculus. It propagates the gradi-

ent information of the loss function from the last layers of the network to the initial

layers. Unlike the finite differences method, backpropagation calculates the gradient

in a single pass rather than requiring two passes for every single parameter. In today’s

large networks, this can make it millions of times faster than the naive finite differ-

ences method.6 Additionally, backpropagation calculates the exact gradient instead

of the approximate one.

Understanding backpropagation with an example is much easier. Consider the neural

network architecture given in Figure 2.5, it takes a three dimensional input x and after

passing it through two hidden layers outputs a three dimensional output ŷ. In order

to distinguish it from the desired output y, the neural network output is denoted as ŷ.

Also consider a regression task with an L2 loss as in equation 2.14,

L(W) =
1

N

∑
D

1

2
(y − ŷ)2 (2.14)

where the summation is over the whole datasetD withN examples and ŷ is a function
6 This is the difference between a neural network taking a day to train and taking at least ∼ 2700 years.

20

of the input x and parametersW . Then, the derivative of the loss with respect to each

of the parameters w(l)
ij of the network is as in equation 2.15,

∂L(W)

∂w
(l)
ij

=
∂

∂w
(l)
ij

(
1

N

∑
D

1

2
(y − ŷ)2

)

=
1

N

∑
D

(
1

2

∂

∂w
(l)
ij

(
(y − ŷ)T (y − ŷ)

))

=
1

N

∑
D

(
− (y − ŷ)T

∂(ŷ)

∂w
(l)
ij

) (2.15)

where backpropagation allows the computation of ∂(ŷ)

∂w
(l)
ij

by exploiting the chain rule.

Considering, e.g., that the derivative of the loss with respect to one weights in the first

layer w(1)
ij is to be computed, the expansion will continue as in equation 2.16,

∂ŷ

∂w
(1)
ij

=
∂ŷ

∂z(3)
· ∂z

(3)

∂w
(1)
ij

=
∂ŷ

∂z(3)
· ∂z

(3)

∂a(2)
· ∂a

(2)

∂w
(1)
ij

=
∂ŷ

∂z(3)
· ∂z

(3)

∂a(2)
· ∂a

(2)

∂z(2)
· ∂z

(2)

∂w
(1)
ij

=
∂ŷ

∂z(3)
· ∂z

(3)

∂a(2)
· ∂a

(2)

∂z(2)
· ∂z

(2)

∂a(1)
· ∂a

(1)

∂w
(1)
ij

=
∂ŷ

∂z(3)
· ∂z

(3)

∂a(2)
· ∂a

(2)

∂z(2)
· ∂z

(2)

∂a(1)
· ∂a

(1)

∂z(1)
· ∂z

(1)

∂w
(1)
ij

(2.16)

where the first five terms in the last expression are Jacobian matrices7 and the last one

is the derivative of the pre-activation z(1) with respect to the weight w(1)
ij . Replac-

ing ŷ by the corresponding activation a(3) and using equations 2.4 and 2.5, the last

expression in equation 2.16 becomes the expression in equation 2.17,

∂ŷ

∂w
(1)
ij

=
∂a(3)

∂z(3)
·W (3) · ∂a

(2)

∂z(2)
·W (2) · ∂a

(1)

∂z(1)
· [xj]i (2.17)

where [xj]i is a vector with the same dimensionality of z(1) whose i-th element is
7 The matrix representing the derivative of a vector-valued function with respect to a vector-valued input.

21

equal to the j-th element of x and all the other elements are zero. It is also important

to note that the input x can be treated as the activation of the 0-th layer, i.e., x = a(0).

In this case, [xj]i can be replaced by [a
(0)
j]i.

Each derivative ∂a(l)

∂z(l) is an n× n matrix as in equation 2.18,

∂a(l)

∂z(l)
=

∂a
(l)
0

∂z
(l)
0

· · · ∂a
(l)
0

∂z
(l)
n

...

∂a
(l)
n

∂z
(l)
0

· · · ∂a
(l)
n

∂z
(l)
n

(2.18)

where n is the dimensionality of a(l) and z(l). This matrix is also known as the

Jacobian of a(l) with respect to z(l). Because of the element-wise non-linearities that

map z(l)i to a(l)i as a(l)i = f(z
(l)
i), the Jacobian of the activations with respect to the

pre-activations is a diagonal and sparse matrix as in equation 2.19,

∂a(l)

∂z(l)
=

∂a
(l)
0

∂z
(l)
0

0
. . .

0 ∂a
(l)
n

∂z
(l)
n

(2.19)

This sparsity can be exploited to speed up the computations and in fact it is done

by modern frameworks. It should be noted that the backpropagation algorithm de-

veloped above is just the pure algebraic version. Modern frameworks perform these

algebraic computations on graphs (to model dependency and to build a modular ap-

proach) and they use dynamic programming techniques that store intermediate values

of computations along the way for gaining efficiency. The implementation details of

these frameworks are out of the scope of this thesis. Interested readers can find more

information in Chapter 6 (Section 6.5) of the Deep Learning book of Goodfellow et

al. [26].

As of today, there are many open-source automatic differentiation frameworks re-

leased by major companies and research labs. These frameworks exploit GPUs to

22

perform high-performance computations. In this thesis, one of these frameworks,

released by Facebook AI Research (FAIR), called PyTorch [46] is used.

After the gradient computation, the gradient-based optimization algorithms will use

it to perform updates to the parameters towards a specific goal. The details of these

algorithms will be presented in the following subsection.

The History Behind Backpropagation

The continuous form of backpropagation was developed at least in 1960 by Kelley

[47] and in 1961 by Bryson [48] using the Euler-Lagrange equations and the chain

rule. In 1962, Dreyfus published a simpler derivation of backpropagation using only

the chain rule [49]. See also the the other studies in the 1960s: Bryson and Denham

1961 [50], Pontryagin 1961 [51], Wilkinson 1965 [52], Amari 1967 [53], Bryson and

Ho 1969 [54], Director and Rohrer 1969 [55]. Although these methods used dynamic

programming [56] for efficiency, they backpropagated the error gradients by passing

the Jacobian matrix from one layer to the previous layer and did not explicitly take

into account the possible efficiency gains due to the sparsity of these Jacobians. They

were also developed in the context of control theory.

Efficient backpropagation, which addressed the sparsity of Jacobians, was first de-

scribed and implemented in Linnainmaa’s 1970 master’s thesis [57, 58]. However,

Linnainmaa used it for estimating the effects of arithmetic rounding errors on the re-

sults of complex expressions rather than using it for gradient computation in neural

networks. After Dreyfus used this efficient backpropagation to minimize parametric

cost functions in 1973 [59], Werbos was the first to consider to possibility of apply-

ing it neural networks in his 1974 PhD thesis [60] and in 1981 he was also the first to

apply efficient backpropagation to neural networks as it is used today [61]. However,

it was the 1986 paper of Rumelhart et al. [38] that significantly contributed to the

popularization of backpropagation in neural networks by demonstrating that it can

generate useful representations inside the hidden layers of the network.

The core ideas behind the backpropagation algorithm used in the 1981 study of Wer-

bos and in the 1986 study of Rumelhart et al. are still used today for gradient com-

23

putations in neural networks. The performance increase in today’s networks however

is mostly due to the larger datasets, more powerful computers and some algorith-

mic improvements. Interested readers can refer to the deep learning review paper

of Schmidhuber [62] for a more thorough review of the studies that contributed to

today’s state-of-the-art neural networks.

2.4.3 Gradient-Based Optimization Algorithms

In this subsection, four different approaches to updating the parameters of neural net-

works will be discussed. All of these approaches actually perform gradient descent,

however, they also use several tricks to speed up the optimization process.

2.4.3.1 Stochastic Gradient Descent

Gradient descent (GD) [63] is a popular optimization algorithm for optimizing neural

networks. In GD, after the gradient computation, a small step in the reverse direction

of the gradient is taken to minimize a loss function L(W). After repeating this op-

eration for a finite number of steps the parameters will converge to a local or global

minimum. The parameter update equation is as in equation 2.20,

W := W − α∇WL(W) (2.20)

where α is called the learning rate. This learning rate is used in scaling the gradient

so that it does not perform a huge update.

It should be noted that computing the loss function using the whole dataset can take

some time. Because of this, the loss function is usually computed using batches from

the dataset. When batches of the data are used, GD takes the prefix “stochastic”

and becomes stochastic (or batch) gradient descent (SGD). SGD has the same update

equation as in equation 2.20; however, the L(W) term is calculated using batches

of data. Because of this, ∇WL(W) gives the approximate gradient. However, in

practice, this does not cause serious issues because the learning rate makes the update

24

step very small and taking a small step in a slightly wrong direction does not cause

much of an issue.

If the loss function L(W) is convex, as in the case of linear models, SGD converges

to a global minimum. However, when neural networks or any other non-linear mod-

els are used, L(W) becomes non-convex and there is no guarantee that SGD will

converge to a global minimum. In fact, converging to a local minimum is much more

probable.

2.4.3.2 Stochastic Gradient Descent with Momentum

Vanilla SGD can be very slow to converge. Thus, in practice, SGD is often used

with momentum [38]. Momentum is a physical perspective to optimization which is

inspired from the momentum concept in physics. The idea is to build up a velocity in

places where the gradient is large and use this to rapidly update the model parameters.

This allows SGD to converge much faster. Another advantage of using momentum is

to stabilize the SGD updates at minimums. The two-step parameter update equation

is as in equation 2.21,

v := µv − α∇WL(W)

W := W + v
(2.21)

where α is the learning rate, µ is the momentum and v is the velocity. In practice, v

is initialized at zero and µ is set to 0.9 for damping purposes.

2.4.3.3 RMSProp

Besides its slowness, vanilla SGD also suffers from using the same learning rate for

every parameter of the network. This can be a problem when the learning rate has

to be tuned carefully. RMSProp [64] eliminates the need for manually tuning the

learning rate by keeping a running average of the previous gradients and scaling the

learning rate using this average. By this way, the learning rates of the parameters with

large recent gradient history will become smaller, preventing the huge updates. The

25

two-step parameter update equation of RMSProp is as in equation 2.22,

g := γg + (1− γ)[∇WL(W)]2

W := W − α√
g + ε

∇WL(W)
(2.22)

where α is the learning rate, γ is the decay factor that determines the importance

of previous gradients in the running average and ε is a small constant that prevents

division by zero errors. In practice, g is initialized at zero, γ and ε are set to 0.9 and

10−8 respectively and values in the range [10−4, 10−3] are used for α.

2.4.3.4 Adam Optimizer

Adaptive Moment Estimation (Adam) [65] is an optimization method that combines

the powers of momentum and RMSProp. Different from RMSProp, Adam uses the

averaged gradient m instead of the raw gradient ∇WL(W). Using the average gra-

dient provides stability when the gradients are too noisy. Adam is one of the default

optimization methods in today’s neural network optimization and its three-step pa-

rameter update equation is as in equation 2.23,

m := β1m+ (1− β1)∇WL(W)

g := β2g + (1− β2)[∇WL(W)]2

W := W − α√
g + ε

m

(2.23)

where α is the learning rate, ε is a small constant preventing zero division errors and

β1 and β2 are decay factors that determine the importance of the previous gradients

in the running averages. In practice, m and g are initialized at zero, β1, β2 and ε are

set to are set to 0.9, 0.999 and 10−8 respectively and values in the range [10−4, 10−3]

are used for α.

The full Adam update also takes into account the bias correction mechanism which

compensates for the zero initialization of m and g when β1 and β2 are close to 1,

i.e., m and g tend to stay around zero when they are initialized as zero. When bias

correction is applied, the parameter update equation turns into a five-step update and

26

it is as in equation 2.24 where t denotes the current iteration number. mt and gt are a

function of t and as t increases the parameter update becomes the same update as in

equation 2.23.

m := β1m+ (1− β1)∇WL(W), mt :=
m

1− βt1
g := β2g + (1− β2)[∇WL(W)]2, gt :=

g

1− βt2
W := W − α√

gt + ε
mt

(2.24)

2.4.3.5 Choosing the Right Optimization Algorithm

Although methods as RMSProp and Adam, often called adaptive methods, seem to

be using much more hyperparameters than vanilla SGD and momentum SGD, these

hyperparameters are generally fixed and they provide robustness to different learning

rates. Adaptive methods also perform better when the input data is sparse as they per-

form larger updates to rarely occurring features and smaller updates to the frequently

occurring ones. They also converge much faster. A study of Schaul et al. [66] com-

pares the above methods together with the other state-of-the-art ones and shows that

there is no single best algorithm for performing optimization.

2.4.4 Training Neural Networks - The Overall Picture

In this section, the overall picture of training neural networks using gradient-based

methods will be described. Before going any further it is important to remember that

the goal in training is to learn a function that maps the training/test data to the train-

ing/test labels. Considering that there is a big dataset consisting of training vector

pairs (x,y), the first step is to divide the dataset into batches so that it can fit in mem-

ory and the gradient computation in the further steps does not take much time. After

the batch division, a single data batch Xi is passed forward through the untrained

network to obtain the output batch Ŷi which is both a function of the input Xi and

the network parametersW . This output batch Ŷi together with the label batch Yi are

then used in computing the loss function L(W). Since the parameters are initially

27

random, the loss will be very high at first. With the computation of the loss, the for-

ward pass is completed and the next step is to assign credits to the parameters who

caused the high loss which is referred to as the backward pass.

The backward pass starts with computing the gradient of the loss L(W) with respect

to the network parameters W . This is done by the backpropagation algorithm in a

backwards manner, i.e., it first computes the gradient with respect to the parameters

of the last layer W (L), then with respect to W (L−1) and so on. After the gradient

computation, the gradient-based optimization algorithm uses it to slightly update the

parameters in the reverse direction of the gradient which in turn minimizes the loss a

bit. With this update the backward pass is completed.

In order for the network to observe the whole dataset, the forward and backward

passes have to be done for every batch pair (Xi,Yi). After performing these forward

and backwards passes over the whole dataset for finite number of times, the neural

network’s parameters W will converge to nice values that map the training data to

the training labels with a small amount of error. This whole process is referred to as

training a neural network.

2.5 Convolutional Neural Networks

Section 2.3 introduced vanilla neural networks that performed linear transformations

followed non-linear mappings in each of its layers. In these networks, all of the

neurons in a layer is connected to all of the neurons in its previous and next layer.

Because of this connectivity, these networks are often referred to as fully-connected

neural networks. When the input data has a structure, this fully-connectedness might

not be necessary and a connectivity pattern that exploits this structure can be a more

clever choice. An advantage of this choice is to reduce the number of parameters

which will in turn reduce both the memory usage and the computation time. Re-

ducing the number of parameters will also prevent some of the possible problems as

overfitting, forcing the network to focus on the important points in the input.

Convolutional neural networks (CNN, ConvNet) are example architectures that ex-

ploit the structure of the input data. The assumption is that input data as images and

28

Figure 2.9: The same bird in three different parts of an image.

audio have a local topological structure (locality) that does not depend on its location

(translational invariance). In the case of images, this means that a bird can appear in

different parts of the image as in Figure 2.9 and it is the same bird in all three of them.

CNNs exploit this structure by applying the same parametric pattern detectors in dif-

ferent parts of the image.8 This is formally done by an operation called convolution,

the operation that gives the name to the neural network. It basically superimposes and

then multiplies the image with a parametric pattern detector (kernel, filter) to produce

an activation at each point. At the end of the convolution operation, a matrix of ac-

tivations, which is often referred to as feature map, is obtained. In practice, multiple

kernels are applied with the same convolution operation and this results in an output

tensor containing multiple feature maps.

The convolution operation is just a repetition of two operations: superimpose-multiply

and shift (stride). When the stride is 1 pixel, the repetition of these two operations

work without any problems. However, if the stride is greater than 1, in some cases

some parts of the kernel can superimpose with the regions outside the borders of the

image and this can cause a problem. The typical solution is to add a frame of zeros

around the image, often referred to as padding.

The elements described above define the convolution operation and they form the

convolutional layer. CNNs also have pooling layers and fully-connected layers whose

details will be formally discussed in the following subsections. An example CNN

architecture is given in Figure 2.10.

8 This property of using the same pattern detector is often referred to as weight sharing.

29

Input Layer 8 Feature Maps

Convolutional Layer

16 Feature Maps

Fully Connected Layers

Output
Layer

Convolutional Layer

Flattened
Input Layer

Figure 2.10: An example CNN architecture with two convolutional layers followed

by a fully-connected layer.

2.5.1 Convolutional Layer

The convolutional layers of CNNs perform convolution operations on the input fea-

ture maps using its parametric kernels and then passes its output through an element-

wise non-linearity to obtain the feature maps for the next layer. Figure 2.11 provides

an example 2D convolution operation.9 To keep the drawing simple, a single input

feature map is provided; however in practice, the input is usually a tensor where mul-

tiple feature maps are stacked together.

In Figure 2.11, a 3×3 kernel10 slides across the blue input feature map and at each

location, the product of the kernel with the area it superimposes (receptive field) is

taken to obtain the green pre-activation map. This procedure can be repeated with

different kernels to obtain as many pre-feature maps as desired. If the input was

a stacked feature map, then the kernel would also have to be a stacked kernel where

each kernel would have convolved each map and the resulting pre-feature maps would

have summed up to obtain the overall pre-feature map in the end.

To be more formal and general, consider the following parameters:

• ij: input size along the j-th axis

• oj: output size along the j-th axis

9 This figure and the following ones on convolution arithmetic were drawn by using the publicly available
code of Dumoulin and Visin’s Convolution Arithmetic Guide [67].

