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ABSTRACT

UTILIZATION OF OUTLIER-ADJUSTED LEE-CARTER MODEL IN MORTALITY
ESTIMATION ON WHOLE LIFE ANNUITIES

Yavrum, Cem

M.S., Department of Actuarial Sciences

Supervisor : Prof. Dr. A. Sevtap Selçuk-Kestel

June 2019, 36 pages

Annuity and its pricing are very critical to the insurance companies for their financial liabil-
ities. Companies aim to adjust the prices of annuity by choosing the forecasting model that
fits best to their historical data. While doing it, there may be outliers in the historical data
influencing the model. These outliers can be arisen from environmental conditions and ex-
traordinary events such as weak health system, outbreak of war, occurrence of a contagious
disease. These conditions and events impact mortality of populations and influence the life
expectancy. So, using future mortality estimates that are not generated by the model that in-
cludes all of these factors, can influence on the financial strength of the life insurance industry.
Therefore, these outliers should be taken into account as well while forecasting mortality rates
and calculating annuity prices.

Although there are many discrete and stochastic models that can be used to forecast mortality
rates, the most widely known and used of these is Lee-Carter model [18]. Fundamentally,
Lee-Carter model uses some time-varying parameters and age-specific components. The pa-
rameter, which is inspired and used by many other researchers, is the mortality index κt, that
Lee and Carter take as the basis in their model. Once, mortality index is forecasted correctly,
then death probabilities of individuals and the prices of annuity can be estimated.

In case when there exist extremes in the mortality rates, outlier-adjusted model developed by
Chan [7] can be used. This approach implements some iteration integrated in original Lee-
Carter model to find better model that fits to historical data. In this thesis, we aim to find out
whether there is a difference between models that consider mortality jumps and models that
do not take into account jumps effects in terms of annuity pricing. Finally, we test the annuity
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price fluctuations among different countries and come to conclusion on the effects of different
models on country characteristics.

For this comparison, Canada as a developed country with high longevity risk and Russia as
an emerging country with jumps in its mortality history are considered. In addition to Canada
and Russia, data of UK, Japan and Bulgaria are analyzed to provide ease of interpretation
in terms of country characteristics. The results of this thesis support the usages of outlier-
adjusted models for specific countries in term of annuity pricing.

Keywords: Mortality Rates, Annuity Pricing, Outliers, Outlier-Adjusted Lee-Carter Model
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ÖZ

UÇ DEĞER İÇİN DÜZELTİLMİŞ LEE-CARTER MODELİNİN TAM HAYAT ANÜİTE
HESAPLAMALARINDAKİ ÖLÜM TAHMİNİNDE KULLANIMI

Yavrum, Cem

Yüksek Lisans, Aktüerya Bilimleri Bölümü

Tez Yöneticisi : Prof. Dr. A. Sevtap Selçuk-Kestel

Haziran 2019, 36 sayfa

Anüite ve anüite fiyatlarının hesaplanması hayat sigorta şirketleri için finansal sorumluluk-
ları açısından kritik bir değere sahiptir. Şirketler, kendi geçmiş datalarına en iyi uyan tahmin
modelini kullanarak anüite fiyatlarını hesaplamayı hedeflerler. Bunu yaparken, geçmiş datala-
rında kullandıkları modeli etkileyen uç değerler olabilir. Bu uç değerler; zayıf sağlık sistemi,
savaşın patlak vermesi veya salgın hastalık gibi sıradışı olaylardan ve çevresel etkenlerden
kaynaklanabilirler. Bu durumlar ve olaylar ölümlülük oranlarını ve yaşam beklentisini olum-
suz yönde etkilerler. Bu yüzden, tüm bu faktörleri dahil etmeyen bir modelden üretilen ölüm-
lülük oranları, hayat sigorta endüstrisinin finansal gücü üzerinde etkiye neden olur. Bunlardan
ötürü, ölümlülük oranları tahmin edilirken ve anüite fiyatları hesaplanırken bu uç değerler de
hesaba katılmalıdır.

Ölümlülük oranlarını tahmin etmek için kullanılan birden çok kesikli ve stokastik modeller
olmasına rağmen, bunlardan en çok kullanılanı Lee-Carter modelidir [18]. Temel olarak, Lee-
Carter modeli zamana bağlı değişen parametre ve yaşa bağlı bileşen kullanır. Lee ve Carter’ın
kendi modelinde temel aldığı ölümlülük indeksi κt, diğer birçok araştırmacılar tarafından
kullanılan bir parametre olmuştur. Ölümlülük indeksi tahmin edildiği zaman, bireylerin ölüm
olasılıkları ve anüite fiyatları hesaplanabilir.

Ölümlülük oranlarında uç değerler olduğu durumda, Chan [7] tarafından geliştirilen uç değer
için düzeltilmiş model kullanılabilir. Bu yaklaşım, geçmiş dataya daha iyi uyan bir model
bulabilmek için orijinal Lee-Carter modeline entegre edilmiş bir döngü kullanır. Bu tezde,
uç değerleri göz önünde bulunduran modellerle bulundurmayan modeller arasında anüite fi-
yatlama bakımından fark olup olmadığı incelenecektir. Ek olarak, birden çok ülke için bu iki
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modelin anüite fiyatlarının üzerindeki etkisi test edilecek ve modellerin ülke özellikleri ile
ilişkisi incelenecektir.

Bu karşılaştırma için, uzun ömürlülük riskine sahip gelişmiş bir ülke olan Kanada datası ile
ölümlülük datasında uç değerleri barındıran gelişmekte bir ülke olan Rusya datası alınacak-
tır. Kanada ve Rusya’ya ek olarak, ülke özellikleri bakımından kolay bir çıkarım sağlaması
açısından Birleşik Krallık, Japonya ve Bulgaristan dataları da incelenecektir. Bu tezin sonun-
daki çıkarımlar, anüite fiyatlama üzerine belirli ülkeler için uç değer için düzeltilmiş model
kullanımını desteklemektedir.

Anahtar Kelimeler: Ölümlülük Oranları, Anüite Fiyatlama, Uç Değerler, Uç Değer için Dü-
zeltilmiş Lee-Carter Modeli
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CHAPTER 1

INTRODUCTION

Life expectancy has increased significantly for some countries during the 20th century and it
continues to increase in the 21st century as well however, this increasing trend is not shown for
some countries. The Human Mortality Database [15] demonstrates that Canadian, Japanese
and Briton life expectancy at birth from 1960 to 2010 rose from 70.98 to 81.38 years, from
67.70 to 82.93 years and from 71.02 to 80.40 years for total population respectively. Mean-
while, the life expectancy at birth of Bulgarian population did not go up as rapidly as above-
mentioned countries with the rise from 69.17 to 73.72 years for the same period. This situation
is even worse for Russian population as the life expectancy at birth remained almost the same
as 68.70 and 68.92 for the same period [15].

These differences between countries can be explained by lots of reasons which some of them
are environmental conditions, economic crisis, lower incomes, the weak health care system
and some extraordinary events that are outbreak of war, occurrence of a contagious disease
and important changes in economic or political policies [8, 25]. These conditions and events
impact mortality of populations influencing the life expectancy. At this point, in addition to
aiming to increase life expectancy, countries should consider the mortality rates individually.
This is because the fact that future estimates of mortality rates are used in calculations like
pricing annuities, life insurances and retirement payments, by insurance industry and govern-
ment agencies. By calculating these, they make critical policy decisions on the retirement and
insurance systems. Among these decisions, the most important ones are pension policies. The
insurance premiums and annuities, which are one of the most significant income items of the
financial sector, are also calculated by using the estimated future mortality rates. Therefore,
using future mortality estimates that are generated by the model that does not include all of
these factors, can have an impact on the financial strength of the life insurance industry and
the stability of the pension system of a country.

Although human mortality trends show little fluctuation in most of the time, they may have
outliers at some points for the reasons mentioned above. These outliers in the human mortality
rates are usually referred to as extremes or jumps in the literature. Mortality jumps are rare,
but their presence could alter the long-term mortality trends by triggering a large number
of unexpected deaths thereby may also affect future estimates. As Stracke and Heinen [23]
estimated, additional claims received from unexpected pandemic would cost nearlye5 billion
(50% of the market’s total annual gross profit) not even in the worst scenario. With another
example, the earthquake and tsunami occurred in southern Asia in 2004 made nearly 130,000
people missing and killed 180,000 as mentioned in Guy Carpenter report [14]. The report
also indicates that if the event would occur in a more economically developed area, the life
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insurance industry would not have enough capacity to cover all claims.

In the light of all these significant indicators, companies should model the dynamics of mor-
tality over time and to do this, many models have been introduced. These models are divided
into two different methods. The first of these methods is method that is paying attention to
force of mortality by using continuous time processes while the other one is concentrating
mortality rates directly by discrete time processes. While some of the researchers who use
continuous time models in their studies are Biffis [3] and Cairns, Blake and Dowd [6], Lee
and Carter [18] developed one of the most popular and earliest discrete time models that is
still being used by lots of researchers.

Regardless of the methods, the presence of mortality jumps could lead to influences both in
the sample and partial autocorrelation functions, which could cause erroneous in the model
[7]. For this reason, the errors arising from models that are not coordinated with mortality
jumps should be analyzed cautiously such as problems caused by false assumption of the
mortality and longevity risks in the model that many researchers emphasize on.

The first of these problems is, under optimistic assumptions, companies may overstate the
forecasted mortality rates, therefore understate the life expectancy of the population thus their
deficit as pension payments and annuities would increase. On the contrary, under pessimistic
assumptions, in the environmental conditions and exogenous events that abovementioned are
encountered, the financial institutions and the insurance industry will be in an insolvency
position as they will enter into a fast payment process for life insurance policies [11].

In both assumptions, the use of the inadequate model affects pricing and reserve allocation
for life insurances and annuities. This situation poses big threats to the solvency and price
competitiveness of life insurance companies. To overcome this risk, building forecasted tables
including effects of mortality jumps is essential. Hence, appropriate mortality forecasting
models should be used to predict this situation [5].

After the model is constructed, it is applied to historical mortality rates to obtain future es-
timates. At this point, the efficiencies of different models should be examined to choose
between each model. The easiest method to compare models is Akaike Information Criterion
(AIC) introduced by Akaike [20] that takes the number of observations, parameters in the
model and standard deviation of residuals as its components. In addition to this, the variation
of prices of annuities and life insurances can be analyzed to check how durability of insurance
industry changes with different models.

The simplicity and being the most widely used mortality forecasting model in the world [17]
have led us to take Lee-Carter model as our base model to forecast long run mortality trends.
Another reason for choosing this model is that the additions make on this model can be applied
more easily to other models as future studies. Afterwards, we use some approaches that allow
us to detect and adjust the effects of mortality jumps within base model. Finally, we test the
annuity price fluctuations between models among different countries and come to conclusion
on the effects of different models on annuity pricing in the basis of country characteristics.
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1.1 Aim of the Thesis

The securitization of insurance industry is a critical subject as the strength of it reflects the
stability of country economy. The Global Economy [24] indicates that the average of insur-
ance company assets including annuities and pension plans for 2016 in the world as perfect
of Gross Domestic Product (GDP) was 16.48%. It can be said that a decrease of this number
would have impact on country’s economy on its own. We approach this subject from the per-
spective of mortality jumps that influencing the model thus, changing the prices of annuities
that creates more liabilities for companies.

In the literature ,there are studies that include the approaches to determine the effect of mod-
els that incorporate with mortality jumps on securitization [10, 21] and it is seen that finding
model’s effect on the prices of whole life annuities and how the liability of the companies
changes are not considered deeply. In this thesis, we aim to find out whether there is a differ-
ence between models that consider mortality jumps and models that do not take into account
jumps effects in terms of annuity pricing. We take some approaches and practices improved
by Chen and Liu [9] and Chan [7] as a method to consider mortality jumps in time-series data.
The reasons that we apply these approaches in this thesis are that these studies are relatively
new and there is not many studies done on them in the literature.

