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ABSTRACT

MODELING HETEROGENEOUS INTERNET OF THINGS SYSTEMS
USING CONNECTORS IN COMPONENT ORIENTED SOFTWARE

ENGINEERING

Ünal, Selin
M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Ali H. Doğru

July 2019, 72 pages

In this thesis a solution for modeling heterogeneous IoT applications in component

oriented software engineering is provided by using software connectors. IoT is inter-

connected devices or humans in the means of internet which gains more importance

day by day in different areas of the world. This kind of powerful and complex sys-

tems have challenges to overcome in nature. Each IoT system component has spe-

cific set of rules for communicating with the other components. In order to be able

to communicate, components need to understand each other. If components are using

different sets of rules for communication, these components can not understand each

other, which causes the heterogeneity problem in IoT. Component oriented systems

arose from the reuse paradigm. These systems include components which represent

reusable building blocks. Connectors are used for connecting reusable components in

component oriented systems. In this thesis, each component represents the "thing" in

IoT and each connector represent a converter that connects components with different

protocols for communication. By using COSECASE, we are showing that connectors

offer a practical solution for the heterogeneity problem for modeling IoT systems.
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ÖZ

BİLEŞEN YÖNELİMLİ YAZILIM MÜHENDİSLİĞİNDE HETEROJEN
NESNELERİN İNTERNETİ SİSTEMLERİNİN BAĞLAYICILAR

KULLANILARAK MODELLENMESİ

Ünal, Selin
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ali H. Doğru

Temmuz 2019 , 72 sayfa

Bu tezde bileşen yönelimli yazılım mühendisliği alanında, heterojenlik gösteren Nes-

nelerin İnterneti sistemlerini modellemek için bağlayıcılar kullanılarak bir çözüm su-

nulmaktadır. Nesnelerin İnterneti araçların veya insanların internet aracılığıyla birbir-

lerine bağlı oldukları ve günden güne dünyanın farklı alanlarında önem kazanan bir

yaklaşımdır. Bu tarz güçlü ve karmaşık sistemler doğası gereği çözülmeyi bekleyen

problemleri de beraberinde getirmektedir. Nesnelerin İnternetindeki her bir bileşen

bir diğer bileşen ile iletişim kurabilmek için belirli kuralları işletmektedir. İletişimi

gerçekleştirebilmek için bileşenlerin birbirlerini anlaması gerekmektedir. Eğer bir bi-

leşen iletişim için bir diğer bileşenden farklı kuralları işletiyor ise, bu iki bileşen bir-

birlerini anlayamaz ve sonuç olarak iletişim kuramazlar. İki parçanın iletişim kurama-

ması Nesnelerin İnterneti’nde heterojenlik problemi demektir. Bileşen tabanlı sistem-

ler yeniden kullanma paradigması ile ortaya çıkmıştır. Bu sistemler yeniden kullanı-

labilir bileşen bloklarını içerir. Bağlayıcılar bileşen yönelimli sistemlerde iki bileşeni

bağlamak için kullanılan yapılardır. Bu tezde her bir bileşen Nesnelerin İnternetindeki
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her bir "nesneye", her bir bağlayıcı da birbirinden farklı kuralları işleten bileşenleri

bağlayan bir çeviriciye karşılık gelmektedir. Bileşen Tabanlı Yazılım Mühendisliği

Modelleme aracı, COSECASE, kullanılarak, bağlayıcılar aracılığıyla heterojen olan

IoT sistemlerini modelleyebilmek icin kullanışlı bir çözüm önerisi getirilmiştir.

Anahtar Kelimeler: Nesnelerin İnterneti, Heterojenlik, Bağlayıcılar, Bileşen Tabanlı

Sistemler, Bileşen Yönelimli Yazılım Mühendisliği, Bileşen Yönelimli Yazılım Mü-

hendisliği Modelleme Dili, Bileşen Yöenlimli Yazılım Mühendisliği Geliştirme Aracı
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CHAPTER 1

INTRODUCTION

1.1 IoT

Internet of Things is the world of devices or sensors that can connect to the Inter-

net with various communication technologies. The thing refers to anything that can

connect to the Internet in the IoT world [2]. IoT technology is being used in many

different areas in the world to increase the quality of life. Some of the example do-

mains for the IoT world can be listed as smart city, smart parking, smart health, smart

traffic, smart home and smart building [3]. The core idea of the IoT is to connect

each connectable thing to each other and make possible to share data between each

other. Connection may occur between thing to thing, thing to human or human to

human [4]. Sharing data process can include different steps for different things in

the IoT world, since each of the things have different kind of hardware equipment.

Two things need to connect to each other to manage a data sharing process. After

connection is successfully established, communication starts between the two things.

1.2 CBSE and COSE

Component Base Software Engineering (CBSE) is the approach that is reusing soft-

ware building blocks, namely components. The main idea behind CBSE is reusing

software components instead of implementing them from the beginning [5]. In CBSE,

with an appropriate interface definition, components can be integrated to the system

easily [6]. For managing connections to encapsulate connection details in the com-

ponents, there is a mechanism that is called connectors [5]. Component Oriented
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Software Engineering (COSE) is also an approach that arose from reusing software

components. COSE mainly focuses on reusing rather than implementing building

blocks if they do not exists [7]. When compared to CBSE, it considers only the com-

ponent notion, from abstractions to implementation, where as CBSE could utilize

Object Orientation for example, for its process. IoT things can be modeled as com-

ponents and connectors can be referred as connecting blocks of the two components

in both CBSE and COSE approaches.

1.3 IoT Heterogeneity Problem

The Internet plays very important role in today’s world. It is being used in almost all

areas of life such as education, health, communication, government, transportation,

social life, gaming and so on. The number of connected devices to the Internet in-

creases day by day. In 2020, there will be 50 billion devices connected to the Internet

[8]. There are different kinds of protocols, network connectivity options and com-

munication methods for the devices on the Internet [9]. For example, they can use

different kinds of protocols such as ZigBee, BLE, Z-Wave and 6LoWPAN [4]. The

main purpose of IoT is to make devices to communicate and share information with

each other. Devices need to understand each other to start communication. If two de-

vices have different communication methods, they can not understand each other and

they can not start to talk. Not being able to communicate because of using different

communication methods is the heterogeneity problem in IoT. IoT world faces het-

erogeneity problem since things have a wide variety of network connectivity options,

communication methods and protocols.

1.4 Approach

In CBSE, for connecting two components, connectors are used [5]. Modeling IoT

devices as components and interconnections as connectors, we are proposing a con-

nector based solution for modeling IoT systems considering heterogeneity problems

through component-oriented development. Based on the reuse paradigm, component

and connector definitions are provided using a component-oriented modeling tool,
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COSECASE . Firstly, IoT network protocols are classified and their details are speci-

fied. After that, pairs of communication protocols are selected if they can be converted

to each other. In this thesis, protocols are considered according to the OSI model [10]

and converted at the application level. After that new connectors and components are

added to the COSECASE tool to demonstrate heterogeneity problem is managed in

this component-oriented modeling tool.

1.5 Contributions and Novelties

Connectors have been classified and defined with XCOSEML which is a text-based

domain specific language supporting variability in component-oriented development

paradigm [5], [11]. However, connectors do not have implementation details for con-

version while connecting specific components. In this thesis, we are proposing a

connector based solution for modeling IoT systems considering IoT heterogeneity

problem by defining interconnection details. COSECASE is selected as an imple-

mentation tool. IoT devices are modeled as components and their interconnections

are modeled as connectors which provide adaptation for communication protocols.

In COSECASE, connectors already have definitions, but variability management has

not been completed yet. Connector definition is enhanced and implementation for

variability management for IoT heterogeneity is added to the COSECASE. Modeling

IoT systems in COSECASE by providing necessary conversion for specific protocols

at the appplication level is provided in this thesis.

1.6 Outline of the Thesis

In Chapter 2, background information is provided about IoT, CBSE, COSE, COSEML,

and software connectors. In Chapter 3, problem statement and an example problem

are provided firstly and after that, related work about IoT heterogeneity is covered.

In Chapter 4, connectors for IoT Heterogeneity in COSECASE is explained in de-

tail. In Chapter 5, the example problem that is provided in chapter 3 is modeled in

COSECASE by using provided solution. In chapter 6, conclusion and future work

are provided.
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CHAPTER 2

BACKGROUND

In this chapter some background information is provided in detail. The covered topics

are IoT, IoT heterogeneity problem, component based software engineering (CBSE),

component oriented software engineering (COSE), component oriented software en-

gineering modeling tool (COSEML) and software connectors.

2.1 IoT

In this section, an IoT overview is provided, IoT architecture is covered and the pro-

tocols that are commonly used in IoT technologies are grouped. After that challenges

in IoT are explained. Finally, IoT heterogeneity problem is explained.