10 Whose weights are the small numbers in the bottom right parts of the shaded blue activations.

30

2

3

0

3

2

1

0

3

3

3

0

2

2

1

1

1

0

2

0

0

2

0

1

0

2

11.0

7.0

12.0

3.0

2

3

0

3

2

1

0

3

3

3

0

2

2

1

1

1

0

2

0

0

2

0

1

0

2

11.0

7.0

12.0

3.0

2

3

0

3

2

1

0

3

3

3

0

2

2

1

1

1

0

2

0

0

2

0

1

0

2

11.0

7.0

12.0

3.0

2

3

0

3

2

1

0

3

3

3

0

2

2

1

1

1

0

2

0

0

2

0

1

0

2

11.0

7.0

12.0

3.0

Figure 2.11: An example convolution operation where a 3×3 kernel slides across a

4×4 input feature map to produce a 2×2 pre-feature map. There is no zero-padding

and the stride is 1.

• kj: kernel size along the j-th axis

• sj: stride along the j-th axis

• pj: zero-padding along the j-th axis

• N : dimensionality of the convolution operation

where the first one is a property of the input, second one of the output and last four of

the convolution operation. The relationship between these parameters is as in equa-

tion 2.25,

oj =
ij − kj + 2pj

sj
+ 1, j = 1, . . . , N (2.25)

which tells that the output size oj increases with pj and decreases with kj and sj .

Another important relationship to keep in mind is the number of kernels is equal to

the number of output pre-feature maps. After being passed through a non-linearity,

these pre-feature maps will all be concatenated to form an additional axis and these

concatenated maps will be used as an input to the next layer.

For the sake of simplicity in explaining convolutions, the following parameter as-

sumptions will be made:

31

• 2D convolution operations (N = 2)

• square inputs (i1 = i2 = i)

• square kernels (k1 = k2 = k)

• same strides along axes (s1 = s2 = s)

• same zero-padding along axes (p1 = p2 = p)

though it should be kept in mind that the same ideas also apply to all other cases

where the convolutions are not 2D and the parameters along axes are not equal. It

should also be noted that these assumptions would also imply o1 = o2 = o from

equation 2.25. In Figure 2.11, these assumptions were made and it illustrates an

example convolution operation where i = 4, k = 3, s = 1, p = 0. Another example

convolution operation with the parameters i = 3, k = 3, s = 1, p = 1 is illustrated in

Figure 2.12. In this Figure, as suggested by equation 2.25, the padding preserves the

input’s dimensionality.

To understand the effects of the stride s and the zero-padding p on the convolution

mechanics, consider the following two cases where i = 5 and k = 3:

• First, consider the cases where the zero-padding p is kept constant, e.g., p = 0,

and the strides are s = 1 and s = 2 as illustrated in Figure 2.13. By the time the

s = 1 convolution sweeps the top of the input, the s = 2 one sweeps the whole

input. However, this speed increase comes with an information loss penalty.

As the stride gets bigger, the pre-feature map gets smaller which in turn results

in less information to be passed to the next layers. However, in practice, using

a stride that is greater than 1, especially in the first convolutional layers of

the network, is very common as the speed-up is substantial compared to the

information loss.

• Next, consider the cases where the stride s is kept constant, e.g., s = 1, and

the zero-paddings are p = 0 and p = 1 as illustrated in Figure 2.14. While

the output size gets decreased in the p = 0 case, it stays the same in the other

one. It should be noted that when s = 1, a padding of (k − 1)/2 preserves the

resolution of the input.

32

0

0

0

0

0

0

0

1

3

0

0

1

0

3

0

0

3

0

2

0

0

0

0

0

0

0

2

1

2

2

1

2

0

2

1.0

13.0

8.0

3.0

20.0

12.0

8.0

11.0

10.0

0

0

0

0

0

0

0

1

3

0

0

1

0

3

0

0

3

0

2

0

0

0

0

0

0

0

2

1

2

2

1

2

0

2

1.0

13.0

8.0

3.0

20.0

12.0

8.0

11.0

10.0

0

0

0

0

0

0

0

1

3

0

0

1

0

3

0

0

3

0

2

0

0

0

0

0

0

0

2

1

2

2

1

2

0

2

1.0

13.0

8.0

3.0

20.0

12.0

8.0

11.0

10.0

0

0

0

0

0

0

0

1

3

0

0

1

0

3

0

0

3

0

2

0

0

0

0

0

0

0

2

1

2

2

1

2

0

2

1.0

13.0

8.0

3.0

20.0

12.0

8.0

11.0

10.0

0

0

0

0

0

0

0

1

3

0

0

1

0

3

0

0

3

0

2

0

0

0

0

0

0

0

2

1

2

2

1

2

0

2

1.0

13.0

8.0

3.0

20.0

12.0

8.0

11.0

10.0

0

0

0

0

0

0

0

1

3

0

0

1

0

3

0

0

3

0

2

0

0

0

0

0

0

0

2

1

2

2

1

2

0

2

1.0

13.0

8.0

3.0

20.0

12.0

8.0

11.0

10.0

0

0

0

0

0

0

0

1

3

0

0

1

0

3

0

0

3

0

2

0

0

0

0

0

0

0

2

1

2

2

1

2

0

2

1.0

13.0

8.0

3.0

20.0

12.0

8.0

11.0

10.0

0

0

0

0

0

0

0

1

3

0

0

1

0

3

0

0

3

0

2

0

0

0

0

0

0

0

2

1

2

2

1

2

0

2

1.0

13.0

8.0

3.0

20.0

12.0

8.0

11.0

10.0

0

0

0

0

0

0

0

1

3

0

0

1

0

3

0

0

3

0

2

0

0

0

0

0

0

0

2

1

2

2

1

2

0

2

1.0

13.0

8.0

3.0

20.0

12.0

8.0

11.0

10.0

Figure 2.12: An example convolution operation where a 3×3 kernel slides across a

zero-padded 3×3 input activation map to produce a 3×3 output pre-feature map. The

zero-padding preserves the input’s dimensionality. If no padding was used, the output

would be 1×1.

33

Figure 2.13: The effect of stride on the computation speed. Top Row: The kernel

moves one step at a time, i.e., s = 1. Bottom Row: The kernel moves two steps a

time, i.e., s = 2.

Figure 2.14: The effect of zero-padding on the output size. Top Row: The kernel

moves on the p = 0 padded input. Bottom Row: The kernel moves on the p = 1

padded input.

34

2

3

0

3

2

1

0

3

3

3

0

2

2

1

1

1

3.0

3.0

3.0

2.0

2

3

0

3

2

1

0

3

3

3

0

2

2

1

1

1

3.0

3.0

3.0

2.0

2

3

0

3

2

1

0

3

3

3

0

2

2

1

1

1

3.0

3.0

3.0

2.0

2

3

0

3

2

1

0

3

3

3

0

2

2

1

1

1

3.0

3.0

3.0

2.0

Figure 2.15: An example max pooling operation where a 2×2 window slides across

a 4×4 input feature map with stride 2 to produce the 2×2 output feature map.

Lastly, the convolution operation can also be viewed as a local linear transformation

where a parametric kernel linearly transforms the local regions of the input. These

transformed inputs are then passed through an activation function. In this sense, the

convolutional layers of CNNs do the same thing with the hidden layers of vanilla

neural networks, except that they do it in a local manner. As discussed above, this

locality allows them to exploit the structure present in the input data.

2.5.2 Pooling Layer

The pooling layer is another important building block of CNNs that allows invariance

to small translations in the input. It performs pooling operations that reduce the size

of the input feature maps and thus allows faster processing. This is done by using

functions that summarize subregions of the feature maps. Two of the most popular

pooling operations are average pooling and max pooling. Figure 2.15 provides an

example of a 2D max pooling operation. Again, for simplicity of the drawings, a case

where a single feature map is used as input is provided.

In Figure 2.15, a 2×2 window slides across the input feature map and at each location

it takes the max of the region that it superimposes with. At the end of this process, the

green feature map is obtained. As in the convolutional layer case, this operation can

35

also be done for the stacked feature map case by doing the same operation for every

single feature map in the stack.

Using the parameters defined in the convolutional layer section, the relationship be-

tween the size of the input and output of a pooling operation is as in equation 2.26:

oj =
ij − kj
sj

+ 1, j = 1, . . . , N (2.26)

which again tells that the output size oj decreases with both kj and sj . It should also

be noted that there is no padding operation in pooling.

2.5.3 Fully-Connected Layer

After the input passes through the convolutional and pooling layers, it is first flattened

to become a vector and then it is fed as input to the fully-connected layers which are

just layers of a regular vanilla neural network. These layers map the extracted features

to the desired outputs of the network. It should be noted that since there is no weight

sharing in vanilla neural networks, the fully-connected layers contain most of the

parameters of a CNN. Because of this, in practice, using too many neurons in these

layers is usually avoided.

The History Behind Convolutional Neural Networks

The history behind CNNs can be dated back to the 1960s studies of Hubel and

Wiesel [68, 69] in which they studied a cat’s early visual cortex. In their studies,

they accidentally found that a group of simple and complex cells in their visual cor-

tex fire in response to certain properties of the visual input as edge orientations. The

complex cells were also found to have more translational invariance compared to the

simple cells. These neurophysiological discoveries were incorporated in Fukushima’s

Neocognitron [70, 71], the first CNN, in 1979-1980. The Neocognitron consisted of

convolutional and subsampling layers that modeled the simple and complex cells of a

cat’s visual cortex respectively. However, importantly, the weights of the Neocogni-

tron were not learned by backpropagation, but rather set by hand or by unsupervised

36

learning methods [72].

In 1989, backpropagation was applied to Neocognitron-like structures for the first

time by Lecun et al. [73]. These CNNs which are trained with backpropagation, aug-

mented with max-pooling layers and accelerated by GPUs form the basis of today’s

modern state-of-the-art CNNs. Despite their success in the 1980s, the current popu-

larity of CNNs is mostly due to their success in the computer vision community where

a deep CNN, called AlexNet [74], was used to win the 2012 ImageNet challenge [75].

2.6 Practical Tricks for Training Neural Networks

This section discusses some the commonly used practical tricks that make neural

network training better. After discussing some data preprocessing and weight ini-

tialization techniques, we will move on to some regularization methods and batch

normalization. It should be noted that none of these methods are mandatory in the

training process; however, they can bring a significant performance increase when

they are used.

2.6.1 Data Preprocessing

Before feeding the data to the network it is a common practice to preprocess it for

standardization. The most common form of preprocessing is mean subtraction where

the dataset mean is subtracted across every individual feature of the dataset. It has the

geometric interpretation of centering the cloud of data around the origin in every di-

mension. (see Figure 2.16) Another common preprocessing method is normalization

where the data is normalized across every dimension so that they are approximately

at the same scale. This normalization is usually achieved by dividing in each dimen-

sion to its standard deviation once it has been zero-centered. While working with

image inputs specifically, channel mean subtraction is very common. However, nor-

malization is not necessary as the relative scales of RGB values (0-255) are already

equal.

37

Figure 2.16: Left: Data before preprocessing. Middle: Data after mean subtraction.

Right: Data after normalization.

2.6.2 Weight Initialization

Before the training process, the weights and biases of a neural network have to be

initialized. This initialization is very important as poor initialization can cause serious

problems in the learning process. One very naive way of initializing the weights is

by setting all of them to zero. If this is the case, then each of these weights will get

the same gradient during backpropagation and there will be no source of asymmetry

which is very bad for the training process. A better way would be to initialize the

weights from a scaled uniform distribution so that they will be updated in different

directions. However, this method also has its own problems as a neuron’s output will

have a variance that grows with its number of inputs. It turns out that this variance

can be normalized by scaling its weight vector by its number of inputs (fan-in, n).

This variance normalization has empirical benefits and it is employed in common

initializers as the He Initializer [76] where the weights are sampled from a standard

normal distribution are scaled with
√

2
n

. Biases on the other hand, are usually set to

zero as the weights already provide the necessary asymmetry breaking.

2.6.3 Regularization

Regularization methods are useful techniques that prevent overfitting in neural net-

works. Although there are many types of regularization methods, in this subsection,

only Dropout [77] and the L2 regularization will be explained as they are the only

ones that are used in this thesis.

38

Dropout is an important regularization technique that adds useful noise to the hidden

units of a neural network. This noise is added by multiplying the hidden units with

Bernoulli distributed random variables which take the value 1 with probability p and

0 with probability 1 − p. Importantly, its operation in the training and evaluation

modes are quite different. During training time, the information flows through the

noisy network where the features xk from the feature vector x = (x0, . . . , xn) gets

multiplied by independent Bernoulli random variables ak as in equation 2.27,

x̂k = ak
1

p
xk (2.27)

where 1
p

is a small implementation term that scales up the retained activations. At

evaluation time, the activations are passed as they are without any scaling, i.e., x̂k =

xk. The intuition behind Dropout is to force the network in learning more robust

features that useful in conjunction with many different random subsets of units.

L2 regularization on the other hand, is another common form of regularization that

complements Dropout. The idea behind it is to penalize the network for having large

weights and it is implemented by adding the magnitude of all the weights to the

network loss as in equation 2.28,

Ltotal(W) = L(W) +
1

2N
λ|W |2 (2.28)

where N is the number of training examples and λ is the regularization constant. The

intuitive interpretation of this regularization is to prevent the peaky weights and thus

allow the network to use all of its inputs.

2.6.4 Batch Normalization

Batch normalization (BN) [78] is a recently developed technique that prevents the

problems caused by poor weight initialization. It forces the activations throughout

the network to take the form of a unit gaussian distribution and thus proposes a deter-

ministic and normalized information flow. Considering a batch of data in the form of

39

B = {x(1), . . . ,x(m)} with m instances, the normalization during training is done as

in equation 2.29,

µ =
1

m

m∑
i=1

x(i), σ2 =
1

m

m∑
i=1

(x(i) − µ)2, x̂(i) =
x(i) − µ√
σ2 + ε

(2.29)

where µ and σ2 would also take place in the backpropagation process. Although

this normalization of activations allows efficient training, it is neither necessary nor

desirable during evaluation time. Because of this, BN keeps a moving average of the

activation means and variances during the training process as in equation 2.30,

Emoving(x)← EB(µ), Varmoving(x)← m

m− 1
EB(σ2) (2.30)

where EB(µ) is the expectation ofµ over multiple training batches B and m
m−1EB(σ2)

is the expectation of the unbiased variance estimate over multiple training batches B.

These moving averages are then used for normalizing the activations during evalua-

tion time as in equation 2.31.

x̂ =
x− Emoving(x)√
Varmoving(x) + ε

(2.31)

Another way to view BN is as doing preprocessing at every layer of the network. It

should be noted that BN also has a slight regularization effect as it adds noise to the

activations of the layers. However, one should not rely too much on this regulariza-

tion effect and should augment it with other possible regularization methods when

possible.

Lastly, one should be very careful when using Dropout and BN together as a recent

study of Li et al. [79] shows that they do not play well together. In their study, they

found that the disharmony is caused by inconsistent behavior of the neural variance

during the switch (from train to evaluation) of the network’s mode. To overcome the

limitations caused by the combination, they propose to either use Dropout after all

the BN layers or to modify the formula of Dropout in order to make it more robust to

variance.

40

2.7 Transfer Learning

Due to the lack of availability of large amounts of labeled data and to the huge amount

of time it takes to train a convolutional neural network (CNN), in practice, it is com-

mon to use CNNs that are already trained on large datasets as ImageNet [80]. These

pretrained networks are then used for performing classification/regression on differ-

ent problems. In fact, it is also common to use pretrained CNNs across different tasks.

This transfering of learned weights between tasks is referred to as transfer learning

and it usually takes the following forms:

• CNNs as frozen feature extractors: In this form, the convolutional layers of

a pretrained CNN are taken and they are used as fixed feature extractors, i.e.,

they are not updated during the training process. The extracted features are then

used as inputs to the following untrained layers to perform the desired task.

• Fine-tuning CNNs: This form uses pretrained CNNs as initial points in the

training process and trains whole network. In this form, it is also possible

to only fine-tune the higher level convolutional layers as the lower ones are

common feature (edge, corner) extractors.

Which one of these forms to use mostly depends on the size of the new dataset and

the similarity of this dataset to the original one. If the new dataset is similar to the

original one and its size is small, fine-tuning is not a good idea as it may easily cause

overfitting. However, if the dataset size is large, fine-tuning would be a good idea as

overfitting is less likely to occur.

41

42

CHAPTER 3

LITERATURE SURVEY

In this chapter, we will first start by presenting the traditional and deep learning based

methods for the general problem of single-target visual object tracking and then move

on to the studies that incorporate additional attention mechanisms for adaptive feature

selection. Afterwards, we will go over the studies for the specific task of visual face

tracking in video surveillance. Lastly, we will discuss the similarities and differences

of our proposed face tracker with the presented studies.

3.1 Visual Object Tracking

Before going into the details of the related work, it is useful to start with a definition.

Object tracking is the task of continuously predicting a target’s location from the in-

coming and previous sensory data. In this section, rather than the general problem of

object tracking itself, we will focus on the related studies in the more specific problem

of single-target visual object tracking where the incoming data is video streams and

there is a single target in each frame. We will review them under two different groups

as in Figure 3.1. Multi-target tracking is left out as the task in this thesis is to track

single targets.