While using these approaches, we consider calculating annuity prices for different age groups
as 0, 30 and 70 in 2060. In addition to this, we compare the data of two countries to com-
prehend how the model works according to the characteristics of the countries. In order to
differentiate the effects of the mortality jumps on countries, we compare a developed and a de-
veloping country in terms of their financial strength. The population of Canada as a developed
country that we do not expect many jumps in its mortality rates and Russia as a developing
country which is similar to the Canada as its demographical features but experienced many
wars in its past and has problems with the stability of economy influencing its mortality rates
throughout history, are chosen for comparison. Moreover, although not included in the com-
parison, the populations of Japan, Bulgaria and United Kingdom are also analyzed in order
to provide ease of interpretation in terms of country characteristics. MATLAB is used in the
calculations and all the steps during the implementation of the applied model.

Consequently, we aim to reach a conclusion that mortality jumps should be considered during
the process of estimating future mortality rates, especially for the countries whose population
is exposed to jumps related to migration due to economy, individual incomes, health care
system and/or underwent many wars and diseases in its past. The outcomes of this thesis
encourage the utilizations of outlier-adjusted models for specific countries and support the
remarks on the use of applied models in the literature.

The thesis is organized as follows. Chapter 2 includes literature review on original and applied
models while Chapter 3 shows the methodology of the models and the performance criteria.
The iteration cycle that needs to be done during the process is also explained in the Chapter 3.
Chapter 4 contains the implementation and results of the applied model. Chapter 4 gives also
the results of the difference of annuity prices between selected countries. Chapter 5 concludes
results with a brief discussion and contains some comments for further research.
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CHAPTER 2

LITERATURE REVIEW

A number of stochastic mortality models are introduced to model the dynamics of mortality
over time. Among these models, Lee-Carter [18] is the most widely used one for forecasting
mortality. Lee-Carter is originated by a new method for extrapolation of age patterns and
trends in mortality. In despite of its simplicity and quickly applicability, it has some weakness
that some historical patterns may not be seen in the future so, present developments may be
missed. Nevertheless, Census Bureau of US uses the Lee-Carter model as a benchmark for
their forecast of US life expectancy [16].

Lee-Carter model has been extended by Renshaw and Haberman [22] and Brouhns et al.
[5] where Renshaw and Haberman describe a method for modelling reduction factors using
regression methods within the generalized linear modelling (GLM) framework, Brouhns et
al. use Poisson regression model to forecast age-sex-specific mortality rates. However, none
of these approaches include possible outliers that the mortality data has.

Significance of outlier detection-adjustment is taking place in the literature over the years.
Some researchers develop models that integrate outlier effects which some of them are Lin
and Cox [20], Cox et al. [12], Chen and Cox [10]. These researchers improve their models
to allocate outlier locations by using a discrete-time Markov chain, Poisson distribution and
independent Bernoulli distribution respectively. To calculate outlier severity, they employ
normal distribution and double exponential jumps theorem.

The study of Li and Chan [19] use the approach to take into account possible outliers based in
the original Lee-Carter model. They create outlier-adjusted time-series that is used with Lee-
Carter model by using the iteration process developed by Chen and Liu [9] to determine the
locations of outliers and adjust their effects. However, the iteration process of Chen and Liu is
based on the study of Chang et al. [8]. Chang et al. develop the iteration process to incorporate
outlier effects thereafter, Chen and Liu improve their process for the joint estimation of model
parameters and outlier effects.

In this thesis, a part of the iteration process developed by Li and Chan is used. While Li
and Chan eliminate some of possible outliers for finding them insignificant in their iteration
process thus, narrowing range of possible outliers, we take all the possible outliers with-
out elimination and generate outlier-adjusted time-series for being used to forecast mortality
rates.
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CHAPTER 3

METHODOLOGY

In this chapter, we present all the steps of applied model, starting with the Lee-Carter model
which is our base model in implementation of this thesis. After that, we give notations and
explanations on the process of outlier-adjusted model that built on the base model with the
help of the iteration cycle. Then, how the performance criterion that should be performed to
compare models, is explained immediately before the definition of the projection of whole
life annuities.

3.1 The Lee-Carter Model

Lee-Carter model [18] is a method that is used for long-term mortality forecasts based on a
combination of standard time series methods and an approach to handling with the age distri-
bution of mortality. Model basically defines the logarithm of age-specific central death rates
(mx,t) as the sum of an independent of time age-specific component (ax) and another element
that is the product of a time-varying parameter (κt) which is also called as the mortality index
and an age-specific component (bx) that represents how mortality rate at each age changes
when the mortality index varies. Extrapolation of mortality index under standard linear time-
series methods forms the basis of Lee-Carter model.

Mathematically, the Lee-Carter model can be symbolized as follows,

ln(mx,t) = ax + bxκt + εx,t (3.1)

where x shows the age and t represents the time. mx,t is the age-specific central death rate for
age x at time t, ax stands for the age pattern of death rates, bx is the age-specific reactions to
the time-varying factor, κt indicates for the mortality index in the year t while εx,t is the error
term that captures the age-specific influences not reflected in the model for age x and time t.

Since the variables on the right-hand side of the model are unobservable, ordinary least square
method cannot be used to fit the model. Moreover, it is a widely known fact that model is
overparameterized. To obtain a unique solution, some restrictions should be implemented on
parameters which are, ∑

x

bx = 1 and
∑
t

κt = 0 (3.2)
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When these restrictions applied to the model then, the age pattern of death rates becomes the
average value of ln(mx,t) over time and that is,

ax =
1

T

T∑
t=1

ln(mx,t) (3.3)

where T is a length of the series of mortality data.

Lee and Carter [18] also suggest a two-stage estimation procedure to overcome the problem
mentioned above. In the first stage, singular value decomposition (SVD) method is applied to
{ln(mx,t) − at} matrix to get estimates of bx and κt. In the second stage, estimates of κt is
re-estimated by using iteration with the values of bx and at acquired in the first step.

Dt =
∑
x

(Nx,texp(ax + bxκt)) (3.4)

where Dt shows the total number of deaths in year t and Nx,t is the exposure to risk of age x
in time t.

By implying second estimation, we ensure that number of deaths equals to the actual number
of deaths thus mortality index fits correctly to the historical data. After that, the orthodox Box
and Jenkin’s approach [4] is employed to generate an autoregressive integrated moving aver-
age (ARIMA) model for the mortality index, κt. This approach can be done easily with the
functions of estimate and arima in MATLAB. Once the ARIMA model and its parameters
are obtained, the outlier detection and adjustment procedure begins.

3.2 Outlier Analysis

The outlier analysis consists of two issues which the first one is the determination of the
location of the outlier values that may exist in the mortality index and the second one is
finding and adjusting the effects of these outliers if any exists. For the first issue, Chang et
al. [8] mentions that the value of standardized statistics of outlier effects should be found in
order to detect outliers. For the second issue, more complex approaches and processes should
be applied to standardized statistics of outlier effects as Chen and Liu state [9].

Furthermore, there are two types of problems that can be encountered in the outlier detection
and adjustment procedure [9]. The first of these is that having outlier in a mortality data may
cause an error in model selection while the second one is that even the model is selected
correctly, the effect of outliers can significantly affect the estimation of model parameters.
The approach of Chen and Liu partly solves the second problem while the first one stays the
same. Since this approach is the newest method that can be found in the literature regardless
of abovementioned shortcomings, we use this method with a little change that is described in
the following sections.
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3.3 Outlier Models

Let Zt an outlier-free time series follows an ARIMA(p,d,q) model and is written as follows,

φ(B)(1−B)dZt = θ(B)αt (3.5)

φ(B) = 1− φ1B − ...− φpBp

θ(B) = 1− θ1B − ...− θqBq

where B is the backshift operator such that BsZt = Zt−s and at represents white noise
random variables with mean 0 and constant variance σ2.

It is known that outliers are non-repetitive interferences of exogenous events and time series
with outliers form as outlier-free time series plus the effects of emergent outliers, denoted as
∆t(T,w), where T and w are the location and the size of outlier respectively. Then we can
have,

Yt = Zt + ∆t(T,w) (3.6)

where Yt is the time-series with outliers and t indicates the years.

In the literature, generally, four types of outliers are considered. These are Innovational Out-
lier (IO), Additive Outlier (AO), Temporary Change (TC) and Level Shift (LS) [26] [9] [19].
While an AO influences only single observation that is its location, an IO affects all obser-
vations with some decreasing pattern after T years become until the effect vanishes. This
situation is slightly different for Temporary Change and Level Shift types. The effect of out-
lier remains the same influencing all observations after T years become for LS type and it
decreases until to reach zero point by almost linearly for TC type.

It is believed that large portion of the outliers comprises of Additive Outlier (AO) and Inno-
vational Outlier (IO) [8]. Since we focus on short time effects of mortality jumps that arise
from extraordinary events that affecting mortality rates for a short time, we give our effort on
these two intervention models. The effects of these two types can be illustrated as follows,

AO : ∆t(T,w) = wDT
t

IO : ∆t(T,w) =
θ(B)

φ(B)(1−B)d
wDT

t

whereDT
t is a variable that becomes 1 in presence of outliers otherwise 0 in absence of outlier

at time T .

More than one outlier can be found in a time series thus, following model should be used
when m outliers exist.

Yt = Zt +
m∑
i=1

∆t(Ti, wi) (3.7)

Equation (3.7) illustrates that time-series with outliers are outlier-free time-series plus sum of
the effects of outliers that are observed.
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3.4 Outlier Detection

The outlier detection method of Chang et al. [8] is grounded on the effects of outliers on the
residuals of the model. As they state, the values of standardized statistics of outlier effects
should be calculated to detect possible outliers. To achive this, once Zt is constructed as
shown in equation (3.5) like ARIMA(p,d,q) model, polynomial of π(B) should be defined as
follow,

Π(B) =
φ(B)(1−B)d

θ(B)
= 1−Π1B1 −Π2B2 − ... (3.8)

where πj weights of outliers that are found at location T, influencing the years after T so,
j≥T . While the distance between j and T increases, πj becomes zero as the effect of outlier
at location T doesn’t impact on distance mortality values.

Then, equation (3.5) can be written as,

Π(B)Zt = αt (3.9)

and equation (3.6) can be expressed as,

êt = Π(B)Yt for t = 1, 2, 3, ... (3.10)

where êt defines the residuals that are obtained from time-series with outliers. After necessary
calculations are done, we can have following equations.

AO : êt = wDT
t + αt

IO : êt = wΠ(B)DT
t + αt

Above equations can be symbolized as a general time-series structure as follow,

êt = wd(j, t) + αt (3.11)

where j = (AO, IO); d(j, t) = 0 for both types with t < T ; d(j, T ) = 1 for both types;
when k≥1 the following equations can be written.

d(AO, T + k) = 0

d(IO, T + k) = −Πk

It is clear to reach the conclusion that the effect of an AO is contained only at particular point
T , whereas the effect of IO is dispersed through the time after at time point T .

Consequently, from least squares theory, the effect of an outlier at t = t1 can be formed for
both types as follows,

ŵAO(ti) = êti (3.12)

ŵIO(ti) =

∑tn
t=t1

êtdIO,t∑tn
t=t1

d2IO,t
(3.13)

where tn illustrates the last year that the data has.
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As Chen and Liu [9] state, because of the effects of AO and IO in the last observation equal
to ên, it is not possible to distinguish the type of an outlier at the end of the series. For
locating possible outliers, analyzing maximum value of the standardized statistics should be
implemented as proposed by Chang et al. [8]. To do this, the standardize effects of outliers
should be divided as follow,

τ̂AO(ti) =
ŵAO(ti)

σ̂α
(3.14)

τ̂IO(ti) =
ŵIO(ti)

σ̂α

(
n∑

t=t1

d2IO,t

)1/2

(3.15)

where σ̂a is the estimation of residual standard deviation.