2.1.1 IoT Overview

IoT is an infrastructure that connects things via wired or wireless networks and allows

them to share information among each other [12]. Examples of IoT things include

mobile phones, devices with sensors, computers with Wi-Fi, smart watches, smart

door locks, smart lights and so on. Integrating these smart things to each other is

challenging since IoT contains very complex heterogeneous networks [12]. Although

the term Internet of Things is first proposed in the context of supply chain manage-

ment domain, today IoT covers a lot of different kinds of application domains such

as health, transport, utilities and education [13]. IoT mainly aims to interconnect

the things to each other to allow them to communicate. In this way IoT systems in-

crease the quality of life and help people by simplifying routine tasks. Nowadays,
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there are lots of IoT applications presented or being conducted. People can find their

keys, unlock the doors, turn lights on and off, reserve park place from distance, send

health conditions to their doctor only using a smart phone and even check trash full-

ness through a mobile application. As we can see from the examples, IoT solutions

promise to ease people’s lives in many ways.

2.1.2 IoT Architecture

IoT can consist of various subsystem architectures. In this section IoT architecture

will be separated into management architectures and network architectures.

• Management Architecture: Generally IoT architecture is based on two main

management types of architecture that are event-driven and time-based system

architectures. In an event-driven architecture devices are triggered with an out-

side event and after being triggered, devices send data. For example a smoke

sensor will be activated only when the smoke ratio exceeds a certain limit. In

time-based architecture devices send data in certain periods of time. For exam-

ple a temperature sensor will send data every two minutes [14].

• Network Architecture: IoT network architecture can be grouped under three

types which are point-to-point connection, star and mesh. Point to point con-

nection provides separate communication channels between two stations. Point

to point connection’s advantage is its simplicity. Disadvantage is depriving the

chance to establish communication with device from outside the network. Star

topology consists of one central hub and multiple terminal nodes. Each node

can directly communicate only with the central hub. Connecting through the

central hub all of the nodes can communicate with each other. Star topology’s

disadvantage is having a central hub. If this central hub goes down, system also

goes down. Advantages are if one of the nodes goes down, system will stay

awake. Mesh topology includes full mesh topology and partial mesh topol-

ogy. In a full mesh topology, each node is connected to each other and can

communicate with each other. In partial network topology only certain nodes

are connected to each other and can communicate. Mesh network’s advantage
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is that it can be constructed for wide areas and disadvantage is its complexity

and high latency [14]. In Figure 2.1 point to point, star and mesh networks are

shown together.

(a) Point to Point Network (b) Star Network (c) Mesh Network

Figure 2.1: IoT Network Architecture

2.1.3 IoT Protocols

Communication is the most important feature of the IoT systems. Thanks to network-

ing technologies, IoT devices can communicate with each other as well as applica-

tions and services running on the cloud. Network protocols define sets of rules for

connection and managing transmission of data across the network [15]. Foundations

of network protocols are organized by the OSI model [16]. The OSI model represents

communication systems in abstraction layers which are physical, data link, network,

transport, session, presentation and application layers [17]. Table 2.1 shows the OSI

model. An OSI layer generally communicates with three other OSI layers. An OSI

layer can communicate with its upper layer, lower layer and peer layer in the network

[18].

TCP/IP model is a simplified version of the OSI model. The TCP/IP layer does not

have separate presentation and session layers, it has only the application layer. Ad-

ditionally, TCP/IP has network access and physical layers together. Table 2.2 shows

the TCP/IP model. We will use the TCP/IP model for abstraction of commonly used

IoT protocols.

Brief description of TCP/IP layers is provided below [15]:
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Table 2.1: OSI Model

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Table 2.2: TCP/IP

Application Layer

Transport Layer

Internet Layer

Network Access & Physical Layer

• Network Access & Physical Layer : At the network layer, how each device is

connected to the network with hardware is considered. A device can connect

via an optic cable, wires or radio waves. At the link layer, devices are identified

by their MAC address. Protocols are concerned with physical addressing at this

layer such as how switches send frames to devices.

• Internet Layer: At this layer protocols define how routers deliver data packets

between source and destination identified by IP addresses.

• Transport Layer: At this layer end-to-end communication is considered.

Transport layer provides additional functionalities such as reliability, guaran-

teeing packets will be received in the order of they sent.

• Application Layer: This layer is responsible for application level messaging.

Commonly used IoT network protocols will be mapped into TCP/IP abstraction mod-

els.
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• Network Access & Physical Layer IoT Network Technologies: IoT network

access and physical layer protocols are commonly categorized into Wide Area

Networks (WAN) and short range network [19]. WAN technology can be

grouped into Low Power Wide Area Networks (LPWAN) and Cellular. In Fig-

ure 2.2 communication protocols are shown.

LPWAN This technology is appropriate for low-power, long-range wireless

communication. Examples can be given as SigFox, LoRa and NB-IOT.

Cellular This technology provides low-power, low-cost IoT communication

options by using existing cellular networks. Examples can be given as 3G and

4G.

Short Range Networks This technology is operable in short distances. Exam-

ples can be given as BLE, Bluetooth BR/EDR, ZigBee, ZWave, NFC, RFID,

WiFi and Ethernet.

Figure 2.2: Network Access & Physical Layer Protocols.
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• Internet Layer Protocols: Generally used IoT Internet layer protocols are

IPv6, 6LoWPAN and RPL.

• Application Layer Protocols: Generally used application layer protocols are

MQTT, AMQP and XMPP.

2.1.4 IoT Challanges

According to [20], there are several challenges in the IoT world. These challenges

can be classified as follows:

• Reliability: IoT systems should work according to their specifications. In IoT

applications, systems should be highly reliable and data needs to be collected

fast, and response needs to be given fast. Making wrong decision can be disas-

trous for some IoT applications for example emergency systems.

• Scalability: IoT applications need to be designed to enable extensible services

and operations.

• Management: Providers should manage keeping track of failures, configura-

tion and performance of the devices.

• Availability: IoT systems need to be available for subscribers of the system at

any time and anywhere.

• Interoperability: Because of the large number of different kinds of devices

and platforms it is challenging for IoT devices to work together.

2.1.5 IoT Heterogeneity Problem

In the IoT world, there are various kind of wired or wireless connected things as

indicated in Section 2.1.3. These things include wide range of device types like low-

power sensor devices and high-performance devices. Number of devices result in

mixed network architectures in IoT systems [21]. IoT systems’ main purpose is set-

ting up smart environments. A smart environment means making devices connectable

and communication between them starts automatically. Thank to data flow between
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entities, they can make decisions. According to the decisions taken, an entity can go

different states or sends this information to another entity. IoT heterogeneity arose

from these various kinds of sensors and devices.

2.2 Component Based and Component Oriented Software Engineering

2.2.1 Software Components

A software component is a reusable software building block that can be executed

independently. To use a component, there is no need to know its implementation de-

tails. A component can be taught as a service provider. If a program needs a service,

a component that provides needed service can be deployed into the program without

worrying about where this component is being executed or without knowing the pro-

gramming language in which this component is implemented. Components should

be integrated to the system independently from other components. They are loosely

coupled; when we change a component of a system, other components will not be

affected from this change. A component is defined by its interfaces. Components can

provide interfaces to other components or require interfaces from other components

to be able to operate [22]. Since there can be components that provide or require

similar services for operation, their interface definitions need to be done clearly and

well documented. In this way user can select components properly for their needs.

An example component visualisation is shown in Figure 2.3.

Figure 2.3: Component Interfaces.

2.2.2 Component Based Software Engineering

Component-based software engineering emerged in the late 1990s with the idea of

reusing existing software components while building a software system rather than
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implementing each component from the scratch [5]. CBSE is an effective reuse based

approach to define, implement and integrate loosely coupled and independent com-

ponents into the system [22]. Although object oriented programming also arose from

the idea of reusing, it does not provide extensive reuse since object classes are too

detailed and specific which leads to the need to know source code details to under-

stand class responsibilities. Software components are more abstract than objects and

they are identified with interfaces therefore user does not need to know implementa-

tion details to use them. Therefore reusability capabilities of components are higher

than objects. CBSE is an important approach since software systems are getting more

complex and larger. Reusing existing components is important to develop better soft-

ware systems more quickly and handle the complexity easier. There are several es-

sential properties of CBSE. Firstly, independent components defined by its interfaces

and their implementation details should be separated from their interface definitions.

When an implementation of a component is changed the other parts of the system is

not affected. The other essential property is component standards should define how

components communicate and how their interfaces are used. In this way components

written in a different language can be integrated to the system. The latter essential

property is using middleware support while integrating components to each other to

achieve component’s communication. Middleware handles low level issues like re-

source allocation, transaction management and security. The last essential property is

that available components should define their functionality clearly [22].