3.1.1 Traditional Methods

In this subsection, we will focus on the relatively traditional trackers that were used

before the deep learning era in computer vision. We will review them under four

different groups where the first three make use fixed appearance models and the last

43

Single-Target Visual Object Tracking

Traditional

Methods

Deep Learning

Based Methods

Statistical

Template Matching

Feature-Based

Online Learning

Feature Learning

Data Association

End-to-End

Figure 3.1: Methods for single-target visual object tracking.

one uses an adaptive one.

Statistical Methods: The Kalman filter [81] is probably the most well-known tracker;

however, it works under the assumption that the probability density functions are

Gaussian and the state transitions are linear. Although the Extended Kalman fil-

ter [82] enables it to work with non-linear state transitions, the Gaussian assump-

tion still causes certain problems. To overcome these problems, particle filter ap-

proaches [83,84] use Monte Carlo methods to allow working with non-Gaussian dis-

tributions.

Template Matching Methods: As the name suggests, template matching methods

make use of the object’s template for the tracking process. This is done by either

using the correlation filters [85] or by searching for the maximum similarity [86, 87].

Additionally, in order to gain speed, the search is usually done in the neighborhood

of the object’s previous position.

Feature-Based Methods: As a classic feature tracker, the Kanade-Lucas-Tomasi

(KLT) tracker [88] is one of the most commonly used tracker due to its efficiency

and robustness to scale change. However, since it only uses the local information, it

is prone to drifting errors.

Online Learning Methods: The previous three methods presented above, work with

appearance models that are fixed. This causes certain issues on the performance since

44

challenges as illumination, pose and scale changes and partial occlusions can change

in the appearance of the target in a significant way. In contrast, online learning meth-

ods use adaptive appearance models (AAM) to keep updating their appearance mod-

els and thus perform better under these tough changes in tracking.

One of these methods with an AAM is the Incremental Visual Tracking (IVM) method

proposed by Ross et al. [22]. In this study, eigenbasises are used in representing the

targets and particle filters are employed for finding the best matching window. After

a predefined number of windows, the eigenbasises are updated with the incremental

principal component analysis method.

Another online learning method is the Tracking-Learning-Detection (TLD) method

proposed by Kalal et al. [89]. TLD integrates the tracking and detection processes

and thus can perform long term tracking. The estimation of the target locations are

done by integrating the predictions of both the detector and tracker, and the detector

is updated by the positive and negative samples around the target. If the tracker fails

by some reason, it gets reinitialized by the detector.

Similar to the above online learning methods, Wang et al. [90] proposed the Discrim-

inative Sparse Coding-Based Tracking (DSCT) method. DSCT uses sparse coding to

to represent the targets. After the sparse codes of the positive and negative patches

are obtained, they are passed through a linear classifier to identify the target in the

future frames. To account for the appearance changes, it accumulates the most recent

frames to build an AAM and uses it together with a static model to perform tracking.

Lastly, it should be noted that none of the object trackers presented in this section

make use of learned rich hierarchical features that can serve well in representing and

tracking objects. Because of this, they do not perform well in today’s modern visual

object tracking challenges [18–21] and thus they have fallen out of favor in the object

tracking community.

3.1.2 Deep Learning Based Methods

This subsections focuses on the trackers that use deep learning methods that make

use of the learned rich hierarchical features rather than the relatively traditional ones.

45

Although we review these studies under three different categories, drawing explicit

lines between some of these approaches is very hard as they are tightly interconnected.

Interested readers can refer to the review paper of Li et al. [91] for a more thorough

review of the recent deep learning based trackers.

Before moving on to the review, it should be noted that although this subsection

provides a review on the studies in deep learning based single-target object tracking,

a general review of the studies in deep learning based object tracking including multi-

target tracking methods and future target state prediction methods are out of the scope

of this thesis. Interested readers can find more information on these areas in the recent

survey paper of Krebs et al. [92].

Deep Learning for Feature Learning: The first deep learning based approaches

treat deep neural networks as black-box feature extractors and aim to use the powerful

features that are extracted from them. After the feature extraction process, they are

used as input to subsequent traditional tracking methods for tasks as classification,

association and filtering.

One of the first deep learning based approaches in visual object tracking is the Deep

Learning Tracker (DLT) introduced by Wang and Yeung [93]. In this study, a Stacked

Denoising Autoencoder (DAE) is trained in an offline manner using a large dataset to

obtain generic feature representations. After the offline training phase, the encoder of

the Stacked DAE is used as a pretrained feature extractor for a sigmoid classification

layer in the online tracking phase. During tracking, in each frame, a set of particles

are drawn from the estimated patch and their confidences are calculated using the

network with a sigmoid output. If the sum of these confidences falls below a certain

predefined threshold, the network is re-tuned.

Ma et al. [94] investigated a different approach by using both the higher and lower

level features of a pretrained CNN called VGG-Net [5]. They argue that while the

higher level features of the CNN encode semantic information, their spatial resolu-

tion is too coarse for precise target location inference. Because of this, they also

use the feature maps from lower level layers as they contain more precise position

information and perform the tracking using multiple layers. In their approach, the

outputs of these layers are used as multi-channel features to learn an adaptive corre-

46

lation filter per layer. After this learning process, the features maps of the VGG-Net

are convolved with the learned correlation filters to obtain a response map and then

by using this map the target location is inferred.

Similar to Ma et al., Wang et al. [95] also investigated the effect of using both the

higher and lower level features and came up with the same findings. Further, they

showed that only certain feature maps in a layer are relevant for tracking and in-

troduced a feature map selection method that avoided the irrelevant features. The

selected feature maps are then passed to two separate networks in the Fully Convolu-

tional Network Based Tracker (FCNT) to infer the final target location.

Deep Learning for Data Association: One of the biggest difficulties faced in vi-

sual object tracking is the association of the target and its location in the current

frame. Rather than using non-deep subsequent classification and association parts,

some deep learning based approaches employ Siamese Networks [96] to learn a sim-

ilarity measure and thus perform the task of data association.

One of the first trackers that used Siamese Networks for the task of data association

is the Siamese INstance Search Tracker (SINT) introduced by Tao et al. [97]. In this

study, the SINT is trained using the search and the query streams. The query stream

gives a video frame with the exact position of the object to be tracked, whereas the

search stream gives another frame with randomly sampled object locations. If these

random object locations exceed a certain overlap threshold with the desired target

location, they are considered to be positive training samples, otherwise they are used

as negative samples. During tracking, the initial frame is constantly used for template

extraction to measure the similarity of new candidate regions. After the similarity

measure, the region with the highest similarity is considered to be the new target

location.

Another data association approach, which won the VOT2017 real-time challenge

[20], is the Siamese Fully-Convolutional (SiamFC) tracker introduced by Bertinetto

et al. [15]. In this approach, a Siamese Network is used for learning a similarity

map between an exemplar image and a candidate image. In order to cope with the

possible different candidate image sizes, the Siamese Network is implemented as a

fully-convolutional network. During tracking, a search image is passed to the net-

47

work and the maximum score on the map is used in calculating the displacement of

the target from frame to frame. Due to its real-time tracking ability (58-86 FPS), the

SiamFC tracker has an advantage to be used for real world applications.

Also inspired by the Siamese CNNs, Li et al. [17] introduced the Siamese Region

Proposal Network (SiamRPN) and won the VOT-RT2018 challenge [21]. In their

approach, a Siamese Network is used for feature extraction and a region proposal

network (RPN) is used in proposal generation. One of the branches in the RPN is

responsible for foreground-background classification and the other one is used for

proposal refinement. The whole system is trained in an end-to-end fashion. In the

tracking phase, the tracking task is formulated as a one-shot detection task. Because

of this, one of the most important properties of this SiamRPN tracker is that it can run

at 160 FPS which makes it one of the fastest deep learning based trackers available

today.

Deep Learning for End-to-End Tracking: The success of the end-to-end approaches

in the area of computer vision is mostly due the automation of the whole pipeline.

End-to-end approaches are also used in the visual object tracking community to au-

tomate the whole tracking pipeline, i.e., object representation - object extraction -

location estimation. It should be noted that these approaches are different from the

previous two in the sense that whole pipeline is jointly learned.

One of the first studies that used deep learning in an end-to-end fashion for the task

of visual object tracking is the study of Gan et al. [98] that used of a recurrent neu-

ral network (RNN) for tracking. The RNN is trained in a fully offline manner with

synthesized data that simulates moving objects. During training, the ground-truth lo-

cation labels are also used along with the synthetic video frames. While tracking, the

RNN outputs the bounding box annotation of the object in each frame.

Another end-to-end approach, which won the VOT2015 challenge [18] according to

the expected average overlap score, is the Multi-Domain Network (MDNet) intro-

duced by Nam and Han [13]. In this approach, the learning of domain-specific and

domain-independent information is separated out. More specifically, a CNN with lots

of domain specific binary classification branches is first pretrained offline by using

a large set of videos to obtain a generic target representation in the shared network,

48

which accounts to domain-independent information. When tracking in a new se-

quence, a new binary classification branch is added to the network and it is updated

in an online manner. The tracking is performed by evaluating candidate windows

that are randomly sampled around the previous target’s state. One major disadvan-

tage of this online tracker however, is that its speed (1 FPS) is too low for real-time

applications.

A rather different approach which uses two pretrained CNNs (AlexNet [99]) and a

regression network was investigated by Held et al. [14] under the name Generic Ob-

ject Tracking Using Regression Networks (GOTURN). The GOTURN tracker is also

trained in a completely offline manner using both real and synthetic data. In the train-

ing phase, two consecutive video frames are fed to the two pretrained CNNs, and

the concatenated outputs of these CNNs are used as input to a fully-connected re-

gression network for regressing the current frame’s bounding box. After the network

is trained, during tracking, the GOTURN tracker outputs the current frame’s target

location and uses it to obtain the search region for the subsequent frame. A really

important property of this tracker is its ability to track objects up to 100 FPS, making

it one the fastest deep learning based tracker for single-target tracking present today.

Inspired from the real-time regression-based object detection approach of You Look

Only Once (YOLO) [100], Ning et al. [101] introduced the Recurrent YOLO (ROLO).

In this approach, the high-level features of a pretrained CNN and bounding box re-

gressions of the YOLO object detector are fed as input to an RNN to model the spatio-

temporal information. The RNN is trained in an unsupervised manner to predict the

next bounding box annotation. The authors show that the spatio-temporal modeling

ability of ROLO enables it to tackle major occlusions and severe motion blurs during

the harsh tracking process.

3.2 Attention Mechanisms in Visual Object Tracking

In visual object tracking, different features may have different effects in tracking

different objects. Using all of the feature is neither efficient nor effective. Because

of this, several adaptive feature selection methods have been developed in the object

49

tracking literature. In this section we will briefly go over them.

Two of these adaptive methods are the Structuralist Cognitive Model for Tracking

(SCT) by Choi et al. [102] and the Attentional Correlation Filter Network (ACFN) by

Choi et al. [103]. In these approaches, an attention network is used for selecting the

best subset of correlation filters for the object to be tracked.

Rather different approaches which incorporate attention mechanisms in recurrent neu-

ral networks (RNN) are the Recurrent Attentive Tracking Model (RATM) by Kahou

et al. [104] and the Hierarchical Attentive Recurrent Tracker (HART) by Kosiorek et

al. [105]. Both of these approaches use attention mechanisms to separate the where

and what processing pathways to suppress the negative effect of the extracted irrele-

vant features. The attentions used in these approaches are soft attention mechanisms

and they are learned by using gradient-based methods.

Recently, Hu et al. [106] demonstrated the importance of channel-wise attention

mechanisms for the task of image recognition. Inspired by this, He et al. [107]

combines this channel-wise attention mechanism with the SiamFC tracker [15] and

proposes the Semantic Appearance Siamese network (SA-Siam) for real-time object

tracking. In SA-Siam, the channel attention module plays an important role by giving

higher weights to the channels that have an importance in tracking specific objects.

Another tracker that also incorporates channel attention and other kinds of attentions

is the Residual Attention Siamese Network (RASNet) proposed by Wang et al. [108].

In this approach, several attention mechanisms as general attention, residual atten-

tion and channel attention are used for adapting the offline trained model, without

updating the model in an online manner.

3.3 Visual Face Tracking in Video Surveillance

Visual face tracking is a special case of visual object tracking where the target is a

face of an individual or a group of individuals. In this section, we will focus on the

studies that perform visual face tracking under surveillance conditions where there

are lots of variations in pose, scale, expression and illumination and occlusions in

cluttered scenes.

50

Face tracking in the context of video surveillance is usually done by using the rela-

tively traditional methods presented in Section 3.1.1. For instance, Dewan et al. [1]

compares three different generic adaptive appearance modeling trackers – Incremen-

tal Visual Tracking (IVT) [22], Tracking-Learning-Detection (TLD) [89] and Dis-

criminative Sparse Coding-Based Tracking (DSCT) [90] – with surveillance appli-

cations in mind and shows that IVT outperforms the other two in terms of tracking

accuracy and computation time. They further argue that the low discrimination power

of the TLD face descriptor and computational complexity of the DSCT are the main

limitations of these two methods. However, it should be noted that although the IVT

tracker performs the best, together with the other trackers, it does not satisfy the min-

imum real-time tracking requirement of 25 FPS.

Another traditional video surveillance study is the face tracking framework proposed

Lan et al. [2]. In this framework, an already published face detector [109] and

a histogram-assisted Kanade-Lucas-Tomasi [88] (HAKLT) tracker is integrated to-

gether to perform face tracking. The HAKLT tracker makes use of a color histogram

to get rid of the drifting problems of the naive KLT tracker and it enables speeds that

are above 100 FPS.

Although these traditional trackers can perform up to certain degrees, they do not

make use of the learned rich hierarchical features present in deep learning based

trackers and thus they are prone to failure under the harsh conditions present in video

surveillance. The increasing usage of deep learning based trackers in the Visual Ob-

ject Tracking (VOT) challenges [18–21] is already an indicator of their significant

potential in object tracking tasks. It should be noted that the harsh conditions of

video surveillance are also present in these challenges.

A thorough search of the literature had yielded no published study on using deep

learning based methods for the task of visual face tracking under surveillance con-

ditions. However, there are a few studies [110–112] that incorporate deep learning

methods for regular (not under surveillance conditions) face tracking. In the rest of

this section, we will briefly go over them to present how deep learning is utilized in

face tracking.

One of these few deep learning based face trackers was introduced by Ren et al. [110].

51

In this study, a lightweight and coarse-to-fine convolutional neural network (CNN),

which is inspired by the MTCNN face detector of Zhang et al. [113], is used for

detecting faces in each video frame. Additionally, a Kalman filter [81] tracking ap-

proach is employed for cases where the faces get largely deflected or severely oc-

cluded. This tracker operates above 25 FPS; however, its speed is dependent on the

resolution of the input video.

Another face tracker that uses deep learning is the Deep Manifold Embedding Active

Shape Model (DME-ASM) proposed by Choi and Kim [111]. In this tracker, a CNN

is used for categorizing the corresponding pose range for the input face. This tracker

is specifically build for solving the diverse head pose problem in face tracking and it

can operate in real-time.

A different approach which uses deep face tracking as a part of automatic labeling

of faces for films and TV material is the study by Parkhi et al. [112]. In this study,

a tracking-by-detection approach is utilized. Faces are first detected using a local

version of the cascaded Deformable Part Model (DPM) [114] and then a KLT [88]

tracker is used in grouping these detections through consecutive frames. However,

rather than the tracking task itself, a CNN is only used for the task of face track

classification.

Lastly, it should be noted that none of the deep face trackers presented above use

deep learning to specifically perform tracking, i.e., they only use it for assisting the

relatively traditional tracking methods. Thus, they do not use deep learning in an

end-to-end manner, i.e., they do not solely take the frames as input and output the

bounding box annotations.

3.4 The Place of Our Tracker

In this thesis, we choose to take the real-time GOTURN tracker [14] as our starting

point due to its high performance and simple end-to-end form, i.e., it just takes the

consecutive two frames as raw input and outputs the bounding box annotation for the

query frame. Thus our tracker falls under the category of end-to-end deep learning

based object trackers presented in Section 3.1.2. Another very important property of

52

the GOTURN tracker is its ability to run at speeds above 100 FPS (165 FPS when run

on more advanced hardware) which is due to its fully offline training procedure.

After choosing the GOTURN tracker as our starting point we extend it using several

useful extensions. One of the extensions is the usage of both the lower and higher

level features in the tracking process as in the FCNT tracker [95]. However, differ-

ently, we make use of these features in an end-to-end manner. Another extension is

the usage of a fusion network in the regression network which is adapted from the

studies of Akkaya and Halıcı [115, 116]. We also use a channel-wise attention mech-

anism as in the case of the SA-Siam tracker [107]. However, rather than using it

for just the static channels of the last two layers, we use it to adaptively weight the

dynamic channels from all of the layers. We also learn the attention weights in an

end-to-end manner rather than using a multi-step training procedure. The details of

these extensions will be presented in Section 4.1.

In contrast to the relatively traditional video surveillance trackers [1, 2] presented in

Section 3.3, our tracker makes use of the learned rich hierarchical features of deep

neural networks and runs at speeds very far beyond 25 FPS for real-time tracking. It

should be noted that there is no hand-engineering involved at any stage, i.e., we just

feed the frames as input to the network and get the bounding box annotations as the

output. Also different from the deep learning based face trackers that are not used for

tracking under surveillance conditions [110–112], presented again in Section 3.3, our

face tracker uses deep learning for the tracking task itself. This is opposed to using

it in the other modules and employing relatively traditional trackers in the tracking

module.