Hence, possible location of an outlier can be determined by looking the standardized values
when they are greater than value of C that is chosen as positive constant. In order to decide
whether the outlier is a form of AO or IO when both of their effects are greater than C, we
follow a simple rule described by Fox [13] which is choosing the type of outlier whose effect
is greater than the other type of outlier. In order to achieve a high degree of sensitivity in
locating the outliers, we take the value C equals to 3.0 as Chang et al. [8] recommend.

Standard deviation of residuals should be calculated to reach numerical value for maximum
value of standardized statistics as seen from the equations (3.14) and (3.15).

3.4.1 Estimation of Standard Deviation of Residuals, σ̂a

To calculate residual standard deviation, there are more than one method in the literature. The
first three of them are the a% trimmed method, the omit-one method and the median absolute
deviation (MAD) method.

Since all of these three methods come up with close results to each other as Chen and Liu [9]
state in their study, MAD is used in calculations of this thesis because its fast computability.
The MAD estimation is defined as follow,

σ̂α = 1.483×median{|êt − ẽ|}

where ẽ is the median of the estimated residuals [2].

3.5 Outlier Adjustment and Iteration Process

After the locations of possible outliers are found, the effects of these outliers should be ad-
justed in order to estimate new model parameters and outlier effects again. To accomplish
this, an iteration cycle that is repeated until no more outliers are found, is needed. When the
iteration stops, ultimate ARIMA model and its parameters are going to be identified for being
used to forecast mortality index, κt. The iteration process is outlined as follow,
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Step 1: Use Box and Jenkin’s approach [4] to identify the order of the underlying ARIMA(p,d,q)
model.

Step 2: Compute the residuals of mortality index that is found from original Lee-Carter model.

Step 3: Calculate coefficient of π(B) and then, outlier effects of AO and IO accordingly.

Step 4: Evaluate the standard deviation of residuals obtained in Step 2.

Step 5: Compute standardized statistics for AO and IO for all time points to decide whether
there is an outlier in the series. Then, determine the type of outliers by comparing values with
pre-determined C value.

Step 6: If there is no outlier found in Step 5, then stop, the series is outlier-free or outlier-
adjusted. Otherwise, remove the effects of outliers by defining new residuals êt = êt−ŵA0 =
0 at T for AO and êt = êt − ŵIOΠ(B) for t > T for IO.

Step 7: Re-calculate standard deviation of residuals with adjusted residuals and go to Step 5.
Repeat this cycle until no further outlier can be identified.

Step 8: After the locations of all possible outliers are found, remove effects of outliers from
mortality index at determinated locations by the same method defined in Step 6 as reaching to
have new mortality index.

Step 9: All the cycle from Step 1 starts again using new data of mortality index until no further
outlier is found after mortality index is changed.

Step 10: The final ARIMA model and its parameters are used to create ultimate forecasting
model for mortality index.

The difference of this iteration with the iteration that is mentioned in the study of Chen and
Liu [9] is that Chen and Liu eliminate some of the possible outliers by comparing their stan-
dardized statistics that are calculated with another formula, with the pre-definedC value again
in the step 8. However, this iteration does not eliminate any possible outliers and removes all
their effects from mortality index in order to get fully outlier-adjusted time-series.

3.6 The Akaike Information Criterion (AIC)

If there is more than one model, some comparison should be performed to compare the per-
formance of models. During the iteration process, the number of parameters and the variance
of the model may change thus, they can have impact on the accuracy of models. One of the
performance criterion that can be computed between models, is Akaike Information Criterion
introduced by Akaike [1] which is defined as,

AIC = nln(σ̂2a) + 2M

where n is the number of observations in time-series, σ̂a is the standard deviation of residuals
and M denotes the number of estimated parameters in the model. Smaller AIC value is
preferable for choosing the better model as it represents better fitting of the model as Akaike
[1] mentions. This criterion is used to compare the performances of original Lee-Carter model
and outlier-adjusted Lee-Carter model.
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3.7 Forecasting Mortality Index and Death Probabilities of Individuals

Once the iteration is completed and the ultimate ARIMA model and its parameters are found,
estimation of mortality index can be forecasted. Later on, once forecasted mortality index is
set, death probabilities of individuals can be computed easily with the following formula,

qx =
mx

1 + (1− cx)mx
(3.16)

where mx is the forecasted central death rate for age x, cx is the average number of years
lived within the age interval x and x + 1. As in the protocol of Human Mortality Database
[15] states, the number of 0.5 is taken as cx for all ages except 0. For the beginning age, the
last observed numbers in the data for all ages are used.

Then, the probability of surviving from age x to x+1, px, can be illustrated as follow,

px = 1− qx (3.17)

3.8 Projection of Whole Life Annuity

Whole life annuity is a financial product sold by insurance companies that pays annually or
at different intervals payments to a person for the time one lives, beginning at a stated age.
Annuities are generally purchased by investors who want to provide a fixed income during
their retirement. There are two perspectives in terms of annuities. One of them is the per-
spective of buyers that they make payments to the insurance company in the period called
accumulation while the other one is that companies make payments to buyers. However, the
total amount of the annuity or the price of annuity can be paid to companies by buyers as well.

Once death probabilities of individuals thus, surviving probabilities are obtained, the price
of whole life annuities can be calculated. There are two types of whole life annuities which
are called “due” and “immediate”. The all payments start at the beginning of stated period in
“due” type while in “immediate” type, payments are made at the end of stated period. The
formulas of two types can be written as follow,

Due→ äx = 1 + pxϑ+ pxpx+1ϑ
2 + . . .+ pxpx+1...pw−1ϑ

w

Immediate→ ax = pxϑ+ pxpx+1ϑ
2 + . . .+ pxpx+1...pw−1ϑ

w

where äx and ax are the present values of whole life annuities with 1 unit payments for the
age x, ϑ is the discount rate that is calculated as 1/(1 + i), i shows interest rate for a given
period and w is the last age that can be attended.
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CHAPTER 4

IMPLEMENTATION

4.1 Countries Selected

While observing the variability of the annuity prices between models can be an important
indicator, it is not enough in order to understand how the models change with different data.
At this point, it may be useful to compare different countries to better understanding of the
impacts of models. The comparison between developed and developing countries is more
meaningful on the basis of achieving explicit outcomes. For all these reasons, we compare
the populations of Canada as developed country and Russia as developing country.

The reasons for being selected of the populations of Canada and Russia for comparison is that
there are different troubles that they try to cope with. While Canada has longevity risk, Russia
has issues with weak health system, economy and other environmental considerations.

In addition to Canada and Russia, without the comparison, the populations of Japan and UK as
developed countries and Bulgaria as developing country according to Human Development
Index Report in 2016 [27] are analyzed. These countries are chosen for being in different
regions. While comparing two models under different country characteristics, we consider
calculating the prices of annuities that start at 0, 30 and 70 ages.

4.2 The Data

The central death rates, exposure-to-risk and the number of total deaths in a year are required
to implement the Lee-Carter model and complete outlier-adjusted process. We obtain the re-
quired data from The Human Mortality Database [15].

The data is taken by each age for total population and contain up to 110 years for all selected
countries. The ranges of cover period for each country: Canada (1921-2016), Russia (1959-
2014), Japan (1947-2017), UK (1922-2016) and Bulgaria (1947-2010). Mortality rates, death
and surviving probabilities of individuals are forecasted by using MATLAB till 2060 year for
all countries.
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4.3 Empirical Analysis

In this section, firstly, the plots of death probabilities of individuals for different ages by time
and then, the parameters of original Lee-Carter model and the results of iteration process that
is made on original LC model are presented for the populations of selected countries. The
performance differences between models and the plots of forecasted mortality index till 2060
year for selected countries are also illustrated.

Finally, the annuity prices and their differences between models for 0, 30 and 70 ages in 2060
year are given not only for the populations of Canada and Russia, but also for Japan, UK and
Bulgaria. In addition to results, the comments and inferences are also made.

4.3.1 Death Probabilities of Individuals, qx,t

In F igure (4.1) and (4.2), we present the death probabilities of individuals at all ages for
selected countries taken from historical mortality data to be able to observe possible outliers in
mortality data. While all countries have some fluctuations in their death probabilities among
the years, for Russia and Bulgaria, sharper ups and downs can be seen thus, we expect more
outliers in their mortality index as well.
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Figure 4.1: Death Probabilities: a)Canada (1921-2016) b)Russia (1959-2014)
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Figure 4.2: Death Probabilities: a)UK (1922-2016) b)Japan (1947-2017) c)Bulgaria (1947-
2010)

4.3.2 Parameters of Original Lee-Carter Model

The plots of estimated values of ax, bx and κt that obtained in the second stage of original
Lee-Carter model for the population of Russia and Canada are given in figure (4.3) and for
UK, Japan and Bulgaria in figure (4.4).
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Figure 4.3: Original Lee-Carter Model Parameters for Canada and Russia: a)ax, b)bx, c)κt
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Figure 4.4: Original Lee-Carter Model Parameters for UK, Japan and Bulgaria: a)ax, b)bx,
c)κt

Since it is shown and explained in equation (3.1), ax is the age pattern of death rates, bx
is the age-specific reaction to time factor and κt is the mortality index. Although, there is
not any significant difference between countries on basis of age pattern of death rates, great
differences are seen for bx and κt.

The plot of ax shows that the average values of ln(mx,t) over years are quite similar between
countries. However, every age reacts to mortality improvements very differently as can be
seen in the plots of bx. It means that while mortality improvements benefit younger gener-
ation in Canada, they provide more benefit to adult people in Russia even still the level of
benefit is lower in most of the times than Canada. This pattern can be seen for Bulgarian data
as well. Bulgarian population reacts unequally to mortality improvements as the mortality
index of younger age groups benefit much more than older age groups. Not surprisingly, the
plot of κt clarifies that mortality rates decrease significantly in Canada, Japan and UK thus,
create problems on longevity risk, while Russia and Bulgaria have fluctuating mortality trends
creating unstable mortality rates over years. The exact values of ax, bx and κt can be found
in the Appendix A.

4.3.3 Iteration Cycle

The locations, types and effects of outliers found in the iteration cycle are analyzed and given
in Table (4.1) for Russia and Table (4.2) for Canada.

The Bayesian Information Criterion (BIC) is used to select the degrees p and q of an ARIMA
model. To identify best lags for ARIMA model, the loglikelihood objective function value
and number of coefficients for each fitted model are stored. Then, these values are used for
aicbic function to calculate the BIC measure of models. The smallest value is chosen for our
best fitted model.

