AUTOMATED LEARNING RATE SEARCH USING BATCH-LEVEL
CROSS-VALIDATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

DUYGU KABAKCI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

JULY 2019

Approval of the thesis:

AUTOMATED LEARNING RATE SEARCH USING BATCH-LEVEL
CROSS-VALIDATION

submitted by DUYGU KABAKCI in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalipcilar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oguztiiziin
Head of Department, Computer Engineering

Assist. Prof. Dr. Emre Akbag
Supervisor, Computer Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Sinan Kalkan
Computer Engineering, METU

Assist. Prof. Dr. Emre Akbag
Computer Engineering, METU

Assist. Prof. Dr. Mehmet Tan
Computer Engineering, TOBB ETU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Duygu Kabakci

Signature

v

ABSTRACT

AUTOMATED LEARNING RATE SEARCH USING BATCH-LEVEL
CROSS-VALIDATION

Kabakci, Duygu
M.S., Department of Computer Engineering
Supervisor: Assist. Prof. Dr. Emre Akbag

July 2019, [58| pages

Deep convolutional neural networks are being widely used in computer vision tasks,
such as object recognition and detection, image segmentation and face recognition,
with a variety of architectures. Deep learning researchers and practitioners have accu-
mulated a significant amount of experience on training a wide variety of architectures
on various datasets. However, given a specific network model and a dataset, obtain-
ing the best model (i.e. the model giving the smallest test set error) while keeping
the training time complexity low is still a challenging task. Hyper-parameters of deep
neural networks, especially the learning rate and its (decay) schedule, highly affect
the network’s final performance. The general approach is to search the best learn-
ing rate and learning rate decay parameters within a cross-validation framework, a
process that usually requires a significant amount of experimentation with extensive
time cost. In classical cross-validation, a random part of the dataset is reserved for
the evaluation of model performance on unseen data. This technique is usually run
multiple times to decide learning rate settings with random validation sets. This the-

sis is aimed at exploring batch-level cross-validation methods as an alternative to the

classical dataset-level, hence macro, CV. The advantage of micro CV methods is that
the gradient computed during training is re-used to evaluate several different learn-
ing rates. We propose automated learning rate selection algorithms that are aimed
to address setting the learning rate and learning rate schedule during training. Our
algorithms use micro cross-validation where a random half of the current batch (of
examples) is used for training and the other half is used for validation. We present
comprehensive experimental results on three well-known datasets (CIFAR10, SVHN
and ADIENCE) using three different network architectures: a custom CNN, ResNet
and VGG.

Keywords: Deep Learning, Object Classification, Learning Rate Search, Hyper-parameter

Search, Adaptive Learning Rate, Cross-Validation

vi

0z

YIGIN SEVIYESINDE CAPRAZ GECERLEME KULLANARAK
OTOMATIK OGRENME ORANI ARAMASI

Kabakci, Duygu
Yiiksek Lisans, Bilgisayar Miithendisligi Boliimii
Tez Yoneticisi: Dr. Ogr. Uyesi. Emre Akbasg

Temmuz 2019 , [58| sayfa

Derin evrigimsel sinir aglar1 (ESA) sahip oldugu mimari cesitlilik ile nesne sininflan-
dirma ve tanima, goriintii boliitleme ve yiiz tanima gibi bilgisayarli gorii islemlerinde
yaygin olarak kabul gormektedir. Derin 68renme arastirmacilari ve uygulayicilart cok
cesitli mimarileri farkli veri kiimelerinde egitmek konusunda onemli miktarda dene-
yim elde etmistir. Ancak, verilen bir ag modeli ve veri seti i¢in, en 1yi modeli (yani
en kiiciik test seti hatasin1 veren model) egitim siiresi karmagikligim diisiik tutarak
elde etmek hala zor bir istir. Derin sinir aglarinin meta parametreleri, 6zellikle, 68-
renme orani ve (sOniimii) programi, agin nihai performansi oldukga etkiler. Genel
yaklagim, en iyi 6grenme oranini ve 6grenme oraninin soniimii parametrelerini capraz
gecerleme (CG) cercevesinde aramaktir; bu, genellikle yiiksek zaman maliyeti olan
cok fazla deney gerektiren bir siirectir. Capraz gecerleme, egitme veri kiimesi disin-
daki yeni veriler ile model performansinin degerlendirilmesi icin veri setinin rastgele
bir boliimiinii bolerek, bu boliim iizerinde egitim asamasinin izlendigi bir tekniktir.
Bu teknik, genellikle rastgele gecerleme kiimeleri ile 6grenme orani1 parametrelerine

karar vermek ic¢in bir¢cok kez calistirilir. Bu tez, klasik veri kiimesi seviyesindeki,

vii

yani makro CG’ye alternatif olarak yi1gin seviyesinde c¢apraz gecerleme yontemle-
rini aragtirmay1 amaglamaktadir. Mikro CG yontemlerinin avantaji, egitim sirasinda
hesaplanan egimin birkag farkli 6grenme oranini degerlendirmek icin tekrar kullanil-
masidir. Onerdigimiz otomatik 6grenme oran1 segme algoritmalari; egitim sirasindaki
0grenme oranini ve dgrenme orani programini belirlemeyi amaclar. Algoritmalarimiz,
mevcut veri yigininin (6rneklerin) rastgele yarisinin egitim i¢in kullanildig1 ve di-
ger yarisinin dogrulama icin kullanildig1 mikro ¢apraz gecerleme kullanir. Ug farkls
ag mimarisini kullanarak (6zel bir ESA, ResNet ve VGG), ii¢ taninmis veri setinde

yapilmis (CIFAR10, SVHN ve ADIENCE) kapsamli deneysel sonuclar sunuyoruz.

Anahtar Kelimeler: Derin Ogrenme, Nesnelerin Siniflandirilmasi, Ogrenme orani ara-

mas1, Uyarlamali Ogrenme Orani, Capraz Gegerleme

viii

To my beloved family,

X

ACKNOWLEDGMENTS

I would like to express my most sincere gratitude to my supervisor Dr. Emre Akbas
for his constant support and help. He provided me with help and insightful comments
whenever I struggled. This work could not have been accomplished without his en-
couragement, guidance and vision. I am deeply glad to have the chance to work with

such a kind and supportive supervisor.

I would like to thank Ersan who shared this academic journey with me included with
all the ups and downs. He is the one who takes care of me and makes me happy all
the stressful and tired times of this period. I could not accomplish so far without his

never-ending support and love.

I would like to thank my friends for sharing their experiences and encouraging me
during this study. They helped me to solve many obstacles with their support. Fore-
most, [am grateful to all of my friends for their friendship that makes everything

possible.

I would like to thank my family to make feel their love and support behind me all the
time. Especially, I am grateful to my dearest parents, Nezihe and Bahattin, for always
caring and supporting my education beginning from my childhood. I am also deeply

thankful to my brother Deniz who always help and encourage me to achieve better.

TABLE OF CONTENTS

ABSTRACTI. e v

OZ . . . vii

ACKNOWLEDGMENTSI. oo o oo X

TABLE OF CONTENTS| oo o oo xi
LIST OF TABLESI

LISTOFFIGURESI o o o oo Xiv

LIST OF ABBREVIATIONSI XV

CHAPTERS

1 INTRODUCTION| oo e 1

2

3

5

5

2 BACKGROUND AND REILATED WORK 7

[2.1 Gradient Descent Optimization Algorithms| 7

.11 Stochastic Gradient Descent with Momentum| 7

[2.1.2 Adaptive Learning Rate Optimizers|. 8

[2.1.3 Revisiting SGD with Momentum| 9

xi

2.2 Challenges on Neural Network Training| 11

[2.2.1 Achieving Good Generalization|. 11
[2.2.2 Selecting Optimal Learning Ratef. 12
2.3 Learning Rate Search|. 14
[2.3.1 Automated Hyper-parameter Tuning| 14
[2.3.2 Cyclical Learning Rates| 15
[2.3.3 Gradient Based Tuning Methods| 16

3 MICRO CROSS VALIDATION ALGORITHMS 19

(3.1 = Traming Step Verification Using Micro Cross Validation| 19

[3.2 Automated Learning Rate Search Using Micro Cross-Validation| . . . 23

................................ 31
4.1 Introduction|. L 31
42 Datasets|. 32

421 CIFAR-IQ o e 32
H22 7 SVHN . . oo e e 32

423 Adiencel 33

4.3 Network Architectures| oL 33
4.4 Performance Metricsl oL oo 35
4.5 CIFAR-10 Experiments| 37
4.6 SVHNExperiments| 44
.7 Adience Experiments|. oL 49

5 CONCLUSION oo e e e e e e s e e e 53
R RENCES| 55

xii

LIST OF TABLES

TABLES

Table 4.1 Theoretical complexity of a training step for baseline training and

[adaptive learning rate search methods” tramning| 36
Table 4.2 CIFAR-10 baseline results on Small CNNI 38
Table IFAR-1 line results on RESNET-18 Archi rel 39
Table4.4 CIFAR-10 baseline results on VGG-11 Architecturef 41
Table 4.5 Results of MCV methods on CIFAR-101 43
Tablel4.6 SVHN baseline results on small CNN architecturef 45
Table4./ SVHN baseline results on Resnet-18 architecturel 46
Table4.8 SVHN baseline results on VGG-11 architecturef 47
Table 4.9 Adaptive learning rate search using MCV results on SVHN| 48
Table 4.10 Adience baseline results on Resnet-50 architecture/. 50
Table4.11 Adaptive learning rate search using MCV results on Adience Dataset |
I 51

xiil

LIST OF FIGURES

FIGURES

Figure 3.1 Macro cross-validation and micro cross-validation| 21

Figure|3.2 Automated learning rate search training step losses logging work- [

Figure 4.1 VGG-11 and Resnet-18 architectures| 34

X1V

CIFAR-10
CLR
CNN
DNN

FC

LR

MCV
RESNET
SGD
SVHN

VGG

LIST OF ABBREVIATIONS

Labeled Subsets of the 80 Million Tiny Images Dataset
Cyclic Learning Rates

Convolutional Neural Network

Deep Neural Network

Fully-connected Layer of Neural Networks

Learning Rate

Micro Cross Validation

Residual Neural Network

Stochastic Gradient Descent

The Street View House Numbers Dataset

Visual Geometry Group

XV

Xvi

CHAPTER 1

INTRODUCTION

Scientists and inventors have been working on understanding and building decision
making systems to automate everyday tasks and decision making process. By the
means of this intention today, Deep learning (DL) opens an era for autonomous cars,
smart cities, robotics and medical tests using massive amount of data and powerful
computational capabilities. Machine learning, the larger field that subsumes deep
learning, learns from data and tries to generalize for further predictions and deci-
sions by extracting patterns and representations. Power of deep learning comes from
complex hierarchical representations that build over simpler representations. For ex-
ample, image of a person is represented as edges in earlier layers while latter hidden
layers extend representations to more complex object parts that finally turns to object

identity. The word ‘deep’ refers to the hierarchical depth of models.

