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ABSTRACT

AUTOMATED LEARNING RATE SEARCH USING BATCH-LEVEL
CROSS-VALIDATION

Kabakcı, Duygu

M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Emre Akbaş

July 2019, 58 pages

Deep convolutional neural networks are being widely used in computer vision tasks,

such as object recognition and detection, image segmentation and face recognition,

with a variety of architectures. Deep learning researchers and practitioners have accu-

mulated a significant amount of experience on training a wide variety of architectures

on various datasets. However, given a specific network model and a dataset, obtain-

ing the best model (i.e. the model giving the smallest test set error) while keeping

the training time complexity low is still a challenging task. Hyper-parameters of deep

neural networks, especially the learning rate and its (decay) schedule, highly affect

the network’s final performance. The general approach is to search the best learn-

ing rate and learning rate decay parameters within a cross-validation framework, a

process that usually requires a significant amount of experimentation with extensive

time cost. In classical cross-validation, a random part of the dataset is reserved for

the evaluation of model performance on unseen data. This technique is usually run

multiple times to decide learning rate settings with random validation sets. This the-

sis is aimed at exploring batch-level cross-validation methods as an alternative to the
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classical dataset-level, hence macro, CV. The advantage of micro CV methods is that

the gradient computed during training is re-used to evaluate several different learn-

ing rates. We propose automated learning rate selection algorithms that are aimed

to address setting the learning rate and learning rate schedule during training. Our

algorithms use micro cross-validation where a random half of the current batch (of

examples) is used for training and the other half is used for validation. We present

comprehensive experimental results on three well-known datasets (CIFAR10, SVHN

and ADIENCE) using three different network architectures: a custom CNN, ResNet

and VGG.

Keywords: Deep Learning, Object Classification, Learning Rate Search, Hyper-parameter

Search, Adaptive Learning Rate, Cross-Validation
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ÖZ

YIĞIN SEVİYESİNDE ÇAPRAZ GEÇERLEME KULLANARAK
OTOMATİK ÖĞRENME ORANI ARAMASI

Kabakcı, Duygu

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Emre Akbaş

Temmuz 2019 , 58 sayfa

Derin evrişimsel sinir ağları (ESA) sahip olduğu mimari çeşitlilik ile nesne sınınflan-

dırma ve tanıma, görüntü bölütleme ve yüz tanıma gibi bilgisayarlı görü işlemlerinde

yaygın olarak kabul görmektedir. Derin öğrenme araştırmacıları ve uygulayıcıları çok

çeşitli mimarileri farklı veri kümelerinde eğitmek konusunda önemli miktarda dene-

yim elde etmiştir. Ancak, verilen bir ağ modeli ve veri seti için, en iyi modeli (yani

en küçük test seti hatasını veren model) eğitim süresi karmaşıklığını düşük tutarak

elde etmek hala zor bir iştir. Derin sinir ağlarının meta parametreleri, özellikle, öğ-

renme oranı ve (sönümü) programı, ağın nihai performansını oldukça etkiler. Genel

yaklaşım, en iyi öğrenme oranını ve öğrenme oranının sönümü parametrelerini çapraz

geçerleme (ÇG) çerçevesinde aramaktır; bu, genellikle yüksek zaman maliyeti olan

çok fazla deney gerektiren bir süreçtir. Çapraz geçerleme, eğitme veri kümesi dışın-

daki yeni veriler ile model performansının değerlendirilmesi için veri setinin rastgele

bir bölümünü bölerek, bu bölüm üzerinde eğitim aşamasının izlendiği bir tekniktir.

Bu teknik, genellikle rastgele geçerleme kümeleri ile öğrenme oranı parametrelerine

karar vermek için birçok kez çalıştırılır. Bu tez, klasik veri kümesi seviyesindeki,
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yani makro ÇG’ye alternatif olarak yığın seviyesinde çapraz geçerleme yöntemle-

rini araştırmayı amaçlamaktadır. Mikro ÇG yöntemlerinin avantajı, eğitim sırasında

hesaplanan eğimin birkaç farklı öğrenme oranını değerlendirmek için tekrar kullanıl-

masıdır. Önerdiğimiz otomatik öğrenme oranı seçme algoritmaları; eğitim sırasındaki

öğrenme oranını ve öğrenme oranı programını belirlemeyi amaçlar.Algoritmalarımız,

mevcut veri yığınının (örneklerin) rastgele yarısının eğitim için kullanıldığı ve di-

ğer yarısının doğrulama için kullanıldığı mikro çapraz geçerleme kullanır. Üç farklı

ağ mimarisini kullanarak (özel bir ESA, ResNet ve VGG), üç tanınmış veri setinde

yapılmış (CIFAR10, SVHN ve ADIENCE) kapsamlı deneysel sonuçlar sunuyoruz.