53

54

CHAPTER 4

PROPOSED METHOD

This chapter starts by describing the details of the proposed end-to-end attentive deep

network architecture and then moves on to the details of the employed soft channel

attention mechanism. Afterwards, we present the details of the offline training and

online tracking procedures.

4.1 Network Architecture

Inspired from the single-target Generic Object Tracking Using Regression Networks

(GOTURN) tracker of Held et al. [14] and the studies described in Section 3.4, we

propose a face tracking network named Attentive Face Tracking Network (AFTN)

whose architecture is as in Figure 4.1. The input to the network is a pair of 224×224

RGB images that are cropped from the previous and current frames that act as the

target object and the search region respectively. The output is a tuple with three

elements that describe the location and size of the target’s bounding box within the

224×224 search region. Importantly, the training of AFTN is done in a fully end-to-

end manner.

In more detail, the proposed AFTN is composed of the following four subnetworks:

• Feature Extraction Network (FEN): The FENs are composed of two pre-

trained VGG-Face [117] networks (FEN-p and FEN-c) that act as frozen fea-

ture extractors for the previous and current input frames. It should be noted

that only the convolutional blocks of the VGG-Face network are used and they

are not trained any further to prevent the possible overfiting cases due to the

55

Cropped	Previous	Frame

Cropped	Current	Frame

Regression
Network
(RN)

Low	and	High	Level	Features
from	the	Current	Frame

Low	and	High	Level	Features
from	the	Previous	Frame

Bounding	Box
Annotation	of

the	Current	Frame

C
ha
nn
el

A
tte
nt
io
n	
1

C
ha
nn
el

A
tte
nt
io
n	
2

C
ha
nn
el

A
tte
nt
io
n	
3

C
ha
nn
el

A
tte
nt
io
n	
4

C
ha
nn
el

A
tte
nt
io
n	
5

Feature	Extraction	Network	(FEN-p)
(VGG-Face)

Feature	Adaptation	Network	(FAN)

Feature	Extraction	Network	(FEN-c)
(VGG-Face)

C
ha
nn
el

A
tte
nt
io
n	
3

C
ha
nn
el

A
tte
nt
io
n	
4

C
ha
nn
el

A
tte
nt
io
n	
5

C
ha
nn
el

A
tte
nt
io
n	
2

C
ha
nn
el

A
tte
nt
io
n	
1

	coordinate

	coordinate

width

y

x

Figure 4.1: The network architecture of the proposed AFTN. After the features are

extracted by the FENs, they are passed as input to the CANs to get weighted. After the

explicit weighting, the weighted features are concatenated in the channel dimension

via the FAN and then they are passed to the RN for regressing the bounding box

annotations.

56

relatively small size of the dataset. While the shallow layers of the FENs ex-

tract simple low-level features as edges and corners, the deeper layers extract

more complex high-level features as the semantics of the target. Although these

high-level features are very useful in tasks that require semantic information,

their receptive fields in the input image are very large making them less precise

in localizing the targets in object tracking. Therefore, both the high-level and

low-level features of the FENs are used together. Since it is not immediately

clear which level features will serve well in the tracking process, we basically

use all the extracted features from all the layers and provide them as inputs to

the channel attention networks to explicitly weight their channels.

• Channel Attention Network (CAN): The CANs are simple two layer mul-

tilayer perceptrons (MLP) with single sigmoid outputs corresponding to the

weight coefficients of the input channels. These coefficients are then used for

weighting the channels according to their importance in the tracking process.

After the weighting process, the weighted channels are passed to the feature

adaptation network for concatenation. Since we use the 5 different layers from

the FENs, there are also 5 different CANs. However, opposed to the FENs,

these CANs are trained during the offline training process.

• Feature Adaptation Network (FAN): The FAN is used for concatenating all

the weighted features coming from the CANs in the channel dimension. It has

no learnable parameters and thus just serves as a basic feature concatenator.

The concatenated features are then passed to the regression network to perform

the final regression step.

• Regression Network (RN): The RN is composed of a fusion network (convo-

lutional layer with 1×1 kernels) followed by a three layer MLP and it is used

for regressing the target’s bounding box annotation from the concatenated in-

put features. The fusion network is used for fusing the concatenated features

coming from the FAN. As in the case of CANs, the RN is also trained during

the offline training process.

It should be noted that although this section provided a higher level view of the pro-

posed network architecture, it does not contain any information regarding the imple-

57

Channel	i

Multilayer
Perceptron
(MLP)

Sigmoid

ωi

Figure 4.2: The soft channel attention mechanism that generates the weighting co-

efficient ωi for the i-th channel. After Channel i is passed through an MLP with a

sigmoid output, it gets weighted by its own weight coefficient ωi and then it is passed

as input to the next module in the tracker.

mentation details as the number of layers, the number of neurons in the layers, the

employed regularization layers etc. These implementation details will be given in

Section 5.3 while describing the test network architectures.

4.2 Channel Attention Mechanism

Different channels play different roles in tracking different targets. While some chan-

nels may be very important in tracking certain targets, they might not effect the per-

formance at all in tracking other ones. If we could adapt the channel importance to

the target, we would achieve great results in tracking them. However, it is not imme-

diately clear which of the channels will serve well in tracking certain targets. In order

to automate this channel selection process, we propose to use a soft channel attention

mechanism whose details is as in Figure 4.2.

More specifically, we first flatten the 6×6 channels and then pass them through mul-

tilayer perceptrons (MLP) with sigmoid outputs to obtain their weight coefficients.

The sigmoid functions have a bias of 0.5 to ensure that no channel will be suppressed

down to zero and each channel i has a weight coefficient ωi associated with itself.

Since the lower layers in the feature extraction network (FEN) have channels with

greater sizes as 54×54 and 13×13, we max-pool them to match the 6×6 size of the

last layer and then pass them through the attention mechanism. After the weight co-

efficients are obtained, the channels are multiplied with their corresponding weights

58

Previous Frame ()t − 1 Current Frame ()t

Figure 4.3: Two random consecutive frames from the ChokePoint dataset. The green

box is the ground-truth bounding box of the previous frame and the red boxes, twice

the size of the green one, are the regions that are cropped, resized and then fed into

the network.

and then they are passed as input to the next module for concatenation. It should be

noted that the MLPs share weights across the channels that are extracted from the

same convolutional layer.

4.3 Offline Training

In the offline training phase, we randomly choose a pairs of successive frames from

our training dataset with a batch size of 50. We then crop these pair of frames using

the previous frame’s bounding box annotation and resize them to 224×224 to match

the input size of the VGG-Face [117] network. More specifically, the bounding box

of the previous frame is expanded to twice its size and this region is cropped from

both of the frames as in Figure 4.3. We also subtract the mean of the dataset that was

used in training VGG-Face. Since we feed the cropped images to the network, we

also transform the bounding box annotations of the 800×600 images to the 224×224

ones by simple linear transformations and we use these transformed annotations for

the training process. In more detail, the bounding box annotations are first computed

with respect to the cropped regions and then they are scaled by 224
width of cropped region to

match the 224×224 input images.

59

After the preprocessings, we feed the data batch to the network that is initialized using

the He Initializer [76] and compute the L1 loss between the ground-truth annotations

and the predicted ones multiplied by 10. We use this scaling by 10 to regress lower

numbers which is better for network training given that the biases are initialized at

zero. We then backpropagate from this loss and use the Adam optimizer with a learn-

ing rate of 1e− 5 to optimize the parameters of the network. The training is done for

10 epochs and the PyTorch automatic differentiation framework [46] is used in the

implementation process.

Lastly, it should be noted that only the channel attention networks (CAN) and regres-

sion network (RN) are trained in the offline training phase as the feature extraction

network is already pretrained and the feature adaptation network has no learnable pa-

rameters. Another important thing to note is that data augmentation methods are not

used as they had no effect in the tracking performance.

4.4 Online Tracking

In the online tracking phase, first, the initial two frames are read from the video

sequence and the regions that contain a face are cropped from both of them using

the same procedure described in the previous section. After the cropping, both of

the crops are resized to 224×224 to be compatible with the VGG-Face [117] net-

work. The mean of the dataset that the VGG-Face network was trained with is again

subtracted. Then, after all these preprocessings, both of the frames are fed into the

network to obtain the bounding box annotation of the current frame. Specifically, the

(x, y) coordinates of the top-left corner together with the width (height) of the current

frame’s bounding box in the 224×224 search image is obtained. This bounding box

is then transformed back to its corresponding location before the resizing in order to

find the face’s actual location in the 800×600 frame. In more detail, this transfor-

mation is done by first multiplying the network’s prediction by 10, then scaling this

prediction by width of cropped region
224 and finally adding the (x, y) coordinates of the top-left

corner of the cropped region to the first two elements of the network’s prediction.

After the actual target location of the current frame is obtained, the current frame is

60

used as the previous frame and a new frame is read to be the current frame. Using the

predicted bounding box annotation from the previous step, the frames are cropped-

resized again and they are again fed to the network to regress the target bounding box

in the newly read frame. This crop-resize-feed-read prodecure continues for the rest

of the video frames and by this way, the tracker tracks the faces until the end of the

sequence.

61

62

CHAPTER 5

EXPERIMENTAL RESULTS AND DISCUSSION

This chapter starts by describing the face dataset that is used in this study. We then

move on to details of the evaluation metrics that are used in comparing the track-

ers. After the description of the evaluation metrics, we continue by presenting the

details of the test network architectures and their testing procedures. We then present

the quantitative accuracy, robustness and speed results using several informative plots

and tables. Lastly, in order to visualize the effect of the channel-wise attention mech-

anism, we provide a qualitative analysis.

5.1 Dataset

In order to test our proposed face tracker, we use the publicly available Choke-

Point dataset [23] that was sponsored by National ICT Australia (NICTA) Limited.

This dataset was originally designed for experiments in person identification/verifi-

cation under real-world surveillance conditions. However, it can also be used for

different tasks as face-quality measurement, pedestrian/face tracking and person re-

identification.

The ChokePoint dataset was recorded using 3 different cameras (C1, C2, C3) placed

above several portals, which are natural choke points in pedestrian traffic, in order to

capture subjects walking through the portals in a natural way. (see Figure 5.1) The

faces captured by these three cameras vary in illumination conditions, pose, sharp-

ness, as well as misalignment. Due to this 3 camera configuration, in each sequence,

only one of the cameras is able to capture the faces near-frontal through a certain

period of time.

63

Figure 5.1: The original recording setup used for the ChokePoint dataset in the portal

1 entering (P1E) scenario. 3 different cameras are used for recording the entry of a

subject from 3 different viewpoints. This 3 camera setting allows near-frontal face

capture by at least one of the cameras. Source: [118]

The dataset consists of 25 subjects (19 male and 6 female) in portal 1 (P1) and 29

subjects (23 male and 6 female) in portal 2 (P2). The frame rate is 30 FPS and the

resolution of each frame is 800×600. In total, the dataset consists of 48 different

video sequences and 64,204 frames with a face. Importantly, at a given time, only

one of the subjects is present in a frame.

Each sequence was named after its recording conditions where P, S, C stand for portal,

sequence and camera respectively. E and L indicate whether if subjects are entering

or leaving the portal. The numbers indicate the portal number, sequence number

and camera number respectively. For instance, P1E_S2_C3 indicates that the video

sequence was recorded using camera 3, at portal 1, when subjects were entering in

sequence 2. Example shots from the dataset with various backgrounds can be seen in

Figure 5.2.

For the evaluation, a baseline verification protocol [23] is designed for the ChokePoint

dataset. In this protocol, video sequences with near-frontal face views are divided into

two distinct groups, namely G1 and G2 (see Table 5.1), where each group plays the

role of development and evaluation set in turn. The parameters are first learned on

the development set and then they are applied to the evaluation set. The average

performance measures on the evaluation sets are then used for reporting the final

64

(a) P1E_S1_C1 (b) P1L_S1_C1

(c) P2E_S2_C2 (d) P2L_S3_C3

Figure 5.2: Example shots from the ChokePoint dataset that show entering and leav-

ing scenarios from the two portals with various backgrounds. While the recording en-

vironments of P1E, P1L and P2L are indoor, P2E is recorded outdoor. Source: [118]

Table 5.1: The two distinct groups G1 and G2 in the baseline verification protocol for

the ChokePoint dataset.

G1
P1E_S1_C1 P1E_S2_C2 P2E_S2_C2 P2E_S1_C3

P1L_S1_C1 P1L_S2_C2 P2L_S2_C2 P2L_S1_C1

G2
P1E_S3_C3 P1E_S4_C1 P2E_S4_C2 P2E_S3_C1

P1L_S3_C3 P1L_S4_C1 P2L_S4_C2 P2L_S3_C3

65

0 50 100 150 200

Sequence Length (Frames)

0

5

10

15

20

N
u

m
b

er
of

S
eq

u
en

ce
s

G1

G2

Figure 5.3: Histogram for the video sequence lengths (in frames) in G1 and G2. The

number of bins is 50. G1 has an average of 95.6 and G2 has an average of 77.1.

results.

Lastly, the annotations provided with the ChokePoint dataset are the eye locations

and the person IDs in each frame. However, for face tracking, or any other kind of

visual object tracking, the bounding box annotations are required.

In this thesis, we annotate1 the frames in the G1 and G2 sets with bounding boxes and

thus make the ChokePoint dataset available for visual face tracking. We discard the

frames where there is no face of a person. This newly formed dataset again consists

of 25 subjects (19 male and 6 female) in P1 and 29 subjects (23 male and 6 female)

in P2. In total, the dataset consists of 432 different video sequences (216 in G1 and

the other 216 in G2) each having a single person present at a given time and 37,307

frames (16,665 in G1 and 20,652 in G2) with a face. The average length of a video

sequence is 95.6 frames for G1 and 77.1 frames for G2. (see Figure 5.3)

The bounding box annotations are in the form of a tuple with three elements: the y

coordinate of the top-left corner, the x coordinate of the top-left corner and the width

1 We perform the annotation by first using a face detector, which is built using the dlib toolkit [119], to detect
the faces and then we manually go over the bounding boxes to correct for the mistakes that the detector makes. It
should be noted that the annotations for the faces could have also been extracted from the provided eye location
labels by using some face ratio heuristics; however, considering the variances in human face ratios and the change
of the person’s angle to the camera, this can easily lead to incorrect annotations.

66

(or height) of the bounding box. It should be noted that all these annotations are with

respect to the 800×600 frames.

Finally, for the evaluation, we use the baseline verification protocol for the Choke-

Point dataset, i.e., we first use G1 to train our network and use G2 to test it and then

do the reverse. At the end, we report the average performances of our trackers on the

evaluation sets.

5.2 Evaluation Metrics

In order to evaluate the performance of a single-target object tracker, several evalu-

ation metrics are used in the literature. However, there is no single agreed metric.

C̆ehovin et al. [120] attempts to bring a consensus to this absence of homogenuity by

showing that lots of the seemingly different metrics are actually highly correlated. In

their study, they use 25 widely used video sequences and 13 different trackers, and

show that a single-target tracker’s performance can be boiled down to two comple-

mentary measures, namely accuracy and robustness.

This section will continue by summarizing the commonly used evaluation metrics in

the literature and then it will explain the two complementary metrics proposed by

C̆ehovin et al. that are also used in this thesis.

Following the study of C̆ehovin et al., we first start by defining an object state de-

scription Λ in a sequence with length N as in equation 5.1,

Λ = {(At,xt)}Nt=1 (5.1)

where At is the region of the object and xt ∈ R2 is the center of the object at time

t. In practice, At is usually a bounding box that is either a square or a rectangle. An

ideal evaluation metric should be able to summarize how the predicted object state

ΛT matches with the ground-truth object state ΛG.

67

5.2.1 Center Error

Center error δt is one of the oldest evaluation metrics in the literature. It measures

the absolute distance between the predicted target’s center xTt and the ground-truth

center xGt as in equation 5.2.

δt = ||xGt − xTt || (5.2)

The overall error is either shown as a center error vs. frame plot or summarized as an

average error (see equation 5.3) or as a root-mean-squared error (see equation 5.4).

∆µ(ΛG,ΛT) =
1

N

N∑
t=1

δt (5.3)

RMSE(ΛG,ΛT) =

√√√√ 1

N

N∑
t=1

||xGt − xTt ||2 (5.4)

Although it requires a minimal annotation effort, which is just a point, the drawback

of this metric is that it is not immediately clear where the center of the object is. Ad-

ditionally, it ignores the target’s size which in turn makes it misleading. For instance,

large targets may have large center errors compared to the small ones; however, this

error may be very small compared to their sizes. To remedy this, the normalized cen-

ter error δ̂t is used instead. In this error, the center error is normalized by using the

ground-truth target size as in equation 5.5.

δ̂t =

∣∣∣∣∣∣∣∣xGt − xTtsize(AGt)

∣∣∣∣∣∣∣∣ (5.5)

Despite the normalization, the center error metric can still be misleading as a large

target size may hide a large center error when the predicted target size and ground-

truth are not close. Thus center error metrics are not considered to be good evaluation

metrics as they may be very misleading.

68

TP

FN

FP

TN

AtG AtT

Figure 5.4: An illustration of the tracker’s predicted region overlapping with the

ground-truth region.

5.2.2 Region Overlap

Region overlap φt is the ratio of the intersection between the predicted target region

ATt and the ground-truth region AGt to their union. It is illustrated in Figure 5.4 and

calculated as in equation 5.6.

φt =
AGt ∩ ATt
AGt ∪ ATt

=
TP

TP + FN + FP
(5.6)

The overall region overlap over the whole sequence is summarized by either an av-

erage overlap or a ratio of correctly tracked frames to all of them given a certain

threshold. The latter approach is adapted from the object detection community and

it is called the true positive score Pτ (see equation 5.7). This score has become very

popular in tracker evaluations with the tracking-by-detection concept.