Computer vision is one of the areas that is directly related with these smart technolo-
gies on image classification (e.g. [1} 2, 3]]), object detection (e.g. [4, 15, 6]) and face
recognition (e.g. [7, 8]]) or pose estimation (e.g. [9,[10]) tasks in a variety of domains
from robotics or security to medical imaging. Deep learning, especially deep neural
networks, achieve state of the art solutions in most of these tasks which are extremely
useful for both industrial developments and academic research. These capabilities and
wide usage of deep neural networks cause an interest to simplify deep neural network
(DNN) training, i.e the phase of learning, since obtaining the optimal model which
has the smallest generalization error is not trivial especially for those who are new
to the field. Our motivation in this thesis, is to explore batch-level cross-validation
methods, which we call micro cross-validation (MCYV, for short), for the purpose of an

automated search procedure for learning rate and its decay in deep neural networks.

Learning rate, i.e. step size, seems to be one of the most important hyper-parameters
for deep neural networks that highly affects the model performance. Specifically,
learning rate adjusts the magnitude of network’s weight updates for minimizing the
loss function between real object classes and predicted classes. If learning rate is too
high, the model struggles to converge to a local minima; while too small learning rate
slows down convergence, hence increases the training time. Using optimal learning
rate and learning rate decay utilizes the network performance by acquiring effective
capacity of DNN. The common solution is to use classical cross-validation to test
model performance on unseen data for different learning rate and decay selections.
A large number of experiments with different learning rate and decay are conducted
to decide optimal values. Adaptive optimizers (e.g. Rmsprop[11], Adam[12]]) were
proposed as a solution to take burden of finding optimal learning rate. They are more
robust with its automated parameter-wise decay. Adam using its default learning rate
can achieve high accuracy results. However, recent research ([[13, [14]]) points out the
convergence problem of Adam optimizer. According to these recent findings, hand
tuned SGD with momentum optimizer can achieve better results than adaptive op-
timizers. Adaptive optimizers’ convergence problem can be solved with additional
learning rate tuning. In short, selecting learning rate and its schedule is still an un-
solved challenge for which an automated procedure would have significant impact.
Our proposed methods (using micro cross-validation) explore some ideas towards au-
tomating the search for the optimal learning rate. Following sections describe the

problem and proposed methods in detail.

1.1 Problem Definition

In this thesis, we explore the following problems:

Is each update (on the weights of model) during training effective? Each gradient is
calculated from a mini-batch of training examples that is assumed to be representa-
tive of the whole dataset so, each gradient can be considered informative in regular
training. However, if some of the updates are not as informative as others, eliminat-
ing those updates can reduce overfitting, i.e. memorization and learning noise from

training dataset. Therefore, if we could define a validation rule for updates, those

2

-if any- uninformative updates can be eliminated easily for the sake of generalization

capability. By this way, we can achieve an optimal model with its effective capacity.

Is it possible to automate the search for the optimal learning rate and learning rate
schedule using micro (i.e. batch-level) cross-validation? The optimal learning rate
and learning rate schedule highly depend on network topology, dataset and optimizer.
The typical method for tuning these parameters for a specific task, dataset and net-
work is to use a costly cross-validation procedure. To simplify this process, automated

learning rate and learning rate schedule searching methods are highly desirable.

To sum up, the main goal of this study is examining the mentioned problems and
their effects on neural network training which can help us understand neural network

training process and explore proposed solutions for these problems.

1.2 Proposed Method

Deep neural network training is a delicate and complex process which aims to obtain
a generalizable model efficiently. This can be achieved by selecting a good set of
hyper-parameters that requires an in-depth understanding of how hyper-parameters
work in optimization. An excessive number of hyper-parameters, such as learning
rate, mini-batch size, regularization parameter, weight decay constant and number of
hidden units increase the complexity of sequential experiments as they all need to be
tuned. Guided sequential experiments with a different selection of hyper-parameters
usually require prior knowledge on neural network’s convergence, loss function topol-
ogy and dataset to achieve a model that has smallest generalization error. After each
experiment, the subsequent selection of hyper-parameters can be determined based on
these factors using prior knowledge. Even carefully designed sequential experiments
conducted with knowledge based assessments come with a very high amount of com-
putational and time cost, due to the complex nature of neural network training. In this
work, we examine this complex nature of deep neural network training so that we can
propose a mini-batch based gradient verification and automated learning rate sched-
ule selection methodology. Instead of the common use of standard cross-validation,

1.e. using a separate validation set to decide whether the model is overfitting or un-

derfitting, we propose to confirm and validate every single training step so that we
can eliminate uninformative and noisy training steps. To be able to validate a training
step, convenience of a training step is defined such that gradient step update should
be acceptable and beneficial for another random mini-batch of dataset. Also, learning
rate , i.e. step size, of each training step should be selected to maximize validated
informative gradient steps. Main steps of the proposed methods can be defined as

follows:

e Validating each training step/gradient update using another random validation

mini-batch.

o If a training step is found to be acceptable, learning rate that obtains the most

decrease on validation mini-batch’s loss is selected for that step.

e Preparing a complete learning rate schedule as an automated procedure using

random validation batches.

Mainly, we designed experiments to answer the following questions for proposed

methods:

e [Q1] In a setting where learning rate and its decay schedule are given, does
micro cross-validation help improve generalization? Does it yield a better test

set accuracy?

e [Q2] In what ways can we use micro cross-validation to automate the search

for optimal learning rate and learning rate schedule?

e [Q3] Do MCV methods that automatically select learning rates improve test set

accuracy over baseline methods?

In this work, we explore the answers of mentioned questions using designed experi-

ments.

1.3 Contributions

This thesis is an exploratory first step towards batch-level cross-validation methods

that try to automate the learning rate search. Specifically,

e Micro Cross-validation (MCV) methods apply well-known cross-validation to
each training step in an innovative repetitive way instead of using a part of

dataset for validation.

e MCV methods propose a step based gradient validation that uses decrease of

loss on random validation mini-batches.

e MCV methods try to maximize the effect of informative gradient steps by ar-
ranging learning rate based on random mini-batch verification. This learning
rate decision in every training step constructs a complete learning rate schedule

automatically.

1.4 Thesis Outline

Chapter 2 discusses the stochastic gradient descent (SGD) algorithm and its com-
parison with adaptive gradient descent algorithms as a background. Additionally,
techniques to achieve good generalization and finding optimal learning rate problems

of neural network training are explained with state of the art solutions in literature.

Chapter 3 describes the proposed methods, training step verification using micro
cross-validation and automated learning rate search using micro cross-validation,
which are executed as a variation of SGD with momentum and adam optimizers.
Theoretical and algorithmic details of the proposed methods are also presented in this

chapter.

In Chapter 4, the performance of MCV methods is presented by providing experi-
mental results on several deep neural network architectures over popular benchmark
datasets. Convolutional and residual deep neural network architectures are demon-

strated with experimental results in this chapter.

5

Chapter 5 provides a brief summary and discussion of this work.

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, stochastic gradient descent (SGD) methods and adaptive optimizers
are explained. Also, advances of accelerated SGD forms compared to adaptive opti-
mizers are discussed. Cross-validation, which is a well known technique for assess-
ment of DNN model, is explained as a basis of our proposed methods. Additionally,
we define finding optimal learning rate problem and discuss impacts of using opti-
mal learning rate on neural network training. Hyper-parameter tuning methods and
various automated learning rate search methods in literature are also provided in this

chapter.

2.1 Gradient Descent Optimization Algorithms

2.1.1 Stochastic Gradient Descent with Momentum

SGD and its variants are probably the most used optimization algorithms for machine
learning, especially for deep learning tasks. However, It can be slow without accel-
eration method such as momentum [[15]. When loss curvature is high and gradients
are consistent but small, momentum acceleration method is designed to accumulate
the gradients using moving average of past gradients. Momentum method introduce
a velocity term that helps to accelerate consistent gradient direction. Momentum
coefficient a € (0, 1] adjusts how previous gradient contributions affect the current
momentum step. 0.5 and 0.9 are typical values of momentum coefficient.

SGD with momentum update is defined in Algorithm

Algorithm 1 Stochastic Gradient Descent with Momentum

Require: Learning rate ¢, momentum parameter «
Require: Initial parameter 6, initial velocity v/
while training stopping criterion not met do

Sample a mini-batch of m examples from training set: x1, x5 . .. x,, with
corresponding labels y1,y5 . . . Y,
Compute gradient estimation g < =Vg >_.(L(f (24 0),y;))
Compute velocity ¥ <—) — eg
Apply parameter update 6 < 0 + o

end while

2.1.2 Adaptive Learning Rate Optimizers

Learning rate is the most sensitive parameter that strongly affects performance of
a model. It is also known that model cost highly relies on some parameters from
model’s parameter space. This brings up the idea of using separate learning rates per
parameter based on their sensitivity, also adapting per parameter learning rates au-
tomatically. Earlier heuristic is increasing the learning rate if partial derivative sign
of loss with respect to a model parameter remains the same, oppositely, decreasing
the learning rate in case of gradient changes sign. Adaptive learning rate optimizers
based on this heuristic are (mostly used examples) AdaGrad[16l], Rmsprop[11] and
Adam[12] optimizers. AdaGrad, an earlier example of adaptive learning rate optimiz-
ers, scales learning rate per parameter according to the square root of the sum of all
historical squared values of the gradient. In this approach, parameters with larger par-
tial derivatives have accelerated decrease compared to parameters with small partial
derivatives. Even though this approach helps some models, keeping historical partial
derivatives from beginning of training to end can introduce earlier and excessive de-
crease in the effective learning rate for some cases. Rmsprop modifies AdaGrad algo-
rithm to address its excessive decrease on learning rate by weighted moving average
of gradient history. Instead of AdaGrad, Rmsprop keeps moving average of gradi-
ents history with a new hyper-parameter that adjusts how historical gradients impact
moving average besides current gradient. Aside from AdaGrad and Rmsprop, Adam

optimizer combines Rmsprop and momentum optimizers benefits. Adam optimizer

computes two historical moving average estimates which keep gradients and squared
of gradients respectively. There is also correction of initial bias of moving average of
gradients and square of gradients in Adam that is also an addition to Rmsprop algo-
rithm.Although Adam is capable to work with different models with default values,

some cases still requires global learning rate and other hyper-parameters tuning.

Algorithm 2 Adam Algorithm
Require: Learning rate € (0.001 default)

Require: Exponential rate decay constants for moment estimates py, ps € (0, 1]
(0.9, 0.999 defaults)
Require: Small constant § for stabilization (10~ default)
Require: Initial parameters ¢
Initialize 1st and 2nd moments s < 0, r <+ 0
Initialize time ¢ <— 0
while training stopping criterion not met do
Sample a mini-batch of m examples from training set: x1, x5 . .. x,, with
corresponding labels y1,ys . .. Y,
Compute gradient estimation g <— =V > (L(f (x4 0), y:))
t+t+1
Update biased 1st moment: s < p1s+ (1 — p1)g
update biased 2nd moment: 7 < por + (1 — p2)g ® g

s
1—p}

Correct bias in 1st moment: § <

Correct bias in 2nd moment: 7 <—

P2

Vi+s
Apply parameter update 6 < 6 + A0

Compute update: Af <+ —e

end while

Rmsprop and Adam seem to be the most widely used adaptive learning rate based

optimizers in deep learning community.