2.2.3 Component Oriented Software Engineering

Component Oriented Software Engineering is another approach for reusing existing

software components rather than implementing them from scratch while building a

software system. COSE was first introduced in 2003 as a new approach [7]. In CBSE

while developing components, usually object oriented approaches are used. As op-

posed to CBSE, COSE highly depends on prebuilt components which increases the

focus on reuse approach. The main difference between CBSE and COSE is the com-

plete orientation towards the component concept. [7]. COSE transforms systems into

two main groups of primitives that are a set of components and a set of connectors

[1]. A set of connectors connect components for developing a target software sys-
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tem. In the COSE development process, firstly domain analysis is done and domain

model is constructed. After considering system requirements and specifications, sys-

tem is decomposed into components in an abstract level. After the decomposition

step, abstract components are specified. Then, searching is conducted to find needed

components for the system. After finding all defined components, integration step

starts. By using software connectors, components are integrated and system model

is obtained in COSE [23]. In Figure 2.4, life cycle of COSE development process is

shown.

Figure 2.4: Component Oriented development process life cycle (Adapted from [23]).

2.3 COSEML

A modeling language is any textual or graphical computer language that can be used

to express information or systems in a structure via a set of consistent rules. Compo-

nent Oriented Software Engineering Modeling Language (COSEML) is a modeling

language that was developed to be used for COSE [1]. COSEML provides a way of

developing software by composition with its own graphical representation of com-

ponents with their connections. COSE development process starts with the abstract

definition of the system parts as stated earlier. Later, for implementing the responsi-

bilities of the abstract modules, physical components need to be introduced. Relations
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among the abstractions or physical components are modeled with connectors. There

are abstract components, physical components and connectors in COSEML. Pack-

age, data, function and control abstractions are abstract components in COSEML.

Components are the main units of physical components. Interfaces are provided for

components. A component can have more than one interface. Connectors are also

represented by a specific symbol. In Figure 2.5, abstract and physical components

of COSEML are shown. One COSEML model is able to represent the complete

model by using both abstract and physical components and connections [23]. Each

COSEML entity is briefly described below.

• Package: It is used for organizing part-whole relations and it can contain

further package, data, function or control elements.

• Function: It represents a system level function and it can contain further

function and data.

• Data: It represents a system level entity and it can contain further function and

data. It has internal operations.

• Control: It corresponds to a state machine in a package and it manages event

traffic at the package boundary.

• Connector: It represents control and function flows across the system modules

and it can be inserted between two modules.

• Component: It corresponds to an existing implemented components and it can

contain one or more interfaces. It can contain other components.

• Interface: It is connection point of a component and services requested from

the component have to be invoked through the interface.

• Represents: It indicates that a component will implement an abstraction.

• Event Link: It is used to link output event of one interface and input event of

the other interface.

• Method Link: It connects a requester to the provider for a method.
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(a) Abstract Components in COSEML

(b) Physical Components in COSEML

Figure 2.5: Graphical symbols in the COSEML (adapted from [1])

2.4 Software Connectors

Today’s modern systems contain very complex components. It is important to prop-

erly integrate components in a system. It is also important to ensure that the com-

munication between these components is properly maintained. The connection be-

tween components is performed by software connectors. Software connectors per-

form transfer of data and communication among components and they can also pro-

vide services such as messaging and transaction that are different from managing

components’ interconnection [24].

Software connectors are abstractions of the components interconnections in an ar-

chitectural level. Connector abstractions can be symbolized as lines and boxes de-

pending on the desired detail level. These lines can not fully represent the identity

or properties of a connector. These connectors are also available for only managing

interactions between components. Since systems are getting larger and more com-

plex, connectors also need to evolve and adopt these changes. Connectors need to
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have their own identity, properties and their own executable code. They also need

to gain capability of working with many different types of components. As systems

are getting more complex and harder to manage, connectors have gained necessary

properties. Connectors are usually defined independently from the application. How-

ever, there may be specific components and connectors for a specific domains. For

example connectors can be used for converters of components of IoT.

2.4.1 Classification of Services Provided by Connectors

There are four main types of interaction services provided by connectors which are

communication, coordination, conversion and facilitation [25].

• Communication: Data transmission between components. Components pass

messages, exchange data and communicate results of computations.

• Coordination: Transfer of control among components. Components interact

by passing thread of execution such as function calls and method invocations.

• Conversion: Interactions of heterogeneous components. For example if com-

ponents have different types of data formats, conversion connectors can be

used.

• Facilitation: Facilitates and optimizes interactions of the components. If a

system needs optimization about using resources such as load balancing and

concurrency control, facilitation connectors can be used.

2.4.2 Classification of Connectors

Interaction services can be used for the categorization of connectors in a broad way

which does not explain details. To be able to build new kind of connectors, model

and analyze them, connectors are classified into different types based on the way in

which they realize interaction services which are procedure call, event, data access,

linkage, stream, arbitrator, adaptor, and distributor [25].
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• Procedure Call: These connectors model the flow of control through differ-

ent invocation techniques and transfer data among the interacting components

through the use of parameters. Examples of procedure call connectors can be

given as fork and join in Unix like environments and operating system calls.

• Event: These connectors support transfer of control among components. Com-

ponents interact by passing thread of execution such as function calls and method

invocations.

• Data Access: These connectors allow access to the component which stores

data. In case of required data and provided data is in different formats, data

access connectors may transform formats of the data. Examples of data access

connectors can be given as query mechanisms such as SQL for database access

and accessing information in repositories.

• Linkage: These connectors are used to tie the components together and hold

them in this state. In this way they provide a communication channel for other

system connectors.

• Stream: These connectors are used to transform large amount of data among

the components. They are also used in client-server systems with data trans-

fer protocols. Examples of stream connectors can be given as UNIX pipes,

TCP/UDP communication sockets and client-server protocols.

• Arbitrator: These connectors are used to resolve conflicts and streamline sys-

tem operations when components do not know the other components’ states

and needs. Multi threaded systems can be given as an example area for the

arbitrator connectors’ usage area.

• Adaptor: These connectors support interaction of the components when com-

munication of these components is not designed to inter operate. Heteroge-

neous environments such as different programming languages or computing

platforms can be given as example areas for adaptor connectors’ usage area.

• Distributor: These connectors identify interaction paths of components. Dis-

tributed systems exchange data using distributor connectors. Examples of dis-
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tributed connectors can be given as domain name service, routing and switch-

ing.
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CHAPTER 3

PROBLEM STATEMENT, AN EXAMPLE PROBLEM AND RELATED

WORK

In this section, the smart city IoT domain will be explained in detail and IoT hetero-

geneity problem is shown by modeling the smart city components with the help of a

feature model. After that, some provided solutions to the IoT heterogeneity problem

will be covered.

3.1 Smart City and Heterogeneity Problem

3.1.1 Smart City

In today’s world, millions of people live in big cities and this number is growing

day by day. Citizens face various problems in the cities for example polluted air,

heavy traffic, parking, finding available charging stations [3] and consuming redun-

dant energy. There are a lot of connected devices to the Internet for example TV,

Internet box, smart alarms, smart clocks, lights, cameras, connected cars and many

other smart devices in the cities [26]. IoT reveals new solutions to citizens, compa-

nies and public administrations by using variety of data produced by these connected

devices. This approach finds a lot of application areas such as medical aids, home

automation, energy management systems, traffic management systems, industrial au-

tomation, automotive and so on [27]. Smart city is a solution of IoT for cities by

collecting data from the connected devices in the city, interpreting collected data via

services and returning results to the related recipient. Both citizens and city adminis-

tration profit from provided solutions for smart city by increasing the quality of life of

the citizens and providing economical advantage by decreasing operational cost [27].
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3.1.2 Smart City Application Areas

The core application areas of a smart city can be listed as [27] [28]:

• Smart Homes and Smart Buildings

• Smart Healthcare

• Smart Parking

• Smart Transportation

• Smart Traffic

• Smart Security

• Smart Environment

• Noise Monitoring

• Smart Lighting

• City Energy Consumption

• Waste Management

In the following, some of the selected application areas that have more importance

will be overviewed in terms of IoT solutions.

Smart Homes and Smart Buildings: Smart home technology enables to automate the

ability to control items in the house or in the buildings. With smart home and smart

building technologies, one can turn on or turn off the lights or the TV, control water

heaters and room temperature, automate pet feeding, lock the doors, open the doors,

open the curtain, activate fire detection system via a single button on the mobile phone

or with a simple voice command. The items that are given in the examples need

to be surrounded with necessary sensors to be able to communicate. Smart home

technology provides to automate daily routines and promises to ease peoples lives in

the home.

Smart Healthcare: Smart health technology enables to increase quality of health and

gives chance to live for people. With smart health technology, doctors can check
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patients’ health status from distance and can give advice according to results. For ex-

ample with a smart wristband, patient’s blood pressure or heartbeat can be measured

and measured data can be sent to the doctor. In this way treatment can be done more

secure and faster [3].