Pτ (Λ
G,ΛT) =

||{t|φt > τ}Nt=1||
N

(5.7)

A nice property of the region overlap metric is that it simultaneously takes into ac-

count both the size and position of the predicted target region. Furthermore, it ranges

between 0 and 1 as opposed to the center error which can become arbitrarily large in

some situations.

69

5.2.3 Tracking Length

Tracking length is the number of successfully tracked frames from a trackers ini-

tialization to its first failure. A failure can be determined by using an overlap-based

failure criterion, i.e., if the region overlap falls below a certain threshold τ , the tracker

can be considered to be failed. In the following sections, the tracking length measure

will be denoted as Lτ .

Although the tracking length explicitly addresses the tracker’s failure, it has a signif-

icant drawback of being dependent on the initial conditions of the video sequence. If

the initial frames of the sequence contains difficult frames to track, the tracker will

easily fail and the rest of the video will be discarded. Due to this, the tracking length

on its own is not considered to be a good evaluation metric.

5.2.4 Failure Rate

Failure rate is the ratio of the number of reinitializations, upon failure, to the num-

ber of frames in a video sequence. A failure can again be determined by using an

overlap-based failure criterion as in the tracking length measure case. In the follow-

ing sections, the failure rate measure with threshold τ will be denoted as Fτ .

Compared to the tracking length metric, the failure rate has the advantage of evalu-

ating the tracker on the whole video sequence. This decreases the importance of the

hardness of the initial frames. Thus, it serves as a better evaluation metric than the

tracking length.

5.2.5 The Two Complementary Measures: Accuracy and Robustness

After comparing ten different evaluation metrics for single-target trackers, C̆ehovin

et al. [120] show that some of the seemingly different metrics are actually highly

correlated. The correlation matrix they obtained with this study is as in Figure 5.5.

This correlation matrix clearly shows that metrics from 1 to 3 and from 4 to 7 are

highly correlated. The first cluster (1-3) consists of center error based metrics and the

second one (4-7) consists of overlap based ones. It can also be observed that there is a

70

Figure 5.5: The correlation matrix for all of the evaluation metrics in the study of

C̆ehovin et al. Red regions are higher in value.

slight overlap between the two clusters which implies similarity in their information

content. Based on their analysis, C̆ehovin et al. conclude that average overlap is one

of the most appropriate metrics to be used in tracker comparison as it is scale and

threshold invariant and exploits the entire sequence. They propose to use the average

overlap measure to account for the accuracy (A) of a tracker. They also take the

failure rate metric itself as a measure of robustness and propose to use it to account

for the robustness (R) of a tracker. By this way, they define a new A-R evaluation

metric as a pair of complementary scores.

To better understand how these accuracy and robustness metrics complement each

other, consider the two extreme theoretical trackers: T1 and T2, visualized in an A

vs. R plot as in Figure 5.6. T1 is a tracker which always reports its initial condition

for the whole sequence. Because of this, T1 will fail a lot resulting in a very low R

value. However, because of the frequent reinitializations, it will be displayed near the

top-left of the plot. T2 on the other hand, is another tracker which always reports the

whole image to be the region of the object. Because of this, T2 will provide loose

regions, but it will not fail. Therefore it will be displayed near the bottom-right corner.

An ideal tracker on the other hand, would have to reach the top-right corner.

In this thesis, we will follow C̆ehovin et al. and compare different trackers using the

complementary A-R evaluation metric. It should be noted that this A-R metric is

also used in visual object tracking challenges [18–21]. However, we will use slightly

different metrics to account for the accuracy and robustness. More specifically, rather

71

0.0 0.2 0.4 0.6 0.8 1.0

Robustness (R)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
(A

)

T1 T2

Figure 5.6: Two theoretical trackers visualized on an Accuracy vs. Robustness plot.

The closer the tracker is to the top-right corner, the better it is.

than the average overlap, we will use the area under the curve (AUC) of the True

Positive vs. Region Overlap Threshold (TP vs. ROT) plot (see Figure 5.7) to account

for accuracy. And rather than the failure rate with τ = 0, we will use the area above

the curve (AAC) of the Failure Rate vs. Reinitialization Threshold (FR vs. RT) plot

(see Figure 5.8) to account for robustness. It should be noted that the AUC of the TP

vs. ROT plot is actually equivalent to the average overlap metric2, and the AAC of the

FR vs. RT plot is an average of the failure rates for different RTs rather than a failure

rate metric with τ = 0. It should be noted that, these two plots have the additional

advantage of displaying the tracker’s performances for not only one, but all of the

thresholds values.

The TP vs. ROT plot for a single video sequence is obtained by first running a tracker

over the whole sequence and calculating the ratio of frames where the region overlap

is greater than a certain overlap threshold, and then by doing this for all thresholds

ranging from 0 to 1. In this plot, the RT is 0, i.e., the tracker gets reinitialized only if it

2 See the supplementary material of C̆ehovin et al. [120] for the proof.

72

0.0 0.2 0.4 0.6 0.8 1.0

Region Overlap Threshold (ROT)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

(T
P

)

Figure 5.7: True Positive vs. Region Overlap Threshold plot of an arbitrary tracker.

The filled blue area accounts for its accuracy.

0.0 0.2 0.4 0.6 0.8 1.0

Reinitialization Threshold (RT)

0.0

0.2

0.4

0.6

0.8

1.0

F
ai

lu
re

R
at

e
(F

R
)

Figure 5.8: Failure Rate vs. Reinitialization Threshold plot of an arbitrary tracker.

The filled green area accounts for its robustness.

73

completely looses the target. Similarly, the FR vs. RT plot for a single video sequence

is obtained by first running the tracker over the whole sequence and calculating the

ratio of frames where the region overlap failed below the RT, and then again by doing

this for all thresholds ranging from 0 to 1. However, unlike the TR vs. ROT plot

case, in the FR vs. RT plot, the tracker gets reinitialized immediately after the region

overlap falls below the RT.

5.3 Test Network Architectures

In this section, we describe the details of the network architectures to be tested. In

order to compare our proposed tracker with the other ones, we start by using the GO-

TURN tracker [14] as our baseline and then add/remove the necessary pieces one by

one. In total, we test 10 different network architectures whose details are summarized

in Table 5.2.3 We use CX
A /cp−CY − FZ as our tracker naming convention where A

denotes whether if attention is used or not, X denotes the layers that are used in the

feature extractor network (FEN) and Y and Z denotes number of convolutional and

fully connected layers used in the regression network (RN). cp is used for the cases

where both the current and previous frames are used as input to the tracker. If only

the current frame is used, then only c is used.

Baseline Network: We first start by describing the architectural details of the GO-

TURN tracker that is used as our baseline. The GOTURN tracker takes the current

and previous frames as input and passes them through the convolutional layers of a

pretrained AlexNet [99]. After the feature extraction process, the output of the last

convolutional layer is first flattened and then passed through a 4 layer multilayer per-

ceptron (MLP) for regressing the bounding box annotation of the current frame. The

first 3 layers of the MLP has 4096 neurons with ReLU activations and 0.5 dropout,

and the last layer has 4 neurons that correspond to the (x, y) coordinate of the top-left

corner and to the height and width of the bounding box.

In this study, rather than using a pretrained 5 layer AlexNet, we use a pretrained 5

layer VGG-Face network [117]. This choice originates from the fact that we will be

3 All of these trackers are trained in the way described in Section 4.3

74

Table 5.2: Architectural details of all the test networks.

Network
Layers used

from FEN-p

Layers used

from FEN-c

Layers in

the RN

C5
no att/cp− C0 − F 4 C5 C5 4 FC

C5
no att/cp− C1 − F 3 C5 C5 1 C, 3 FC

C3,5
no att/cp− C1 − F 3 C3, C5 C3, C5 1 C, 3 FC

C1,2,3,4,5
no att /cp− C1 − F 3

C1, C2, C3,

C4, C5

C1, C2, C3,

C4, C5
1 C, 3 FC

C1,2,3,4,5
att /cp− C1 − F 3

C1, C2, C3,

C4, C5

C1, C2, C3,

C4, C5
1 C, 3 FC

C5
no att/c− C0 − F 4 - C5 4 FC

C5
no att/c− C1 − F 3 - C5 1 C, 3 FC

C3,5
no att/c− C1 − F 3 - C3, C5 1 C, 3 FC

C1,2,3,4,5
no att /c− C1 − F 3 -

C1, C2, C3,

C4, C5
1 C, 3 FC

C1,2,3,4,5
att /c− C1 − F 3 -

C1, C2, C3,

C4, C5
1 C, 3 FC

75

tracking human faces rather than generic objects. In the RN, we use the same 4 layer

MLP; however, we use 3 neurons in the last layer as our bounding boxes are in square

form. Using the naming convention described above, we use C5
no att/cp − C0 − F 4

to refer to this network and use it as our baseline for comparison. The detailed block

diagram of this network can be found in Figure A.1.

Adding a Fusion Network to the RN: The next test network is similar to our base-

line network; however, it has a convolutional layer in place of the first fully connected

layer in the RN. We use this network to test whether if exploiting the spatial informa-

tion in the last layer features is helpful in regressing the bounding boxes. More specif-

ically, the RN is composed of 1 convolutional layer followed by 3 fully connected

layers where each layer has a ReLU activation. Because of this, rather than flattening

and concatenating the last layer features, we concatenate them in the channel dimen-

sion with a feature adaptation network (FAN). The convolutional layer is used as a

fusion network with 256 1×1 kernels, and it has a stride of 1 and a zero-padding of

0. As for the regularization, we use a batch normalization layer in the convolutional

part and again a 0.5 dropout in the fully connected part. We use C5
no att/cp−C1−F 3

to refer to this network and its block diagram is as in Figure A.2.

Using the Lower Level Features: Although the features extracted from the last lay-

ers contain rich semantic information about the target, they have a large receptive

field and thus do not carry precise location information. On the other hand, the lower

level features have relatively smaller receptive fields and can be useful for more pre-

cise tracking. Thus, in order to investigate the effect of the lower level features in the

tracking process, we use the C3,5
no att/cp−C1−F 3 network that makes use of the third

(low) and fifth (high) level features. Using the FAN, the third level features are first

max-pooled to match the size of the fifth level ones and then all of them are concate-

nated in the channel dimension. After the concatenation, they are fed as input to the

RN, that is identical to the RN of C5
no att/cp− C1 − F 3, for regressing the bounding

box annotation. The block diagram of this network is as in Figure A.3.

Using All Level Features: One problem that arises when using the low and high level

features together is the problem of deciding which layer combination of the features to

use together. Depending on the target, different layers may have different advantages

76

and it is not immediately clear which combination will give the best tracker. Because

of this, we basically use all the features and propose the C1,2,3,4,5
no att /cp − C1 − F 3

network whose architecture is as in Figure A.4. By this way, we leave the decision

process to the fusion network inside the RN. In this network, the lower level features

are first max-pooled to match the size of the last level ones and then all of them are

concatenated in the channel dimension using the FAN. Finally, these concatenated

features are passed through the RN, that is identical to the previous RNs with a fusion

network, for the regression of the bounding box.

Using the Attention Mechanism: Although, using features from all levels provides

a solution to the problem of deciding which level features to use, some of the features

in these layers may be unnecessary or even harmful, whereas some may be very

useful. In order to decrease or increase the effects of these channels, we propose

to use a soft channel attention mechanism that explicitly weights the features before

their concatenation in the FAN. More specifically, we first pass the features through

a 2 layer MLP4 to obtain the channel weights and then multiply each of the channels

with each of these weights. It should be noted that the MLPs share weights across

the channels of the same layer, i.e., there are 5 different MLPs that account for the 5

convolutional layers. After the concatenation in the FAN, the features are passed as

usual to the RN that is again identical to the previous fusion RNs. We refer to this

network as C1,2,3,4,5
att /cp−C1−F 3 and its block diagram can be found in Figure A.5.

It should be noted that this network is the proposed Attentive Face Tracking Network

(AFTN). (see Section 4.1)

Using Only the Current Frames as Input: Lastly, in order to test the necessity of

using the previous frames as input, we propose the versions of the above test net-

works that do not make use of the previous frames, i.e., there is no FEN-p. By this

way, the networks will work as local face detectors and they will be able to run at

speeds beyond the above trackers. We refer to these networks with the same naming

conventions as the previous trackers; however, we use c’s in place of the cp’s.

4 The input to this MLP is a vector of length 36 (6×6), and it has 36 neurons in its first layer and a single
neuron in its last one. While the first layer has ReLU activations, the last layer has a sigmoid activation with bias
0.5. Finally, no regularization layer is used.

77

5.4 Testing Procedure

In order to test the trackers, we use the baseline verification protocol of the Choke-

Point dataset [23]. Specifically, we first use the G1 set as our training set and train

our test networks on it. Then we test the networks on the 216 video sequences of the

G2 set and take the average of the evaluation metrics. For the accuracy measure, we

use the area under the curve of the True Positive (TP) vs. Region Overlap Threshold

(ROT) plot and for the robustness measure, we use the area above the curve of the

Failure Rate (FR) vs. Reinitialization Threshold (RT) plot. It should be noted that 40

different ROT and RT values were used in drawing these two plots. After testing the

trackers on the G2 set, we reset their parameters and retrain them using the G2 set.

After the training is done, we test the trackers on the 216 video sequences of the G1

set and again take the average of the evaluation metrics. In the end, we report the

average of the evaluation metrics on both the G1 and G2 sets as our final results.

For the speed tests, we use the average FPS values of the trackers on both the G1 and

G2 sets. In detail, a tracker’s speed is tested with 40 different RTs for each of the 432

different video sequences.

5.5 Quantitative Analysis

In this section, we show which pieces of our proposed tracker contributes to the most

of our performance by using the test trackers described in Section 5.3. We first start

by analyzing the effect of using a fusion network in the regression network and then

move on to the effect of the low level features in tracking. Afterwards, rather than

deciding on which combination of features to use, we look at the effect of using

all them together. And then, we investigate the effect of using the channel attention

mechanism. Finally, we test the necessity of using the previous frames as input. In the

end, we compare all of the proposed test trackers using an Accuracy vs. Robustness

plot.

78

0.0 0.2 0.4 0.6 0.8 1.0

Region Overlap Threshold (ROT)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

(T
P

)

C5
no att/cp − C

0 − F4, 0.465

C5
no att/cp − C

1 − F3, 0.731

Figure 5.9: The TP vs. ROT plot for theC5
no att/cp−C0−F 4 andC5

no att/cp−C1−F 3

trackers. The accuracy value of the trackers is given next to their name in the legend.

5.5.1 Effect of a Fusion Network in the Regression Network

In order to test the effect of using a fusion network inside the regression network

(RN), we compare the baseline trackerC5
no att/cp−C0−F 4 with theC5

no att/cp−C1−
F 3 tracker. The only difference between these two networks is the convolutional layer

that is used in place of the fully connected layer in the latter one. The performance

plots of these two trackers are as in Figure 5.9 and 5.10.

The TP vs. ROT and FR vs. RT plots indicate that using a fusion network in the RN

boosts the performance significantly both in terms of accuracy and robustness. This

supports our hypothesis that the last level features contain spatial information and it

can be exploited with a network that has convolutional layers. Thus, in the following

subsections, we keep using the fusion network and build on top of this idea.

5.5.2 Effect of the Low Level Features

In order to test the effect of the lower level features, we compare theC5
no att/cp−C1−

F 3 tracker with the C3,5
no att/cp− C1 − F 3 tracker. The only difference between these

two trackers is the additional usage of third (low) level features. The performance

79

0.0 0.2 0.4 0.6 0.8 1.0

Reinitialization Threshold (RT)

0.0

0.2

0.4

0.6

0.8

1.0

F
ai

lu
re

R
at

e
(F

R
)

C5
no att/cp − C

0 − F4, 0.547

C5
no att/cp − C

1 − F3, 0.802

Figure 5.10: The FR vs. RT plot for theC5
no att/cp−C0−F 4 andC5

no att/cp−C1−F 3

trackers. The robustness value of the trackers is given next to their name in the legend.

plots of them are given in Figure 5.11 and 5.12.

The performance plots show that although the usage of the low levels features does

not have an impact on the robustness, it can help with the accuracy. This aligns with

our hypothesis that due to their small receptive fields, low level features can be helpful

for more precise/accurate tracking.

It should be noted that although we have used the third level features as the low level

features, it is not immediately clear that this is the best choice. For instance, using the

first or second level features may have worked better in different tracking scenarios.

In order to get rid of this manual design choice, in the next subsection, we simply use

all the features from all the levels and let the fusion network decide on which level of

information to use.

5.5.3 Effect of All Level Features

In order to examine the effect of using all the features, we compare the C3,5
no att/cp −

C1−F 3 tracker with the C1,2,3,4,5
no att /cp−C1−F 3 tracker. The only difference between

the two is that the latter network makes use of all of the features rather than just the

80

0.0 0.2 0.4 0.6 0.8 1.0

Region Overlap Threshold (ROT)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

(T
P

)

C5
no att/cp − C

1 − F3, 0.731

C
3,5
no att/cp − C

1 − F3, 0.751

Figure 5.11: The TP vs. ROT plot for theC5
no att/cp−C1−F 3 andC3,5

no att/cp−C1−F 3

trackers. The accuracy value of the trackers is given next to their name in the legend.