2.1.3 Revisiting SGD with Momentum

Common knowledge on deep learning training suggests to use adaptive learning rate

based methods such as Adam and Rmsprop due to their robust performance over

9

different learning rates. Regular user can obtain acceptable results without tuning
learning rate. Even though adaptive methods are quite useful, there is still a remark-
able difference between performance of model that uses the optimal learning rate and
the default learning rate of adaptive methods. Recent researches show that SGD with
momentum can obtain better test results over adaptive methods. Wilson et. al.[13]
conduct a comprehensive study which shows that SGD and SGD with Momentum
outperform on unseen dataset in designed tasks of over-parameterized models con-
trary to common belief on adaptive optimizers. Their findings favors SGD and SGD
with momentum because adaptive methods find solutions having worse generaliza-
tion than non-adaptive methods. Adaptive methods have faster progress during the
earlier epochs of training while their final performance on test set is not promis-
ing. They also found out that tuning Adam classifier gains considerable improve-
ment compared to default settings. Another research inspired from Wilson et. al.
[13] findings, suggests a simple idea that using Adam on earlier epochs of deep neu-
ral network training then switching to SGD with Momentum to solve saturation of
Adam on later epochs [17]. They showed using Adam and SGD with momentum
instead of only using Adam results in better generalization. Several researches focus
on correcting the generalization problem of Adam optimizer by adapting Adam al-
gorithm. In [18] study, YOGTI algorithm is proposed to solve this problem as a new
adaptive optimizer. Their improvement applied to Adam optimizer is the controlled
effective learning rate increase instead of Adam’s rapid increase that leads better gen-
eralization. Similarly, Chen and Gu propose Partially adaptive momentum estimation
method (PADAM) [19]]. PADAM follows the idea of unifying Adam algorithm’s fast
convergence rate and good generalization of SGD with momentum for the final model
that means combining best of both optimization algorithms. In short, PADAM uses
a partial adaptivity parameter to control the adaptivity level. Particularly, If partial
adaptivity parameters selected as close to zero, algorithm behaves like SGD with mo-
mentum, oppositely behaves more like Amsgrad that is one of variation of Adam
algorithm. Since all these methods introduces new parameters and complexity, usage
of these Adam style algorithms are still limited and not effective. Moreover, Zhang et
al. [14] conduct several experiments that compares hand tuned SGD with momentum
and adaptive optimization methods from this trend. According to their study, mod-

els trained with hand-tuned learning rate using SGD with momentum achieves faster

10

convergence than Adam for many models. Indeed, many recent state-of-the-art image
classification models on popular datasets, such as SVHN, CIFAR10 and ImageNet,
report their results on SGD with momentum [20] [21] [2] [1].

2.2 Challenges on Neural Network Training

2.2.1 Achieving Good Generalization

Neural networks are powerful classifiers with the capability of learning complex pat-
terns from training data through their hidden layers and large amount of neurons.
These patterns usually include noise in training data that causes lower classifier per-
formance on unseen data. Fitting model to training data too much that results in
poorly generalized models is called overfitting problem. One of common approaches
to reduce overfitting is monitoring training phase using validation dataset to stop train-

ing before overfitting starts.

e Early Stopping and Cross-Validation: A small part (typically %10-30) of
training set is reserved as validation dataset which is used to detect when over-
fitting starts. When validation loss, i.e. error on unseen examples, starts to in-
crease during training, training should be stopped to prevent overfitting. Even
though early stopping solves generalization problem, it is not practical. Firstly,
this method requires to sacrifice a part of training data to create a validation
dataset. Secondly, it is hard to decide which examples should be in training
dataset or validation dataset on real systems. These two datasets should be uni-
form in terms of hardness of examples, also; we don’t want to lose informative
examples by putting on validation dataset. To achieve more reliable valida-
tion, cross-validation technique is generally used. Cross-validation is based on
the idea of assessing the performance on unseen data as a validation set, i.e.
randomly chosen partition of training set. To reduce variability, multiple ex-
periments are usually performed using different validation sets. Even if cross-
validation allows reliable decision making with early stopping, those repetitive

experiments can be costly in terms of time and resources.

11

e Validation on Mini-batches: One of the recent studies extends cross-validation
idea that is to validate group of mini-batches with another mini-batch, that is
called validation mini-batch, during the training procedure [22]]. In their work,
they formalize this procedure as dot product of calculated gradients of each
training mini-batch and validation mini-batch. This calculation is used to de-
termine the weight of the gradient update. If gradients of training mini-batch
and validation set is correlated, then weight of this gradient update is large and
positive. This can be considered as gradient update validation of a mini-batch
update by another mini-batch to decide enlarging the update or discard it by
calculating zero weight. Note that validation mini-batch is not a separate data
chunk, contrary, validation mini-batch is directly participating to training with
gradient updates. They show that their procedure results in better generalization
of model, i.e. reducing overfitting. They explain this achievement as validation
of gradients helps to avoid memorization by encouraging model parameter up-

dates that only reduce errors on shared sample patterns.

2.2.2 Selecting Optimal Learning Rate

Selection of learning rate is remarkably important to accomplish the highest accu-
racy of a particular neural network architecture. Researchers have been explained
the importance of using optimal learning rate and shared practical recommendations
and techniques to decide correct learning rate for experiments of manually setting
learning rate and decay. Specifically, many practical suggestions for manual tuning
of learning rate are presented with the emphasis on careful selection of learning rate
that is directly related with effective model capacity on [23] [24] [25]. Below we

summarize why learning rate selection might be challenging for neural networks.

e Small learning rate can lead to horribly slow convergence while big learning
rate can cause excessive fluctuations on loss curve which end up with saddle

points.

e Finding optimal learning rate is not sufficient for many training tasks. Learning

rate schedules or learning rate decay is usually required to reach best results

12

because training generally needs large steps on earlier epochs and smaller steps

on later epochs.

e Different neural network architectures and datasets require different learning

rates as optimal learning rate and schedule.

e Network architecture and dataset are not only factors that affect optimal learn-
ing rate, mini-batch size is directly related with optimal learning rate. Smaller
mini-batch size usually requires smaller learning rate since gradients generated
from smaller mini-batches are more noisy. In fact, different mini-batch size
have different optimal learning rates even all other settings are the same for
a particular neural network. Moreover, Smith et al. [26] shows that decaying
learning rate and increasing mini-batch size during training can obtain the same

error curves that shows strong dependency between two hyper-parameter.

e Researchers usually utilise their knowledge based on prior experiments for
a particular dataset and/or neural networks. Although common benchmark
datasets may provide extensive literature and prior experiments, newly intro-

duced network models requires tuning carefully.

Considering these challenges to obtain optimal results on SGD training with neu-
ral networks, enormous number of experiments with selection of learning rate and
learning rate annealing schedules require considerable amount of time. Deep learn-
ing researches focus on automated tuning of learning rate instead of these manual
efforts. Adaptive learning rate methods are designed to tune learning rate for each
individual parameter on the fly such as Adam, Rmsprop and AdaGrad etc. which are
briefly mentioned in Section[2.1.2] These methods seems to take the burden of manual
learning rate tuning process because they generally work well with their default pa-
rameters. However, recent researches point out that SGD with momentum can attain
better performance with ideal learning rate and decay schedules. This finding brings
up complex schedules of SGD with momentum. The interest on SGD with momen-
tum motivates us to automatize learning rate tuning process. Our proposed method
will be explained step by step on Chapter[3] Other learning rate tuning methods are

discussed in Section 23]

13

2.3 Learning Rate Search

Many methods have been proposed for automated learning rate selection [27, 28|,
29, 130, 14} 31, 32]]. The ultimate goal is to obtain lowest generalization error in a
minimum time and memory budget. Since importance of optimal learning rate and
learning rate schedule has been known, also discussed in Section @, for a long
time, many researches have been focused on automatized approaches for this purpose.
This chapter covers traditional hyper-parameter tuning approaches, cyclical learning
rate schedules and gradient based learning rate tuning methodologies as a background

of learning rate tuning.

2.3.1 Automated Hyper-parameter Tuning

Automated hyper-parameter tuning can be considered as ancestor of automated learn-
ing rate tuning. There are two main approach in hyper-parameter tuning that are se-
quential and parallel tuning. Sequential methods are similar to manual learning rate
tuning that obtain a model with one of hyper-parameter set, performance of this model
directs the subsequent selection of hyper-parameters. The disadvantage of sequential
tuning is time consumption like manual tuning. However, parallel tuning creates
multiple models of different hyper-parameter settings in parallel that seems to solve
time cost problem while this introduces a computational resource problem which is
also costly. Known examples of parallel tuning are grid search and random search.
Grid search is a hyper-parameter optimization method for machine learning prob-
lems. Although we focus on learning-rate optimization, our problem can be extended
to hyper-parameter optimization problem which has been studied over the decades.
Number of hidden layers, learning rate, regularisation strength and mini-batch size
etc. are hyper-parameters that are needed to be tuned for neural networks. Grid
search is a naive exhaustive search method which requires a set of values defined by
experimenter. In grid search, every possible combination of hyper-parameters forms
an experiment trial which grows exponentially with the number of hyper-parameters.
If the number of parameters and search space is small, grid search would perform in
a reasonable time.

While Grid search and manual search are widely used on hyper-parameter optimiza-

14

tion of machine learning problems -also combined- random search is able to find mod-
els that have as good or better performance over the same search domain. Bergstra
and Bengio[2/] propose the random search which is more efficient in high dimen-
sional spaces of hyper-parameters. Instead of combining all possible values of hyper-
parameters for trials, random search forms experiments randomly from their search
space. Their motivation is that final performance of neural networks mostly rely
on some hyper-parameters more than others that limits grid search because unim-
portant hyper-parameter limits by repeating trials and limiting the important hyper-
parameter search space. However, they also report that 32 dimensional search prob-
lem of deep belief network (DBN) optimization is not as good as sequential combi-
nation of manual and grid search of an expert. However, both random search and
grid search are brute-force approaches, they scale exponentially with the number of
hyper-parameters. Even if the researcher performs experiments on distributed sys-
tems in parallel, increase in hyper-parameter dimension can easily exceed resource

limits due to excessive number of parallel runs.

2.3.2 Cyclical Learning Rates

Cyclical learning rates (CLR) method [28] aims to resolve learning rate and learning
rate schedule tuning problem. The method proposes to train neural network by cycli-
cally varying learning rates within the predefined boundaries instead of decreasing
the learning rate. Boundaries of cyclical learning rate can be found by linearly in-
creasing the learning rate of the network for a few epochs which is called “LR range
test”. The optimal learning rate is inside these boundaries. Then, learning rates when
model accuracy starts to increase and to decrease are taken to use as boundaries of
cycle. Learning rate varies between minimum to maximum boundary and maximum
to minimum boundary in a defined step size during training. These method also re-
quires the selection of step size i.e number of iterations to take a half learning rate
cycle from minimum to maximum. Cycle topology can be triangular or exponential.
CLR experiments of different neural network architectures show that CLR achieves
better accuracy than fixed learning rate methods. Compared with traditional way of
decreasing learning rate over steps, why CLR methods work is explained in two fac-

tors:

15

e [earning rate boundaries include optimal value for the task which helps CLR

to use optimal and closer values to optimal learning rate.

e Minimizing loss around saddle points is difficult because they have small gradi-
ents that slows down the learning, larger learning rates can help to avoid saddle

points.