18



Table 4.1: Summary of the Proposed Iteration Process for Russian Data
ARIMA Model Number of Iteration

Parameters of ARIMA model Outliers
c0 θ1 θ2 θ3 φ1 φ2 σ̂2 Time Point Type w τ

(3,1,2)

1 -0.93 -0.01 -0.75 0.28 0.33 1.00 13.04
6 IO -5.34 -3.10
28 AO -9.32 -3.31
35 AO 11.52 4.09

2 -0.09 -0.10 0.70 0.01 0.18 -0.63 18.83
6 IO -5.95 -4.28
7 AO 14.27 6.27
53 AO -6.84 -3.01

3 -0.04 1.54 -0.94 0.22 -1.31 0.56 16.42 7 AO 7.04 3.00
4 -0.52 0.14 -0.67 -0.05 -0.03 0.84 18.01 - - - -

(0,1,0)
5 -0.33 - - - - - 20.50 36 AO 17.65 4.23
6 -0.33 - - - - - 18.26 - - - -

(0,1,0)

7 -0.33 - - - - - 18.26 37 AO 14.10 3.55
8 -0.33 - - - - - 15.79 7 IO -8.43 -3.09

9 -0.33 - - - - - 14.76
7 IO -8.38 -3.21
8 AO 14.97 4.07

10 -0.33 - - - - - 20.09 - - - -

(0,1,0)

11 -0.33 - - - - - 20.09
7 IO 11.75 4.20
8 IO -12.40 -4.43

12 -0.33 - - - - - 23.16
8 IO -18.53 -6.55
9 AO 20.88 5.20

13 -0.33 - - - - - 18.65
8 IO -8.27 -3.07
9 AO 18.65 4.88

14 -0.33 - - - - - 29.45 - - - -

(2,1,2)
15 -0.25 0.38 -0.56 - -0.86 1.00 20.78 8 AO 17.73 4.27
16 -0.06 0.24 0.47 - -0.07 -0.47 13.57 - - - -

(0,1,0)
17 -0.33 - - - - - 14.49

38 AO 9.20 3.03
54 AO -10.33 -3.40

18 -0.33 - - - - - 15.31 - - - -

(0,1,0)
19 -0.33 - - - - - 15.31

54 IO 7.68 3.77
55 AO -15.30 -5.38

20 -0.33 - - - - - 13.87 - - - -

(0,1,0)
21 -0.33 - - - - - 13.87 56 AO/IO -9.86 -3.39
22 -0.17 - - - - - 12.10 - - - -

(0,1,0) 23 -0.17 - - - - - 12.10 - - - -

Table 4.2: Summary of the Proposed Iteration Process for Canadian Data
ARIMA Model Number of Iteration

Parameters of ARIMA Model Outliers
c0 θ1 σ̂2 Time Point Type w τ

(0,1,0)

1 -1.90 - 5.38
6 AO 7.32 3.13

17 IO 6.10 3.73

2 -1.90 - 5.34
17 IO 6.27 4.09
18 AO -12.48 -5.66

3 -1.90 - 6.47 - - - -

(0,1,0)

4 -1.90 - 6.47
17 IO -9.07 -5.87
18 AO 12.37 5.58

5 -1.90 - 4.49 18 IO 6.92 4.35

6 -1.90 - 5.77
18 IO -6.46 4.30
19 AO -11.70 -4.95

7 -1.90 - 7.81 19 AO -7.26 -3.09
8 -1.90 - 9.80 - - - -

(1,1,0)

9 -2.49 -0.35 8.60
18 IO -13.58 -7.57
19 AO 12.30 5.40

10 -1.79 0.06 4.71
19 AO 9.27 4.26
20 AO 7.47 3.43

11 -1.91 -0.01 5.98 9 IO 5.02 3.07
12 -1.97 -0.04 5.75 11 AO -6.62 -3.20
13 -2.00 -0.06 6.13 - - - -

(0,1,0)

14 -1.90 - 6.15
19 IO -7.62 -4.99
20 AO 6.69 3.04

15 -1.90 - 4.76
11 IO 4.50 3.05
19 IO -4.55 -3.08
20 AO 7.83 3.69

16 -1.90 - 5.56
11 IO 4.64 3.25
12 AO -9.58 -4.66

17 -1.90 - 5.67 - - - -
(0,1,0) 18 -0.32 - 4.13 - - - -
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The parameters of ARIMA model show the values that obtained in iteration process. While
co and σ̂2 represent the constant value within the model and the estimation of the variation of
at that is shown in the equation (3.5) respectively. The other parameters indicate AR and MA
parameters.

w stands for the effect of outlier while t is standardized statistic of it. Time point of outlier
reflects outlier that found exactly at that specific point of time. During the iteration process,
three different ARIMA models are found for Russian data and two different for Canadian
data.

Iteration process continues until no outliers are found two times in a row. It is seen that the
effects of outliers that are type of IO, are more powerful than the effects of AO because they
influence not only one time point as AO but also the times after that specific time point. Since
more outliers are found as the number of iteration number increases, relationship between
number of iteration number and outliers can be constructed.

Ultimately, both data become ARIMA(0,1,0) once iteration process is done then, they become
outlier-adjusted time-series which means that no more outliers can be identified. Moreover,
it can be inferred that time-series obtained from ARIMA model that contains at with higher
variance, has more fluctuations in its mortality index as seen from comparison between the
results of Canada and Russia. Moreover, reductions in variance of at are seen for both Canada
and Russia which indicates that the mortality index that are used to establish outlier-adjusted
models shows less variation thus, the outlier-adjusted models are superior to original models.
It is also interesting to note that as Chen and Liu [9] specify, the type of an outlier that is
identified in the last observation of time-series cannot be distinguished between AO and IO
as seen in 56th time point of Russian data.

The results of iteration process for the populations of UK, Japan and Bulgaria can be found
in the Table (4.3) (4.4) (4.5) respectively.

Table 4.3: Summary of the Proposed Iteration Process for Briton Data

ARIMA Model Number of Iteration
Parameters of ARIMA model Outliers
c0 φ1 σ̂2 Time Point Type w t

(0,1,1)

1 -2.09 -0.51 25.20
8 IO 13.28 3.16

19 IO 17.14 4.08

2 -2.09 -0.48 18.91
9 AO -14.34 -3.01

21 AO -18.14 -3.81
3 -2.09 -0.44 17.50 - - - -

(0,1,1) 4 -2.09 -0.44 17.50 - - - -

Table 4.4: Summary of the Proposed Iteration Process for Japanese Data

ARIMA Model Number of Iteration
Parameters of ARIMA model Outliers

c0 θ1 θ2 φ1 φ2 φ3 σ̂2 Time Point Type w t

(1,1,3)
1 -0.47 0.84 - -1.24 0.16 0.08 9.67 2 AO -11.61 -3.41
2 -2.44 0.30 - -0.47 -0.02 0.29 11.39 - - - -

(2,1,2) 3 -1.46 1.20 -0.62 -1.53 1.00 - 8.46 - - - -

20



Table 4.5: Summary of the Proposed Iteration Process for Bulgarian Data

ARIMA Model Number of Iteration
Parameters of ARIMA model Outliers

c0 θ1 θ2 θ3 φ1 φ2 φ3 σ̂2 Time Point Type w t

(0,1,0)
1 -2.27 - - - - - - 108.61 63 AO -41.04 -4.10
2 -2.27 - - - - - - 102.30 - - - -

(1,1,2)

3 -1.29 0.58 - - -0.94 0.61 - 80.06 64 AO/IO -26.97 -3.19
4 -0.21 0.95 - - -1.37 0.55 - 64.44 53 AO -24.11 -3.00

5 -1.52 0.33 - - -0.79 0.68 - 66.49
21 AO 22.47 3.01
62 AO -23.68 -3.18

6 -1.71 0.27 - - -0.65 0.69 - 66.13 - - - -

(3,1,0)
7 -1.49 -0.19 0.04 0.51 - - - 59.24 23 AO 21.43 3.02
8 -1.51 -0.17 0.05 0.48 - - - 59.11 - - -

(0,1,3) 9 -2.08 - - - -0.14 0.21 0.54 58.31 - - - -

As we expect, mortality index of Bulgaria has more variance in itself consequently, it presents
unstable or nonlinear mortality rates. The variance goes down to 58.31 from 108.61 between
original and outlier-adjusted model. The data of Japan performs the best among all countries
since just one outlier is found. Furthermore, while the models for UK and Canada do not
change during iteration process, they change for Russia, Japan and Bulgaria which means
that the models generated from original Lee-Carter method do not reflect the historical data
truly.

Table 4.6: Years with Outliers for the Selected Countries
Canada Russia UK Japan Bulgaria

1926 1964 1929 1948 1967
1929 1965 1930 1969
1931 1966 1940 1999
1932 1967 1942 2008
1937 1986 2009
1938 1993 2010
1939 1994
1940 1995

1996
2011
2012
2013
2014

Table (4.6) illustrates the corresponding years with outliers that found in iteration process for
the selected countries. As we expect, more outliers are observed for Russian population.

When the corresponding years are associated with real historical events, it can be said that
wars and economic crises play a major role in changing mortality rates thus, having outliers
in mortality data. The Second World War affects UK in 1940 and 1942 as it has detected
mortality outliers at that years.

In addition to wars, some important accidents such as Chernobyl Accident that happened in
Ukraine which was in USSR (Union of Soviet Socialist Republics) in 1986 influence more
than one country increasing their mortality rates. After the dissolution of the USSR in 1990
causing separation into 15 different countries, makes fluctuations in mortality rates between
1993 and 1996 for Russia.
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Moreover, the effects of economic crises can be seen in Canada between 1929-1939 years
identified as Great Depression, in Russia between 2011-2014 years as having a sharp decrease
in individual’s income and purchase power and in Bulgaria at 1999.

It is also interesting to note that the data of Canada does not contain any outliers after 1940
year whereas Russia has outliers that are identified in 21st century too. This situation explains
the unstable mortality trends that Russia has even in the present. Moreover, Bulgaria also
shows the same pattern as Russia. It has outliers in the very end of series which cannot be
distinguished among the types of outlier.

Table (4.7) presents the performances between models for selected countries. It is seen that
ultimate models for all populations are superior to the original models as they have lower
AIC values. Although there is more decline in AIC values for Canadian data, outlier-adjusted
models are more preferable than original models for all countries on basis of AIC criterion.

Table 4.7: Model Performance Indicators for the Selected Countries
Values of AIC

Original Lee-Carter Model Outlier-Adjusted Lee-Carter Model
Canada 653.97 477.68
Russia 130.05 120.02

UK 306.44 285.55
Japan 186.12 163.64

Bulgaria 298.76 280.17

4.3.4 Forecasted Mortality Index, κt

Mortality index is forecasted until 2060 year for all populations by using ultimate ARIMA
model and its parameters are obtained in the end of the iteration. The forecasted values are
drawn with 95% confidence interval. Since ax of ARIMA model for Russian and Bulgarian
data have more variance and they have fluctuations in their mortality rates, the confidence
interval of them cover more space in forecasted area.

The exact values of mortality index that obtained after end of the iteration and forecasted
values are given in the Appendix B. In addition to mortality index data, the surviving prob-
abilities of individuals for all ages in 2060 year that calculated with formula (3.16) using
forecasted mortality index, can be found in the Appendix C.
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Figure 4.5: Forecasted Mortality Index for the Selected Countries: a)Canada, b)Russia
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Figure 4.6: Forecasted Mortality Index for the Selected Countries: a)UK, b)Japan, c)Bulgaria

4.3.5 Whole Life Annuity Pricing Under Outlier-Adjusted Lee-Carter Model

The prices of whole life annuities (due) for ages 0, 30 and 70 in 2060 year for both original
and outlier-adjusted Lee-Carter models for Canadian and Russian data are presented in Table
(4.8). The interest rate i, is chosen an arbitrary representative value as 0.03 in all calculations.

We find that there are significant differences between the variation of the prices of annuity
of both countries. This result is more obvious for the comparison of annuities start at age 0.
There is an increase of 11% in the price of annuity between models in Russian data while
there is only 0.22% for Canadian data. The numerical results suggest that more amount of
premium should be collected by life insurance companies for whole life annuities start at age
0 in Russia but this conclusion cannot be reached for the Canada population. Surprisingly,
there are decreases for the annuities start at ages 30 and 70 for Russian data which means that
while the mortality improvements work after 30 years and reducing death rates, they are not
enough in general as the prices of annuities start at age 0 increase.
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Table 4.8: The Prices of Whole Life Annuities (Due) in 2060, Canada and Russia

Age
Prices of Whole Life Annuities

Original Lee-Carter Model Outlier-Adjusted Lee-Carter Model Difference

Canada
0 31.59 31.66 0.22%
30 27.57 27.73 0.56%
70 14.48 14.77 2.01%

Russia
0 25.53 28.43 11.36%
30 25.36 24.13 -4.82%
70 10.08 9.59 -4.87%

In table (4.9), no visible differences as in Russian data, can be seen. Even though Japan
has some fluctuations in the prices of annuities that start at 30 and 70 ages by around 2-5%,
in general there are not any differences between prices like Canadian data. However, for
Bulgarian data, sharper variations could been expected as being a developing country, but
the differences do not exceed 0.71%. Even though Bulgaria has unstable mortality index as
Russia, the prices of annuities do not change with the same ratio like in Russian data. Thus, we
can conclude that the outliers in Russian data have impact on annuity prices much more than
Bulgarian data. Moreover, we can come to a conclusion that the criteria of being developed
or developing country is not enough alone for expecting more differences between the prices
of annuities that are estimated with original and outlier-adjusted models.