Smart Parking: Smart parking technology enables citizens to find available parking

slots while parking their cars. Instead of searching an empty parking slot for a long

time. With the help of a mobile application available parking slots can be found. A

camera with sensor can identify whether a car is parked or not on a specific parking

slot. After the gathered information one can know whether a park slot is available or

not [3].

Smart Environment: Smart environment technology enables to measure the quality

of the air in the parks, crowded areas, or fitness trails [27]. With the help of the

sensors that measure oxygen level, one can find an appropriate outdoor activity place.

Additionally, one can be informed about the weather condition simultaneously.

Smart Lighting: Smart lighting technology enables to automate street lights according

to existence of the people, weather conditions or the times of the day [27]. With the

help of smart lighting technology too much energy can be saved.

Waste Management: Waste management technology enables to find empty trash for

citizens and for the garbage trucks. By integrating sensors in the garbage containers

emptiness level of the container can be measured. After the collected data is sent to

the data center, necessary information can be forwarded to the people or the garbage

truck. In this way time, money and energy can be saved.

As we can see from the given examples of the smart city application areas, citizens

and the government can gain lots of time, save energy and money, increase quality of

life and safety and make more livable cities.

3.1.3 Smart City Challenges

IoT solutions give a chance to manage and monitor devices remotely, analyze and give

respond to the information collected form devices. In this way IoT solutions make
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Figure 3.1: Smart City Components.

cities more comfortable and safer. There are challenges for IoT smart city technology

to handle. Some of the challenges that are faced [26] are listed below:

• Reduce the cost and risks to produce IoT services.

• Connect various heterogeneous devices in the city.

• Decrease the time to integrate newly created IoT systems or services to the

existing ones.

• Provide safe and secure systems to the city.

3.1.4 Modeling Smart City - Smart Parking Domain

In this section an example domain will be modeled using a feature diagram to identify

smart city features in terms of IoT variability. Feature modeling helps to model do-

mains as a set of features and identify the parts of the system [29]. In this work we do

not aim to model the smart city domain completely. We only model a pilot study that

considers a realistic domain part. Figure 3.1 shows the overview of the components

of the smart city domain.
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After specifying features of smart city, we develop a feature diagram to show the

features of the smart city system. To show IoT variability smart parking system is

selected and its features are provided in detail. Figure 3.2 shows the feature model

for smart city and smart parking systems.

Figure 3.2: Smart City Feature Model.

Smart parking system has two main features. One of the main feature is Sensor which

gathers data and the other one is Receiver which is informed via the gathered data.

For the Sensor feature there are three different features defined that are Protocol Type

- S, Operating Distance - S and Device Type - S (S for Sensor). Sensor has to have at

least one feature from the Protocol Type - S, Operating Distance - S and Device Type

23



- S each. Protocol Type - S features are WiFi, ZigBee, Bluetooth, ZWave and LoRa.

Operating Distance - S features are 24m, 250m, 75m, 100m and 2.5km. Device Type

- S features are Camera, Traffic Lights and Street Lights. For Receiver feature there

are three different features defined that are Protocol Type - R, Operating Distance - R

and Device Type - R (R for Receiver). Receiver has to have at least one feature from

the Protocol Type - R, Operating Distance - R and Device Type - R. Protocol Type

- R features are WiFi - R (R for Receiver) and 3G. Operating Distance - R features

are 250m and 10km. Device Type - R features are Mobile Phone and Smart Watch.

There are constraints on the diagram that show that some of the features are only

compatible with specific features. WiFi is operable in 250m, Bluetooth is operable

in 100m, ZigBee is operable in 75m, ZWave is operable in 24m, LoRa is operable in

2.5km and 3G is operable in 10km [26].

3.1.5 Smart Parking Heterogeneity Problem

As indicated in Section 3.1.4, there are variable features in the smart city feature

model. A valid example system from Figure 3.2 can be:

1. Smart City

2. Smart Parking

3. Sensor1 - Device Type - S - Camera, Protocol Type - S - ZigBee, Operating

Distance - S - 75m

4. Receiver1 - Device Type - R - Traffic Lights, Protocol Type - R - Z-Wave,

Operating Distance - R - 24m

5. Sensor2 - Device Type - S - Street Lights, Protocol Type - S - ZigBee, Operating

Distance - S - 75m

6. Receiver2 - Device Type - R - Mobile Phone, Protocol Type - R - WiFi, Oper-

ating Distance - R - 250m

When we construct an example model from the given feature model diagram, we

see that Sensor1 needs to talk with Receiver1 and Sensor2 needs to talk with Re-

ceiver2. However, Sensor1’s protocol type is ZigBee, Receiver1’s protocol type is
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Z-Wave. Additionally, Sensor2’s protocol type is ZigBee and Receiver2’s protocol

type is WiFi. These main features have different types of protocols, therefore they

can not communicate with each other. This causes heterogeneity problem in the smart

parking model.

3.2 Related Work

3.2.1 Ontology-Based Semantic Middleware Solution

According to [12], Wireless Network Sensors (WNS) exist for monitoring and fol-

lowing weather and drought changes. This WNSs consist of interconnected sensors

which can sense and collect data and share information corresponding to weather and

drought conditions. To measure drought condition changes these networks include

different sensors. Even when these sensors measure the same property, they represent

the sensed data differently. Additionally, communities use abstruse terms to repre-

sent and group events. These differences causes data heterogeneity which can be

grouped as naming heterogeneity and cognitive heterogeneity. For example, water

level is called ’Stav’ in Check and ’Hoehoe’ in German. These differences make it

hard for seamless data sharing and full integration of interconnected heterogeneous

devices. In this work an ontology-based semantic middleware solution is provided to

eliminate data heterogeneity gathered from multiple sensors. An ontology is a formal

description of the domain to share the artifacts that different applications can use [30].

Ontologies are expressed in a language that can be used by reasoning engines. They

establish a formal vocabulary to share between applications. Semantic middleware

maps data and send the mapped data to the necessary component. In short, provided

semantic middleware solution will facilitate the integration of the heterogeneous sen-

sor data.

3.2.2 Service Oriented Middleware for IoT

According to [31], there are number of challenges in IoT that can be enumerated as:

1. Scale: A lot of sensors and actuators exist on the network which make it hard
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to manage and decide proper device.

2. Deep Heterogeneity: A lot of different kinds of hardware, protocols and data

types exit on the network which cause heterogeneity problem.

3. Unknow Topology: Unknown and dynamic topology is another challenge for

IoT. IoT networks can not know which things are located around their neigh-

borhood that causes unknown topology problems in IoT.

4. Unknown Data Point Availability: If we want to collect some data from a

specific place and this place does not have a sensor that measures desired data,

this causes the unknown data point availability problem.

5. Incomplete or Inaccurate Metadata: Much of the metadata needs to be en-

tered by a human. Since there exists a lot of things in the IoT world, incomplete

or inaccurate metadata problem can occur.

In consideration of these problems, this survey provides a service oriented middle-

ware which abstracts functionalities of things as services. With the representation of

each thing as a service, interoperability and flexibility can be achieved. Additionally,

since service oriented approach is used, this middleware provides loosely coupled and

reusable services for IoT systems.

3.2.3 System Agnostic Ontology-Based Data Models

According to [32], IoT systems generate heterogeneous data streams which makes

communication hard for devices. Corresponding heterogeneous data streams provide

linked data technologies to provide interoperable data models that are based on exist-

ing ontologies. They present system agnostic ontology-based data models. The data

models are used in a project called Virtualized programmable InTerfAces for innov-

vative cost-effective IoT depLoyments in smart cities (VITAL). VITAL is a system

of systems. It can support any underlying IoT system. VITAL uses linked data stan-

dards for modeling and accessing data, JSON-LD as the data format and ontology

for specifying the data. This work provides basis for the semantic data model for the

VITAL project.
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3.3 Difference of the Proposed Solution

In this thesis we are proposing a practical heterogeneity management solution for IoT

system modeling in COSE without using middleware oriented or ontology based so-

lutions. With the help of proposed IoT connectors, IoT system components can be in-

tegrated to a system easily. In the COSE world, this is the first provided heterogeneity

management solution for modeling IoT systems in COSECASE. This research con-

siders the future development of a framework where graphical modeling can lead to

the composition of components and connectors as a working system. While solving

the heterogeneity problem, a foundation for an integration platform is also proposed.

The proposed connectors are easily configurable that makes them adaptable for vari-

ability management, that in turn facilitates a Software Product Line environment.
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CHAPTER 4

IOT CONNECTORS IN COSEML

In this chapter implemented IoT connectors for COSEML are explained in detail.

IoT connectors are used to achieve modelling IoT systems in COSE by providing a

solution to IoT heterogeneity problem.

4.1 COSEML Connectors

COSEML connectors have visualization in the latest version, however they do not

have implementation details in COSECASE. For modeling IoT systems in COSE-

CASE, considering IoT heterogeneity problem, IoT connectors are added to the latest

version of COSECASE. COSEML connector visual representation is shown in Figure

4.1.