Anahtar Kelimeler: Derin Öğrenme, Nesnelerin Sınıflandırılması, Öğrenme oranı ara-

ması, Uyarlamalı Öğrenme Oranı, Çapraz Geçerleme
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CHAPTER 1

INTRODUCTION

Scientists and inventors have been working on understanding and building decision

making systems to automate everyday tasks and decision making process. By the

means of this intention today, Deep learning (DL) opens an era for autonomous cars,

smart cities, robotics and medical tests using massive amount of data and powerful

computational capabilities. Machine learning, the larger field that subsumes deep

learning, learns from data and tries to generalize for further predictions and deci-

sions by extracting patterns and representations. Power of deep learning comes from

complex hierarchical representations that build over simpler representations. For ex-

ample, image of a person is represented as edges in earlier layers while latter hidden

layers extend representations to more complex object parts that finally turns to object

identity. The word ‘deep’ refers to the hierarchical depth of models.

Computer vision is one of the areas that is directly related with these smart technolo-

gies on image classification (e.g. [1, 2, 3]), object detection (e.g. [4, 5, 6]) and face

recognition (e.g. [7, 8]) or pose estimation (e.g. [9, 10]) tasks in a variety of domains

from robotics or security to medical imaging. Deep learning, especially deep neural

networks, achieve state of the art solutions in most of these tasks which are extremely

useful for both industrial developments and academic research. These capabilities and

wide usage of deep neural networks cause an interest to simplify deep neural network

(DNN) training, i.e the phase of learning, since obtaining the optimal model which

has the smallest generalization error is not trivial especially for those who are new

to the field. Our motivation in this thesis, is to explore batch-level cross-validation

methods, which we call micro cross-validation (MCV, for short), for the purpose of an

automated search procedure for learning rate and its decay in deep neural networks.
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Learning rate, i.e. step size, seems to be one of the most important hyper-parameters

for deep neural networks that highly affects the model performance. Specifically,

learning rate adjusts the magnitude of network’s weight updates for minimizing the

loss function between real object classes and predicted classes. If learning rate is too

high, the model struggles to converge to a local minima; while too small learning rate

slows down convergence, hence increases the training time. Using optimal learning

rate and learning rate decay utilizes the network performance by acquiring effective

capacity of DNN. The common solution is to use classical cross-validation to test

model performance on unseen data for different learning rate and decay selections.

A large number of experiments with different learning rate and decay are conducted

to decide optimal values. Adaptive optimizers (e.g. Rmsprop[11], Adam[12]) were

proposed as a solution to take burden of finding optimal learning rate. They are more

robust with its automated parameter-wise decay. Adam using its default learning rate

can achieve high accuracy results. However, recent research ([13, 14]) points out the

convergence problem of Adam optimizer. According to these recent findings, hand

tuned SGD with momentum optimizer can achieve better results than adaptive op-

timizers. Adaptive optimizers’ convergence problem can be solved with additional

learning rate tuning. In short, selecting learning rate and its schedule is still an un-

solved challenge for which an automated procedure would have significant impact.

Our proposed methods (using micro cross-validation) explore some ideas towards au-

tomating the search for the optimal learning rate. Following sections describe the

problem and proposed methods in detail.

1.1 Problem Definition

In this thesis, we explore the following problems:

Is each update (on the weights of model) during training effective? Each gradient is

calculated from a mini-batch of training examples that is assumed to be representa-

tive of the whole dataset so, each gradient can be considered informative in regular

training. However, if some of the updates are not as informative as others, eliminat-

ing those updates can reduce overfitting, i.e. memorization and learning noise from

training dataset. Therefore, if we could define a validation rule for updates, those
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-if any- uninformative updates can be eliminated easily for the sake of generalization

capability. By this way, we can achieve an optimal model with its effective capacity.

Is it possible to automate the search for the optimal learning rate and learning rate

schedule using micro (i.e. batch-level) cross-validation? The optimal learning rate

and learning rate schedule highly depend on network topology, dataset and optimizer.

The typical method for tuning these parameters for a specific task, dataset and net-

work is to use a costly cross-validation procedure. To simplify this process, automated

learning rate and learning rate schedule searching methods are highly desirable.

To sum up, the main goal of this study is examining the mentioned problems and

their effects on neural network training which can help us understand neural network

training process and explore proposed solutions for these problems.