In the follow-up research of CLR, Smith et al. [29] propose super convergence phe-
nomenon that can be achieved using very large learning rates on cyclical learning rate
method. They present that using large learning rates helps to regularize the network
that result in better model performance. In learning rate range test, increasing learn-
ing rate causes an increase on training loss while test loss is surprisingly decreased at
the same time for Resnet-56 architecture. However, proposed rapid convergence only

showed in a single task for this method.

Another learning rate decaying method similar to cyclical learning rates is SGD with
warm restarts (SGDR) [30]. In this work, Loshchilov et al. proposes to initialize
learning rate to some value that is scheduled to decay with an aggressive cosine an-
nealing schedule. Warm restarts refers to restarting only learning rate while other
model parameters remain the same with the latest step. SGDR improves many state-
of-the-art models error rates on popular datasets. These methods are important since
they show increasing learning rate from time to time to reasonably higher values can
be beneficial for final network performance by finding flat local minima. Disadvan-
tage of these automated schedules is finding learning rate boundaries as minimum
and maximum learning rate still requires additional efforts to achieve optimal perfor-

mance.

2.3.3 Gradient Based Tuning Methods

Another automated learning rate adjustment approach is using gradients to decide
learning rate. Several researches have focused on using gradient information for au-
tomated learning rate tuning. In Schaul et al.’s work [31], they define a formula to
obtain the optimal learning rates for SGD using estimates of the variance of the gra-

dients. This method can find either single global learning rate or learning rates of

16

each parameter and parameter groups. Their method defines a formula that is adapt-
ing “bbprop” which computes the positive estimates of diagonal Hessian terms for
single sample using back propagation [33]]. Moving averages of gradients and diago-
nal Hessian are used to estimate learning rate in their algorithm. Thus, they obtained
an algorithm that automatically decreased learning rate to zero when loss function is
approaching to its optimal value without any manual learning rate search. Zhang. et
al. [14] conduct experiments to show that carefully hand-tuned learning rate can be
competitive with adaptive learning rate optimizers. Their study is not only analyzing
this phenomena but also, they come up with an automated learning rate and momen-
tum tuning approach called Yellowfin. They consider learning rate tuning problem
together with momentum tuning. Similar to Schaul et al.’s work [31], they use noisy
quadratic model. In their tuner, hyper-parameters are tuned in every training step us-
ing curvature range and gradient variance estimates. Another work proposes hyper-
gradient descent method to tune learning rate [32]]. Apart from historical background
of hypergradient that previously considered in optimization literature, they define hy-
pergradient descent as applying gradient descent to learning rate in each training step.
This means calculating the partial derivative of the objective function at the previous
time step with respect to the learning rate. Hypergradient descent applied on SGD,
SGD with Nesterov momentum and Adam is showing that need for manual tuning is

reduced.

17

18

CHAPTER 3

MICRO CROSS VALIDATION ALGORITHMS

In this chapter, micro cross validation algorithms that we propose are described. We
propose two main types of MCV methods. The first type is training step verification
using MCV that accepts or rejects training steps. This method is running with given
learning rate and its schedule (Section [3.I). The second type is automated search of
learning rate. This type applies adaptive search of learning rates using different loss
functions which takes into account the validation batch loss and various combinations
of validation and training batch losses (Section[3.2)). This chapter includes motivation
and algorithmic details of micro cross validation algorithms, more specifically train-
ing step verification using micro cross validation and automated learning rate search

using micro cross validation.

3.1 Training Step Verification Using Micro Cross Validation

The motivation behind Micro Cross-Validation (MCYV) is to reduce user’s effort on
training because to obtain a model which reaches its effective capacity so that per-
forms well on unseen data. Learning noisy patterns from training data and fitting
training data too much is known as overfitting problem which is explained in Section

2.2.1

Training step verification using micro cross-validation intends to remove gradient up-
dates which are not verified by another random mini-batch, i.e. observing decrease on
loss of second random mini-batch with the update of first random mini-batch gradient.
MCYV approach can be considered as batch-level version of classical cross-validation

that requires splitting a validation dataset from training dataset randomly by monitor-

19

ing model generalization on this validation set. Instead of creating separate validation
dataset for multiple times, we propose to apply validation on a random mini-batch in

every training step that can also be a part of training set in latter epochs.

MCYV is different from the standard neural network training process in the following

aspects:

e In each training step, single mini-batch is used for gradient update step while
another random mini-batch is used for validation of this update. In each epoch,
training data is shuffled to make sure that different data points can be cho-
sen as training or validation mini-batches in different epochs. So, validation
mini-batches are not obtained from separate dataset, contrary, validation mini-
batches are directly used on gradient calculation and training updates in subse-

quent epochs.

e Since splitting a validation dataset from training dataset can be biased in terms
of hardness of examples and noise of examples, validation dataset is created
multiple times using different examples from training dataset. So, training
and evaluation of model performance on validation dataset is repeated multi-
ple times that causes excessive time cost. MCV solves this problem since sin-
gle run of MCV uses whole training data and performs validation on different

random mini-batches of training dataset in every step.

e Apart from classical validation and monitoring of model performance, MCV
directly changes the updates of training by validating each update to determine
whether they are found as useful or not. Specifically, after each gradient up-
date, the loss of validation mini-batch is calculated. If loss value of validation
mini-batch is not decreased from previous value that is calculated before the
gradient update step, this gradient update is discarded by reloading previous
model parameters and state. So, all gradient updates are not applied to model

unlike regular training process.

Difference between macro cross-validation and micro cross-validation is presented in
Figure Algorithm [3| shows how MCYV is applied to the SGD with momentum
method.

20

Dataset

Train Test
M,Epochs,
Train Val Test . m],s
/
Train val Test /
/
Train Val Test //
] /
/
. /
; /
Val Train Test /
Dataset
Train Test M, Epochs
Single Run
VIVTTVVTTTTVTVVVTV Test - /,r’
/
TTVTTTVVTVVVVVTTVT Test /
/
/
/
. /
/
VIVTVTVVTTVTVTTVVT Test /

Figure 3.1: Cross-validation uses different splits of validation dataset to monitor train-
ing and tune parameters of model with multiple runs. In each run, different part of
train dataset is used as validation dataset that cannot be used on training updates.
Since splitting dataset creates randomness, average of multiple runs is required for
stable results. Micro cross-validation randomly selects mini-batches for validation in
each epoch. In each training step, randomly selected validation mini-batch used for
validating training update of a train mini-batch. After an epoch is completed, dataset
is shuffled so that different train and validation mini-batches are constructed. That
means a data sample can be in both training set and validation set in different epochs.
Unlike cross-validation, single run of MCV is enough because all of dataset is used

during training.

21

Algorithm 3 Training Step Verification using Micro Cross-Validation for SGD with

Momentum
while training stopping criterion not met do

Sample a mini-batch of m examples from training set: x11, 15 . . . 1, With
corresponding labels 411, y12 . . . Y1, called as batchy
Sample a mini-batch of m examples from training set: o1, 99 . . . Zo,, With
corresponding labels yo1, Yo . . . Yo, called batchs
Calculate loss of batchy : current_loss_batchy < =3 o (L(f(22:), y2:))
Back up parameter values of model and velocity buffer:
prev_parameters <— V6 € model
prev_tv < 1
Compute gradient estimation of batch : g <= =V >, (L(f(x15;0), y1:))
Compute velocity ¥ <— o — eg
Apply parameter update 6 < 6 +
Calculate new loss of batchy : new_loss_batchy <— =3 o (L(f(22:), y2:))
if new_loss_batchy > current_loss_batchs then
Discard latest gradient update by restoring previous model and velocity:
¥+ prev_uv
model.parameters <— prev_parameters
end if

end while

22

3.2 Automated Learning Rate Search Using Micro Cross-Validation

Automated learning rate search using MCV method aims to improve training step ver-
ification by applying learning rate selection based on random validation mini-batch
in each training step automatically. Instead of simply accepting or discarding train-
ing steps based on validation mini-batch, this method tunes learning rate using MCV.
Optimal learning rate and decay schedule selections are crucial for neural network
training performance. Several automated learning rate tuning methods are mentioned
in Section Our method tries to make optimal learning rate selections for each
training step that is defined as learning rates providing smallest loss of validation
batch after each mini-batch update. To extend this idea, we proposed a history based
voting mechanism which keeps exponential moving average of each training step’s
learning rate selection based on second validation mini-batch. Exponential moving
average (EMA) is a moving average the weight of each item decreases exponentially
by time (i.e. iterations) and never reaches to zero. The EMA of series of items can be

calculated as:

Y, t=1
St:
aY,+ (1 —a).S t>1

The « coefficient represents the degree of weighting weather it is fast or slow.It should
be between (0, 1]. If a is closer to 1, older values have faster decreasing effect on the

moving average.

Following concepts are used to construct our naive learning rate search algorithm (i.e.

MCV-Ir-voting):

e Learning rate list : Learning rates that will be used in model training should be
defined at the beginning. Instead of common convention, that is setting single
optimal learning rate and its decay schedule at the beginning of training, array
of learning rates can be initialised at the beginning. Our method tries to select

best learning rate from this list based on validation mini-batch’s loss.
e Best learning rate : In each training step, one mini-batch for gradient update

23

and one another mini-batch for validation is sampled from training set. Lets
say they are batch; and batchs respectively. After gradient calculated using
batch,, gradient update step with each learning rate in learning rate list is ap-
plied on model then batchs loss is calculated for each training step. Learning
rate that most decreases loss of batch, is selected as best learning rate of this
training step. If none of learning rates manages to decrease batchs loss, best
learning rate selected as zero which means a discard on this step. This learning
rate selection and batchs loss comparison is completely fair because after each

update, previous model parameters and velocity array are reloaded.

Voting and learning rate history: In each training step, best learning rate is
found using batch; and batch,. Best learning rate is not used directly for final
gradient update, instead, they are used to calculate exponential moving decay
of learning rates. Each best learning rate is a vote on learning rate history. This
vote updates the learning rate history using EMA formula:

history, = a.vote; + (1 — a).history(t_l)

Top learning rate: Best learning rate is used as a vote on learning rate history.
After update of learning rate history with selected best learning rate, learning
rate that have highest value on history is called top learning rate. Gradient up-
date with batch; is applied with top learning rate in each step. To sum up,
actual learning rate used in the training step is found by all learning rate selec-
tions from the beginning of training to current step. Due to EMA, effect of very

earlier training steps are decreased over time.