Figure 4.1: COSEML Connector.

In this thesis, to be able to model IoT systems in COSE, COSEML IoT connectors are

defined and implemented in COSECASE. With respect to proposed solution in [3],

connectors connect two different components that have different communication pro-

tocols. Each component represents an IoT device. Connectors are assumed to have

appropriate ports for each component that is connected to it. Connector ports han-

dle network access and physical layer, internet layer, and transport layer conversions

sequentially. Ports send core data to the connector software and connector handles
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received data accordingly. After connecting a component to the connector, it can re-

ceive related data packet from the first component. Since connector knows which

components are connected to it, it can parse core data and sends prepared data to the

second component appropriately. Since connector has second port that is connected

to the second component, it can send related data packet to the second component.

In this thesis, according to components’ data packet structure, it is implemented that

related data packets are prepared and sent to the second component properly. Figure

4.2 shows visual representation of proposed IoT connector for COSEML.

Figure 4.2: IoT Connector Visual Representation.

4.2 IoT Protocols Classification

There are various kind of IoT devices that are used in IoT systems. According to the

systems’ needs the most appropriate IoT device need to be selected. Main character-

istics of IoT devices can be grouped as below [33]:

• Connectivity: How do IoT entities should be connected to each other? Are they

close to each other or far away from each other? Are they connected to each

other by using wireless or wired technologies?

• Power Management: How long should an IoT entity stay awake for actively
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being operable?

• Data Processing and Storage: How does an IoT entity manage the data? How

much data does it need to store?

Considering IoT device features, there are various kinds of protocols that are used in

IoT systems. Some of the most appropriate and widely used IoT protocols are [34],

[35], [36]:

• Bluetooth

• ZigBee

• Z-Wave

• IPv6 over Low Power Wireless Personal Area Net- work (6LoWPAN)

• Wireless Fidelity (Wi-Fi)

• Third-Generation (3G) and Fourth-Generation (4G) standards

• Fifth-Generation (5G)

• SigFox

• Thread

• WirelessHART

• Ethernet

Grouping protocols based on the TCP/IP model is done in section 2.1.3. In addition to

grouping commonly used IoT protocols, they can also be grouped according to being

wireless or wired, IP based or non-IP based and range properties. Tables 4.1 and 4.2

show grouped IoT protocols.

4.2.1 Wireless Communication Technologies

Wireless network protocols can be classified as WPAN, WLAN and WAN technolo-

gies.

31



Table 4.1: Wireless IoT Protocols

WIRELESS

Short & Medium Range Protocols Long Range Protocols(WAN)

Non-IP Based WPAN IP Based WPAN WLAN Cellular Connectivity Others

Bluetooth

ZigBee

ZWave

WirelessHART

6LoWPAN

Thread

WiFi

IEEE 802.11ac

IEEE 802.11p

IEEE 802.11ah

3G

4G

5G

LoRa

SigFox

NB-IOT

Table 4.2: Wired IoT Protocols

WIRED

Short Range Medium Range Long Range

Serial Cable IEEE 802.3 Ethernet IEEE 802.3 Over Optical Fiber

• Wireless Personal Area Networks (WPAN): It is established for a user to ex-

change data in the 30 feet range using wireless technology [17]. Non-IP based

technologies are more efficient than IP based solutions with respect to energy

and cost.

• Wireless Local Area Network (WLAN): In limited geographical area this tech-

nology enables to communicate with radio wave technology [17].

• Wide Area Networks (WAN): It is a network technology that covers large ge-

ographical areas [17].

4.2.2 Wired Communication Technologies

In wired communication technologies data is transferred via cables between two de-

vices. Routers and switches are also used to connect devices to each other.
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4.3 Interoperability Of Protocols

Communication protocols have sets of rules that are different from each other. This

makes connection of two different protocols impossible without a helper. For mod-

eling IoT systems in COSE by using COSEML, connectors need to be implemented

in such a way that they can be a solution to this heterogeneity problem. Before im-

plementing connectors in COSEML, a set of protocol pairs are selected and their

properties are identified. After that, their differences are specified and a possible so-

lution is given to solve the adaptation problem between them. In this thesis, short and

medium range protocols are selected because of their popularity and ease of access

in IoT systems. According to the TCP/IP model, Network Access & Physical Layer

protocols are selected since they are widely used IoT communication protocols.

In this thesis an IoT device will be represented as a COSEML component. While

connecting two components in COSEML, a related COSEML connector will be used.

For implementing a specific connector, firstly we select interoperable protocol pairs

that are:

• Bluetooth BLE - Bluetooth BR/EDR

• ZigBee - ZWave

• ZigBee - WiFi

Overview of protocols is provided below [37], [16]:

• Bluetooth: Bluetooth is a low power wireless communication protocol that is

used in various areas of technology for example mobile phone sensors, mouses

and keyboards, health monitors and alarm systems. Bluetooth has three differ-

ent modes in action that are:

– Low Energy Mode(LE): It uses 2.4 GHz ISM band, operates at 1 Msym/s

at a bit rate of 1 Mbps. It allows data rates of 125 Kbps, 500 Kbps, 1 Mbps

and 2 Mbps.

– Basic Rate/Enhanced Data Rate Mode(BR/EDR): It uses 2.4 GHz ISM

band, operates at 1 Msym/s at a bit rate of 1 Mbps, 2 Mbps and 3 Mbps.
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– Alternative MAC/PHY (AMP): It uses 802.11 for high speed transport.

It allows data rates up to 24 Mbps.

• ZigBee: It is based on IEEE 802.15.4 which uses 858 MHz, 915 MHz and

2.4 GHz ISM bands and allows data rates of 20 Kbps, 40 Kbps and 100 Kbps.

ZigBee is targeted for commercial and residental IoT networking that is con-

strained by space, cost and power.

• Z-Wave: It uses 868 MHz, 908 MHz, 917 MHz and 919 MHz ISM bands.

It allows data rates of 9.6 Kbps, 40 Kbps and 100 Kbps. It is mostly used for

home automation technologies.

• WiFi: It uses 900 MHz ISM band. Allows data rates from 150 Kbps to 347

Mbps.

Selected protocol pairs are shown in Table 4.3 with their basic differences and possi-

ble solutions to these differences [16].

4.4 Connecting Components with IoT Connectors

After specifying protocol pairs that can be adapted through IoT connectors, data

packet formats need to be specified for each protocol since an IoT connector will

make conversion between components at the application level. Since IoT connectors

will make conversion at application level from software perspective, detailed data

packet information will be provided in this section. Ports on the connector will han-

dle necessary physical layer connection. Selected protocol pairs will be explained in

this section with their data packet formats in detail. First protocol pair is Bluetooth

LE and Bluetooth BR/EDR. Second protocol pair is ZigBee and Z-Wave. The last

protocol pair is ZigBee and WiFi.

4.4.1 Bluetooth LE Mode

The Bluetooth Low Energy (BLE) is commonly used in low power network and IoT

applications that require low battery life devices [38]. BLE is widely used in portable
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Table 4.3: Protocols Interoperability

Protocols Different Features Possible Solution

Bluetooth LE &

Bluetooth BR/EDR

Data Rates

Modulation

Coding

Data Packets

For difference in physical

layer, there needs to be a

dual-mode controller. Data

formats should be converted

appropriately by software, for

different data packages.

ZigBee & Z-Wave

Frequency

Addressing

Data Rates

Data Packets

For difference in physical

layer, there needs to be a

proper antenna to receive

signal. Data formats

should be converted

appropriately by a software,

for different data packages.

ZigBee & WiFi

Maximum Transmission

Unit Size

Fragmentation

Data Packets

A bridge device can

connect these two protocols.

Data formats should be

converted appropriately by

software, for different data

packages.

medical devices, smart phone accessories, remote controls, sports and fitness moni-

tors. A single mode BLE is divided into three main parts that are controller, host and

application. Each part has specific protocols to be able to operate properly. Appli-

cation layer is the top-most layer responsible for containing user interface and data

handling of actual use case that the application implements. Host layer is the middle

layer containing protocols like Generic Access Profile (GAP), Generic Attribute Pro-

file (GATT), Security Manager Protocol (SMP), Attribute Protocol (ATT) and Logi-

cal Link and Adaptation Protocol (L2CAP). Last layer is controller that includes Host

Controller Interface (HCI), Link Layer (LL), and Physical Layer (PHY) [39]. There

are two data packet formats for BLE. One of them is advertising packet that is used
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for initiating connections and finding available BLE devices. The other one is data

packet that is sent after initiating a connection between two BLE devices. In this

thesis we will mainly focus on BLE data packets. Detailed data packet for the BLE

mode in bytes is shown below where numbers corresponds to bytes [40]:

Preamble: 1 - Access Address: 4 - PDU Header: 2 - L2 Header: 4 - Operation: 1 -

Payload: 246 - MIC: 4 - CRC: 3

• Preamble: It is used for synchronization and timing estimation of the receiver.