1.2 Proposed Method

Deep neural network training is a delicate and complex process which aims to obtain

a generalizable model efficiently. This can be achieved by selecting a good set of

hyper-parameters that requires an in-depth understanding of how hyper-parameters

work in optimization. An excessive number of hyper-parameters, such as learning

rate, mini-batch size, regularization parameter, weight decay constant and number of

hidden units increase the complexity of sequential experiments as they all need to be

tuned. Guided sequential experiments with a different selection of hyper-parameters

usually require prior knowledge on neural network’s convergence, loss function topol-

ogy and dataset to achieve a model that has smallest generalization error. After each

experiment, the subsequent selection of hyper-parameters can be determined based on

these factors using prior knowledge. Even carefully designed sequential experiments

conducted with knowledge based assessments come with a very high amount of com-

putational and time cost, due to the complex nature of neural network training. In this

work, we examine this complex nature of deep neural network training so that we can

propose a mini-batch based gradient verification and automated learning rate sched-

ule selection methodology. Instead of the common use of standard cross-validation,

i.e. using a separate validation set to decide whether the model is overfitting or un-
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derfitting, we propose to confirm and validate every single training step so that we

can eliminate uninformative and noisy training steps. To be able to validate a training

step, convenience of a training step is defined such that gradient step update should

be acceptable and beneficial for another random mini-batch of dataset. Also, learning

rate , i.e. step size, of each training step should be selected to maximize validated

informative gradient steps. Main steps of the proposed methods can be defined as

follows:

• Validating each training step/gradient update using another random validation

mini-batch.

• If a training step is found to be acceptable, learning rate that obtains the most

decrease on validation mini-batch’s loss is selected for that step.

• Preparing a complete learning rate schedule as an automated procedure using

random validation batches.

Mainly, we designed experiments to answer the following questions for proposed

methods:

• [Q1] In a setting where learning rate and its decay schedule are given, does

micro cross-validation help improve generalization? Does it yield a better test

set accuracy?

• [Q2] In what ways can we use micro cross-validation to automate the search

for optimal learning rate and learning rate schedule?

• [Q3] Do MCV methods that automatically select learning rates improve test set

accuracy over baseline methods?

In this work, we explore the answers of mentioned questions using designed experi-

ments.
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1.3 Contributions

This thesis is an exploratory first step towards batch-level cross-validation methods

that try to automate the learning rate search. Specifically,

• Micro Cross-validation (MCV) methods apply well-known cross-validation to

each training step in an innovative repetitive way instead of using a part of

dataset for validation.

• MCV methods propose a step based gradient validation that uses decrease of

loss on random validation mini-batches.

• MCV methods try to maximize the effect of informative gradient steps by ar-

ranging learning rate based on random mini-batch verification. This learning

rate decision in every training step constructs a complete learning rate schedule

automatically.

1.4 Thesis Outline

Chapter 2 discusses the stochastic gradient descent (SGD) algorithm and its com-

parison with adaptive gradient descent algorithms as a background. Additionally,

techniques to achieve good generalization and finding optimal learning rate problems

of neural network training are explained with state of the art solutions in literature.

Chapter 3 describes the proposed methods, training step verification using micro

cross-validation and automated learning rate search using micro cross-validation,

which are executed as a variation of SGD with momentum and adam optimizers.

Theoretical and algorithmic details of the proposed methods are also presented in this

chapter.

In Chapter 4, the performance of MCV methods is presented by providing experi-

mental results on several deep neural network architectures over popular benchmark

datasets. Convolutional and residual deep neural network architectures are demon-

strated with experimental results in this chapter.
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Chapter 5 provides a brief summary and discussion of this work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, stochastic gradient descent (SGD) methods and adaptive optimizers

are explained. Also, advances of accelerated SGD forms compared to adaptive opti-

mizers are discussed. Cross-validation, which is a well known technique for assess-

ment of DNN model, is explained as a basis of our proposed methods. Additionally,

we define finding optimal learning rate problem and discuss impacts of using opti-

mal learning rate on neural network training. Hyper-parameter tuning methods and

various automated learning rate search methods in literature are also provided in this

chapter.

2.1 Gradient Descent Optimization Algorithms

2.1.1 Stochastic Gradient Descent with Momentum

SGD and its variants are probably the most used optimization algorithms for machine

learning, especially for deep learning tasks. However, It can be slow without accel-

eration method such as momentum [15]. When loss curvature is high and gradients

are consistent but small, momentum acceleration method is designed to accumulate

the gradients using moving average of past gradients. Momentum method introduce

a velocity term that helps to accelerate consistent gradient direction. Momentum

coefficient α ∈ (0, 1] adjusts how previous gradient contributions affect the current

momentum step. 0.5 and 0.9 are typical values of momentum coefficient.