24

Algorithm 4 Learning Rate Search Using Votes of Micro Cross-Validation

Require: Learning rate e, momentum parameter o
Require: Initial parameter 6, initial velocity
Require: learning rate selection list: [r_list > typically {0.1,0.01,0.001,0.0001}
Initialize: Ir_history < {0.25,0.25,0.25,0.25} > uniformly in size of Ir_list
Initialize: best_loss < inf
while training stopping criterion not met do
Sample a mini-batch of m examples from training set: 11, 15 . .. Z1,, With
corresponding labels y11, y12 - . . Y1, called as batch,
Sample a mini-batch of m examples from training set: o1, 99 . . . Lo, With
corresponding labels y21, Y22 . . . Yo, called batchs
best_lr < FindBestLR(batchy,batchy, lr_list)
Ir_history < UpdateHistory(best_lr)
€ < TopLR(lr_list,lr_history)
Compute velocity ¥ <— ot — eg
Apply parameter update 6 < 6 + o

end while

25

Algorithm 5 Find Best Learning Rate for Training Step

Input: batchy : x11, 212 ... 1 and Y11, Y12 - - - Yim
Input: batchs : x21, x99 ... Top and Yo1, Y22 - . . Yo
Input: learning rate selection list: {r_list > typically {0.1,0.01,0.001, 0.0001}
Calculate loss of batchy : current_loss <— = >, (L(f(w2), y2i))
Compute gradient estimation of batch, : g + %Vg Yo L(f(21350), y1i))
Back-up model parameters and momentum velocity:
prev_parameters < Y0 € model
prev_1 « 1
for all [such that ! € Ir_list do
€<+ 1
Compute velocity ¥ <— o — eg
Parameter updates 6 <— 0 + 19, VO € model
Calculate new loss of batchsy : new_loss <— = >, (L(f(x2), y2i))
if (new_loss < current_loss) & (new_loss < best_loss) then
best_lr «+ 1
best_loss < new_loss
end if
Discard latest gradient update by restoring previous model and velocity:
Y < prev_uv
model.parameters < prev_parameters
end for

return best_Ir

Algorithm 6 Update Learning Rate History
Input: learning rate selection list: Ir_list > typically {0.1,0.01,0.001, 0.0001}

Input: learning rate history: lr_history, best_lr € lr_list
votes < {lry <= 0,lry < 0...1lr, < 0}
votes {best_Ir} + 1
Ir_history < a.votes + (1 — «).lr_history

return [r_history

26

Final proposed learning rate search algorithm is adaptive learning rate search using
loss logs of MCV. This algorithm is different in terms of learning rate varieties re-
spect to learning rate search using votes of MCV algorithm. Unlike naive learning
rate search, this algorithm selects best learning rate based on average of validation
losses. Then, new learning rate selection list is constructed by following formula:
lr_list = [5[7‘, 2lr, Zgllr, lr, %lr, %lr, %lr}

By this formula, all possible values between minimum and maximum learning rate
can be used instead of predefined 4-5 learning rates. Adaptive learning rate search us-
ing loss logs of MCYV algorithm calculates average of validation loss values obtained
from micro cross-validation to select learning rate for each epoch. For this algorithm
using validation loss is a general idea but we also test the effect of train loss after each
step of candidate learning rate. Different combinations of validation loss of batch_2
and training loss of batch_1 are considered. The formula for logging losses is:

(1 — a) xval_loss + a * train_losses, a € [0,0.1,0.3,0.5]

For this algorithm (Algorithm), selection of learning rate strategy is defined in two

different approaches:

e Learning rate having minimum validation loss is selected.

e [earning rates whose average validation loss is lower than the average loss of
validation batch before training update, i.e. avg_current_loss, are collected.
Then, the largest valued learning rate of them is selected. If none of learn-
ing rate can decrease validation loss in average, learning rate having minimum

validation loss is selected like first approach.

Stopping criteria of adaptive learning rate search using loss logs of MCYV is defined

as following steps:

e [f average validation loss of epoch is not decreased in pre-defined epoch limit,

1.e. patience, training is stopped.

e [f average validation loss of epoch is none because of exploding gradients prob-
lem comes from bigger learning rates, training is stopped and epoch of last

recorded minimum average validation loss is selected as stopped epoch.

27

e If first and second criterias are not executed, training is done with pre-defined

epoch number.

Algorithm 7 Collect Losses for Learning Rate Selection

Input: batchy : x11, 212 ... 1, and Y11, Y12 - - - Yim
Input: batchs : xa1, 299 ... Top and Yo1, Y22 - - - Yo
Input: learning rate selection list: [r_list > typically {0.1,0.01,0.001,0.0001}
Initialize: losses < {}
Calculate loss of batchy : current_loss <— = >, (L(f(x2), y2i))
Compute gradient estimation of batch, : g + %Vg Yo L(f(21350), y1i))
Back-up model parameters and momentum velocity:
prev_parameters < Y0 € model
prev_1 < 1
for all [such that ! € Ir_list do
€<+ 1
Compute velocity ¥ <— o — eg
Parameter updates 6 <— 0 + 19, VO € model
Calculate new loss of batchy : new_loss <= = >, (L(f(x2), y2i))
losses < losses + {new_loss}
Discard latest gradient update by restoring previous model and velocity:
Y < prev_uv
model.parameters < prev_parameters
end for

return losses, current_loss

28

'$9)el FUIUIRI] JO SOSSO[9FBIOAR UO PIASeq Paod[as SI djel Surured] ‘yooda yoes Jo pua ay3 1y "yoode snoraaid Jo ojer Sururea] pajod[as ay)
s porjdde st dojs Sururer remoe ‘yoode Jo pu 9y) Je UOISIOP)kl JUTUIRI[JOJ PAIII[0D AIe $AJel SUTUILI] 9JBPIPURD JO SISSO[UOHEPI[RA
[[e USYA\ ‘Topow dn payorq ay} Yirm palolsal dre Jopng wnjudwow Joziwndo pue siojowered [opow ‘Udy], ‘g~ Y27PQq JO SSO[UOLEpI[eA
)M UONBUIQUIOD YIIM [~ 427Dq JO SSO[Surures) apnjour os[e so[ni Jur330[SSO[JO QWOS "UOISIOP)kl SUTUIRI[J9)Ie] J0J PAJO[[0d SI YIIym
[opow pajepdn uo paje[nd[ed SI g~ 4230q JO SSO[uonepifea ‘uay], -oyepdn Sururen woyiad o) 1ozrwundo s [opow Ay} 0) 39S SI djel FuruIed|
v dois [ewn oyex Surures| yoea Jo pud y) I8 JI03SAI [opowl JAYlInJ Joj dn payorq are s1ojowered [opowl [V "S9Jel SUIUIBI[9JBPIPURD (OB
Jo das oyepdn Sururer 10J pasn 9q [[IM SIUAIPERID "UONOUNJ JANDA[QO J9A0 T~ y27Dq 03 102dsal paje[nofed e s1vjoweted [9poul Jo SJUSIPLID)
“Josejep Sururer) woiy pajduwres axe ‘g~ yo7pq *9°1 ‘YoIeq-Turl UOHBPI[BA PUR [~ 423Dq 9’1 ‘Ydieq-Turwu urureny ‘de)s Sururesy yoea uj :g'¢ oIngnj

|opo - selepipuEd :
e Jayng pue : 18ng
- oy jeaday sigjeweled [spow . WnusWoW
: PaAes a.0jsay 7 ‘| pue sigjawiesed
ayepdn yusipeib - . jepow aneg
|euy Ajddy : ayepdn .
: waipesb Addy . T
q . . .\.\
: . zZuojeq Buisn -~
. $S0 :
uonosjes syoods 4 Ew__o._u SsofuoReplieA .| |apopy p— 1Spon
snoinald jo 17 185 : Sienoien 1'0="18s Ly :
S R \..:
\, sjuaipelb
/@%%o

\

ErDL
1 sajdwes N
P Lyoreg

ssidues N
cynieg Au./.. -

18l LAALLIALALLAANALALALA

jeseleq

29

Algorithm 8 Adaptive Learning Rate Search Using Loss Logs of Micro Cross-

Validation
Require: Learning rate e, momentum parameter o

Require: Initial parameter 6, initial velocity v/
Require: learning rate selection list: [r_list > typically {0.1,0.01,0.001,0.0001}
Initialize: losses < {} , Ir < min(lr_list)
for each epoch € total_epochs do
if epoch > 1 then
Ir < SelectLR(avg_losses, current_loss, Ir_list)
lr_list + [5[7‘, 2lr, Zgllr, Ir, %lr, %lr, %lr]
end if
avg_losses < {0,0,0,0,0,0,0}
avg_current_loss < 0
while sample mini-batches batch_1, batch_2 € training_set do
losses < Collect Losses(batchy, batchsg, lr_list)
avg_losses < avg_losses + losses
avg_current_loss <— avg_current_loss + current_loss
e+ lIr
Compute velocity ¥ <— o — eg
Apply parameter update 6 < 6 + 9
end while
avg_losses < avg_losses/batch_num
avg_current_loss < avg_current_loss/batch_num

end for

30

CHAPTER 4

EXPERIMENTS

4.1 Introduction

In this chapter, we present our experimental results for the micro (i.e. batch-level)
cross-validation (MCV) methods described in Chapter [3] We designed our experi-
ments to answer the central questions that we pose in the Introduction section of this

thesis:

e [Q1] In a setting where learning rate and its decay schedule are given, does
micro cross-validation help improve generalization? Does it yield a better test

set accuracy?

e [Q2] In what ways can we use micro cross-validation to automate the search

for optimal learning rate and learning rate schedule?

e [Q3] Do MCV methods that automatically select learning rates improve test set

accuracy over baseline methods?

Exploring these questions on a single dataset using a single network architecture
would give us a limited picture. In order to increase the generality of our answers,
in our experiments, we used three image datasets, two of them being widely used
small-scale benchmark datasets (CIFAR-10 [34] and SVHN [35]]) and one of them
being a larger scale dataset for age prediction from face images (Adience [36]). We
evaluated three different convolutional neural network (CNN) architectures: a small,

custom CNN, a ResNet[20] and a VGG|37]] network.
To explore answers to the above questions, we proposed various MCV methods. For

31

QI, as done in the standard gradient descent optimization, we simply calculate the
gradient but before doing the update, we test this gradient direction with the current
learning rate on a random mini validation batch. If the loss is decreased on this
validation batch, the gradient update is accepted, and otherwise it is rejected. For
Q2, we proposed two different adaptive learning rate search methods. The first one
computes a moving average of the votes for the best batch-level learning rates, and
instantaneously uses the highest-voted learning rate for actual gradient updates. In the
second method, a constant LR is used during an epoch and while doing so, average
validation loss is computed per LR in the search array. At the beginning of a new
epoch, we choose the best. For this second method, we proposed two different loss
functions. These loss functions take into account the validation batch loss and various
combinations of validation batch loss and training batch loss. To answer Q3, we used
SGD with momentum learning method within a naive (grid) search cross-validation,

early-stopping framework as our baseline method.

We describe the datasets in Section [4.2] the network architectures in Section [4.3] and
performance metrics in Section 4.4l The rest of the sections present and discuss the

results of our experiments.

4.2 Datasets

4.2.1 CIFAR-10

The CIFAR-10[34]] dataset contains 60000 32x32 color images from 10 classes which
are airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. 50000

images used as training examples and remaining 10000 images used as test examples.

4.2.2 SVHN

The Street View House Numbers (SVHN) dataset [35] contains colored digits from
Google Street View images which are obtained from real world street house num-
bers. We used the cropped and centered version of SVHN that contains 32x32 73257

training examples and 26032 test examples.

32

4.2.3 Adience

The Adience[36] dataset includes face images for the tasks of age and gender predic-
tion. The dataset consists of 26,580 images from 2,284 subjects which are labeled to
following 8 age interval classes ((0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, 60-)).
Cropped and aligned images are also provided which we used in our work. Provided
train, test, validation sets include 11823, 4316 and 1284 images respectively. We

performed only age classification task for Adience dataset.