Table 4.9: The Prices of Whole Life Annuities (Due) in 2060: UK, Japan and Bulgaria

Age
Prices of Whole Life Annuities

Original Lee-Carter Model Outlier-Adjusted Lee-Carter Model Difference

UK
0 31.53 31.52 0.00%

30 27.38 27.38 -0.01%
70 13.95 13.95 -0.03%

Japan
0 31.97 32.04 0.22%

30 28.46 29.89 5.02%
70 16.36 16.73 2.25%

Bulgaria
0 30.84 30.81 -0.10%

30 25.60 25.53 -0.28%
70 10.44 10.37 -0.71%

4.3.6 Pricing the Annuity Portfolio

It is useful to show the annuity pricing on the portfolio for a more comprehensive assessment
of the achieved result. In order to create this portfolio, 10.000 people are randomly generated
from uniform distribution, aged between 15 and 75 years. Then, the prices of whole life
annuities on the portfolio are calculated for both original and outlier-adjusted Lee Carter
model. As can be seen from the Table (4.10), while the difference between models for Russian
data is around 5%, for other countries this number does not exceed 1%. In larger and more
diverse portfolios, this difference can be more pronounced.
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Table 4.10: Prices for the Portfolio of Whole Life Annuities (Due) in 2060
Prices of Whole Life Annuities for Portfolio

Canada Russia UK Japan Bulgaria
Original Lee-Carter Model 235,410 205,380 232,350 248,130 208,430

Outlier-Adjusted Lee-Carter Model 237,500 194,990 232,320 250,480 207,610
Difference 0.89% -5.06% -0.01% 0.95% -0.39%

Moreover, in addition to whole life annuities, the prices of term life annuities are also exam-
ined. Although there are no sharp differences in prices of term life insurance like in whole life
insurance, there are more differences for Russia than other countries, indicating that Russian
data is more sensitive to mortality jumps. The prices of term insurance on portfolio for all
selected countries can be seen in the Table (4.11).

Table 4.11: Prices for the Portfolio of Term Life Annuities (Due) in 2060

Insurance Type
Prices of Term Life Annuities for Portfolio

Canada Russia UK Japan Bulgaria

5 Year Term Insurance
Original Lee-Carter Model 55,461 54,750 54,190 55,641 50,500

Outlier-Adjusted Lee-Carter Model 55,495 54,366 54,190 55,665 50,015
Difference 0.06% -0.70% 0.00% 0.04% -0.96%

10 Year Term Insurance
Original Lee-Carter Model 93,980 91,298 93,808 94,668 92,397

Outlier-Adjusted Lee-Carter Model 94,111 90,061 93,806 94,762 92,269
Difference 0.14% -1.35% 0.00% 0.10% -0.14%

30 Year Term Insurance
Original Lee-Carter Model 190,730 174,350 189,280 196,450 177,210

Outlier-Adjusted Lee-Carter Model 191,730 168,310 189,260 197,410 176,690
Difference 0.52% -3.46% -0.01% 0.49% -0.29%
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CHAPTER 5

CONCLUSIONS AND COMMENTS

The prices of annuities may be considered as a cost for life insurance companies as they create
liability for them in the future. The annuity prices that are calculated from the model which
does not include all the significant factors that may influence mortality data, can have serious
impacts on the financial strength of life insurance companies. Therefore, factors influencing
the forecasting model should be taken into account. One of these factors is the outliers that
are likely to be in the mortality data.

In this thesis, models with and without considering outliers in the historical mortality data,
have been examined in different scenarios to measure the effect of any variation in the mor-
tality rates thus, surviving probabilities on the price of whole life annuities. We have applied
a different form of the outlier-adjusted Lee-Carter model developed by Chen and Liu [9].
While Chen and Liu use the iteration that eliminates some possible outliers during the outlier
detection process, we take all possible outliers and generate outlier-adjusted model using all
of them.

Our aim has been to determine the effects of original and outlier-adjusted model on the price
of annuities not just for one country but among countries. While the populations of Canada
and Russia are chosen for comparison, the data of UK, Japan and Bulgaria are also analyzed
for better explication of the differences between countries. Moreover, calculating whole life
annuity prices has been made at ages 0, 30 and 70.

Implementation results show that using outlier-adjusted model in calculation of forecasting
mortality rates is critical on the annuity prices for the countries that have many outliers in
their mortality rates. This inference cannot be used to distinguish between developed and de-
veloping countries because significant variations in the annuity prices between models have
been found for Russian data but not for Bulgarian data as both countries are developing coun-
tries. In conclusion, life insurance companies or other related institutions should truly con-
sider outliers in their forecasting model, especially the companies that working for population
of countries with severe fluctuations in their mortality rates.

For the future studies, it would be useful to investigate outlier-adjusted scheme with Cairns-
Blake-Dowd stochastic mortality model. This approach would also be used to model and
value catastrophic mortality bonds. In addition to the prices of whole life annuities, the costs
of life insurances would be calculated.
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APPENDIX A

Table A.1: Parameter Estimates of Original Lee-Carter Model for Canada and Russia
Age

Canada Russia
Age

Canada Russia
Year

κt Year
κt

ax bx ax bx ax bx ax bx Canada Russia Canada Russia
0 -3.9088 0.0216 -4.0106 -0.0406 56 -4.7189 0.0071 -4.2420 0.0225 1 79.7811 -1.4494 49 8.0633 5.4551
1 -6.4007 0.0262 -6.2147 -0.0503 57 -4.6369 0.0068 -4.1825 0.0216 2 80.1212 -9.7273 50 5.9371 3.8115
2 -6.9422 0.0241 -6.8681 -0.0390 58 -4.5252 0.0074 -4.1171 0.0202 3 81.0636 -10.9708 51 3.5756 -1.0646
3 -7.1910 0.0234 -7.1597 -0.0333 59 -4.4546 0.0069 -4.0572 0.0204 4 74.0866 -6.4536 52 4.8545 -1.6716
4 -7.3621 0.0224 -7.2845 -0.0298 60 -4.3414 0.0073 -3.9220 0.0162 5 72.3963 -11.3872 53 3.2283 -9.5614
5 -7.5076 0.0220 -7.4190 -0.0328 61 -4.3146 0.0058 -3.9175 0.0221 6 77.8235 -21.3352 54 2.7106 -13.3764
6 -7.6210 0.0220 -7.4864 -0.0358 62 -4.1706 0.0070 -3.8130 0.0140 7 74.7038 -12.6227 55 -0.5289 -18.6744
7 -7.7180 0.0214 -7.4998 -0.0363 63 -4.0869 0.0070 -3.7551 0.0144 8 76.0919 -13.3691 56 -3.5001 -20.6903
8 -7.8185 0.0213 -7.5562 -0.0314 64 -4.0019 0.0068 -3.6877 0.0135 9 78.1630 -10.5875 57 -7.2131
9 -7.8389 0.0199 -7.6537 -0.0289 65 -3.8849 0.0074 -3.6025 0.0106 10 73.3407 -10.3022 58 -10.3265

10 -7.8878 0.0197 -7.6936 -0.0278 66 -3.8564 0.0062 -3.5556 0.0131 11 67.7214 -5.5493 59 -14.2169
11 -7.9053 0.0195 -7.7521 -0.0230 67 -3.7515 0.0065 -3.4631 0.0088 12 65.6737 -5.5026 60 -15.4131
12 -7.8027 0.0181 -7.7130 -0.0240 68 -3.6415 0.0070 -3.3907 0.0085 13 61.5633 -6.9143 61 -19.7168
13 -7.6980 0.0173 -7.6238 -0.0165 69 -3.5653 0.0066 -3.3309 0.0109 14 59.2722 -5.8978 62 -20.6601
14 -7.5165 0.0156 -7.4655 -0.0119 70 -3.4575 0.0070 -3.1956 0.0027 15 60.7143 -5.1532 63 -24.6255
15 -7.3408 0.0142 -7.2430 -0.0045 71 -3.4355 0.0057 -3.1765 0.0116 16 60.3287 -6.8486 64 -27.5831
16 -7.1067 0.0130 -6.9930 -0.0005 72 -3.2725 0.0069 -3.0385 0.0024 17 64.8844 -1.8508 65 -26.8964
17 -6.9421 0.0118 -6.7458 0.0000 73 -3.1925 0.0067 -2.9652 0.0030 18 56.7600 -0.6671 66 -28.3661
18 -6.8003 0.0111 -6.5791 0.0006 74 -3.0991 0.0067 -2.8799 0.0035 19 56.4316 -0.2061 67 -31.8567
19 -6.7159 0.0110 -6.5300 0.0067 75 -2.9989 0.0069 -2.7785 0.0011 20 56.0823 -0.3113 68 -31.8858
20 -6.6947 0.0113 -6.4059 0.0089 76 -2.9018 0.0069 -2.6983 0.0021 21 56.4105 2.5859 69 -35.5835
21 -6.6869 0.0119 -6.3245 0.0141 77 -2.8333 0.0063 -2.6274 0.0046 22 52.1156 3.2292 70 -39.1356
22 -6.7047 0.0122 -6.2299 0.0120 78 -2.7051 0.0069 -2.4998 -0.0015 23 54.1145 1.6071 71 -40.5022
23 -6.7107 0.0124 -6.1705 0.0130 79 -2.6290 0.0062 -2.4556 0.0057 24 49.5076 -1.4459 72 -43.8000
24 -6.7250 0.0123 -6.1201 0.0156 80 -2.5369 0.0060 -2.2877 -0.0047 25 44.6419 0.6931 73 -41.3919
25 -6.7284 0.0121 -6.0363 0.0164 81 -2.4994 0.0047 -2.2754 0.0074 26 43.3877 4.5466 74 -43.5928
26 -6.7102 0.0123 -6.0088 0.0189 82 -2.3531 0.0055 -2.1262 -0.0008 27 42.0536 1.8218 75 -44.7805
27 -6.7014 0.0124 -5.9531 0.0204 83 -2.2560 0.0053 -2.0497 0.0015 28 40.4942 -8.9330 76 -47.0776
28 -6.6850 0.0128 -5.8957 0.0211 84 -2.1464 0.0054 -1.9576 0.0018 29 38.9280 -8.4381 77 -48.8583
29 -6.6597 0.0121 -5.8559 0.0241 85 -2.0617 0.0052 -1.8633 0.0010 30 35.8908 -7.1642 78 -50.9519
30 -6.6292 0.0123 -5.7313 0.0210 86 -1.9552 0.0052 -1.7751 0.0020 31 34.5141 -7.6813 79 -53.7561
31 -6.6337 0.0115 -5.7490 0.0258 87 -1.8643 0.0049 -1.7044 0.0039 32 32.1931 -4.1317 80 -58.9477
32 -6.5565 0.0122 -5.6693 0.0207 88 -1.7861 0.0045 -1.6233 0.0055 33 30.4270 -3.2183 81 -62.2854
33 -6.5273 0.0116 -5.6361 0.0237 89 -1.7114 0.0039 -1.5774 0.0115 34 24.8042 2.5138 82 -63.8280
34 -6.4832 0.0115 -5.5862 0.0239 90 -1.6020 0.0042 -1.4267 0.0023 35 25.1027 16.9632 83 -66.5778
35 -6.4009 0.0118 -5.5002 0.0236 91 -1.5699 0.0026 -1.4817 0.0221 36 25.2303 22.7689 84 -70.8851
36 -6.3619 0.0116 -5.4775 0.0234 92 -1.4503 0.0030 -1.3613 0.0155 37 25.5613 18.8931 85 -73.0324
37 -6.3029 0.0110 -5.4341 0.0241 93 -1.3617 0.0030 -1.3151 0.0191 38 21.1987 13.6665 86 -79.5788
38 -6.2080 0.0115 -5.3757 0.0230 94 -1.2797 0.0029 -1.2705 0.0228 39 21.8945 10.2332 87 -79.5678
39 -6.1615 0.0107 -5.3350 0.0260 95 -1.2017 0.0027 -1.1508 0.0157 40 18.9012 8.2521 88 -82.4048
40 -6.0782 0.0109 -5.2044 0.0245 96 -1.1260 0.0024 -1.0864 0.0164 41 17.1354 14.0576 89 -87.9356
41 -6.0449 0.0095 -5.2253 0.0286 97 -1.0527 0.0022 -1.0242 0.0171 42 16.7940 16.6560 90 -92.3373
42 -5.9033 0.0107 -5.1317 0.0224 98 -0.9820 0.0020 -0.9643 0.0176 43 17.3058 17.2671 91 -95.4172
43 -5.8565 0.0097 -5.0854 0.0256 99 -0.9140 0.0018 -0.9066 0.0181 44 13.7558 19.6060 92 -99.0878
44 -5.7866 0.0090 -5.0326 0.0271 100 -0.8489 0.0016 -0.8512 0.0184 45 13.7777 20.0536 93 -100.8770
45 -5.6830 0.0095 -4.9314 0.0261 101 -0.7866 0.0014 -0.7982 0.0187 46 12.3799 17.0304 94 -102.2092
46 -5.6117 0.0086 -4.8953 0.0267 102 -0.7273 0.0012 -0.7476 0.0189 47 10.1981 16.6059 95 -104.0307
47 -5.5214 0.0085 -4.8373 0.0270 103 -0.6710 0.0011 -0.6994 0.0189 48 9.8383 10.4174 96 -107.8780
48 -5.4200 0.0087 -4.7653 0.0252 104 -0.6177 0.0009 -0.6536 0.0189
49 -5.3347 0.0082 -4.7119 0.0274 105 -0.5675 0.0007 -0.6102 0.0188
50 -5.2300 0.0085 -4.5849 0.0258 106 -0.5203 0.0006 -0.5692 0.0186
51 -5.2027 0.0069 -4.5905 0.0291 107 -0.4761 0.0005 -0.5305 0.0184
52 -5.0526 0.0081 -4.4979 0.0227 108 -0.4349 0.0004 -0.4940 0.0180
53 -4.9925 0.0075 -4.4495 0.0242 109 -0.3965 0.0003 -0.4598 0.0177
54 -4.8941 0.0073 -4.3814 0.0233 110 -0.3609 0.0002 -0.4276 0.0172
55 -4.8166 0.0073 -4.2914 0.0234
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Table A.2: Parameter Estimates of Original Lee-Carter Model for UK, Japan and Bulgaria
Age