• Access Address: It identifies a connection, makes sure the connection occurs

uniquely.

• PDU Header2: It describes the packet type.

• L2 Header: It reassembly and fragmentation of packets that are longer in length

than the allowed.

• Operation: It indicates the operation type such as write, notification, read.

• Payload: The meaningful data that is want to be sent.

• MIC: It is used for connection security, it is used with CRC.

• CRC: If packets pass CRC check they are expected to be reliably sent.

4.4.2 Bluetooth BR/EDR Mode

The Bluetooth BR/EDR mode known as classic bluetooth and it is commonly used

to connect mobile phones to the headsets, mouse and keyboard. It is a connection-

oriented protocol type. After connection is set up between two Bluetooth BR/EDR

devices even if there is no data to sent the communication link is maintained. Before

any data transmission is started, a device must be in its discoverable mode and when

being found by a scanning device, it sends address and other necessary parameters

[37]. Bluetooth BR/EDR protocol stack consists of upper layer an lower layer parts.

Upper layer is called Host System and consists of RFCOMM/SDP and L2CAP com-

ponents and Host Client Interface (HCI). Lower layer is called Bluetooth Controller
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and consists of Host Client Interface (HCI), Link Manager, Baseband and Radio com-

ponents [39]. There are two data packet formats for Bluetooth BR/EDR. One of them

is ACL, where packets hold user or control data used for asymmetric links. The other

one is SCO packets that are used for speech transmission and transparent synchronous

data. SCO packets are used for symmetric links. In this thesis, ACL packets will be

considered. Detailed data packet for the BR/EDR mode in bytes is [41]:

Access Code: 9 - Packet Header: 7 - Payload Header: 2 - Payload: 339 - CRC: 2

• Access Code: Used for synchronization.

• Packet Header: Contains link control information.

• Payload Header: It specifies payload length.

• Payload: The meaningful data that is desired to be sent.

• CRC: Used for secure transferring.

4.4.3 Adaptation Through Bluetooth LE - Bluetooth BR/EDR IoT Connector

After specifying detailed information for Bluetooth LE and Bluetooth BR/EDR mode,

a class diagram is provided for IoT components which are Bluetooth LE component

and Bluetooth BR/EDR component and their related connector before starting imple-

mentation process. As stated in Table 4.3, there are differences both in network ac-

cess & physical layer and application layer of Bluetooth LE and Bluetooth BR/EDR

modes. Network access & physical layer differences will be handled by the ports

that are connected on the IoT connector as shown in Figure 4.2. For experimenta-

tion, the tool is enhanced with the adaption simulation. The simulation shows the

data flow from component to connector and connector to component as a verification

of the connectivity. Newly developed IoT connector receives data packets from the

first component. Since the developed IoT connector knows which components are

connected to it, necessary data parsing and preparing process is started. According

to the second component’s needs, necessary data packet is prepared and sent to the

second component that is a Bluetooth BR/EDR component. This process is managed

by Simulation manager. In this thesis to simulate IoT components, user can set the
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data packet number. It is assumed that each time the payload data is filled completely

and has a meaning for the other component. A class diagram for Bluetooth LE to

Bluetooth BR/EDR IoT connector is shown as two separate parts in Figures 4.3 and

4.4 sequentially.

Bluetooth LE - Bluetooth BR/EDR Connector User Interface and Simulation In

addition to existing component and connector definitions in the COSEML, new com-

ponents that are Bluetooth LE and Bluetooth BR/EDR and their IoT connector is

added to the COSEML. Each component is represented by a different color. When

user hovers on the component, name of the component is shown on the screen. Blue-

tooth LE component holds necessary information related with Bluetooth LE protocol

properties as specified in subsection 4.4.1. Bluetooth BR/EDR component holds nec-

essary information related with Bluetooth BR/EDR protocol properties as specified

in subsection 4.4.2. Bluetooth LE - Bluetooth BR/EDR connector is represented as

a double-edged line. A play button is also added to COSEML user interface to start

conversion between selected components. In Figure 4.5 and Figure 4.6 visual rep-

resentations of Bluetooth LE component, Bluetooth BR/EDR component, connector

and play button are shown sequentially.

General user interface of the COSEML corresponding to BLE component that rep-

resents IoT device talking with BLE protocol, Bluetooth BR/EDR component that

represents IoT device talking with Bluetooth BR/EDR protocol and their correspond-

ing IoT connector is shown in figure 4.7.

Specific software segments for the protocol properties are stored in the components.

Connectors know which components are connected to them and manage data con-

version according to component’s protocol properties. When a data packet arrives to

the connector, it starts to parse and identify necessary information to send the data to

the second component in a proper way. After connecting the necessary elements, the

tool displays data flow and conversion steps as a verification of the connectivity. A

user should select desired components and connector to enable communication and

should click the play button to see communication steps. Before starting the conver-

sion process, user can specify the packet number to be sent to the second component

as shown in Figure 4.8. When simulation starts, the tool opens two dialog boxes, one

38



Figure 4.3: BLE to Bluetooth BR/EDR IoT Connector Class Diagram - Part 1
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Figure 4.4: BLE to Bluetooth BR/EDR IoT Connector Class Diagram - Part 2
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(a) Bluetooth LE Component (b) Bluetooth BR/EDR Component

Figure 4.5: COSEML IoT Components

(a) Connector (b) Play Button

Figure 4.6: COSEML IoT Connector and Play Button

for the connector and the other for the second component to print logging messages

on the screen. In addition to these dialog boxes, the tool also logs the communication

steps in a log file that is saved in a directory under the resources folder of the tool.

Considering the design details of the Bluetooth LE to Bluetooth BR/EDR connector,

packet structure of the BLE is identified and parsed firstly. As stated in Subsection

4.4.1, BLE has 265 byte data packet size. The connector takes 246 byte payload data

from the first port: BLE part of the connector. Bluetooth BR/EDR component has the

ACL data packet and its packet structure is identified in Subsection 4.4.2. ACL data

packet has 359 byte in total with 339 byte payload data. At this time, connector also

knows packet size to send. If to be sent packet count is not reached yet, the connector

waits for the next data packet to be received. As soon as payload data size equals

the second component’s payload size, the connector sends the prepared data packet to

the second port: the BR/EDR part of the connector. If additional data remains in the

connector and to be sent packet size is reached, connector sends all of the remaining

data to the second component. In this way, the process has been completed. Output

of an example scenario shown in Figure 4.9 will be explained. In this scenario, data

packet size is set to 1. After modeling the example IoT application, the tool starts to

simulate the conversion process. When the data packet arrives at the BLE port of the

connector, it extracts 246 bytes of payload data. Since to be sent packet count is 1 for

this scenario, the connector sends all of the payload data to the BR/EDR port of the
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Figure 4.7: COSEML User Interface.
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Figure 4.8: To Be Sent Packet Count Specification.
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connector. In this way second component receives the payload data. Related console

logs are shown in Figure 4.10. First console prints the received payload size and

time information that is taken from the system’s current time. Second console logs

prints the second component’s received data payload size and again time information

that is received from the system. After conversion is completed a success message is

prompted as shown in Figure 4.11.

Figure 4.9: Example Scenario 1.

Figure 4.10: Output of Example Scenario 1.

Figure 4.11: Success Message.

As a second example scenario, to be sent packet count will be set to 5 as shown in
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Figure 4.12: Example Scenario 2.

Figure 4.12. In this scenario, the connector knows to be sent data packet count is

5. Because of this when connector receives first data payload, instead of sending

data packet to the second component with 246 bytes of payload data, it waits for the

second data packet to complete the data size to 339, that is the second component’s

data payload size. As soon as the second data packet arrives to the component, it

extracts 93 bytes of data and appends this data to the first one, completing 339 bytes

and sends it to the BR/EDR port. In this way the second component has received

its first data packet. In the connector there are 153 bytes remaining, but since to be

sent data packet count has not been completed yet, it waits for new data payload to

arrive. When new data payload arrives to the connector, it extract 186 bytes of data

and appends this data to the remaining 153 bytes of data and sends 339 bytes data

to the BR/EDR port. In this way the second component receives its second packet.

There are still 60 bytes data in the connector and since to be sent data packet count

has not completed yet, it waits for the fourth data packet to arrive. When fourth data

packet is received, with the remaining 60 bytes of data totally 306 bytes data is held.

Finally fifth data packet is received and there is 552 bytes of data and this data is sent

in two packets of 339 bytes and 213 bytes. In Figure 4.13 flow of the scenario two

is shown. As can be seen the adaption function includes buffer management. This is
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because the sizes of received and sent data packets are of different sizes.

Figure 4.13: Output of Example Scenario Two.