0.0 0.2 0.4 0.6 0.8 1.0

Reinitialization Threshold (RT)

0.0

0.2

0.4

0.6

0.8

1.0

F
ai

lu
re

R
at

e
(F

R
)

C5
no att/cp − C

1 − F3, 0.802

C
3,5
no att/cp − C

1 − F3, 0.805

Figure 5.12: The FR vs. RT plot for theC5
no att/cp−C1−F 3 andC3,5

no att/cp−C1−F 3

trackers. The robustness value of the trackers is given next to their name in the legend.

81

0.0 0.2 0.4 0.6 0.8 1.0

Region Overlap Threshold (ROT)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

(T
P

)

C
3,5
no att/cp − C

1 − F3, 0.751

C
1,2,3,4,5
no att /cp − C1 − F3, 0.756

Figure 5.13: The TP vs. ROT plot for the C3,5
no att/cp − C1 − F 3 and C1,2,3,4,5

no att /cp −
C1 − F 3 trackers. The accuracy value of the trackers is given next to their name in

the legend.

third and fifth one. Figure 5.13 and 5.14 show the performance plots of these two

trackers.

The performance plots show that although the accuracy of the C1,2,3,4,5
no att /cp−C1−F 3

tracker is slightly better, they have a very close accuracy and robustness profile. This

is because, in this specific face tracking scenario, the third and fifth level features

already contain enough information for accurate/robust tracking and adding the other

level features does not help. However, using all the features takes away the burden of

testing all the possible combinations and leaves this job to the fusion network.

Although the C1,2,3,4,5
no att /cp− C1 − F 3 tracker takes away the testing burden, it makes

use of all the features from all the layers regardless of their importance in tracking.

Even though the fusion network takes care of the fusion of these channels, using an

explicit mechanism for gating these channels can lead to better results. In the next

subsection, we investigate the effect of such an explicit gating mechanism.

82

0.0 0.2 0.4 0.6 0.8 1.0

Reinitialization Threshold (RT)

0.0

0.2

0.4

0.6

0.8

1.0

F
ai

lu
re

R
at

e
(F

R
)

C
3,5
no att/cp − C

1 − F3, 0.805

C
1,2,3,4,5
no att /cp − C1 − F3, 0.804

Figure 5.14: The FR vs. RT plot for theC3,5
no att/cp−C1−F 3 andC1,2,3,4,5

no att /cp−C1−F 3

trackers. The robustness value of the trackers is given next to their name in the legend.

5.5.4 Effect of the Channel Attention Mechanism

Lastly, in order to test the effect of the soft channel attention mechanism, we compare

the C1,2,3,4,5
no att /cp−C1−F 3 tracker with the C1,2,3,4,5

att /cp−C1−F 3 tracker. The only

difference between these two trackers is the channel attention mechanism present in

the latter one. The performance plots of these two trackers are given in Figure 5.15

and 5.16.

The performance plots indicate that the usage of an explicit gating mechanism as

the soft channel attention mechanism brings a performance gain both in terms of

accuracy and robustness. This assists our hypothesis that certain channels may in-

crease/decrease the tracking performance and explicitly weighting these channels can

be helpful in obtaining more accurate/robust trackers.

5.5.5 Effect of Using Only the Current Frame

In this subsection, we test the necessity of using the previous frames as input. In order

to do this, we compare the versions of the trackers that only use the current frames as

input with themselves. In this case, the trackers will work as local face detectors. The

83

0.0 0.2 0.4 0.6 0.8 1.0

Region Overlap Threshold (ROT)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

(T
P

)

C
1,2,3,4,5
no att /cp − C0 − F4, 0.756

C
1,2,3,4,5
att /cp − C1 − F3, 0.789

Figure 5.15: The TP vs. ROT plot for the C1,2,3,4,5
no att /cp− C1 − F 3 and C1,2,3,4,5

att /cp−
C1 − F 3 trackers. The accuracy value of the trackers is given next to their name in

the legend.

0.0 0.2 0.4 0.6 0.8 1.0

Reinitialization Threshold (RT)

0.0

0.2

0.4

0.6

0.8

1.0

F
ai

lu
re

R
at

e
(F

R
)

C
1,2,3,4,5
no att /cp − C0 − F4, 0.804

C
1,2,3,4,5
att /cp − C1 − F3, 0.824

Figure 5.16: The FR vs. RT plot for the C1,2,3,4,5
no att /cp − C1 − F 3 and C1,2,3,4,5

att /cp −
C1 − F 3 trackers. The robustness value of the trackers is given next to their name in

the legend.

84

0.0 0.2 0.4 0.6 0.8 1.0

Region Overlap Threshold (ROT)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

(T
P

)

C5
no att/cp − C

0 − F4, 0.465

C5
no att/cp − C

1 − F3, 0.731

C
3,5
no att/cp − C

1 − F3, 0.751

C
1,2,3,4,5
no att /cp − C1 − F3, 0.756

C
1,2,3,4,5
att /cp − C1 − F3, 0.789

C5
no att/c − C

0 − F4, 0.636

C5
no att/c − C

1 − F3, 0.755

C
3,5
no att/c − C

1 − F3, 0.756

C
1,2,3,4,5
no att /c − C1 − F3, 0.736

C
1,2,3,4,5
att /c − C1 − F3, 0.767

Figure 5.17: The TP vs. ROT plot for the all of the test trackers. The accuracy value

of the trackers is given next to their name in the legend. The trackers that do not use

FEN-p are represented with dashed lines.

performance plots of these trackers are as in Figure 5.17 and 5.18.

The performance plots show that although there are slight variations, a similar trend

of increasing performance with the addition of useful pieces also holds for trackers

that do not use FEN-p. These trackers also perform closely to the trackers that use

both of the frames as their inputs.5 This raises questions on the necessity of using the

previous frames, which slows down the trackers unnecessarily. Whether they should

be used or not will be discussed further in Section 5.7.

5.5.6 The Overall Comparison of the Trackers

After the one-by-one comparison of the test trackers, in this subsection, we compare

all of them using a single Accuracy (A) vs. Robustness (R) plot given in Figure 5.19.

The individual accuracy and robustness values are also presented in Table 5.3. As

it is clear from the plot and the table, the best performing trackers in terms of both

accuracy and robustness are the C1,2,3,4,5
att /cp − C1 − F 3 (AFTN) and C1,2,3,4,5

att /c −
5 The huge performance increase in the baseline tracker (C5

no att/cp− C0 − F 4) is due to the prevention of
overfitting which is caused by the large number of parameters in its RN. The large number of parameters is due to
the first fully connected layer in the RN.

85

0.0 0.2 0.4 0.6 0.8 1.0

Reinitialization Threshold (RT)

0.0

0.2

0.4

0.6

0.8

1.0

F
ai

lu
re

R
at

e
(F

R
)

C5
no att/cp − C

0 − F4, 0.547

C5
no att/cp − C

1 − F3, 0.802

C
3,5
no att/cp − C

1 − F3, 0.805

C
1,2,3,4,5
no att /cp − C1 − F3, 0.804

C
1,2,3,4,5
att /cp − C1 − F3, 0.824

C5
no att/c − C

0 − F4, 0.690

C5
no att/c − C

1 − F3, 0.808

C
3,5
no att/c − C

1 − F3, 0.803

C
1,2,3,4,5
no att /c − C1 − F3, 0.790

C
1,2,3,4,5
att /c − C1 − F3, 0.812

Figure 5.18: The FR vs. RT plot for the all of the test trackers. The accuracy value

of the trackers is given next to their name in the legend. The trackers that do not use

FEN-p are represented with dashed lines.

C1 − F 3 (AFTN-c) trackers. This is as expected, as these trackers explicitly weight

the channels that are necessary/dispensable for more accurate and robust tracking.

Another interesting thing to observe is the significant effect that the fusion network

brings. As can be seen from the A vs. R plot, it makes the trackers cluster near to the

top-right corner.

5.6 Speed Analysis

In this section, we compare the speeds of the test trackers that were described above.

In order to make a fair comparison, we run all the trackers on a machine equipped with

an Intel Core i7-4790K 8 Core 4.00 GHz CPU and a single NVIDIA GeForce GTX

Titan X GPU. We also use the PyTorch framework [46] and enable its benchmark

mode during the tracking process.

The tracking speeds of all the test trackers are as in Table 5.4. These speed values

were calculated by using the time it takes for cropping, resizing and forward passing

the input frames. It should be noted that in our calculations, we do not take into

86

0.55 0.60 0.65 0.70 0.75 0.80

Robustness (R)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
cc

u
ra

cy
(A

)

C5
no att/cp − C

0 − F4

C5
no att/cp − C

1 − F3

C
3,5
no att/cp − C

1 − F3

C
1,2,3,4,5
no att /cp − C1 − F3

C
1,2,3,4,5
att /cp − C1 − F3

C5
no att/c − C

0 − F4

C5
no att/c − C

1 − F3

C
3,5
no att/c − C

1 − F3

C
1,2,3,4,5
no att /c − C1 − F3

C
1,2,3,4,5
att /c − C1 − F3

Figure 5.19: The A vs. R plot for all of the test trackers.

Table 5.3: Accuracy and robustness values of all the test trackers. The overall score

is obtained by averaging the accuracy and robustness values.

Network Accuracy Robustness Overall

C5
no att/cp− C0 − F 4 0.465 0.547 0.506

C5
no att/cp− C1 − F 3 0.731 0.802 0.767

C3,5
no att/cp− C1 − F 3 0.751 0.805 0.778

C1,2,3,4,5
no att /cp− C1 − F 3 0.756 0.804 0.780

C1,2,3,4,5
att /cp− C1 − F 3 0.789 0.824 0.807

C5
no att/c− C0 − F 4 0.636 0.690 0.663

C5
no att/c− C1 − F 3 0.755 0.808 0.782

C3,5
no att/c− C1 − F 3 0.756 0.803 0.780

C1,2,3,4,5
no att /c− C1 − F 3 0.736 0.790 0.763

C1,2,3,4,5
att /c− C1 − F 3 0.767 0.812 0.790

87

Table 5.4: Speed values of all the test trackers.

Network Speed (FPS)

C5
no att/cp− C0 − F 4 118.6

C5
no att/cp− C1 − F 3 156.8

C3,5
no att/cp− C1 − F 3 148.3

C1,2,3,4,5
no att /cp− C1 − F 3 148.9

C1,2,3,4,5
att /cp− C1 − F 3 142.9

C5
no att/c− C0 − F 4 182.5

C5
no att/c− C1 − F 3 207.9

C3,5
no att/c− C1 − F 3 206.4

C1,2,3,4,5
no att /c− C1 − F 3 199.2

C1,2,3,4,5
att /c− C1 − F 3 183.4

account the time it takes for OpenCV to read a frame. The FPS values in Table 5.4

indicate that the extensions do not have a significant computational overhead and in

fact they even speed up the baseline tracker. They also show that trackers that only

use the current frames perform much faster than the other ones.

Lastly, one important thing to note is that all of the test trackers can run at speeds that

are very far beyond the 25 FPS requirement for real-time tracking. This is mainly due

to the following two aspects: the trackers are trained fully offline with no online up-

dating involved and only a single forward pass is required for inferring the bounding

box annotations. The usage of a GPU, rather than a CPU, is another important aspect

that significantly contributes to these results.

5.7 Which Tracker to Use?

In the previous sections, we have demonstrated the usefulness of several extensions

through quantitative accuracy and robustness analysis, and showed that the best per-

forming trackers are the C1,2,3,4,5
att /cp− C1 − F 3 (AFTN) and C1,2,3,4,5

att /c− C1 − F 3

88

(AFTN-c) trackers. Among these two, the former one has a higher overall score

whereas the latter performs much faster. So which one of these two trackers should

be used for face tracking?

The answer to this question is partially available in the study of Held et al. [14] in

which they compare the GOTURN tracker with its version where no previous frame

is used. They show that the tracker which receives both the current and previous

frames performs better in the overall score when there is an occlusion or a large

camera motion, and the tracker which receives just the current frame performs better

when there is a large object size change. Since there are no severe occlusions and

camera motions in the ChokePoint dataset [23], using the AFTN-c tracker also does

not cause serious problems in the overall score. Moreover, it has the advantage in

terms of speed. Thus, the AFTN-c tracker, which acts as a local face detector, serves

well under these conditions and it can be used for tracking faces. However, if the

overall score is an important concern, then the AFTN tracker can be used instead. So

the choice of which tracker to use depends on the objective (speed or overall score)

that we want to maximize.

It should also be noted that if face tracking is to be performed under different condi-

tions than the ChokePoint dataset, then the choice of whether or not using the previ-

ous frame should be investigated further. However, using both of the frames may be

a better choice if speed is not much of a concern as modern surveillance cameras can

record in speeds that prevent large changes in the object size.

5.8 Qualitative Analysis: Learning to Select Useful Features

The previous sections have demonstrated the usefulness of the channel-wise atten-

tion mechanism through a quantitative analysis. In this section, we provide some

additional visualizations to demonstrate its usefulness in a qualitative manner.

Figure 5.21 visualizes the average channel weights for all the convolutional layers

of the same person with ID 18 (see Figure 5.20) in the video sequences P1E_S4_C1

and P1L_S4_C1. Since the last layer of the attention network has a sigmoid with

bias 0.5, the weights are in the range [0.5, 1.5]. First, we observe that the weight

89

P1E_S4_C1 P1L_S4_C1

Figure 5.20: Entering and leaving scenarios of person 18 from P1. The leaving sce-

nario (P1L) contains more distracting objects in the background.

distributions of the layers are quite different, i.e., while some of the first level features

get suppressed by the attention mechanism, the features from rest of the layers are

passed without nearly no weighting. This is as expected as the lower layer features

contain more generic information that may not be necessary for the tracking process.

Second, the weight distributions for the first layer C1 are different for the two video

sequences. The attention mechanism suppresses more channels from C1 in the P1L

sequence as it contains more distracting objects in the background.

Lastly, it should be noted that the weights in Figure 5.21 are for the AFTN tracker.

However, the weights for the AFTN-c tracker also show a similar distribution where

they again supress the first layer features more than the other ones. They also supress

more features from the first layer of the P1L sequence.

5.9 Comparison with Other Surveillance Face Trackers

The previous sections were about building on top of the GOTURN tracker [14] to

obtain the AFTN tracker and its single-input-frame version AFTN-c. In this section,

we compare our proposed tracker to the other video surveillance trackers, that were

presented in Section 3.3, to observe our place among them.6 Among the trackers that

6 We compare the trackers only in terms of accuracy and robustness as it would be unfair to compare the
speeds of trackers that run on powerful GPUs with the ones that run on only CPUs.

90

0 50 100 150 200

0.6

0.8

1.0 P1E S4 C1 - C1

P1L S4 C1 - C1

0 100 200 300 400 500

0.9

1.0

1.1
P1E S4 C1 - C2

P1L S4 C1 - C2

0 200 400 600 800 1000

0.9

1.0

1.1

C
h

an
n

el
W

ei
gh

t P1E S4 C1 - C3

P1L S4 C1 - C3

0 200 400 600 800 1000

0.9

1.0

P1E S4 C1 - C4

P1L S4 C1 - C4

0 200 400 600 800 1000

Channel Number

0.95

1.00

1.05 P1E S4 C1 - C5

P1L S4 C1 - C5

Figure 5.21: The average channel weight outputs of the AFTN network by the atten-

tion mechanism for the same person with ID 18 in the video sequences P1E_S4_C1

and P1L_S4_C1. Channels are sorted according to their weights. There is no corre-

spondence between channel numbers for the two sequences.

91

0.0 0.2 0.4 0.6 0.8 1.0

Region Overlap Threshold (ROT)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

(T
P

)

IVT, 0.291

GOTURN, 0.465

AFTN, 0.789

AFTN-c, 0.767

Figure 5.22: The TP vs. ROT plot for the IVT, GOTURN, AFTN and AFTN-c track-

ers. The accuracy value of the trackers is given next to their name in the legend.

were used by Dewan et al. [1], we only use the IVT (Incremental Visual Tracking)

[22] tracker for comparison as they have already shown that it performs better than

both TLD [89] and DSCT [90] in terms of tracking accuracy and speed. It should be

noted that we force the IVT tracker to output squares rather than arbitrary polygons to

make a fair comparison with our trackers. We were not able to use the HAKLT tracker

[2] for comparison as its source code is not publicly available. The performance plots

of the IVT, GOTURN, AFTN and AFTN-c trackers are as in Figure 5.22 and 5.23.

The performance plots show that the IVT tracker performs even worse than our base-

line GOTURN tracker. This assists our hypothesis that although traditional trackers

can perform up to certain degrees, since they do not make use of the learned rich

hierarchical features present in deep learning based trackers, they are prone to failure

under the harsh conditions present in video surveillance.

Lastly, it should be noted that the experiments with IVT tracker were done with opti-

mized hyperparameters that are close to the the default hyperparameters in the orig-

inal paper [22]. Specifically, for the eigenbasis representation, each target region is

resized to 32×32 and 16 eigenvectors are used. The forgetting term is set to 0.99, the

batch size for the eigenbasis update is set to 10 and 300 particles are used.

92

0.0 0.2 0.4 0.6 0.8 1.0

Reinitialization Threshold (RT)

0.0

0.2

0.4

0.6

0.8

1.0

F
ai

lu
re

R
at

e
(F

R
)

IVT, 0.407

GOTURN, 0.547

AFTN, 0.824

AFTN-c, 0.812

Figure 5.23: The FR vs. RT plot for the IVT, GOTURN, AFTN and AFTN-c trackers.

The accuracy value of the trackers is given next to their name in the legend.