UK Japan Bulgaria
Age

UK Japan Bulgaria
Year

κt Year
κt

ax bx ax bx ax bx ax bx ax bx ax bx UK Japan Bulgaria UK Japan Bulgaria
0 -4.0224 0.0186 -4.7632 0.0184 -3.6595 0.0427 56 -4.6332 0.0071 -4.9597 0.0078 -4.5538 0.0018 1 87.5672 136.9620 47.1508 49 9.1722 -37.7711 7.9279
1 -6.4233 0.0257 -6.6488 0.0189 -5.9047 0.0571 57 -4.5435 0.0068 -4.8737 0.0079 -4.4791 0.0009 2 76.8844 117.2758 44.1142 50 4.6485 -46.8545 12.0153
2 -7.0086 0.0239 -7.1485 0.0200 -6.6020 0.0505 58 -4.4386 0.0070 -4.7735 0.0082 -4.3846 0.0014 3 82.7157 114.1561 40.2393 51 9.4726 -49.7860 20.3307
3 -7.3073 0.0232 -7.4247 0.0202 -6.8908 0.0414 59 -4.3465 0.0068 -4.6977 0.0080 -4.2993 0.0011 4 80.6115 109.0003 31.4904 52 7.0362 -51.9793 13.5634
4 -7.5167 0.0231 -7.6362 0.0194 -7.1600 0.0381 60 -4.2582 0.0065 -4.6101 0.0080 -4.1677 0.0044 5 74.9646 101.3409 33.7065 53 5.0417 -50.7927 -4.0230
5 -7.6288 0.0233 -7.8208 0.0185 -7.3729 0.0352 61 -4.1866 0.0060 -4.5196 0.0080 -4.1083 0.0021 6 79.9808 91.7051 39.2496 54 2.3344 -59.1853 1.6600
6 -7.7439 0.0220 -7.9567 0.0172 -7.4970 0.0332 62 -4.0626 0.0066 -4.4286 0.0081 -4.0129 0.0037 7 73.6858 91.3370 24.0485 55 5.0364 -63.8347 -8.6567
7 -7.8814 0.0214 -8.1012 0.0163 -7.5625 0.0317 63 -3.9684 0.0066 -4.3348 0.0082 -3.9147 0.0029 8 87.1864 83.1329 22.9755 56 -2.6130 -68.0627 -11.6275
8 -7.9587 0.0203 -8.2790 0.0161 -7.6626 0.0313 64 -3.8717 0.0065 -4.2416 0.0083 -3.8209 0.0031 9 69.2045 76.9657 20.7022 57 -1.8759 -69.3249 -18.3780
9 -8.0113 0.0193 -8.3867 0.0155 -7.7067 0.0295 65 -3.7816 0.0066 -4.1503 0.0083 -3.7146 0.0042 10 74.8137 79.2714 23.2652 58 -2.0879 -73.3179 -31.3263

10 -8.0418 0.0187 -8.4679 0.0152 -7.7305 0.0301 66 -3.7190 0.0059 -4.0558 0.0083 -3.6397 0.0028 11 72.0382 81.6208 14.2429 59 -7.5116 -71.4705 -24.9274
11 -8.0394 0.0180 -8.4932 0.0146 -7.7616 0.0292 67 -3.6068 0.0061 -3.9599 0.0084 -3.5383 0.0034 12 72.8111 69.7652 0.5904 60 -10.4420 -76.8990 -31.1069
12 -7.9736 0.0174 -8.4440 0.0141 -7.7435 0.0283 68 -3.5111 0.0063 -3.8619 0.0084 -3.4346 0.0035 13 66.5722 67.8254 21.4032 61 -11.2423 -79.3030 -40.1524
13 -7.8857 0.0172 -8.3359 0.0132 -7.6462 0.0277 69 -3.4120 0.0063 -3.7628 0.0084 -3.3423 0.0032 14 64.9430 68.1315 0.4986 62 -14.2060 -80.3001 -64.2510
14 -7.7481 0.0168 -8.2144 0.0126 -7.5269 0.0270 70 -3.3219 0.0062 -3.6633 0.0084 -3.2136 0.0053 15 66.8447 64.1993 -7.5488 63 -20.0271 -85.8772 -107.5654
15 -7.5768 0.0163 -8.0110 0.0123 -7.3926 0.0281 71 -3.2494 0.0058 -3.5623 0.0085 -3.1432 0.0032 16 68.2516 64.1068 6.4619 64 -15.8684 -84.3025 -104.9127
16 -7.3476 0.0151 -7.6346 0.0114 -7.2824 0.0273 72 -3.1167 0.0063 -3.4600 0.0084 -3.0211 0.0047 17 57.8670 55.3068 -6.0704 65 -20.2177 -82.4362
17 -7.1188 0.0133 -7.4673 0.0117 -7.1349 0.0286 73 -3.0223 0.0063 -3.3578 0.0084 -2.9260 0.0034 18 60.3477 52.7273 -17.7425 66 -26.5950 -86.8338
18 -7.0054 0.0126 -7.3220 0.0115 -6.9685 0.0263 74 -2.9232 0.0062 -3.2531 0.0083 -2.8248 0.0036 19 75.5515 54.2213 -16.0962 67 -27.7931 -90.2136
19 -6.9620 0.0131 -7.2035 0.0118 -6.8822 0.0261 75 -2.8352 0.0062 -3.1474 0.0082 -2.7164 0.0047 20 65.8205 47.0931 -18.0253 68 -27.7363 -94.6601
20 -6.9342 0.0133 -7.1453 0.0121 -6.8292 0.0275 76 -2.7348 0.0061 -3.0423 0.0080 -2.6217 0.0036 21 49.5898 44.3345 -2.6924 69 -33.9173 -97.6105
21 -6.9156 0.0136 -7.1065 0.0123 -6.8289 0.0279 77 -2.6559 0.0059 -2.9338 0.0078 -2.5251 0.0026 22 51.5360 42.7805 -15.9467 70 -34.9872 -100.6149
22 -6.9115 0.0138 -7.0710 0.0125 -6.8152 0.0277 78 -2.5505 0.0060 -2.8254 0.0078 -2.4146 0.0037 23 45.4721 40.6449 1.1154 71 -40.3239 -101.6441
23 -6.9048 0.0138 -7.0499 0.0128 -6.7873 0.0247 79 -2.4567 0.0058 -2.7164 0.0076 -2.3131 0.0031 24 41.7823 40.6362 -10.4823 72 -35.8014
24 -6.9045 0.0140 -7.0360 0.0130 -6.7961 0.0257 80 -2.3688 0.0055 -2.6033 0.0074 -2.1938 0.0033 25 41.0076 32.5923 0.2194 73 -45.8523
25 -6.8902 0.0136 -7.0246 0.0129 -6.7537 0.0250 81 -2.2943 0.0050 -2.4957 0.0072 -2.1275 0.0002 26 43.3016 28.5804 0.6259 74 -42.9030
26 -6.8687 0.0133 -7.0163 0.0129 -6.7406 0.0236 82 -2.1749 0.0053 -2.3915 0.0070 -2.0276 0.0008 27 28.3944 28.0228 -10.2491 75 -47.1363
27 -6.8537 0.0132 -7.0055 0.0128 -6.7196 0.0229 83 -2.0803 0.0051 -2.2845 0.0068 -1.9420 -0.0010 28 36.4934 24.7248 -5.2318 76 -50.6448
28 -6.8229 0.0129 -6.9796 0.0126 -6.6911 0.0224 84 -1.9741 0.0052 -2.1830 0.0065 -1.8530 -0.0008 29 34.8504 19.9668 2.1962 77 -52.4286
29 -6.7864 0.0127 -6.9408 0.0124 -6.6534 0.0201 85 -1.8921 0.0049 -2.0791 0.0063 -1.7656 0.0000 30 42.8199 16.5923 -4.8021 78 -52.8864
30 -6.7453 0.0123 -6.9168 0.0121 -6.6030 0.0202 86 -1.7923 0.0048 -1.9757 0.0062 -1.6931 -0.0015 31 28.0630 10.5314 5.0400 79 -61.3232
31 -6.7228 0.0119 -6.8885 0.0119 -6.5905 0.0179 87 -1.7104 0.0046 -1.8787 0.0058 -1.6212 -0.0037 32 26.4766 7.3659 -1.5276 80 -65.4341
32 -6.6455 0.0118 -6.8364 0.0117 -6.4998 0.0170 88 -1.6332 0.0042 -1.7782 0.0057 -1.5521 -0.0043 33 24.4351 1.9465 -0.5535 81 -66.2767
33 -6.6094 0.0115 -6.7917 0.0117 -6.4556 0.0151 89 -1.5390 0.0041 -1.6800 0.0055 -1.4839 -0.0054 34 26.6265 3.4106 4.2529 82 -66.6204
34 -6.5445 0.0113 -6.7292 0.0114 -6.4037 0.0145 90 -1.4578 0.0037 -1.5864 0.0051 -1.3816 -0.0026 35 25.1244 -1.2048 -3.6838 83 -77.2017
35 -6.4709 0.0111 -6.6706 0.0111 -6.3365 0.0141 91 -1.3960 0.0032 -1.4912 0.0049 -1.3461 -0.0069 36 21.2314 -7.2387 3.8630 84 -79.8700
36 -6.4147 0.0109 -6.6111 0.0109 -6.2709 0.0127 92 -1.2976 0.0031 -1.3987 0.0048 -1.3012 -0.0058 37 21.9492 -7.1802 5.1775 85 -85.9355
37 -6.3452 0.0106 -6.5426 0.0106 -6.2046 0.0103 93 -1.2168 0.0029 -1.3186 0.0044 -1.2490 -0.0066 38 20.2562 -11.8415 0.5808 86 -88.1989
38 -6.2570 0.0106 -6.4748 0.0103 -6.1066 0.0103 94 -1.1395 0.0028 -1.2310 0.0043 -1.1873 -0.0067 39 17.3138 -14.6747 9.2990 87 -89.5878
39 -6.1780 0.0103 -6.3924 0.0102 -6.0538 0.0077 95 -1.0581 0.0028 -1.1467 0.0039 -1.1094 -0.0075 40 21.6229 -19.7146 0.0088 88 -99.3559
40 -6.0967 0.0099 -6.3149 0.0097 -5.9515 0.0102 96 -0.9868 0.0026 -1.0656 0.0036 -1.0509 -0.0079 41 20.5818 -24.6940 4.7871 89 -102.4328
41 -6.0295 0.0093 -6.2424 0.0096 -5.8943 0.0060 97 -0.9181 0.0024 -0.9874 0.0034 -0.9945 -0.0082 42 22.6323 -22.7837 2.8114 90 -109.5734
42 -5.9098 0.0098 -6.1620 0.0092 -5.8101 0.0058 98 -0.8523 0.0022 -0.9123 0.0031 -0.9401 -0.0085 43 10.4666 -28.4861 -0.4822 91 -107.8769
43 -5.8411 0.0091 -6.0817 0.0090 -5.7170 0.0041 99 -0.7894 0.0020 -0.8405 0.0029 -0.8878 -0.0088 44 11.9864 -28.2840 1.9644 92 -109.1019
44 -5.7577 0.0088 -5.9909 0.0088 -5.6268 0.0033 100 -0.7294 0.0018 -0.7720 0.0026 -0.8376 -0.0090 45 13.9401 -31.7545 5.3773 93 -114.9955
45 -5.6542 0.0087 -5.9073 0.0086 -5.5325 0.0043 101 -0.6725 0.0017 -0.7071 0.0024 -0.7895 -0.0092 46 5.6910 -32.5793 -0.7793 94 -108.0175
46 -5.5678 0.0085 -5.8214 0.0084 -5.4471 0.0027 102 -0.6186 0.0015 -0.6457 0.0021 -0.7435 -0.0093 47 12.8804 -34.1347 0.8451 95 -112.9689
47 -5.4688 0.0084 -5.7331 0.0083 -5.3600 0.0018 103 -0.5677 0.0013 -0.5880 0.0019 -0.6997 -0.0094 48 11.9299 -39.6300 3.4033 96
48 -5.3786 0.0084 -5.6471 0.0082 -5.2672 0.0012 104 -0.5200 0.0012 -0.5340 0.0017 -0.6579 -0.0094
49 -5.2738 0.0083 -5.5559 0.0081 -5.1807 0.0013 105 -0.4752 0.0010 -0.4836 0.0015 -0.6182 -0.0095
50 -5.1822 0.0080 -5.4655 0.0080 -5.0763 0.0031 106 -0.4334 0.0009 -0.4368 0.0013 -0.5805 -0.0094
51 -5.1197 0.0074 -5.3827 0.0079 -5.0026 0.0010 107 -0.3946 0.0008 -0.3936 0.0011 -0.5447 -0.0094
52 -4.9944 0.0078 -5.2951 0.0079 -4.9175 0.0015 108 -0.3586 0.0007 -0.3539 0.0010 -0.5109 -0.0093
53 -4.9069 0.0075 -5.2100 0.0078 -4.8205 0.0011 109 -0.3253 0.0006 -0.3174 0.0008 -0.4790 -0.0092
54 -4.8127 0.0075 -5.1281 0.0078 -4.7373 0.0014 110 -0.2946 0.0005 -0.2842 0.0007 -0.4488 -0.0090
55 -4.7477 0.0067 -5.0443 0.0078 -4.6412 0.0024
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APPENDIX B