SGD with momentum update is defined in Algorithm 1:
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Algorithm 1 Stochastic Gradient Descent with Momentum
Require: Learning rate ε, momentum parameter α

Require: Initial parameter θ, initial velocity ϑ

while training stopping criterion not met do

Sample a mini-batch of m examples from training set: x1, x2 . . . xm with

corresponding labels y1, y2 . . . ym

Compute gradient estimation g ← 1
m
∇θ

∑
i(L(f(xi; θ), yi))

Compute velocity ϑ← αϑ− εg
Apply parameter update θ ← θ + ϑ

end while

2.1.2 Adaptive Learning Rate Optimizers

Learning rate is the most sensitive parameter that strongly affects performance of

a model. It is also known that model cost highly relies on some parameters from

model’s parameter space. This brings up the idea of using separate learning rates per

parameter based on their sensitivity, also adapting per parameter learning rates au-

tomatically. Earlier heuristic is increasing the learning rate if partial derivative sign

of loss with respect to a model parameter remains the same, oppositely, decreasing

the learning rate in case of gradient changes sign. Adaptive learning rate optimizers

based on this heuristic are (mostly used examples) AdaGrad[16], Rmsprop[11] and

Adam[12] optimizers. AdaGrad, an earlier example of adaptive learning rate optimiz-

ers, scales learning rate per parameter according to the square root of the sum of all

historical squared values of the gradient. In this approach, parameters with larger par-

tial derivatives have accelerated decrease compared to parameters with small partial

derivatives. Even though this approach helps some models, keeping historical partial

derivatives from beginning of training to end can introduce earlier and excessive de-

crease in the effective learning rate for some cases. Rmsprop modifies AdaGrad algo-

rithm to address its excessive decrease on learning rate by weighted moving average

of gradient history. Instead of AdaGrad, Rmsprop keeps moving average of gradi-

ents history with a new hyper-parameter that adjusts how historical gradients impact

moving average besides current gradient. Aside from AdaGrad and Rmsprop, Adam

optimizer combines Rmsprop and momentum optimizers benefits. Adam optimizer
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computes two historical moving average estimates which keep gradients and squared

of gradients respectively. There is also correction of initial bias of moving average of

gradients and square of gradients in Adam that is also an addition to Rmsprop algo-

rithm.Although Adam is capable to work with different models with default values,

some cases still requires global learning rate and other hyper-parameters tuning.

Algorithm 2 Adam Algorithm
Require: Learning rate ε (0.001 default)

Require: Exponential rate decay constants for moment estimates p1, p2 ∈ (0, 1]

(0.9, 0.999 defaults)

Require: Small constant δ for stabilization (10−8 default)

Require: Initial parameters θ

Initialize 1st and 2nd moments s← 0, r ← 0

Initialize time t← 0

while training stopping criterion not met do

Sample a mini-batch of m examples from training set: x1, x2 . . . xm with

corresponding labels y1, y2 . . . ym

Compute gradient estimation g ← 1
m
∇θ

∑
i(L(f(xi; θ), yi))

t← t+ 1

Update biased 1st moment: s← p1s+ (1− p1)g
update biased 2nd moment: r ← p2r + (1− p2)g � g
Correct bias in 1st moment: ŝ← s

1−pt1

Correct bias in 2nd moment: r̂ ← r
1−pt2

Compute update: ∆θ ← −ε ŝ√
r̂+δ

Apply parameter update θ ← θ + ∆θ

end while

Rmsprop and Adam seem to be the most widely used adaptive learning rate based

optimizers in deep learning community.

2.1.3 Revisiting SGD with Momentum

Common knowledge on deep learning training suggests to use adaptive learning rate

based methods such as Adam and Rmsprop due to their robust performance over
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different learning rates. Regular user can obtain acceptable results without tuning

learning rate. Even though adaptive methods are quite useful, there is still a remark-

able difference between performance of model that uses the optimal learning rate and

the default learning rate of adaptive methods. Recent researches show that SGD with

momentum can obtain better test results over adaptive methods. Wilson et. al.[13]

conduct a comprehensive study which shows that SGD and SGD with Momentum

outperform on unseen dataset in designed tasks of over-parameterized models con-

trary to common belief on adaptive optimizers. Their findings favors SGD and SGD

with momentum because adaptive methods find solutions having worse generaliza-

tion than non-adaptive methods. Adaptive methods have faster progress during the

earlier epochs of training while their final performance on test set is not promis-

ing. They also found out that tuning Adam classifier gains considerable improve-

ment compared to default settings. Another research inspired from Wilson et. al.