93

94

CHAPTER 6

CONCLUSION

The aim of this thesis was to design a real-time visual object tracker for the specific

problem of single-target visual face tracking under surveillance conditions. For this

purpose, we took the real-time GOTURN tracker [14] that makes use of the learned

rich hierarchical features as our starting point and improved it using several useful

extensions as using a fusion network in the regression network, making use of the

lower level features and using a channel-wise attention mechanism for the task of

adaptive channel selection. We demonstrated the usefulness of all these extensions

using careful experiments and finally proposed the Attentive Face Tracking Network

(AFTN). We also ran experiments to check the necessity of using the previous frames

as input and showed that it may not be necessary if tracker speed is a concern. As

shown using an Accuracy vs. Robustness plot, the AFTN and its single-frame-input

version AFTN-c outperform all the other trackers that are the primitive versions of

themselves. They also outperform one of the best [1] surveillance face tracker named

Incremental Visual Tracking (IVT) [22] by a very large margin. Furthermore, they

run at speeds (∼140 FPS or ∼180 FPS) that are very far beyond the requirement of

25 FPS for real-time tracking making them useful for real-world applications.

It should be noted that although we specifically used the proposed AFTN (and AFTN-

c) for the task of real-time single-target visual face tracking, it can also be used for any

real-time single-target visual generic object tracking task without any further modi-

fication in the architecture. It just needs to be re-trained from scratch in an offline

manner with the domain specific dataset.

In addition to proposing a real-time face tracker, this thesis also provided accurate

bounding box annotations for the G1 and G2 sets of the ChokePoint dataset [23]

95

which can be used for further studies in visual face tracking under surveillance condi-

tions. The variance of the illumination conditions, pose, sharpness and misalignment

of the face images in this dataset can serve well in training trackers that are robust

to the wide variety of changes in the environment. Our results on the Accuracy vs.

Robustness plot are already a strong indicator of this benefit.

It should also be noted that the ChokePoint dataset consists of sequences that have a

single face in each frame. As we were building on top of a single-target object tracker

for tracking in this dataset, this did not cause a problem in our experiments. However,

if the task is to track multiple faces, then AFTN (or AFTN-c) may not be a good

choice as running a separate tracker, on a machine with single CPU and GPU, for

each of the faces may become computationally expensive and slow down the tracker.

In this case, multi-target object trackers can be investigated further.

The proposed face tracking architecture opens many possible future directions that

can be further investigated. The first obvious one is the effect of a hard channel atten-

tion mechanism that does not weights all the channels as in the soft case, but selects

a certain number of useful channels that can help in the process of tracking. Another

possible direction is the investigation of the effect of adding a recurrent module to

the regression network to make use of the spatio-temporal information in a different

way. In this case, there would also be no need for using the two consecutive frames

as input which in turn would lead to a speed up.

Apart from the possible future studies to improve the tracker, we also plan to aug-

ment our face tracker using a face detection and a face recognition module to build

a large framework that automatically detects-tracks-recognizes the faces under real-

world surveillance conditions. After the faces are detected with the detection module,

they will be tracked by the tracking module and the identity of them will be deter-

mined using the recognition module. In the case of a tracking failure, the detection

module will re-detect the faces and the whole process will continue from where it was

left.

Before ending this thesis, we highlight the need for empirical benchmarking studies

in surveillance face tracking as the Visual Object Tracking (VOT) challenges [18–

21]. By this way, the surveillance face tracking community would be able to easily

96

compare their face tracking methods with the ones in the literature and thus the field

would progress faster.

97

98

REFERENCES

[1] M. A. A. Dewan, E. Granger, F. Roli, R. Sabourin, and G. L. Marcialis, “A

comparison of adaptive appearance methods for tracking faces in video surveil-

lance,” in 5th International Conference on Imaging for Crime Detection and

Prevention (ICDP 2013), pp. 1–7, Dec 2013.

[2] X. Lan, Z. Xiong, W. Zhang, S. Li, H. Chang, and W. Zeng, “A super-fast

online face tracking system for video surveillance,” in 2016 IEEE International

Symposium on Circuits and Systems (ISCAS), pp. 1998–2001, May 2016.

[3] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of

the devil in the details: Delving deep into convolutional nets,” CoRR,

vol. abs/1405.3531, 2014.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in Neural Information Pro-

cessing Systems, p. 2012.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[6] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies

for accurate object detection and semantic segmentation,” 2014 IEEE Confer-

ence on Computer Vision and Pattern Recognition, pp. 580–587, 2014.

[7] S. Hong, H. Noh, and B. Han, “Decoupled deep neural network for semi-

supervised semantic segmentation,” in NIPS, 2015.

[8] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for

semantic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,

pp. 640–651, Apr. 2017.

[9] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic

99

segmentation,” in 2015 IEEE International Conference on Computer Vision

(ICCV), 2015.

[10] H. Noh, P. H. Seo, and B. Han, “Image question answering using con-

volutional neural network with dynamic parameter prediction,” CoRR,

vol. abs/1511.05756, 2015.

[11] Y. Taigman, M. Yang, and L. Wolf, “L.: Deepface: Closing the gap to human-

level performance in face verification,” in In: IEEE CVPR, 2014.

[12] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep neural

networks,” 2014 IEEE Conference on Computer Vision and Pattern Recogni-

tion, pp. 1653–1660, 2014.

[13] H. Nam and B. Han, “Learning multi-domain convolutional neural networks

for visual tracking,” in The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2016.

[14] D. Held, S. Thrun, and S. Savarese, “Learning to track at 100 fps with deep re-

gression networks,” in European Conference Computer Vision (ECCV), 2016.

[15] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr,

“Fully-convolutional siamese networks for object tracking,” arXiv preprint

arXiv:1606.09549, 2016.

[16] H. Nam, M. Baek, and B. Han, “Modeling and propagating cnns in a tree

structure for visual tracking,” CoRR, vol. abs/1608.07242, 2016.

[17] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu, “High performance visual track-

ing with siamese region proposal network,” 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 8971–8980, 2018.

[18] M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Čehovin Zajc, G. Fer-

nandez, T. Vojir, G. Häger, G. Nebehay, R. Pflugfelder, A. Gupta, A. Bibi,

A. Lukežič, A. Garcia-Martin, A. Saffari, A. Petrosino, A. S. Montero, A. Var-

folomieiev, A. Baskurt, B. Zhao, B. Ghanem, B. Martinez, B. Lee, B. Han,

C. Wang, C. Garcia, C. Zhang, C. Schmid, D. Tao, D. Kim, D. Huang,

100

D. Prokhorov, D. Du, D.-Y. Yeung, E. Ribeiro, F. S. Khan, F. Porikli, F. Bun-

yak, G. Zhu, G. Seetharaman, H. Kieritz, H. T. Yau, H. Li, H. Qi, H. Bischof,

H. Possegger, H. Lee, H. Nam, I. Bogun, J. chan Jeong, J. il Cho, J.-Y. Lee,

J. Zhu, J. Shi, J. Li, J. Jia, J. Feng, J. Gao, J. Y. Choi, J.-W. Kim, J. Lang,

J. M. Martinez, J. Choi, J. Xing, K. Xue, K. Palaniappan, K. Lebeda, K. Ala-

hari, K. Gao, K. Yun, K. H. Wong, L. Luo, L. Ma, L. Ke, L. Wen, L. Bertinetto,

M. Pootschi, M. Maresca, M. Danelljan, M. Wen, M. Zhang, M. Arens, M. Val-

star, M. Tang, M.-C. Chang, M. H. Khan, N. Fan, N. Wang, O. Miksik, P. Torr,

Q. Wang, R. Martin-Nieto, R. Pelapur, R. Bowden, R. Laganiere, S. Mouj-

tahid, S. Hare, S. Hadfield, S. Lyu, S. Li, S.-C. Zhu, S. Becker, S. Duffner,

S. L. Hicks, S. Golodetz, S. Choi, T. Wu, T. Mauthner, T. Pridmore, W. Hu,

W. Hübner, X. Wang, X. Li, X. Shi, X. Zhao, X. Mei, Y. Shizeng, Y. Hua, Y. Li,

Y. Lu, Y. Li, Z. Chen, Z. Huang, Z. Chen, Z. Zhang, and Z. He, “The visual ob-

ject tracking vot2015 challenge results,” in Visual Object Tracking Workshop

2015 at ICCV2015, Dec 2015.

[19] M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder, L. Čehovin

Zajc, T. Vojir, G. Häger, A. Lukežič, and G. Fernandez, “The visual object

tracking vot2016 challenge results.” Springer, Oct 2016.

[20] M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder, L. Čehovin

Zajc, T. Vojir, G. Häger, A. Lukežič, A. Eldesokey, and G. Fernandez, “The

visual object tracking vot2017 challenge results,” 2017.

[21] M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pfugfelder, L. C. Zajc,

T. Vojir, G. Bhat, A. Lukezic, A. Eldesokey, G. Fernandez, and et al., “The

sixth visual object tracking vot2018 challenge results,” 2018.

[22] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning for ro-

bust visual tracking,” Int. J. Comput. Vision, vol. 77, pp. 125–141, May 2008.

[23] Y. Wong, S. Chen, S. Mau, C. Sanderson, and B. C. Lovell, “Patch-based prob-

abilistic image quality assessment for face selection and improved video-based

face recognition,” in IEEE Biometrics Workshop, Computer Vision and Pattern

Recognition (CVPR) Workshops, pp. 81–88, IEEE, June 2011.

101

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-

plied to document recognition,” Proceedings of the IEEE, vol. 86, pp. 2278–

2324, November 1998.

[25] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[27] A. M. Legendre, Nouvelles méthodes pour la détermination des orbites des

cometes. F. Didot, 1805.

[28] C. F. Gauss, Theoria motus corporum coelestium in sectionibus conicis solem

ambientium. 1809.

[29] C. F. Gauss, Theoria combinationis observationum erroribus minimis obnoxiae

(Theory of the combination of observations least subject to error). 1821.

[30] W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in ner-

vous activity,” Bulletin of Mathematical Biophysics, vol. 7, pp. 115–133, 1943.

[31] D. O. Hebb, The Organization of Behavior. Wiley, New York, 1949.

[32] F. Rosenblatt, “The perceptron: a probabilistic model for information storage

and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386,

1958.

[33] M. Minsky and S. Papert, Perceptrons. Cambridge, MA: MIT Press, 1969.

[34] J. Schmidhuber, “Critique of paper by "deep learning conspiracy" (nature

521 p 436),” June 2015. http://people.idsia.ch/~juergen/

deep-learning-conspiracy.html.

[35] A. G. Ivakhnenko and V. G. Lapa, Cybernetic Predicting Devices. CCM Infor-

mation Corporation, 1965.

[36] A. G. Ivakhnenko, “The group method of data handling – a rival of the method

of stochastic approximation,” Soviet Automatic Control, vol. 13, no. 3, pp. 43–

55, 1968.

102

http://www.deeplearningbook.org
http://people.idsia.ch/~juergen/deep-learning-conspiracy.html
http://people.idsia.ch/~juergen/deep-learning-conspiracy.html

[37] J. J. Hopfield, “Neural networks and physical systems with emergent collective

computational abilities,” Proceedings National Academy of Science, vol. 79,

pp. 2554–2558, April 1982.

[38] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal rep-

resentations by error propagation,” in Parallel Distributed Processing (D. E.

Rumelhart and J. L. McClelland, eds.), vol. 1, pp. 318–362, MIT Press, 1986.

[39] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best

multi-stage architecture for object recognition?,” in Proc. International Con-

ference on Computer Vision (ICCV’09), pp. 2146–2153, IEEE, 2009.

[40] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier networks,” in AIS-

TATS, vol. 15, pp. 315–323, 2011.

[41] A. N. Kolmogorov, “On the representation of continuous functions of several

variables by superposition of continuous functions of one variable and addi-

tion,” Doklady Akademii. Nauk USSR,, vol. 114, pp. 679–681, 1965.

[42] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”

Mathematics of Control, Signals and Systems, vol. 2, pp. 303–314, Dec 1989.

[43] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks

are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366,

1989.

[44] A. R. Barron, “Universal approximation bounds for superpositions of a sig-

moidal function,” IEEE Transactions on Information Theory, vol. 39, pp. 930–

945, May 1993.

[45] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of linear

regions of deep neural networks,” in Advances in Neural Information Process-

ing Systems 27 (Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and

K. Q. Weinberger, eds.), pp. 2924–2932, Curran Associates, Inc., 2014.

[46] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,”

in NIPS-W, 2017.

103

[47] H. J. Kelley, “Gradient theory of optimal flight paths,” ARS Journal, vol. 30,

no. 10, pp. 947–954, 1960.

[48] A. E. Bryson, “A gradient method for optimizing multi-stage allocation pro-

cesses,” in Proc. Harvard Univ. Symposium on digital computers and their

applications, 1961.

[49] S. E. Dreyfus, “The numerical solution of variational problems,” Journal of

Mathematical Analysis and Applications, vol. 5(1), pp. 30–45, 1962.

[50] A. E. Bryson, Jr. and W. F. Denham, “A steepest-ascent method for solving

optimum programming problems,” Tech. Rep. BR-1303, Raytheon Company,

Missle and Space Division, 1961.

[51] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamrelidze, and E. F. Mishchenko,

The Mathematical Theory of Optimal Processes. 1961.

[52] J. H. Wilkinson, ed., The Algebraic Eigenvalue Problem. New York, NY, USA:

Oxford University Press, Inc., 1965.

[53] S. Amari, “A theory of adaptive pattern classifiers,” IEEE Trans. EC, vol. 16,

no. 3, pp. 299–307, 1967.

[54] A. Bryson and Y. Ho, Applied optimal control: optimization, estimation, and

control. Blaisdell Pub. Co., 1969.

[55] S. W. Director and R. A. Rohrer, “Automated network design - the frequency-

domain case,” IEEE Trans. Circuit Theory, vol. CT-16, pp. 330–337, 1969.

[56] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton Univer-

sity Press, 1st ed., 1957.

[57] S. Linnainmaa, “The representation of the cumulative rounding error of an

algorithm as a Taylor expansion of the local rounding errors,” Master’s thesis,

Univ. Helsinki, 1970.

[58] S. Linnainmaa, “Taylor expansion of the accumulated rounding error,” BIT

Numerical Mathematics, vol. 16, no. 2, pp. 146–160, 1976.

104

[59] S. E. Dreyfus, “The computational solution of optimal control problems with

time lag,” IEEE Transactions on Automatic Control, vol. 18(4), pp. 383–385,

1973.

[60] P. J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences. PhD thesis, Harvard University, 1974.

[61] P. J. Werbos, “Applications of advances in nonlinear sensitivity analysis,” in

Proceedings of the 10th IFIP Conference, 31.8 - 4.9, NYC, pp. 762–770, 1981.

[62] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural

Networks, vol. 61, pp. 85–117, 2015. Published online 2014; based on TR

arXiv:1404.7828 [cs.NE].

[63] J. Hadamard, Mémoire sur le problème d’analyse relatif à l’équilibre des

plaques élastiques encastrées. Mémoires présentés par divers savants à

l’Académie des sciences de l’Institut de France: Éxtrait, Imprimerie nationale,

1908.

[64] T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the gradient by a

running average of its recent magnitude.” COURSERA: Neural Networks for

Machine Learning, 2012.

[65] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,

vol. abs/1412.6980, 2014.

[66] T. Schaul, I. Antonoglou, and D. Silver, “Unit tests for stochastic opti-

mization,” in International Conference on Learning Representations, (Banff,

Canada), 2014.

[67] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learn-

ing,” ArXiv e-prints, mar 2016.

[68] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the cat’s

striate cortex,” J. Physiol., vol. 148, pp. 574–591, 1959.

[69] D. H. Hubel and T. Wiesel, “Receptive fields, binocular interaction, and func-

tional architecture in the cat’s visual cortex,” Journal of Physiology (London),

vol. 160, pp. 106–154, 1962.

105

[70] K. Fukushima, “Neural network model for a mechanism of pattern recognition

unaffected by shift in position - Neocognitron,” Trans. IECE, vol. J62-A(10),

pp. 658–665, 1979.

[71] K. Fukushima, “Neocognitron: A self-organizing neural network for a mecha-

nism of pattern recognition unaffected by shift in position,” Biological Cyber-

netics, vol. 36, no. 4, pp. 193–202, 1980.

[72] K. Fukushima, “Training multi-layered neural network Neocognitron,” Neural

Networks, vol. 40, pp. 18–31, 2013.

[73] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,

and L. D. Jackel, “Back-propagation applied to handwritten zip code recogni-

tion,” Neural Computation, vol. 1, no. 4, pp. 541–551, 1989.

[74] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in Neural Information Pro-

cessing Systems (NIPS 2012), p. 4, 2012.

[75] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Ima-

geNet Large Scale Visual Recognition Challenge,” International Journal of

Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[76] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification,” CoRR,

vol. abs/1502.01852, 2015.

[77] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting,” Journal

of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[78] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” CoRR, vol. abs/1502.03167,

2015.

[79] X. Li, S. Chen, X. Hu, and J. Yang, “Understanding the dishar-

mony between dropout and batch normalization by variance shift,” CoRR,

vol. abs/1801.05134, 2018.

106

[80] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A

Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[81] R. Kalman, “A new approach to linear filtering and prediction problems,”

Transactions of the ASME - Journal of basic Engineering, vol. 82, pp. 35–45,

01 1960.

[82] H. Kushner, “Dynamical equations for optimal nonlinear filtering,” Journal of

Differential Equations, vol. 3, no. 2, pp. 179 – 190, 1967.