Table B.1: Outlier-Adjusted and Forecasts Values of κt for Canada and Russia

Year
Outlier-Adjusted κt Year

Outlier-Adjusted κt Year
Forecasted κt

Canada Russia Canada Russia Canada Russia
1 79.7811 -1.4494 49 8.1596 5.4551 2015 - -11.3496
2 80.1212 -9.7273 50 5.9371 3.8115 2016 - -11.5146
3 81.0636 -10.9708 51 3.5756 -1.0646 2017 -110.8756 -11.6796
4 74.0866 -6.4536 52 4.8545 -1.6716 2018 -112.3108 -11.8446
5 72.3963 -11.3872 53 3.2283 -2.7234 2019 -114.8884 -12.0096
6 70.5008 -10.0465 54 2.7106 -10.7278 2020 -116.9554 -12.1746
7 74.7038 -15.5200 55 -0.5289 -10.8524 2021 -118.8964 -12.3396
8 76.0919 -11.2631 56 -3.5001 -11.1846 2022 -121.5292 -12.5046
9 73.1394 -12.8950 57 -7.2131 2023 -123.1330 -12.6696
10 69.9104 -11.4409 58 -10.3265 2024 -125.8814 -12.8346
11 63.3708 -4.2073 59 -14.2169 2025 -127.6371 -12.9996
12 65.8444 -4.8969 60 -15.4131 2026 -130.0725 -13.1646
13 61.3791 -8.0421 61 -19.7168 2027 -132.2649 -13.3296
14 59.3093 -6.2232 62 -20.6601 2028 -134.2843 -13.4946
15 60.4064 -5.7525 63 -24.6255 2029 -136.8308 -13.6596
16 60.5360 -5.3295 64 -27.5831 2030 -138.6615 -13.8246
17 61.5813 -3.4596 65 -26.8964 2031 -141.2493 -13.9896
18 59.4651 0.4777 66 -28.3661 2032 -143.2140 -14.1546
19 60.9412 -0.4847 67 -31.8567 2033 -145.5739 -14.3196
20 51.6547 -0.5911 68 -31.8858 2034 -147.8369 -14.4846
21 56.7571 1.3891 69 -35.5835 2035 -149.9282 -14.6496
22 52.2940 3.3948 70 -39.1356 2036 -152.4101 -14.8146
23 54.4052 2.4741 71 -40.5022 2037 -154.4006 -14.9796
24 49.4196 -1.6221 72 -43.8000 2038 -156.8866 -15.1446
25 44.4793 1.2972 73 -41.3919 2039 -158.9869 -15.3096
26 43.1364 2.6802 74 -43.5928 2040 -161.3104 -15.4746
27 42.0576 2.8896 75 -44.7805 2041 -163.6124 -15.6396
28 40.2303 -1.1758 76 -47.0776 2042 -165.7644 -15.8046
29 38.9014 -8.5656 77 -48.8583 2043 -168.1997 -15.9696
30 35.2096 -5.8552 78 -50.9519 2044 -170.3016 -16.1346
31 34.5600 -5.2158 79 -53.7561 2045 -172.7247 -16.2996
32 32.3186 -4.0328 80 -58.9477 2046 -174.9125 -16.4646
33 30.9225 -4.2818 81 -62.2854 2047 -177.2215 -16.6296
34 24.8429 2.3884 82 -63.8280 2048 -179.5445 -16.7946
35 25.2414 6.0254 83 -66.5778 2049 -181.7454 -16.9597
36 25.3609 4.9260 84 -70.8851 2050 -184.1483 -17.1247
37 25.5524 4.7912 85 -73.0324 2051 -186.3275 -17.2897
38 22.1293 4.4650 86 -79.5788 2052 -188.7125 -17.4547
39 21.5425 10.2332 87 -79.5678 2053 -190.9568 -17.6197
40 19.0494 8.2521 88 -82.4048 2054 -193.2630 -17.7847
41 16.6713 14.0576 89 -87.9356 2055 -195.5968 -17.9497
42 16.7417 16.6560 90 -92.3373 2056 -197.8360 -18.1147
43 17.3548 17.2671 91 -95.4172 2057 -200.2168 -18.2797
44 13.4728 19.6060 92 -99.0878 2058 -202.4492 -18.4447
45 13.6749 20.0536 93 -100.8770 2059 -204.8121 -18.6097
46 11.5375 17.0304 94 -102.2092 2060 -207.0927 -18.7747
47 10.7827 16.6059 95 -104.0307
48 9.6473 10.4174 96 -107.8780
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Table B.2: Outlier-Adjusted and Forecasts Values of κt for UK, Japan and Bulgaria