[13] findings, suggests a simple idea that using Adam on earlier epochs of deep neu-

ral network training then switching to SGD with Momentum to solve saturation of

Adam on later epochs [17]. They showed using Adam and SGD with momentum

instead of only using Adam results in better generalization. Several researches focus

on correcting the generalization problem of Adam optimizer by adapting Adam al-

gorithm. In [18] study, YOGI algorithm is proposed to solve this problem as a new

adaptive optimizer. Their improvement applied to Adam optimizer is the controlled

effective learning rate increase instead of Adam’s rapid increase that leads better gen-

eralization. Similarly, Chen and Gu propose Partially adaptive momentum estimation

method (PADAM) [19]. PADAM follows the idea of unifying Adam algorithm’s fast

convergence rate and good generalization of SGD with momentum for the final model

that means combining best of both optimization algorithms. In short, PADAM uses

a partial adaptivity parameter to control the adaptivity level. Particularly, If partial

adaptivity parameters selected as close to zero, algorithm behaves like SGD with mo-

mentum, oppositely behaves more like Amsgrad that is one of variation of Adam

algorithm. Since all these methods introduces new parameters and complexity, usage

of these Adam style algorithms are still limited and not effective. Moreover, Zhang et

al. [14] conduct several experiments that compares hand tuned SGD with momentum

and adaptive optimization methods from this trend. According to their study, mod-

els trained with hand-tuned learning rate using SGD with momentum achieves faster
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convergence than Adam for many models. Indeed, many recent state-of-the-art image

classification models on popular datasets, such as SVHN, CIFAR10 and ImageNet,

report their results on SGD with momentum [20] [21] [2] [1].

2.2 Challenges on Neural Network Training

2.2.1 Achieving Good Generalization

Neural networks are powerful classifiers with the capability of learning complex pat-

terns from training data through their hidden layers and large amount of neurons.

These patterns usually include noise in training data that causes lower classifier per-

formance on unseen data. Fitting model to training data too much that results in

poorly generalized models is called overfitting problem. One of common approaches

to reduce overfitting is monitoring training phase using validation dataset to stop train-

ing before overfitting starts.

• Early Stopping and Cross-Validation: A small part (typically %10-30) of

training set is reserved as validation dataset which is used to detect when over-

fitting starts. When validation loss, i.e. error on unseen examples, starts to in-

crease during training, training should be stopped to prevent overfitting. Even

though early stopping solves generalization problem, it is not practical. Firstly,

this method requires to sacrifice a part of training data to create a validation

dataset. Secondly, it is hard to decide which examples should be in training

dataset or validation dataset on real systems. These two datasets should be uni-

form in terms of hardness of examples, also; we don’t want to lose informative

examples by putting on validation dataset. To achieve more reliable valida-

tion, cross-validation technique is generally used. Cross-validation is based on

the idea of assessing the performance on unseen data as a validation set, i.e.

randomly chosen partition of training set. To reduce variability, multiple ex-

periments are usually performed using different validation sets. Even if cross-

validation allows reliable decision making with early stopping, those repetitive

experiments can be costly in terms of time and resources.
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• Validation on Mini-batches: One of the recent studies extends cross-validation

idea that is to validate group of mini-batches with another mini-batch, that is

called validation mini-batch, during the training procedure [22]. In their work,

they formalize this procedure as dot product of calculated gradients of each

training mini-batch and validation mini-batch. This calculation is used to de-

termine the weight of the gradient update. If gradients of training mini-batch

and validation set is correlated, then weight of this gradient update is large and

positive. This can be considered as gradient update validation of a mini-batch

update by another mini-batch to decide enlarging the update or discard it by

calculating zero weight. Note that validation mini-batch is not a separate data

chunk, contrary, validation mini-batch is directly participating to training with

gradient updates. They show that their procedure results in better generalization

of model, i.e. reducing overfitting. They explain this achievement as validation

of gradients helps to avoid memorization by encouraging model parameter up-

dates that only reduce errors on shared sample patterns.

2.2.2 Selecting Optimal Learning Rate

Selection of learning rate is remarkably important to accomplish the highest accu-

racy of a particular neural network architecture. Researchers have been explained

the importance of using optimal learning rate and shared practical recommendations

and techniques to decide correct learning rate for experiments of manually setting

learning rate and decay. Specifically, many practical suggestions for manual tuning

of learning rate are presented with the emphasis on careful selection of learning rate

that is directly related with effective model capacity on [23] [24] [25]. Below we

summarize why learning rate selection might be challenging for neural networks.

• Small learning rate can lead to horribly slow convergence while big learning

rate can cause excessive fluctuations on loss curve which end up with saddle

points.

• Finding optimal learning rate is not sufficient for many training tasks. Learning

rate schedules or learning rate decay is usually required to reach best results
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because training generally needs large steps on earlier epochs and smaller steps

on later epochs.

• Different neural network architectures and datasets require different learning

rates as optimal learning rate and schedule.