4.3 Network Architectures

Experimented architectures of CIFAR-10 and SVHN, which are Resnet-18 and VGG-
11, are demonstrated and explained in Figure 4.1} Also, we conduct experiments for
small custom CNN architecture that have only convolutional and fully connected lay-
ers without any regularization such as batch normalization and dropout. Small CNN
architecture for Cifar-10 includes six 3x3 convolutional layers which have 48, 48, 96,
96, 192, 192 output channels respectively. Convolutions are followed by three fully
connected layers which are 512, 265, 10 output size respectively. Since digit classi-
fication is an easier task, we used two different small architectures for CIFAR10 and
SVHN. Small CNN architecture of SVHN experiments has four 3x3 convolutional
layers which have 32, 32, 64, 64 output channels respectively. Convolutions are fol-
lowed by 2 fully connected layers, 512 and 10 size. Unlike CIFAR-10 and SVHN,
Adience dataset is more challenging (it has high-resolution human face images). So,
a large capacity neural network can be beneficial for this dataset’s age classification

task. So, we choose to use Resnet-50 architecture for Adience.

33

Input, 32x32

Input, 32x32

|

3x3 Conv, 64
‘ 3x3 Conv, 64 + BN
pool, /2 l
'
3x3 Conv, 128 Basic Block, 64
! v
pooﬁ, /2 Basic Block, 64
v
3x3 Corv, 256 Basic Block, 128
v
& COI'V’ 238 Basic Block, 128
pool, /2 . \
l Basic Block, 256
3x3 Cony, 512 \
* Basic Block, 256
3x3 Cony, 512 v
* Basic Block, 512
pool, /2 ! \
lv Basic Block, 512
3x3 Conv, 512
‘ avg pool
3x3 Convy, 512 FC, 10
' '
pOOtL /2 Output
FC, 512
¢ Basic Block |
Dropout L
l’ Conv 3x3
FC, 512 4 BN+RELU 4
Conv 3x3
DrOfout l BN
FC,J' 10 lF{ELU
Output

Figure 4.1: VGG-11 and Resnet-18 architectures are shown respectively. VGG-11 ar-
chitecture consists of 3x3 convolutional layers followed by 3 FC layers with dropout
layers. Resnet-18 architecture includes 3x3 convolutional layer followed by 8 basic
blocks and single FC layer for output. Basic block can be shown bottom of Resnet-18
architecture that includes two 3x3 convolutional layers with identity shortcut connec-
tion which is added to stacked layers output. Note that only Resnet-18 architecture

has batch normalization on convolutional layers.

34

4.4 Performance Metrics

Performance of baseline methods and automated adaptive learning rate search meth-
ods are also compared in terms of time cost. Two different performance metrics are

used:

e Running time of experiments: Running (wall clock) time of baseline experi-
ments and automated adaptive learning rate search experiments are reported for
comparison. For the baseline, running time of all experiments for each learn-
ing rate and its decay settings are summed up to obtain total time passed while
the best learning rate and its decay setting is found. For adaptive learning rate
search methods, time cost of single execution is reported using average epoch
counts. Multiple experiments of the same learning rate setting are ignored for

baseline and our methods.

o Theoretical complexity: Complex operations of training, i.e. high time cost,
are forward, backward and step operations. Forward operation refers to calcula-
tion of output layer’s values through passing all neurons of DNN with input. A
single forward is required for calculation of loss between output of network and
real classes. Backward operation is performing backpropagation from networks
last layer to the first layer by applying the chain rule to calculate gradients. Af-
ter the backward operation, weights (i.e. parameters) of network are updated
with step operation. Step operation calculates final parameter update inside
optimizer with gradients (e.g. momentum buffer calculation for SGD with mo-
mentum). Tabled.T|shows the number of those operations per training step and
explains those numbers with algorithmic details. An experiment’s theoretical
complexity is calculated with the following formula:

cost = avg_epochs x steps_per_epoch x [(# forward + #backward), #step)

35

Table 4.1: Theoretical complexity of a training step for classical training and adap-
tive learning rate search methods are reported for comparison. These numbers are
given for 7 learning rates in learning rate search list for querying. Classic training
(baseline) requires single forward and backward followed by single step update on
model weights. Even if classical training seems effective in terms of theoretical com-
plexity, multiple runs for different learning rates result in poor performance at total.
Since Method1 and Method3 collect validation losses of candidate learning rates, 7
forwards are applied in each step before the actual training step’s forward operation.
Also, current validation loss calculation (validation loss value before new step with
candidate learning rate) adds one more forward operation that is 9 total forward op-
erations per training step. Method 2 uses both training batch’s loss and validation
batch’s loss of each candidate learning rate step operation. So, this adds 14 forward
operations to the two forward operations (average current validation loss and actual
step) that is 16 in total. Since gradients are re-used for each candidate step, backward
count is 1 for all custom methods. Step counts of learning rate search methods are
equal to the number of the candidate learning rate for search phase (which is 7 in our

adaptive algorithms) and one more actual applied step that is total 8.

Method #Forward | #Backward | #Step Update
Baseline 1 1 1
MCV-Ir-voting ILRI+2 1 ILRI+1
Method 1 ILRI+2 1 ILRI+1
Method 2 2ILRI+2 1 ILRI+1
Method 3 ILRI+2 1 ILRI+1

36

4.5 CIFAR-10 Experiments

We experimented with several different MCV methods on CIFAR-10 dataset using
small CNN, Resnet-18 and VGG-11 architectures. Architectures are explained in
Section 4.3|in detail. To compare our proposed methods with classical training, first,
we obtain baseline results, we used early stopping for hyper-parameter tuning. Specif-
ically, learning rates which are {0.1,0.01,0.001,0.0001} without any decay or com-
plex schedule are evaluated using early stopping algorithm of patience of 20 epochs.
Each learning rate is trained 5 times to obtain average results because each time we
split training dataset into stratified random %80 for training and %20 for validation
dataset that introduces randomness on results. Epoch count is decided from the first
model run with early stopping. Second model using the same setting and %100 of
training dataset is trained with the epoch count found on first model run with early
stopping. Second model is evaluated to obtain final test error value and accuracy.
This dataset split introduce randomness between runs that requires multiple runs to
obtain final learning rate and decay setting selection. The best resulting learning
rate is selected as the base learning rate for further experiments with several learn-

ing rate decay selections. Learning rate decay is an exponential decay formulated

1

as initial_lr * 15— ——0— T decayesiop”

Baseline runs are conducted separately for SGD with
momentum and Adam optimizers. Since Adam uses implicit decaying, learning rate

decay is not applied to experiments explicitly. Baseline results of all architectures are

demonstrated in Table 4.2} 4.3]and 4.4]

37

Table 4.2: CIFAR-10 baseline results on small CNN architecture. Experiments
with average epoch count, test accuracy and test loss that are conducted to obtain
learning rate and learning rate decay setting of best accuracy result. Each setting
of learning rate and learning rate decay is repeated 5 times due to randomness of
%80-%?20 training set, validation set splits for early stopping. The best resulting
learning rate and learning rate decay will be used in further experiments of the same
CNN architecture. Since none of regularization methods are not applied to network,
overfitting starts quickly according to early stopping with 20 epoch patience factor.
Reported epoch numbers in the table shows epochs that gives smallest validation error

with a 20 more epoch training tries, i.e. 20 epoch patience of early stopping.

Optimizer LR LR Decay | Epochs | Test Loss | Test Acc
Momentum SGD 107! - 3 1.77 33.5
Momentum SGD 1072 - 6 0.72 76.37
Momentum SGD 1073 - 16.6 0.86 72.23
Momentum SGD 10~4 - 80 0.97 67.21
Momentum SGD 1072 1073 7.4 0.77 74.63
Momentum SGD 1072 5.107% 6.8 0.75 75.46
Momentum SGD 1072 1074 6.4 0.72 76.6
Adam 1071 - 13.8 2.31 10
Adam 10—2 - 14.4 2.20 14.33
Adam 1073 - 4.8 0.68 77.3
Adam 10~ —~ 12 0.79 74.25

38

Table 4.3: CIFAR-10 average baseline results on Resnet-18. Experiments with av-
erage epoch count, test accuracy and test loss that are conducted to obtain learning
rate and learning rate decay setting of best accuracy result. Each setting of learning
rate and learning rate decay is repeated 5 times due to randomness of %80-%?20 train-
ing set, validation set splits for early stopping. The best resulting learning rate and
learning rate decay will be used in further experiments of the same Resnet-18 archi-
tecture. Since none of regularization methods are not applied to network, overfitting
starts quickly according to early stopping with 20 epoch patience factor. Reported
epoch numbers in the table shows epochs that gives smallest validation error with a

20 more epoch training tries i.e. 20 epoch patience of early stopping.

Optimizer LR LR Decay | Epochs | Test Loss | Test Acc
Momentum SGD 107! - 6.2 0.63 80.7
Momentum SGD 1072 — 4.4 0.63 79.3
Momentum SGD 1073 - 6.8 0.75 76.12
Momentum SGD 10~4 - 13.6 0.92 68.07
Momentum SGD 107t 1073 5.4 0.58 81
Momentum SGD 1071 104 6.4 0.60 81.5
Momentum SGD 101 5.1074 6.0 0.60 81.44
Adam 1071 - 9 0.76 77.04
Adam 1072 - 5.6 0.61 80.17
Adam 1073 — 6.4 0.59 82.27
Adam 1074 - 34 0.73 75.35

39

We performed the naive versions of micro cross-validation experiments on training
step verification (i.e. MCV-discard) that only decides to accept or discard train-
ing step. To compare MCV method and baseline, epochs that have approximately
equal number of updates are selecting as stopped epoch of MCV-discard method. We
also performed naive learning rate search algorithm (i.e MCV-Ir-voting) which is ex-
plained in Algorithm]in Chapter[3] Basically, this method combines a naive learning
rate search and training verification using MCV. Pre-defined epoch count is used for
MCV-Ir-voting method. Querying learning rates are {0.1,0.01,0.001,0.0001} in this

learning rate search method.

Final proposed adaptive learning rate search methods are summarized in following:

e Adaptive LR search method 1: Top learning rate is selected based on average
loss of validation mini-batches at the end of each epoch. In each step, validation
losses are collected then, these losses of each learning rate are averaged at the
end of epoch. Learning rate having smallest average validation loss is selected

for the subsequent epoch.

e Adaptive LR search method 2 Top learning rate is selected based on average
validation loss and training loss combination at the end of each epoch. In each
step, validation and training losses are collected then, these losses of learning
rates are averaged at the end of epoch with following formula:

(1 — @) xval_loss + alpha = train_losses, o € [0.1,0.3,0.5]

Learning rate having smallest average loss is selected for the subsequent epoch.

e Adaptive LR search method 3 This method only uses validation losses of
validation mini-batch like method 1. Different from method 1, this approach
selects the largest learning rate that decreases the validation loss compared to
previous validation loss calculated at the beginning of training step. If none of
learning rates decreases validation loss with the training update, learning rate

that have minimum validation loss is selected.