4.4.4 ZigBee

ZigBee is a protocol that is based on the IEEE 802.15.4 foundation for low data

rate short range wireless networking that is commonly used in home automation,

in-home patient monitoring and commercial and residential IoT applications [37],

[42]. ZigBee standards define only networking, application and security layers of the

protocol. Physical and MAC layers are defined by IEEE 802.15.4 standards. There

are four different frame types for ZigBee: Beacon frame, data frame, acknowledge

frame, MAC command frame. Beacon frame is used by a coordinator to transmit

beacons that are used to synchronize the clock of all the devices in the network. The

data and acknowledge frames are used to transmit data and the response data about

being received successfully or not. MAC command frames are used to transmit MAC

command frames [42]. In this thesis, data frames will be considered. Detailed data

packet information for the ZigBee data frames in bytes is explained in [37] and [42]:

Preamble: 4 - Start Packet Delimiter: 1 - PHY Header: 1 - Frame Control: 2 -

Sequence Number: 1 - Address Information: 3 - Frame Control: 2 - Destination

Address: 2 - Source Address: 2 - Radius: 1 - Sequence Number: 1 - Frame Control:

1 - Destination Endpoint: 1 - Cluster Id: 1 - Profile Id: 2 - Source Endpoint: 1 - Frame

Payload: 106 - Frame Check Sequence: 2

• SHR: Preamble and start packet delimiter belongs to SHR. It enables the re-

ceiver to synchronize.
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• PHY Header: Contains frame length information.

• Frame Control: Contains frame type.

• Destination Adress: Contains destination address.

• Destination Adress: Contains source address.

• Frame Payload: Contains core data.

• Frame Check Sequence: Used for data verification.

4.4.5 Z-Wave

Z-Wave is a protocol developed for low bandwidth data communication applications

such as consumer and home automation, security sensors and alarms. Z-Wave is used

in applications that require long battery life [43]. Z-Wave uses a structured protocol

stack starting from physical layer to application layer. Z-Wave has four different

types of frames that are singlecast, acknowledgment, multicast and broadcast frames.

Siglecast frames are transmitted to specific Z-Wave node. Acknowledgment frames

are used to make sure frames are sent successfully. Multicast frames are used to

transmit more than one Z-Wave node. Broadcast frames are received by any Z-Wave

nodes in the network. In this thesis single cast frames will be considered. Detailed

data packet information for the Z-Wave single cast frames in bytes is shown below

[43], [37]:

Preamble: 4 - Start of Frame: 1 - Home ID: 4 - Source ID: 1 - SingleCast Header: 1

- Data Length: 1 - Destination ID: 4 - Hop Count: 1 - Data Payload: 45 - Checksum:

1 - End of Frame: 1

• Preamble: Enables the receiver to synchronize.

• Home ID: Specifies unique network identifier.

• Source ID: Specifies unique identifier of a node.

• Data Length: Stores the length of the payload data.

• Destination ID: Used to address individual nodes.
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• Data Payload: Contains payload data.

• Checksum: Used for checking correctness of the frame.

4.4.6 Adaptation Through ZigBee - Z-Wave IoT Connector

Before starting the implementation process, a class diagram is provided for IoT com-

ponents which are ZigBee component and Z-Wave component and ZigBee to ZWave

connector. As stated in Table 4.3, there are differences between both network access

& physical layer and application layer of ZigBee and Z-Wave protocols. Network

access & physical layer differences will be handled by the ports that are connected to

the IoT connector as shown in Figure 4.2. For experimentation, the tool is enhanced

with simulation. The simulation shows the data flow from component to connector

and connector to component as a verification of the connectivity. Newly developed

IoT connector receives data packets from the first component. Since developed IoT

connector knows which components are connected to it, necessary data parsing and

preparing process is started. According to second component’s needs, necessary data

packet is prepared and sent to the second component that is Z-Wave component. This

process is managed by the Simulation manager in our implementation. In this thesis

to simulate IoT connectors connect two IoT components providing a solution to het-

erogeneity problem at application level, user can set packet count that is to be sent.

It is assumed that each time all of the payload data is filled totally and have a mean-

ing for the other component. Class diagram for ZigBee to Z-Wave IoT connector is

shown as two separate Figures in 4.14 and 4.15.

ZigBee - Z-Wave Connector User Interface and Simulation New components that

are ZigBee, Z-Wave and also the ZigBee to Z-Wave connector are added to the COSE-

CASE. Each component is represented by a different color. When user hovers on

the component, name of the component is shown on the screen. ZigBee compo-

nent holds necessary information related with ZigBee protocol properties as specified

in subsection 4.4.4. Z-Wave component holds necessary information related with Z-

Wave protocol properties as specified in subsection 4.4.5. ZigBee - Z-Wave connector

is represented as a double-edged line. To start conversion between selected compo-

nents, play button will be used. Visual representations of ZigBee component, Z-Wave
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component, and the connector are shown in Figure 4.16.

Figure 4.14: ZigBee to Z-Wave IoT Connector Class Diagram Part1.

General user interface of the COSECASE corresponding to ZigBee that represents the

IoT device talking with ZigBee protocol and Z-Wave component that represents the

IoT device talking with Z-Wave protocol and their corresponding IoT connector are

shown in figure 4.17. Selecting and starting simulation process is the same with the

Bluetooth LE to Bluetooth BR/EDR connector. After user selects ZigBee and Z-Wave

components from the tool, they need to be connected with the ZigBee to Z-Wave
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Figure 4.15: ZigBee to Z-Wave IoT Connector Class Diagram Part2.
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(a) ZigBee Component (b) Z-Wave Component

(c) IoT Connector

Figure 4.16: COSEML IoT Components

connector. User can set packet count at the ZigBee component to show simulation.

After setting to be sent packet count user can start the simulation by clicking play

button. Logs are recorded in the resources folder. Two dialog boxes are also opened

for the connector and for the second component to display the outputs of the process.

Considering the design details of the ZigBee to Z-Wve connector, packet structure

of the ZigBee is identified and parsed firstly. As stated in Subsection 4.4.4, ZigBee

has a frame packet size of 132 bytes. The connector takes 106 bytes of payload data

from the first port: ZigBee port of the connector. Z-Wave component has single cast

frame payload and its packet structure is identified in Subsection 4.4.5. Single cast

frame data packet has 58 bytes in total and 45 bytes of it is payload data. At this time,

the connector also knows to be sent packet count. First component’s data payload

size is greater than the second one in this case. When connector receives the first

packet, it divides received packets to the 45 bytes subparts and sends these 45 bytes

packets to the Zi-Wave port of the connector. After that Z-Wave component receives

its first data packet. Connector sends packets to the Z-Wave component until the data

is finished. If to be sent packet count is not reached yet, connector waits for the next

data packets from the ZigBee component. When to be sent packet count raeched, the

process has been completed. For an example scenario shown in Figure 4.18, output

of the process flow is explained. In this scenario, data packet size is set to 1. After

modeling the example IoT application, the tool start to simulate conversion process.

When the data packet arrives to the ZigBee port of the connector, it extracts 106 bytes

payload data. Since to be sent packet count is 1 for this scenario, connectors sends
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Figure 4.17: COSEML User Interface.
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all of the payload data as a 45 bytes data packets to the Z-Wave port of the connector.

In this way second component receives the payload data as a 45 bytes data packets.

Since ZigBee payload size is 106, the final packet will be sent as 16 bytes of payload

data packet. Related console logs are shown in Figure 4.19. First console records the

received payload size and time information that is taken from system’s current time.

Second console logs the second component’s received data payload size and again

time information that is received from the system’s current time information. After

conversion is completed a success message is prompted as shown in Figure 4.11.

Figure 4.18: Example Scenario 1.

Figure 4.19: Output Of Example Scenario 1.

As an example scenario two shown in Figure 4.20, to be sent packet count is set

to 3. Connector will send packets in a 45 bytes data packets. In this case, since

connector knows to be sent packet count, it waits for the next packets to arrive and
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with remaining bytes and as soon as the size is completed to 45 bytes, connector

sends the data to the Z-Wave port. In this way, Z-Wave component receives the data

packets. Outputs of this scenario is shown in Figure 4.21.

Figure 4.20: Example Scenario 2.

Figure 4.21: Output Of Example Scenario 2.

4.4.7 ZigBee

ZigBee protocol properties are explained in 4.4.4.
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4.4.8 WiFi

WiFi is a protocol based on the 802.11 IEEE specification that transmits data over

radio waves [44]. WiFi is commonly used at home, at work, airports, university

campuses and schools. There are three different kinds of data frames for WiFi that

are control frames, management frames and data frames [44]. Control frames are

used for the acknowledgment of received data. Management frames are used to join

or leave wireless networks. Data frames are used to carry data. In this thesis data

frames will be considered. Detailed data packet information for the data frame in

bytes as follows [44]:

Frame Control: 2 - Duration: 2 - Address1(Receiver): 6 - Address2(Sender): 6 -

Address3(Filtering): 6 - Address4: 6 - Frame Body: 2312 - FCS: 4

• Frame Control: May affect the interpretation of MAC header fields .