• Network architecture and dataset are not only factors that affect optimal learn-

ing rate, mini-batch size is directly related with optimal learning rate. Smaller

mini-batch size usually requires smaller learning rate since gradients generated

from smaller mini-batches are more noisy. In fact, different mini-batch size

have different optimal learning rates even all other settings are the same for

a particular neural network. Moreover, Smith et al. [26] shows that decaying

learning rate and increasing mini-batch size during training can obtain the same

error curves that shows strong dependency between two hyper-parameter.

• Researchers usually utilise their knowledge based on prior experiments for

a particular dataset and/or neural networks. Although common benchmark

datasets may provide extensive literature and prior experiments, newly intro-

duced network models requires tuning carefully.

Considering these challenges to obtain optimal results on SGD training with neu-

ral networks, enormous number of experiments with selection of learning rate and

learning rate annealing schedules require considerable amount of time. Deep learn-

ing researches focus on automated tuning of learning rate instead of these manual

efforts. Adaptive learning rate methods are designed to tune learning rate for each

individual parameter on the fly such as Adam, Rmsprop and AdaGrad etc. which are

briefly mentioned in Section 2.1.2. These methods seems to take the burden of manual

learning rate tuning process because they generally work well with their default pa-

rameters. However, recent researches point out that SGD with momentum can attain

better performance with ideal learning rate and decay schedules. This finding brings

up complex schedules of SGD with momentum. The interest on SGD with momen-

tum motivates us to automatize learning rate tuning process. Our proposed method

will be explained step by step on Chapter 3. Other learning rate tuning methods are

discussed in Section 2.3
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2.3 Learning Rate Search

Many methods have been proposed for automated learning rate selection [27, 28,

29, 30, 14, 31, 32]. The ultimate goal is to obtain lowest generalization error in a

minimum time and memory budget. Since importance of optimal learning rate and

learning rate schedule has been known, also discussed in Section 2.2.2, for a long

time, many researches have been focused on automatized approaches for this purpose.

This chapter covers traditional hyper-parameter tuning approaches, cyclical learning

rate schedules and gradient based learning rate tuning methodologies as a background

of learning rate tuning.

2.3.1 Automated Hyper-parameter Tuning

Automated hyper-parameter tuning can be considered as ancestor of automated learn-

ing rate tuning. There are two main approach in hyper-parameter tuning that are se-

quential and parallel tuning. Sequential methods are similar to manual learning rate

tuning that obtain a model with one of hyper-parameter set, performance of this model

directs the subsequent selection of hyper-parameters. The disadvantage of sequential

tuning is time consumption like manual tuning. However, parallel tuning creates

multiple models of different hyper-parameter settings in parallel that seems to solve

time cost problem while this introduces a computational resource problem which is

also costly. Known examples of parallel tuning are grid search and random search.

Grid search is a hyper-parameter optimization method for machine learning prob-

lems. Although we focus on learning-rate optimization, our problem can be extended

to hyper-parameter optimization problem which has been studied over the decades.

Number of hidden layers, learning rate, regularisation strength and mini-batch size

etc. are hyper-parameters that are needed to be tuned for neural networks. Grid

search is a naive exhaustive search method which requires a set of values defined by

experimenter. In grid search, every possible combination of hyper-parameters forms

an experiment trial which grows exponentially with the number of hyper-parameters.

If the number of parameters and search space is small, grid search would perform in

a reasonable time.

While Grid search and manual search are widely used on hyper-parameter optimiza-
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tion of machine learning problems -also combined- random search is able to find mod-

els that have as good or better performance over the same search domain. Bergstra

and Bengio[27] propose the random search which is more efficient in high dimen-

sional spaces of hyper-parameters. Instead of combining all possible values of hyper-

parameters for trials, random search forms experiments randomly from their search

space. Their motivation is that final performance of neural networks mostly rely

on some hyper-parameters more than others that limits grid search because unim-

portant hyper-parameter limits by repeating trials and limiting the important hyper-

parameter search space. However, they also report that 32 dimensional search prob-

lem of deep belief network (DBN) optimization is not as good as sequential combi-

nation of manual and grid search of an expert. However, both random search and

grid search are brute-force approaches, they scale exponentially with the number of

hyper-parameters. Even if the researcher performs experiments on distributed sys-

tems in parallel, increase in hyper-parameter dimension can easily exceed resource

limits due to excessive number of parallel runs.

2.3.2 Cyclical Learning Rates

Cyclical learning rates (CLR) method [28] aims to resolve learning rate and learning

rate schedule tuning problem. The method proposes to train neural network by cycli-

cally varying learning rates within the predefined boundaries instead of decreasing

the learning rate. Boundaries of cyclical learning rate can be found by linearly in-

creasing the learning rate of the network for a few epochs which is called “LR range

test”. The optimal learning rate is inside these boundaries. Then, learning rates when

model accuracy starts to increase and to decrease are taken to use as boundaries of

cycle. Learning rate varies between minimum to maximum boundary and maximum

to minimum boundary in a defined step size during training. These method also re-

quires the selection of step size i.e number of iterations to take a half learning rate

cycle from minimum to maximum. Cycle topology can be triangular or exponential.