For these methods, initial learning rate list, i.e. querying learning rates, is
{0.1,0.01,0.001, 0.0001} and change rule of learning rate list is:

lr_list = [5l7“, 2lr, %lr, Ir, %lr, %lr, %lr]

40

Table 4.4: CIFAR-10 average baseline results on VGG-11 architecture. Baseline
experiments with average epoch count, test accuracy and test loss that are conducted
to obtain learning rate and learning rate decay setting of best accuracy result. The
same early stopping algorithm is used of other networks. Each setting of learning rate
and learning rate decay is repeated 5 times due to randomness of %80-%20 training
set, validation set splits for early stopping. The best resulting learning rate and learn-
ing rate decay will be used in further experiments of the same VGG-11 architecture.
Since none of regularization methods are not applied to network, overfitting starts
quickly according to early stopping with 20 epoch patience factor. Reported epoch
numbers in the table shows epochs that gives smallest validation error with a 20 more

epoch training tries i.e. 20 epoch patience of early stopping.

Optimizer LR LR Decay | Epochs Test Loss | Test Acc
Momentum SGD 101 - None None 10
Momentum SGD 1072 - 9.8 0.80 75.4
Momentum SGD 1073 - 42.4 0.96 73.26
Momentum SGD 1074 - 80 1.77 31.3
Momentum SGD 1072 1073 13.2 0.82 73.3
Momentum SGD || 1072 1074 9.8 0.78 75.72
Momentum SGD || 1072 5.1074 11 0.85 73.61
Adam 101 - 11.2 2.30 10
Adam 1072 - 12.8 2.30 10
Adam 1073 - 7.4 0.84 75.1
Adam 10~4 — 9.2 0.83 73.05

41

Each of our customs methods is run 10 times to report average results due to ran-
domness of PyTorch Python library and CUDA and random split of mini-batches in
MCYV validation. Our test environment includes 2x Xeon Scalable 6148 2.40 GHz
CPU processor with 16GB RAM and 4x NVIDIA Tesla V100 16GB. Also, Cuda 9.0
version installed on test environment. The models are implemented in Pytorch but we
also used Keras implementation with Tensorflow backend in very earlier experiments.
Complete results of MCV methods are shown in Table @] that includes small CNN,
Resnet-18 and VGG-11 architectures’ results.

MCV-discard method’s results show that verification of training step and discarding
some of them mostly finalized in high accuracy. However, a few outliers of Resnet-18
runs show that training can be failed due to discarding too much update. Moreover,
defining a stopping criteria based on number of discarded step count is not possible
since number of discard count among epochs is not decreasing or increasing over
epochs. MCV-Ir-voting combines MCV-discard and naive learning rate search which
is explained in Algorithm[d]and[5] Compared to MCV-discard, number of discards are
decreased since training tends to select smallest learning rate instead of discarding the
step of pre-defined learning rate. Also, MCV-Ir-voting results show that some steps
select highest learning rates 0.1 and 0.01 at earlier three epochs. However, training
continues with selecting more and more smallest learning rates at very earlier epochs
that causes underfitting of network and slow down the training. Since MCV-discard
and MCV-Ir-voting did not yield a consistent improvement on CIFAR-10 (in addition
to the other mentioned problems), we decide to continue with other adaptive learning
rate search methods (which are in Table 4.5 as Method1, Method2 and Method3) for
further experiments of SVHN and Adience.

42

Table 4.5: Results of MCV methods on CIFAR-10. Small CNN, Resnet-18 and

VGG-11 test accuracy and loss values are reported with theoretical and time costs.

Method Epoch fest | Test Theoretic Cost Time
Loss | Acc. Cost
Baseline SGD 6 0.72 | 76.6 | (~656K ,~378K) | 36min 46s
MCV-discard 44 0.75 | 77.19 - -
MCV-Ir-voting 100 1.41 | 66.74 | (~273K,~195K) | 25min 40s
% Method 1 53.2 | 091 | 68.48 | (~285K, ~228K) | 22min 56s
© Method 2, a =0.1 || 356 | 1.03 | 73.59 | (~368K, ~173K) | 19min 38s
Method 2, a =03 || 5.2 1.68 | 38.37 | (~167K, ~78K) | 8min 54s
Method 2, a=0.5 || 4.4 1.49 | 45.68 | (~162K, ~72K) | 8min 37s
Method 3 65.8 | 2.24 | 71.96 | (~334K, ~268K) | 27min 10s
Baseline SGD 6.2 0.61 | 81.5 | (~480K, ~240K) | 2h2min
MCV-discard 68 1.51 | 61.92 - -
oo || MCV-Ir-voting 100 | 0.95 | 70.33 | (~273K, ~195K) | 1h 17min
Té Method 1 100 | 096 | 65.3 | (~390K, ~312K) | 1h 40min
E Method 2, a =0.1 100 | 0.95 | 68.71 | (~664K, ~312K) | 2h 12min
Method 2, « =03 || 559 | 1.01 | 75.29 | (~503K, ~237K) | 1h4Imin
Method 2, a =05 || 444 | 0.76 | 81.03 | (~427K, ~201K) | 1h25min
Method 3 82.7 | 093 | 7691 | (~390K, ~312K) | 1h 40min
Baseline SGD 9.8 0.80 | 75.72 | (~416K,~208K) | 1h 34min
MCV-discard 100 | 0.89 | 74.09 - -
_ || MCV-Ir-voting 100 1.56 | 41.56 | (~137K, ~98K) | 33min 30s
5 Method 1 70.9 | 1.04 | 63.31 | (~178K, ~142K) | 37min 7s
g Method 2, o =0.1 || 100 1.87 | 68.05 | (~332K, ~156K) | 52min 30s
Method 2, o =0.3 26 0.89 | 7391 | (~153K, ~72K) | 24min 9s
Method 2, « =05 || 144 | 092 | 70.74 | (~114K, ~54K) | 18min 4s
Method 3 47 1.54 | 77.51 | (~121K, ~105K) | 27min 21s

43

4.6 SVHN Experiments

Comprehensive experiments that measure the accuracy and performance of adaptive
learning rate search methods are also conducted for SVHN dataset. Since image
dimensions (32x32) are equals to CIFAR-10 dataset images, the same architectures
are used as Resnet-18 and VGG-11. However, we used different smaller CNN from
CIFAR-10 that have less convolutional filters. Basic CNN architecture designed as
four 3x3 convolutional layers which have 32, 32, 64, 64 output channels respectively.

Convolutions are followed by 2 fully connected layers, 512 and 10 sized.

The same test environment of CIFAR-10 experiments is also used in SVHN exper-
iments. Baseline methods are obtained with the same early stopping procedure that
repeated 5 times for each learning rate setting which is explained in Section|4.5] Base-
line results of small CNN, Resnet-18 and VGG-11 are reported in Tables @ and
4.8

44

Table 4.6: SVHN average baseline results on small CNN. Experiments with aver-
age epoch count, test accuracy and test loss are reported. They are conducted to obtain
learning rate and learning rate decay setting that gives best accuracy result.Each set-
ting of learning rate and learning rate decay is repeated 5 times due to randomness
of %80-%?20 training set and validation set splits for early stopping. Final accuracy
results are obtained from models trained with %100 training set with epoch counts

found by early stopping.

Optimizer LR LR Decay | Epochs | Test Loss | Test Acc
Momentum SGD 107! - 5 0.55 84.75
Momentum SGD 1072 - 6 0.36 90.16
Momentum SGD 1073 - 16.8 0.46 87.79
Momentum SGD 1074 - 30 0.97 77.84
Momentum SGD 1072 1073 5.6 0.39 89.16
Momentum SGD 1072 5.1074 5 0.37 89.56
Momentum SGD 1072 10~ 4.5 0.36 89.66
Adam 107! - 14.2 2.23 19.58
Adam 1072 - 15.2 2.22 19.58
Adam 1073 — 3.8 0.33 91.08
Adam 1074 — 10 0.41 89.1

45

Table 4.7: SVHN average baseline results on Resnet-18. Experiments with average
epoch count, test accuracy and test loss are reported. They are conducted to obtain
learning rate and learning rate decay setting that gives best accuracy result.Each set-
ting of learning rate and learning rate decay is repeated 5 times due to randomness
of %80-%?20 training set and validation set splits for early stopping. Final accuracy

results are obtained from models trained with %100 training set with epoch counts

found by early stopping.
Optimizer LR LR Decay | Epochs | Test Loss | Test Acc
Momentum SGD 1071 — 4.2 0.21 94.17
Momentum SGD 1072 — 3.4 0.22 93.69
Momentum SGD 1073 - 6 0.26 92.50
Momentum SGD 1074 - 23.6 0.30 91.02
Momentum SGD 1071 1073 3.8 0.20 94.25
Momentum SGD 1071 5.1073 3.2 0.20 94.30
Momentum SGD 1071 1074 3.8 0.21 94.01
Adam 1071 - 13.4 1.07 62.81
Adam 1072 - 15.2 0.22 93.63
Adam 1073 - 3.8 0.21 94.12
Adam 10~ - 10 0.26 92.18

46

Table 4.8: SVHN average baseline results on VGG-11. Experiments with average
epoch count, test accuracy and test loss are reported. They are conducted to obtain
learning rate and learning rate decay setting that gives best accuracy result.Each set-
ting of learning rate and learning rate decay is repeated 5 times due to randomness
of %80-%?20 training set and validation set splits for early stopping. Final accuracy
results are obtained from models trained with %100 training set with epoch counts

found by early stopping.

Optimizer LR LR Decay | Epochs | Test Loss | Test Acc
Momentum SGD 1071 - None None None
Momentum SGD 1072 - 8 0.27 92.3
Momentum SGD 1073 - 37.8 0.26 90.34
Momentum SGD || 1072 1073 15.8 0.32 91.32
Momentum SGD 1072 5.107% 8.6 0.30 91.94
Momentum SGD 1072 1074 9.4 0.30 92.53
Adam 1071 — 10 2.23 19.58
Adam 1072 — 11.2 2.22 19.58
Adam 1073 - 54 0.28 92.3
Adam 10~ - 7 0.29 91.7

47

Table 4.9: Adaptive learning rate search results of SVHN. Small CNN, Resnet-18 and

VGG-11 architectures’ test accuracy and loss values are reported.

Method Epoch Test | Test Theoretic Cost Time
Loss | Acc. Cost
Baseline SGD 4.8 0.36 | 90.16 | (~440K, ~220K) | 36min 30s
Method 1 27.8 | 037 | 89.55 | (~137K, ~109K) | 14min 25s
% Method 2, a =0.1 || 334 | 0.62 | 89.15 | (~260K, ~122K) | 17min 37s
Z | Method2, a=03|| 6 | 055 | 8330 | (~126K,~60K) | Smin 35
Method 2, a=0.5 || 3.6 1.20 | 58.85 | (~115K, ~54K) | 7min 47s
Method 3 50 0.82 | 90.27 | (~200K, ~160K) | 21min 17s
Baseline SGD 3.2 0.20 | 94.3 | (~388K, ~194K) | 2h 47 min
« || Method 1 80.5 | 0.40 | 88.53 | (~286K, ~229K) | 2h 2 min
:é Method 2, a=0.1 | 92.6 | 031 | 91.45 | (~496K, ~229K) | 2h 53 min
~ || Method 2, a=0.3 || 66.25 | 0.38 | 93.78 | (~420K, ~197K) | 2h 29min
Method 2, « =05 || 234 | 027 | 92.73 | (~211K,~99K) | 1h 15min
Method 3 72.4 | 0.25 | 93.95 | (~264K, ~212K) | 1h 53min
Baseline SGD 9.8 0.30 | 92.53 | (~436K, ~218K) | 1h 37min
B Method 1 100 | 0.45 | 86.25 | (~286K, ~229K) | 59min 55s
5 Method 2, «=0.1 || 13.7 | 146 | 48.7 | (~163K,~77K) | 25min 54s
g Method 2, « =03 | 3.4 205 | 263 | (~114K, ~54K) | 17min 59s
Method 2, a =0.5 2 223 | 19.6 | (~107K, ~50K) | 16min 54s
Method 3 45.7 | 1.01 | 72.08 | (~188K, ~150K) | 39min 32s

48

4.7 Adience Experiments

Since Adience images are collected from real world social media, this dataset rep-
resents complex nature. We aim to observe proposed methods performance on this
dataset because of this complex nature and providing a different task (rather than
CIFAR-10 and SVHN datasets) which is age classification of human faces. Since the
age classification task and images are more complex, we used Resnet-50 architecture
for Adience experiments The same test environment of previous experiments is also
used in Adience experiments. Baseline methods results are obtained with the early
stopping procedure that repeated 3 times for each learning rate setting. Since train,
test, validation sets are provided, we used provided validation set in all experiments
instead of random validation set for each experiment. Another reason of using pro-
vided train-test-validation splits is that simple stratified sampling is not enough for
this dataset. Because different images of the same subject should not be in both train

and test splits in order to prevent overfitting.