• Duration: Carries the network allocation vector value.

• Addressing Bits: These fields control addressing issues.

• Frame Body: Contains payload data.

4.4.9 Adapting ZigBee & WiFi Components With IoT Connector

Before starting the implementation process, a class diagram is provided for the IoT

components which are the ZigBee component and the WiFi component and the Zig-

Bee to WiFi connector. As stated in Table 4.3, there are differences between both

network access & physical layers and the application layer of ZigBee and WiFi pro-

tocols. Network access & physical layer differences will be handled by the ports

that are on the IoT connector as shown in Figure 4.2. For experimentation, the tool is

enhanced with simulation capabilities. The simulation shows the data flow from com-

ponent to connector and connector to component as a verification of the connectivity.

Since data packet sizes are similar to each other, for ZigBee to WiFi components con-

nector will work as ZigBee to Z-Wave connector as stated in the subsection 4.4.6. For

both of the cases, first component’s data packet size is fewer than the second compo-
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nent data packet size. Therefore working mechanism will be similar and ZigBee to

Z-Wave connector can be used by ZigBee to WiFi connector. In this way connector

becomes reusable part of the COSECASE. Class diagram for ZigBee to WiFi IoT

connector is shown as separate files in Figures 4.22 and 4.23.

Figure 4.22: ZigBee to WiFi IoT Connector Class Diagram - Part 1.

ZigBee - WiFi Connection, User Interface and Simulation Existing ZigBee com-

ponent and ZigBee to Z-Wave connector are used for this case. WiFi component is

added to the tool as a new component. This component is also represented with a
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different color and when user hovers on the component, name of the component is

shown on the screen. WiFi component holds necessary information related with WiFi

protocol properties as specified in subsection 4.4.8. After ZigBee and WiFi compo-

nents are selected, ZigBee to Z-Wave connector is used for connect these components.

To start conversion between the components, the play button will be used. General

user interface of the COSECASE corresponding to ZigBee that represents IoT device

talking with ZigBee protocol and WiFi component that represents IoT device talking

with WiFi protocol and their corresponding IoT connector are shown in figure 4.24.

ZigBee component’s packet structure is identified and parsed firstly by the connector.

As stated in the subsection 4.4.4, ZigBee has 132 bytes of data frame packet. As stated

in the subsection 4.4.8, WiFi has 2346 bytes of data frame packet. The connector

receives 106 bytes of payload data from the first port: ZigBee port of the connector.

WiFi component has data frame packet type that has 2312 bytes of payload data.

Connector knows to be sent packet count. Since first component’s packet size is

smaller than the second one, until the buffer of 2312 is filled, the connector keeps

receiving data packets from the first component. As soon as bytes the received data

becomes 2312 bytes, the connector sends this prepared packet to the second port:

WiFi port of the connector. In this way WiFi component receives the data. As an

example scenario shown to be described using Figure 4.25, to be sent packet count is

set to 1. From ZigBee port, 1 data packet will be received by the connector. When

connector receives the data packet since to be sent packet count is 1, this packet is

sent immediately to the WiFi port of the connector. In this way data payload packet

is received by the WiFi component. Two dialog boxes are opened for the connector

and WiFi components to print outputs of the scenario as shown in Figure 4.26. The

connector sends 106 bytes of payload data to the WiFi component. Success message

is prompted that shows message has been successfully sent as shown in Figure 4.11.

Figure 4.27 will be used for the explanation of scenario 2. To be sent packet count is

set to 6. Connector will wait all of the 6 payload data packets to be received. Since 6

payload data size is fewer than the WiFi payload size, connector will send 636 bytes

data packet at once. WiFi port receives the prepared data packet and sends this data

packet to the WiFi component. As a result, WiFi component receives data. Outputs

of this scenario is shown in Figure 4.28. After sending the data packet to the second
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component a success message will be prompted as shown in Figure 4.11.
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Figure 4.23: ZigBee to WiFi IoT Connector Class Diagram - Part 2.
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Figure 4.24: COSEML User Interface.
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Figure 4.25: Example Scenario 1.

Figure 4.26: Output Of Example Scenario 1.
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Figure 4.27: Example Scenario 2.

Figure 4.28: Output Of Example Scenario 2.
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CHAPTER 5

MODELING SMART PARKING WITH COSECASE

In this chapter smart city domain that is explained in section 3.1 will be modeled in

COSECASE with the help of newly developed components and connectors. As stated

before smart city area gains more popularity in the world to make peoples lives easier.

In section 3.1.4 smart city domain is modeled with a feature diagram to specify its

features. Since smart city has a wide application area, to be more specific the smart

parking domain is selected to be identified in detail. According to Figure 3.2, smart

parking has main components that communicate using WiFi, ZigBee, Z-Wave and

Bluetooth. Based on the example system stated in the Section 3.1.5, there four main

components that are camera that talks using ZigBee, traffic lights that talks using

Z-Wave, street lights that talks using ZigBee and second mobile phone that talks

using WiFi. To model the example smart parking system in COSECASSE, we need

to select related components first. To connect these components we need to select

related connectors. To show connectivity we will use simulated data flow between

components. In Figure 5.1 smart parking is modeled in COSECASE. Data flow of

the modeled system is shown in Figure 5.2 and Figure 5.3 respectively.
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Figure 5.1: Smart Parking.

Figure 5.2: ZigBee - Z-Wave Output.

Figure 5.3: ZigBee - WiFi Output.
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CHAPTER 6

CONCLUSION

6.1 Conclusion

In this thesis, connectors for IoT components are introduced for COSE. IoT is a very

heterogeneous environment that makes hard for entities to communicate and send data

to each other. We have provided a modelling environment in COSE considering het-

erogeneity in IoT world. The idea has been demonstrated by using our enhancements

to the COSECASE tool.

There are protocols that changes according to application needs in the IoT world.

We grouped protocols and specified their basic features and usage areas. Results

of search shows us short range network protocol is widely used in IoT applications.

Since short range IoT network protocols are commonly used in IoT applications, they

are firstly selected to be implemented. Selected protocols are specified according to

their features. Differences are listed and an appropriate solution is suggested for their

heterogeneity. Solution could be at hardware level, at software level or both. In this

thesis, an application level solution is provided for connectors in COSE development

tool that is COSECASE. Connectors have ports compatible with connected compo-

nent’s hardware. Connectors are responsible for identifying and organizing packets

of the protocols accordingly. Simulation capability is added to the tool to demonstrate

the executability of the idea. A user can monitor the data flow across components via

connectors. According to packet structures of protocols, connectors can be reused. If

a new protocol with new features is needed to be included, a developer should im-

plement a new connector. COSEML is enhanced with newly added connectors and

components representing short range network protocols. Also a new connector struc-
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ture is introduced. A new method is provided for connectors that are newly added to

the tool. In this way, user can model IoT application in COSE by using COSEML.

IoT heterogeneity is demonstrated through an example project that is in the smart

city domain. Smart city is a very hot topic subject in today’s world. Since lots of

solutions are being developed in the smart city domain, we selected this domain as an

example. To be more specific we selected smart traffic as a sub topic from smart city.

After providing a modelling environment for IoT applications, we modeled a smart

traffic problem in the COSECASE tool and provided an example connection between

related components.

6.2 Adding New IoT Connectors And Components

One can add new IoT components and connectors to the COSECASE tool. When user

wants to add new components representing a new IoT protocol, he needs to identify

the detailed packet structure of the protocol. After finding detailed packet structure

information, user needs to specify payload data of this protocol at the application

level. User can analyze the provided class diagrams for the IoT components that are

provided in Chapter 4. In addition to adding new IoT components, a user can also

add new IoT connectors to COSECASE. When user wants to add a new IoT connec-

tor to the tool, he needs to specify data packet properties of the two components in

detail. After that, according to the second component’s data packet structure, connec-

tor needs to adapt the received data packet to the destination format. User can also

analyze IoT connectors’ class diagrams that are provided in Chapter 4.

6.3 Suggestions And Future Work

As a future work, long range network layer protocols and application layer proto-

cols will be specified and implemented as representative components in COSECASE.

Their related connectors will also be added to the tool. Common connectors will be

represented with a common name. Component and connectors will be grouped at

specific toolbars. By defining and adding domain specific components and connec-
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tors, a user can model any kind of application by using COSECASE. For the purpose

of this thesis, only uni-directional IoT connectors were implemented , meaning data

flow is from the first component to the second one. As future work, bi-directional IoT

connectors can be implemented. For this thesis IOT connectors are implemented with

only two ports, as a future work one can add more than two ports and make multiport

IoT connectors.
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