CLR experiments of different neural network architectures show that CLR achieves

better accuracy than fixed learning rate methods. Compared with traditional way of

decreasing learning rate over steps, why CLR methods work is explained in two fac-

tors:
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• Learning rate boundaries include optimal value for the task which helps CLR

to use optimal and closer values to optimal learning rate.

• Minimizing loss around saddle points is difficult because they have small gradi-

ents that slows down the learning, larger learning rates can help to avoid saddle

points.

In the follow-up research of CLR, Smith et al. [29] propose super convergence phe-

nomenon that can be achieved using very large learning rates on cyclical learning rate

method. They present that using large learning rates helps to regularize the network

that result in better model performance. In learning rate range test, increasing learn-

ing rate causes an increase on training loss while test loss is surprisingly decreased at

the same time for Resnet-56 architecture. However, proposed rapid convergence only

showed in a single task for this method.

Another learning rate decaying method similar to cyclical learning rates is SGD with

warm restarts (SGDR) [30]. In this work, Loshchilov et al. proposes to initialize

learning rate to some value that is scheduled to decay with an aggressive cosine an-

nealing schedule. Warm restarts refers to restarting only learning rate while other

model parameters remain the same with the latest step. SGDR improves many state-

of-the-art models error rates on popular datasets. These methods are important since

they show increasing learning rate from time to time to reasonably higher values can

be beneficial for final network performance by finding flat local minima. Disadvan-

tage of these automated schedules is finding learning rate boundaries as minimum

and maximum learning rate still requires additional efforts to achieve optimal perfor-

mance.

2.3.3 Gradient Based Tuning Methods

Another automated learning rate adjustment approach is using gradients to decide

learning rate. Several researches have focused on using gradient information for au-

tomated learning rate tuning. In Schaul et al.’s work [31], they define a formula to

obtain the optimal learning rates for SGD using estimates of the variance of the gra-

dients. This method can find either single global learning rate or learning rates of
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each parameter and parameter groups. Their method defines a formula that is adapt-

ing “bbprop” which computes the positive estimates of diagonal Hessian terms for

single sample using back propagation [33]. Moving averages of gradients and diago-

nal Hessian are used to estimate learning rate in their algorithm. Thus, they obtained

an algorithm that automatically decreased learning rate to zero when loss function is

approaching to its optimal value without any manual learning rate search. Zhang. et

al. [14] conduct experiments to show that carefully hand-tuned learning rate can be

competitive with adaptive learning rate optimizers. Their study is not only analyzing

this phenomena but also, they come up with an automated learning rate and momen-

tum tuning approach called Yellowfin. They consider learning rate tuning problem

together with momentum tuning. Similar to Schaul et al.’s work [31], they use noisy

quadratic model. In their tuner, hyper-parameters are tuned in every training step us-

ing curvature range and gradient variance estimates. Another work proposes hyper-

gradient descent method to tune learning rate [32]. Apart from historical background

of hypergradient that previously considered in optimization literature, they define hy-

pergradient descent as applying gradient descent to learning rate in each training step.

This means calculating the partial derivative of the objective function at the previous

time step with respect to the learning rate. Hypergradient descent applied on SGD,

SGD with Nesterov momentum and Adam is showing that need for manual tuning is

reduced.
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CHAPTER 3

MICRO CROSS VALIDATION ALGORITHMS

In this chapter, micro cross validation algorithms that we propose are described. We

propose two main types of MCV methods. The first type is training step verification

using MCV that accepts or rejects training steps. This method is running with given

learning rate and its schedule ( Section 3.1). The second type is automated search of

learning rate. This type applies adaptive search of learning rates using different loss

functions which takes into account the validation batch loss and various combinations

of validation and training batch losses (Section 3.2). This chapter includes motivation

and algorithmic details of micro cross validation algorithms, more specifically train-

ing step verification using micro cross validation and automated learning rate search

using micro cross validation.

3.1 Training Step Verification Using Micro Cross Validation

The motivation behind Micro Cross-Validation (MCV) is to reduce user’s effort on

training because to obtain a model which reaches its effective capacity so that per-

forms well on unseen data. Learning noisy patterns from training data and fitting

training data too much is known as overfitting problem which is explained in Section

2.2.1.

Training step verification using micro cross-validation intends to remove gradient up-

dates which are not verified by another random mini-batch, i.e. observing decrease on

loss of second random mini-batch with the update of first random mini-batch gradient.