Year
Outlier-Adjusted κt Year

Outlier-Adjusted κt
Year

Forecasted κt
UK Japan Bulgaria

2011

-
-

-83.5418
UK Japan Bulgaria UK Japan Bulgaria 2012 -98.3297

1 87.5672 136.9620 47.1508 49 9.7359 -37.7711 7.9279 2013 -105.3223
2 76.8844 128.8857 44.1142 50 4.6485 -46.8545 12.0153 2014 -107.4030
3 82.7157 114.1561 40.2393 51 9.4726 -49.7860 20.3307 2015 -109.4837
4 80.6115 109.0003 31.4904 52 7.0362 -51.9793 13.5634 2016 -111.5644
5 74.9646 101.3409 33.7065 53 5.0417 -50.7927 20.0902 2017 -115.3644 -113.6451
6 79.9808 91.7051 39.2496 54 2.3344 -59.1853 1.6600 2018 -117.4556 -106.9908 -115.7258
7 73.6858 91.3370 24.0485 55 5.0364 -63.8347 -8.6567 2019 -119.5468 -111.5656 -117.8065
8 73.9083 83.1329 22.9755 56 -2.6130 -68.0627 -11.6275 2020 -121.6380 -115.1568 -119.8872
9 77.5150 76.9657 20.7022 57 -1.8759 -69.3249 -18.3780 2021 -123.7292 -118.0533 -121.9679
10 71.3538 79.2714 23.2652 58 -2.0879 -73.3179 -31.3263 2022 -125.8204 -120.7325 -124.0486
11 69.9907 81.6208 14.2429 59 -7.5116 -71.4705 -24.9274 2023 -127.9116 -123.5857 -126.1293
12 71.6845 69.7652 0.5904 60 -10.4420 -76.8990 -31.1069 2024 -130.0028 -126.7826 -128.2100
13 65.0469 67.8254 21.4032 61 -11.2423 -79.3030 -40.1524 2025 -132.0940 -130.2822 -130.2907
14 64.0190 68.1315 0.4986 62 -14.2060 -80.3001 -40.5751 2026 -134.1853 -133.9292 -132.3714
15 66.6393 64.1993 -7.5488 63 -20.0271 -85.8772 -66.5206 2027 -136.2765 -137.5637 -134.4521
16 68.6705 64.1068 6.4619 64 -15.8684 -84.3025 -77.9403 2028 -138.3677 -141.0912 -136.5328
17 58.4217 55.3068 -6.0704 65 -20.2177 -82.4362 2029 -140.4589 -144.4984 -138.6135
18 60.9055 52.7273 -17.7425 66 -26.5950 -86.8338 2030 -142.5501 -147.8285 -140.6942
19 58.3447 54.2213 -16.0962 67 -27.7931 -90.2136 2031 -144.6413 -151.1416 -142.7749
20 57.6583 47.0931 -18.0253 68 -27.7363 -94.6601 2032 -146.7325 -154.4823 -144.8556
21 62.9389 44.3345 -25.1638 69 -33.9173 -97.6105 2033 -148.8237 -157.8668 -146.9363
22 48.9774 42.7805 -15.9467 70 -34.9872 -100.6149 2034 -150.9149 -161.2863 -149.0170
23 44.5275 40.6449 -20.3130 71 -40.3239 -101.6441 2035 -153.0061 -164.7206 -151.0977
24 40.1698 40.6362 -10.4823 72 -35.8014 2036 -155.0973 -168.1504 -153.1784
25 40.0228 32.5923 0.2194 73 -45.8523 2037 -157.1885 -171.5659 -155.2591
26 42.4508 28.5804 0.6259 74 -42.9030 2038 -159.2798 -174.9669 -157.3398
27 28.7448 28.0228 -10.2491 75 -47.1363 2039 -161.3710 -178.3595 -159.4205
28 37.1146 24.7248 -5.2318 76 -50.6448 2040 -163.4622 -181.7512 -161.5012
29 35.3286 19.9668 2.1962 77 -52.4286 2041 -165.5534 -185.1470 -163.5819
30 43.0994 16.5923 -4.8021 78 -52.8864 2042 -167.6446 -188.5483 -165.6626
31 27.6116 10.5314 5.0400 79 -61.3232 2043 -169.7358 -191.9536 -167.7433
32 26.2023 7.3659 -1.5276 80 -65.4341 2044 -171.8270 -195.3602 -169.8240
33 24.8451 1.9465 -0.5535 81 -66.2767 2045 -173.9182 -198.7660 -171.9047
34 27.3157 3.4106 4.2529 82 -66.6204 2046 -176.0094 -202.1698 -173.9854
35 25.6180 -1.2048 -3.6838 83 -77.2017 2047 -178.1006 -205.5720 -176.0661
36 21.8808 -7.2387 3.8630 84 -79.8700 2048 -180.1918 -208.9733 -178.1468
37 21.7140 -7.1802 5.1775 85 -85.9355 2049 -182.2830 -212.3746 -180.2275
38 20.4469 -11.8415 0.5808 86 -88.1989 2050 -184.3743 -215.7765 -182.3082
39 17.1915 -14.6747 9.2990 87 -89.5878 2051 -186.4655 -219.1791 -184.3889
40 21.3107 -19.7146 0.0088 88 -99.3559 2052 -188.5567 -222.5821 -186.4696
41 21.0525 -24.6940 4.7871 89 -102.4328 2053 -190.6479 -225.9852 -188.5503
42 22.6844 -22.7837 2.8114 90 -109.5734 2054 -192.7391 -229.3882 -190.6310
43 10.6451 -28.4861 -0.4822 91 -107.8769 2055 -194.8303 -232.7909 -192.7117
44 12.3748 -28.2840 1.9644 92 -109.1019 2056 -196.9215 -236.1935 -194.7924
45 13.9802 -31.7545 5.3773 93 -114.9955 2057 -199.0127 -239.5959 -196.8731
46 5.7340 -32.5793 -0.7793 94 -108.0175 2058 -201.1039 -242.9984 -198.9538
47 13.3721 -34.1347 0.8451 95 -112.9689 2059 -203.1951 -246.4009 -201.0345
48 12.6021 -39.6300 3.4033 96 2060 -205.2863 -249.8035 -203.1152
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APPENDIX C

Table C.1: Surviving Probabilities by Age in 2060 for Canada and Russia

Age
px Age

px Age
px Age

px
Canada Russia Canada Russia Canada Russia Canada Russia

0 0.999769 0.962444 31 0.999877 0.998038 62 0.996400 0.983175 93 0.870564 0.828411
1 0.999993 0.994873 32 0.999886 0.997662 63 0.996073 0.982291 94 0.857264 0.832313
2 0.999993 0.997837 33 0.999868 0.997716 64 0.995531 0.980764 95 0.840488 0.789124
3 0.999994 0.998548 34 0.999858 0.997608 65 0.995539 0.977900 96 0.821734 0.779445
4 0.999994 0.998801 35 0.999855 0.997381 66 0.994160 0.977915 97 0.801588 0.769454
5 0.999994 0.998890 36 0.999842 0.997312 67 0.993872 0.973779 98 0.780135 0.759155
6 0.999995 0.998902 37 0.999814 0.997229 68 0.993930 0.971709 99 0.757508 0.748558
7 0.999995 0.998907 38 0.999813 0.996998 69 0.992752 0.971254 100 0.733884 0.737672
8 0.999995 0.999058 39 0.999771 0.997047 70 0.992648 0.961853 101 0.709471 0.726512
9 0.999994 0.999184 40 0.999758 0.996536 71 0.990162 0.966986 102 0.684521 0.715099
10 0.999994 0.999233 41 0.999669 0.996859 72 0.991008 0.955209 103 0.659294 0.703454
11 0.999994 0.999338 42 0.999699 0.996126 73 0.989776 0.952406 104 0.634077 0.691603
12 0.999990 0.999299 43 0.999620 0.996184 74 0.988808 0.948817 105 0.609143 0.679580
13 0.999987 0.999334 44 0.999527 0.996085 75 0.988148 0.940957 106 0.584762 0.667415
14 0.999978 0.999285 45 0.999523 0.995591 76 0.986879 0.937354 107 0.561175 0.655146
15 0.999966 0.999222 46 0.999389 0.995481 77 0.984109 0.935862 108 0.538589 0.642814
16 0.999945 0.999074 47 0.999310 0.995234 78 0.984032 0.918929 109 0.517178 0.630458
17 0.999915 0.998825 48 0.999273 0.994704 79 0.980037 0.925750 110 0.000000 0.000000
18 0.999888 0.998628 49 0.999114 0.994644 80 0.977224 0.895028
19 0.999877 0.998714 50 0.999076 0.993734 81 0.969668 0.914353
20 0.999880 0.998604 51 0.998683 0.994143 82 0.970118 0.885767
21 0.999894 0.998627 52 0.998818 0.992762 83 0.965814 0.882283
22 0.999902 0.998428 53 0.998560 0.992612 84 0.962492 0.872246
23 0.999906 0.998362 54 0.998353 0.991950 85 0.957489 0.858573
24 0.999907 0.998361 55 0.998210 0.991213 86 0.952638 0.849222
25 0.999903 0.998246 56 0.997966 0.990620 87 0.945161 0.844175
26 0.999905 0.998277 57 0.997609 0.989880 88 0.935727 0.836514
27 0.999905 0.998231 58 0.997650 0.988911 89 0.922157 0.846347
28 0.999912 0.998150 59 0.997200 0.988269 90 0.918785 0.793729
29 0.999896 0.998180 60 0.997149 0.985498 91 0.884940 0.860358
30 0.999896 0.997816 61 0.995990 0.986943 92 0.882354 0.825120
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Table C.2: Surviving Probabilities by Age in 2060 for UK, Japan and Bulgaria

Age
px Age

px
UK Japan Bulgaria UK Japan Bulgaria

0 0.999606 0.999913 0.999996 56 0.997719 0.998999 0.992781
1 0.999992 0.999989 1.000000 57 0.997354 0.998934 0.99058
2 0.999993 0.999995 1.000000 58 0.997205 0.998904 0.99063
3 0.999994 0.999996 1.000000 59 0.996799 0.99876 0.989295
4 0.999995 0.999996 1.000000 60 0.996289 0.998656 0.993626
5 0.999996 0.999996 1.000000 61 0.995573 0.998538 0.989346
6 0.999995 0.999995 0.999999 62 0.995534 0.998425 0.991432
7 0.999995 0.999995 0.999999 63 0.995107 0.998304 0.98902
8 0.999995 0.999995 0.999999 64 0.994547 0.998177 0.988431
9 0.999994 0.999995 0.999999 65 0.99409 0.998019 0.989633

10 0.999993 0.999995 0.999999 66 0.992851 0.997843 0.985278
11 0.999992 0.999995 0.999999 67 0.992299 0.997664 0.985421
12 0.999990 0.999994 0.999999 68 0.991781 0.99745 0.984187
13 0.999989 0.999991 0.999998 69 0.990959 0.99719 0.981703
14 0.999986 0.999988 0.999998 70 0.989896 0.996892 0.986356
15 0.999982 0.999985 0.999998 71 0.988167 0.996581 0.977653
16 0.999971 0.999972 0.999997 72 0.987891 0.996153 0.981487
17 0.999947 0.999970 0.999998 73 0.986657 0.995692 0.973603
18 0.999932 0.999963 0.999996 74 0.985138 0.995123 0.97186
19 0.999935 0.999961 0.999995 75 0.983601 0.994451 0.974947
20 0.999937 0.999962 0.999996 76 0.981785 0.993591 0.965328
21 0.999940 0.999962 0.999996 77 0.979329 0.992535 0.953991
22 0.999942 0.999963 0.999996 78 0.977534 0.991507 0.958752
23 0.999941 0.999965 0.999993 79 0.974417 0.990054 0.949038
24 0.999943 0.999966 0.999994 80 0.969962 0.988393 0.944204
25 0.999937 0.999965 0.999993 81 0.964828 0.986421 0.892568
26 0.999933 0.999964 0.999990 82 0.962333 0.984121 0.893732
27 0.999930 0.999963 0.999988 83 0.957212 0.981676 0.839163
28 0.999923 0.999960 0.999987 84 0.953333 0.978099 0.830552
29 0.999917 0.999957 0.999978 85 0.946012 0.97441 0.84214
30 0.999906 0.999952 0.999978 86 0.939736 0.970683 0.778047
31 0.999895 0.999948 0.999964 87 0.93177 0.965024 0.656377
32 0.999885 0.999943 0.999952 88 0.921241 0.959662 0.598404
33 0.999873 0.999939 0.999927 89 0.911534 0.953431 0.490634
34 0.999859 0.999930 0.999912 90 0.897699 0.944918 0.650404
35 0.999841 0.999920 0.999899 91 0.879051 0.93635 0.303905
36 0.999825 0.999912 0.999856 92 0.865586 0.928632 0.38271
37 0.999801 0.999899 0.999753 93 0.848882 0.915637 0.295005
38 0.999783 0.999882 0.999726 94 0.833626 0.904995 0.255203
39 0.999747 0.999868 0.999506 95 0.822573 0.887175 0.1404
40 0.999703 0.999840 0.999673 96 0.803457 0.870368 0.072596
41 0.999645 0.999822 0.999178 97 0.783138 0.851671 0.009424
42 0.999635 0.999790 0.999080 98 0.761732 0.831083 0
43 0.999549 0.999762 0.998584 99 0.739398 0.808666 0
44 0.999479 0.999725 0.998155 100 0.716321 0.784552 0
45 0.999417 0.999686 0.998351 101 0.692725 0.758949 0
46 0.999334 0.999635 0.997492 102 0.668841 0.732134 0
47 0.999248 0.999593 0.996755 103 0.644923 0.704444 0
48 0.999173 0.999546 0.995963 104 0.62122 0.676263 0
49 0.999072 0.999490 0.995732 105 0.597968 0.647987 0
50 0.998904 0.999423 0.996665 106 0.575392 0.620018 0
51 0.998679 0.999363 0.994543 107 0.553679 0.59273 0
52 0.998643 0.999298 0.994572 108 0.532991 0.56646 0
53 0.998427 0.999229 0.993633 109 0.513452 0.541486 0
54 0.998253 0.999162 0.993378 110 0 0 0
55 0.997823 0.999079 0.994098
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