49

Table 4.10: Adience average baseline results on Resnet-50. Experiments with av-
erage epoch count, test accuracy and test loss are reported. They are conducted to ob-
tain learning rate and learning rate decay setting that gives best accuracy result.Each

setting of learning rate and learning rate decay is repeated 5 times.

Optimizer LR LR Decay | Epochs Test Loss | Test Acc
Momentum SGD 101 - 26.6 1.47 50.12
Momentum SGD 1072 - 12.8 1.65 48.64
Momentum SGD 1073 - 16.4 1.68 44.81
Momentum SGD 1074 - 77 1.71 42.61
Momentum SGD 1071 1072 139.5 1.44 48.64
Momentum SGD 101 1073 45.6 1.46 49.53
Momentum SGD 1071 5x1073 65.4 1.54 45.86
Momentum SGD 1071 1074 24.4 1.37 51.02
Adam 1071 — 25.2 1.51 47.45
Adam 1072 - 15.6 1.38 51.94
Adam 1073 - 11.2 1.47 53.33
Adam 1074 — 8 1.42 49.25

50

Table 4.11: Adience average adaptive learning rate search using MCYV results
on Resnet-50. Experiments with average epoch count, test accuracy and test loss,

theoretical and wall clock time cost are reported.

Test Test
Method Epoch Theoretic Cost | Time Cost
Loss Acc.
Baseline SGD 244 1.37 | 51.02 | (~522K, ~261K) | 26h 16min
Method 1 75.6 1.80 | 39.11 | (~176K, ~141K) | 3h 38min

Method 2, o =0.1 96.7 1.63 46.75 | (~314K, ~148K) | 4h 13min
Method 2, o =0.3 81.6 2.14 48.2 | (~314K, ~148K) | 4h 13min
Method 2, o =0.5 72.6 2.28 52.50 | (~291K, ~137K) | 3h 54min
Method 3 100 1.48 46.41 | (~185K, ~148K) | 3h 49min

51

52

CHAPTER 5

CONCLUSION

In this thesis, we propose micro cross-validation based methods for deep neural net-
work training. Experiments are conducted to show effects of proposed MCV methods
on three dataset (CIFAR-10, SVHN and Adience) and three convolutional neural net-
works which are small custom CNN, ResNet and VGG architectures. Questions (QI,
Q2 and Q3) posed in Introduction are discussed using the experimental results. Q1 is
questioning the success of MCV-discard which is training step validation using MCV
with a given learning rate setting. CIFAR-10 results (Table [4.5)) give us a mixed an-
swer. There is an improvement on small custom CNN while other architectures do
not have any improvement in terms of test accuracy. Unlike small CNN, Resnet-
18 experiments include erroneous runs because, discarding too many training steps
causes to stuck training on very poor state. Another question, Q2, that we explored
in this work is the convenience of MCV for automated learning rate search. For this
reason, we proposed two different adaptive learning rate search methods. The first
one computes a moving average of the votes for the best batch-level learning rates,
and instantaneously uses the highest-voted learning rate for actual gradient updates.
In the second method, a constant LR is used during an epoch and while doing so,
average validation loss is computed per LR in the search array. At the beginning of
a new epoch, we choose the best. For this second method, we proposed a set of dif-
ferent loss functions. Finally, as an answer to Q3, we analyzed the improvements of
automated learning rate search methods with respect to baseline. MCV based learn-
ing rate search methods do not provide consistent improvement in our experiments.
However, reasonable accuracy is obtained in a much less amount of time compared

to the classical macro-CV based grid search.

53

54

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and Z. Chen, “GPipe:
Efficient Training of Giant Neural Networks using Pipeline Parallelism,” 2018.

J. Hu, L. Shen, and G. Sun, “Squeeze-and-Excitation Networks,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 6 2018.

M. Tan and Q. Le, “{E}fficient{N }et: Rethinking Model Scaling for Convolu-
tional Neural Networks,” in Proceedings of the 36th International Conference
on Machine Learning (K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97 of
Proceedings of Machine Learning Research, (Long Beach, California, USA),
pp. 6105-6114, PMLR, 2019.

K. Chen, J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Shi,
W. Ouyang, C. C. Loy, and D. Lin, “Hybrid Task Cascade for Instance Segmen-
tation,” 2019.

B. Singh, M. Najibi, and L. S. Davis, “SNIPER: Efficient Multi-Scale Train-
ing,” in Advances in Neural Information Processing Systems 31 (S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.),
pp- 9310-9320, Curran Associates, Inc., 2018.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recog-
nition,” in The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 6 2016.

F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for
face recognition and clustering,” 2015 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 6 2015.

Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “VGGFace2: A
Dataset for Recognising Faces across Pose and Age,” 2018 13th IEEE Inter-

55

national Conference on Automatic Face & Gesture Recognition (FG 2018), 5
2018.

[9] S. E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose
machines,” Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, vol. 2016-Decem, pp. 4724-4732, 2016.

[10] W. Yang, S. Li, W. Ouyang, H. Li, and X. Wang, “Learning Feature Pyramids
for Human Pose Estimation,” pp. 1290-1299, 2017.

[11] G. E. Hinton, N. Srivastava, and K. Swersky, “Neural Networks for Machine
Learning,” COURSERA: Neural Networks for Machine Learning, 2012.

[12] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic gradient descent,”

in ICLR: International Conference on Learning Representations, 2015.

[13] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The Marginal
Value of Adaptive Gradient Methods in Machine Learning,” in Advances in
Neural Information Processing Systems 30 (1. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), pp. 4148—4158,

Curran Associates, Inc., 2017.

[14] J. Zhang, I. Mitliagkas, and C. Ré, “YellowFin and the Art of Momentum Tun-
ing,” CoRR, vol. abs/1706.0, 2017.

[15] B.T. Polyak, “Some methods of speeding up the convergence of iteration meth-
ods,” USSR Computational Mathematics and Mathematical Physics, vol. 4,
no. 5, pp. 1-17, 1964.

[16] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization,” The Journal of Machine Learning Re-

search, vol. 12, pp. 2121-2159, 2011.

[17] N.S. Keskar and R. Socher, “Improving Generalization Performance by Switch-

ing from Adam to SGD,” 2017.

[18] M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar, “Adaptive Methods for

Nonconvex Optimization,” in Advances in Neural Information Processing Sys-

56

tems 31 (S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, eds.), pp. 9793-9803, Curran Associates, Inc., 2018.

[19] J. Chen and Q. Gu, “Closing the Generalization Gap of Adaptive Gradient Meth-
ods in Training Deep Neural Networks,” CoRR, vol. abs/1806.0, 2018.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recog-
nition,” CVPR, 2015.

[21] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con-
nected convolutional networks,” in Proceedings - 30th IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2017, 2017.
[22] S.Jenni and P. Favaro, “Deep Bilevel Learning,” 2018.
[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[24] Y. Bengio, “Practical recommendations for gradient-based training of deep ar-
chitectures,” in Neural networks: Tricks of the trade, pp. 437-478, Springer,
2012.

[25] L. Bottou, “Stochastic Gradient Descent Tricks,” in Neural Networks: Tricks of
the Trade, pp. 421-436, Springer, 2012.

[26] S.L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le, “Don’t Decay the Learning
Rate, Increase the Batch Size,” in ICLR: International Conference on Learning

Representations, 2018.

[27] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,”
Journal of Machine Learning Research, vol. 13, pp. 281-305, 2012.

[28] L. N. Smith, “Cyclical Learning Rates for Training Neural Networks,” 2017
IEEE Winter Conference on Applications of Computer Vision (WACV), 3 2017.

[29] L. N. Smith and N. Topin, “Super-Convergence: Very Fast Training of Residual
Networks Using Large Learning Rates,” CoRR, vol. abs/1708.0, 2017.

[30] I. Loshchilov and E. Hutter, “SGDR: Stochastic Gradient Descent with Warm
Restarts,” in ICLR: International Conference on Learning Representations,

pp. 1-16, 2017.

57

[31] T. Schaul, Z. Sixin, and Y. LeCun, “No More Pesky Learning Rates,” in Pro-

ceedings of the 30th International Conference on Machine Learning, 2013.

[32] A. G. Baydin, R. Cornish, D. M. Rubio, M. Schmidt, and F. Wood, “Online
Learning Rate Adaptation with Hypergradient Descent,” in International Con-

ference on Learning Representations, 2018.

[33] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Miiller, “Efficient BackProp,” in
Neural Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996
NIPS Workshop, (London, UK), pp. 9-50, Springer-Verlag, 1998.

[34] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” tech.
rep., 2009.

[35] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y Ng, “Reading
Digits in Natural Images with Unsupervised Feature Learning,” NIPS, 2011.

[36] E. Eidinger, R. Enbar, and T. Hassner, “Age and Gender Estimation of Unfil-
tered Faces,” IEEE Transactions on Information Forensics and Security, vol. 9,

pp. 21702179, 12 2014.

[37] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-
Scale Image Recognition,” in ICLR: International Conference on Learning Rep-

resentations, pp. 1-14, 2015.

58

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Problem Definition
	Proposed Method
	Contributions
	Thesis Outline

	BACKGROUND AND RELATED WORK
	Gradient Descent Optimization Algorithms
	Stochastic Gradient Descent with Momentum
	Adaptive Learning Rate Optimizers
	Revisiting SGD with Momentum

	Challenges on Neural Network Training
	Achieving Good Generalization
	 Selecting Optimal Learning Rate

	Learning Rate Search
	Automated Hyper-parameter Tuning
	Cyclical Learning Rates
	Gradient Based Tuning Methods

	Micro Cross Validation Algorithms
	Training Step Verification Using Micro Cross Validation
	Automated Learning Rate Search Using Micro Cross-Validation

	EXPERIMENTS
	Introduction
	Datasets
	CIFAR-10
	SVHN
	Adience

	Network Architectures
	Performance Metrics
	CIFAR-10 Experiments
	SVHN Experiments
	Adience Experiments

	CONCLUSION
	REFERENCES