[83] P. D. Moral, “Nonlinear filtering: Interacting particle resolution,” 1996.

[84] P. Del Moral, “Measure-valued processes and interacting particle systems. ap-

plication to nonlinear filtering problems,” Ann. Appl. Probab., vol. 8, pp. 438–

495, 05 1998.

[85] D. Casasent, “Unified synthetic discriminant function computational formula-

tion,” Appl. Opt., vol. 23, pp. 1620–1627, May 1984.

[86] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature

space analysis,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 24, pp. 603–619, May 2002.

[87] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 25, pp. 564–

577, May 2003.

[88] J. Shi and C. Tomasi, “Good features to track,” in 1994 Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, pp. 593–600, June

1994.

[89] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 34, pp. 1409–1422, July 2012.

[90] Q. Wang, Feng Chen, Wenli Xu, and M. Yang, “Online discriminative object

tracking with local sparse representation,” in 2012 IEEE Workshop on the Ap-

plications of Computer Vision (WACV), pp. 425–432, Jan 2012.

[91] P. Li, D. K. Wang, L. Wang, and H. Lu, “Deep visual tracking: Review and

experimental comparison,” Pattern Recognition, vol. 76, pp. 323–338, 2018.

107

[92] S. Krebs, B. Duraisamy, and F. Flohr, “A survey on leveraging deep neural

networks for object tracking,” 2017 IEEE 20th International Conference on

Intelligent Transportation Systems (ITSC), pp. 411–418, 2017.

[93] N. Wang and D.-Y. Yeung, “Learning a deep compact image representation

for visual tracking,” in Proceedings of the 26th International Conference on

Neural Information Processing Systems - Volume 1, NIPS’13, (USA), pp. 809–

817, Curran Associates Inc., 2013.

[94] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, “Hierarchical convolutional

features for visual tracking,” in Proceedings of the 2015 IEEE International

Conference on Computer Vision (ICCV), ICCV ’15, (Washington, DC, USA),

pp. 3074–3082, IEEE Computer Society, 2015.

[95] L. Wang, W. Ouyang, X. Wang, and H. Lu, “Visual tracking with fully convo-

lutional networks,” 2015 IEEE International Conference on Computer Vision

(ICCV), pp. 3119–3127, 2015.

[96] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discrim-

inatively, with application to face verification,” in Proceedings of the 2005

IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion (CVPR’05) - Volume 1 - Volume 01, CVPR ’05, (Washington, DC, USA),

pp. 539–546, IEEE Computer Society, 2005.

[97] R. Tao, E. Gavves, and A. W. M. Smeulders, “Siamese instance search for

tracking,” CoRR, vol. abs/1605.05863, 2016.

[98] Q. Gan, Q. Guo, Z. Zhang, and K. Cho, “First step toward model-

free, anonymous object tracking with recurrent neural networks,” CoRR,

vol. abs/1511.06425, 2015.

[99] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in Neural Information Pro-

cessing Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-

berger, eds.), pp. 1097–1105, Curran Associates, Inc., 2012.

[100] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:

108

Unified, real-time object detection,” 2016 IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pp. 779–788, 2016.

[101] G. Ning, Z. Zhang, C. Huang, Z. He, X. Ren, and H. Wang, “Spatially su-

pervised recurrent convolutional neural networks for visual object tracking,”

2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–

4, 2017.

[102] J. Choi, H. J. Chang, J. Jeong, Y. Demiris, and J. Y. Choi, “Visual tracking

using attention-modulated disintegration and integration,” in 2016 IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), pp. 4321–4330,

June 2016.

[103] J. Choi, H. J. Chang, S. Yun, T. Fischer, Y. Demiris, and J. Y. Choi, “Attentional

correlation filter network for adaptive visual tracking,” in 2017 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), pp. 4828–4837,

July 2017.

[104] S. E. Kahou, V. Michalski, R. Memisevic, C. J. Pal, and P. Vincent, “Ratm: Re-

current attentive tracking model,” 2017 IEEE Conference on Computer Vision

and Pattern Recognition Workshops (CVPRW), pp. 1613–1622, 2017.

[105] A. R. Kosiorek, A. Bewley, and I. Posner, “Hierarchical attentive recurrent

tracking,” in NIPS, 2017.

[106] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[107] A. He, C. Luo, X. Tian, and W. Zeng, “A twofold siamese network for real-

time object tracking,” 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 4834–4843, 2018.

[108] Q. Wang, Z. Teng, J. Xing, J. Gao, W. Hu, and S. Maybank, “Learning atten-

tions: Residual attentional siamese network for high performance online visual

tracking,” in The IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2018.

[109] D. Chen, S. Ren, Y. Wei, X. Cao, and J. Sun, “Joint cascade face detection and

alignment,” in ECCV, 2014.

109

[110] Z. Ren, S. Yang, F. Zou, F. Yang, C. Luan, and K. Li, “A face tracking frame-

work based on convolutional neural networks and kalman filter,” in 2017 8th

IEEE International Conference on Software Engineering and Service Science

(ICSESS), pp. 410–413, Nov 2017.

[111] I. Choi and Y. Kim, “Deep manifold embedding active shape model for pose

invarient face tracking,” in 2018 IEEE International Conference on Big Data

and Smart Computing (BigComp), pp. 578–581, Jan 2018.

[112] O. Parkhi, E. Rahtu, Q. Cao, and A. Zisserman, “Automated video face la-

belling for films and tv material,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, pp. 1–1, 2018.

[113] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment us-

ing multitask cascaded convolutional networks,” IEEE Signal Processing Let-

ters, vol. 23, pp. 1499–1503, Oct 2016.

[114] M. Mathias, R. Benenson, M. Pedersoli, and L. V. Gool, “Face detection with-

out bells and whistles,” in ECCV, 2014.

[115] İbrahim Batuhan Akkaya, Mouse Face Tracking Using Convolutional Neural

Networks. M.Sc. Thesis, Department of Electrical and Electronics Engineer-

ing, Middle East Technical University, Ankara, Turkey, 2016.

[116] I. B. Akkaya and U. Halici, “Mouse face tracking using convolutional neural

networks,” IET Computer Vision, vol. 12, no. 2, pp. 153–161, 2018.

[117] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” in

British Machine Vision Conference, 2015.

[118] “Chokepoint dataset webpage.” http://arma.sourceforge.net/

chokepoint/. Accessed: 2019-06-20.

[119] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of Machine Learn-

ing Research, vol. 10, pp. 1755–1758, 2009.

[120] L. Čehovin Zajc, M. Kristan, and A. Leonardis, “Is my new tracker really

better than yours?,” in WACV 2014: IEEE Winter Conference on Applications

of Computer Vision, IEEE, Mar 2014.

110

http://arma.sourceforge.net/chokepoint/
http://arma.sourceforge.net/chokepoint/

APPENDIX A

ARCHITECTURAL DETAILS OF THE TEST NETWORKS

M
ax
Po
ol
1

M
ax
Po
ol
2

R
eL
U
3

R
eL
U
4

M
ax
Po
ol
5

FEN-c	(5	layer	VGG-Face)

R
eL
U
5

B
at
ch
N
or
m
5

C
on
v5

B
at
ch
N
or
m
4

C
on
v4

B
at
ch
N
or
m
3

C
on
v3

R
eL
U
2

B
at
ch
N
or
m
2

C
on
v2

R
eL
U
1

B
at
ch
N
or
m
1

C
on
v1

D
ro
po
ut
7

D
ro
po
ut
8

RN

M
ax
Po
ol
1

M
ax
Po
ol
2

R
eL
U
3

R
eL
U
4

M
ax
Po
ol
5

FEN-p	(5	layer	VGG-Face)

R
eL
U
5

B
at
ch
N
or
m
5

C
on
v5

B
at
ch
N
or
m
4

C
on
v4

B
at
ch
N
or
m
3

C
on
v3

R
eL
U
2

B
at
ch
N
or
m
2

C
on
v2

R
eL
U
1

B
at
ch
N
or
m
1

C
on
v1

Pr
ev
io
us

Fr
am

e

R
eL
U
7

FC
7

R
eL
U
8

FC
8

FC
9

C
ur
re
nt

Fr
am

e

B
ou
nd
in
g	
B
ox

A
nn
ot
at
io
n

C1 C2 C3 C4 C5

C1 C2 C3 C4 C5

D
ro
po
ut
6

R
eL
U
6

FC
6

Fl
at
te
n

C
on
ca
te
na
te

Figure A.1: The network architecture of the C5
no att/cp − C0 − F 4 tracker. It has

the same architecture with the GOTURN tracker. However, a pretrained VGG-Face

network is used for feature extraction rather than an AlexNet.

111

M
ax
Po
ol
1

M
ax
Po
ol
2

R
eL
U
3

R
eL
U
4

M
ax
Po
ol
5

FEN-c	(5	layer	VGG-Face)

R
eL
U
5

B
at
ch
N
or
m
5

C
on
v5

B
at
ch
N
or
m
4

C
on
v4

B
at
ch
N
or
m
3

C
on
v3

R
eL
U
2

B
at
ch
N
or
m
2

C
on
v2

R
eL
U
1

B
at
ch
N
or
m
1

C
on
v1

D
ro
po
ut
7

D
ro
po
ut
8

RN

M
ax
Po
ol
1

M
ax
Po
ol
2

R
eL
U
3

R
eL
U
4

M
ax
Po
ol
5

FEN-p	(5	layer	VGG-Face)

R
eL
U
5

B
at
ch
N
or
m
5

C
on
v5

B
at
ch
N
or
m
4

C
on
v4

B
at
ch
N
or
m
3

C
on
v3

R
eL
U
2

B
at
ch
N
or
m
2

C
on
v2

R
eL
U
1

B
at
ch
N
or
m
1

C
on
v1

Pr
ev
io
us

Fr
am

e

R
eL
U
7

FC
7

R
eL
U
8

FC
8

FC
9

C
ur
re
nt

Fr
am

e

B
ou
nd
in
g	
B
ox

A
nn
ot
at
io
n

C1 C2 C3 C4 C5

C1 C2 C3 C4 C5

C
on
ca
te
na
te

FAN

R
eL
U
6

C
on
v6

B
at
ch
N
or
m
6

Figure A.2: The network architecture of the C5
no att/cp− C1 − F 3 tracker.

M
ax
Po
ol
1

M
ax
Po
ol
2

R
eL
U
3

R
eL
U
4

M
ax
Po
ol
5

FEN-c	(5	layer	VGG-Face)

R
eL
U
5

B
at
ch
N
or
m
5

C
on
v5

B
at
ch
N
or
m
4

C
on
v4

B
at
ch
N
or
m
3

C
on
v3

R
eL
U
2

B
at
ch
N
or
m
2

C
on
v2

R
eL
U
1

B
at
ch
N
or
m
1

C
on
v1

D
ro
po
ut
7

D
ro
po
ut
8

RN

M
ax
Po
ol
1

M
ax
Po
ol
2

R
eL
U
3

R
eL
U
4

M
ax
Po
ol
5

FEN-p	(5	layer	VGG-Face)

R
eL
U
5

B
at
ch
N
or
m
5

C
on
v5

B
at
ch
N
or
m
4

C
on
v4

B
at
ch
N
or
m
3

C
on
v3

R
eL
U
2

B
at
ch
N
or
m
2

C
on
v2

R
eL
U
1

B
at
ch
N
or
m
1

C
on
v1

Pr
ev
io
us

Fr
am

e

R
eL
U
7

FC
7

R
eL
U
8

FC
8

FC
9

C
ur
re
nt

Fr
am

e

B
ou
nd
in
g	
B
ox

A
nn
ot
at
io
n

C1 C2 C3 C4 C5

C1 C2 C3 C4 C5

C
on
ca
te
na
te

FAN

R
eL
U
6

C
on
v6

B
at
ch
N
or
m
6MaxPool

MaxPool

Figure A.3: The network architecture of the C3,5
no att/cp− C1 − F 3 tracker.

112

M
ax
Po
ol
1

M
ax
Po
ol
2

R
eL
U
3

R
eL
U
4

M
ax
Po
ol
5

FEN-c	(5	layer	VGG-Face)

R
eL
U
5

B
at
ch
N
or
m
5

C
on
v5

B
at
ch
N
or
m
4

C
on
v4

B
at
ch
N
or
m
3

C
on
v3

R
eL
U
2

B
at
ch
N
or
m
2

C
on
v2

R
eL
U
1

B
at
ch
N
or
m
1

C
on
v1

D
ro
po
ut
7

D
ro
po
ut
8

RN

M
ax
Po
ol
1

M
ax
Po
ol
2

R
eL
U
3

R
eL
U
4

M
ax
Po
ol
5

FEN-p	(5	layer	VGG-Face)

R
eL
U
5

B
at
ch
N
or
m
5

C
on
v5

B
at
ch
N
or
m
4

C
on
v4

B
at
ch
N
or
m
3

C
on
v3

R
eL
U
2

B
at
ch
N
or
m
2

C
on
v2

R
eL
U
1

B
at
ch
N
or
m
1

C
on
v1

Pr
ev
io
us

Fr
am

e

R
eL
U
7

FC
7

R
eL
U
8

FC
8

FC
9

C
ur
re
nt

Fr
am

e

B
ou
nd
in
g	
B
ox

A
nn
ot
at
io
n

C1 C2 C3 C4 C5

C1 C2 C3 C4 C5

C
on
ca
te
na
te

FAN

R
eL
U
6

C
on
v6

B
at
ch
N
or
m
6MaxPool

MaxPool

MaxPool

MaxPool

Figure A.4: The network architecture of the C1,2,3,4,5
no att /cp− C1 − F 3 tracker.

M
ax
Po
ol
1

M
ax
Po
ol
2

R
eL
U
3

R
eL
U
4

M
ax
Po
ol
5

FEN-c	(5	layer	VGG-Face)

R
eL
U
5

B
at
ch
N
or
m
5

C
on
v5

B
at
ch
N
or
m
4

C
on
v4

B
at
ch
N
or
m
3

C
on
v3

R
eL
U
2

B
at
ch
N
or
m
2

C
on
v2

R
eL
U
1

B
at
ch
N
or
m
1

C
on
v1

D
ro
po
ut
7

D
ro
po
ut
8

RN

M
ax
Po
ol
1

M
ax
Po
ol
2

R
eL
U
3

R
eL
U
4

M
ax
Po
ol
5

FEN-p	(5	layer	VGG-Face)

R
eL
U
5

B
at
ch
N
or
m
5

C
on
v5

B
at
ch
N
or
m
4

C
on
v4

B
at
ch
N
or
m
3

C
on
v3

R
eL
U
2

B
at
ch
N
or
m
2

C
on
v2

R
eL
U
1

B
at
ch
N
or
m
1

C
on
v1

Pr
ev
io
us

Fr
am

e

R
eL
U
7

FC
7

R
eL
U
8

FC
8

FC
9

C
ur
re
nt

Fr
am

e

B
ou
nd
in
g	
B
ox

A
nn
ot
at
io
n

C1 C2 C3 C4 C5

C1 C2 C3 C4 C5

C
on
ca
te
na
te

FAN

R
eL
U
6

C
on
v6

B
at
ch
N
or
m
6

M
ax
Po
ol

Channel
Attention
Network	1

Channel
Attention
Network	2

Channel
Attention
Network	3

Channel
Attention
Network	4

Channel
Attention
Network	5

CAN

M
ax
Po
ol

Figure A.5: The network architecture of the C1,2,3,4,5
att /cp− C1 − F 3 tracker.

113

	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Problem Definition
	Contributions
	Outline

	Background on Deep Learning
	A Brief Overview of Machine Learning
	A Brief History of Neural Networks
	Neural Networks
	Activation Functions
	Neural Networks as Universal Function Approximators
	Deep Networks against Shallow Networks

	Optimization in Neural Networks
	Loss Functions
	Gradient Computation in Neural Networks
	The Finite Differences Method
	Backpropagation

	Gradient-Based Optimization Algorithms
	Stochastic Gradient Descent
	Stochastic Gradient Descent with Momentum
	RMSProp
	Adam Optimizer
	Choosing the Right Optimization Algorithm

	Training Neural Networks - The Overall Picture

	Convolutional Neural Networks
	Convolutional Layer
	Pooling Layer
	Fully-Connected Layer

	Practical Tricks for Training Neural Networks
	Data Preprocessing
	Weight Initialization
	Regularization
	Batch Normalization

	Transfer Learning

	Literature Survey
	Visual Object Tracking
	Traditional Methods
	Deep Learning Based Methods

	Attention Mechanisms in Visual Object Tracking
	Visual Face Tracking in Video Surveillance
	The Place of Our Tracker

	Proposed Method
	Network Architecture
	Channel Attention Mechanism
	Offline Training
	Online Tracking

	Experimental Results and Discussion
	Dataset
	Evaluation Metrics
	Center Error
	Region Overlap
	Tracking Length
	Failure Rate
	The Two Complementary Measures: Accuracy and Robustness

	Test Network Architectures
	Testing Procedure
	Quantitative Analysis
	Effect of a Fusion Network in the Regression Network
	Effect of the Low Level Features
	Effect of All Level Features
	Effect of the Channel Attention Mechanism
	Effect of Using Only the Current Frame
	The Overall Comparison of the Trackers

	Speed Analysis
	Which Tracker to Use?
	Qualitative Analysis: Learning to Select Useful Features
	Comparison with Other Surveillance Face Trackers

	Conclusion
	REFERENCES
	Architectural Details of the Test Networks