MCV approach can be considered as batch-level version of classical cross-validation

that requires splitting a validation dataset from training dataset randomly by monitor-
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ing model generalization on this validation set. Instead of creating separate validation

dataset for multiple times, we propose to apply validation on a random mini-batch in

every training step that can also be a part of training set in latter epochs.

MCV is different from the standard neural network training process in the following

aspects:

• In each training step, single mini-batch is used for gradient update step while

another random mini-batch is used for validation of this update. In each epoch,

training data is shuffled to make sure that different data points can be cho-

sen as training or validation mini-batches in different epochs. So, validation

mini-batches are not obtained from separate dataset, contrary, validation mini-

batches are directly used on gradient calculation and training updates in subse-

quent epochs.

• Since splitting a validation dataset from training dataset can be biased in terms

of hardness of examples and noise of examples, validation dataset is created

multiple times using different examples from training dataset. So, training

and evaluation of model performance on validation dataset is repeated multi-

ple times that causes excessive time cost. MCV solves this problem since sin-

gle run of MCV uses whole training data and performs validation on different

random mini-batches of training dataset in every step.

• Apart from classical validation and monitoring of model performance, MCV

directly changes the updates of training by validating each update to determine

whether they are found as useful or not. Specifically, after each gradient up-

date, the loss of validation mini-batch is calculated. If loss value of validation

mini-batch is not decreased from previous value that is calculated before the

gradient update step, this gradient update is discarded by reloading previous

model parameters and state. So, all gradient updates are not applied to model

unlike regular training process.

Difference between macro cross-validation and micro cross-validation is presented in

Figure 3.1. Algorithm 3 shows how MCV is applied to the SGD with momentum

method.
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Figure 3.1: Cross-validation uses different splits of validation dataset to monitor train-

ing and tune parameters of model with multiple runs. In each run, different part of

train dataset is used as validation dataset that cannot be used on training updates.

Since splitting dataset creates randomness, average of multiple runs is required for

stable results. Micro cross-validation randomly selects mini-batches for validation in

each epoch. In each training step, randomly selected validation mini-batch used for

validating training update of a train mini-batch. After an epoch is completed, dataset

is shuffled so that different train and validation mini-batches are constructed. That

means a data sample can be in both training set and validation set in different epochs.

Unlike cross-validation, single run of MCV is enough because all of dataset is used

during training.
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Algorithm 3 Training Step Verification using Micro Cross-Validation for SGD with

Momentum
while training stopping criterion not met do

Sample a mini-batch of m examples from training set: x11, x12 . . . x1m with

corresponding labels y11, y12 . . . y1m called as batch1

Sample a mini-batch of m examples from training set: x21, x22 . . . x2m with

corresponding labels y21, y22 . . . y2m called batch2

Calculate loss of batch2 : current_loss_batch2 ← 1
m

∑
2i(L(f(x2i), y2i))

Back up parameter values of model and velocity buffer:

prev_parameters← ∀θ ∈ model
prev_ϑ← ϑ

Compute gradient estimation of batch1 : g ← 1
m
∇θ

∑
1i(L(f(x1i; θ), y1i))

Compute velocity ϑ← αϑ− εg
Apply parameter update θ ← θ + ϑ

Calculate new loss of batch2 : new_loss_batch2 ← 1
m

∑
2i(L(f(x2i), y2i))

if new_loss_batch2 > current_loss_batch2 then

Discard latest gradient update by restoring previous model and velocity:

ϑ← prev_ϑ

model.parameters← prev_parameters

end if

end while
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3.2 Automated Learning Rate Search Using Micro Cross-Validation

Automated learning rate search using MCV method aims to improve training step ver-

ification by applying learning rate selection based on random validation mini-batch

in each training step automatically. Instead of simply accepting or discarding train-

ing steps based on validation mini-batch, this method tunes learning rate using MCV.

Optimal learning rate and decay schedule selections are crucial for neural network

training performance. Several automated learning rate tuning methods are mentioned

in Section 2.3. Our method tries to make optimal learning rate selections for each

training step that is defined as learning rates providing smallest loss of validation

batch after each mini-batch update. To extend this idea, we proposed a history based

voting mechanism which keeps exponential moving average of each training step’s

learning rate selection based on second validation mini-batch. Exponential moving

average (EMA) is a moving average the weight of each item decreases exponentially

by time (i.e. iterations) and never reaches to zero. The EMA of series of items can be

calculated as:

St =

Y1 t = 1

α.Yt + (1− α).St−1 t > 1

The α coefficient represents the degree of weighting weather it is fast or slow.It should

be between (0, 1]. If α is closer to 1, older values have faster decreasing effect on the

moving average.

Following concepts are used to construct our naive learning rate search algorithm (i.e.

MCV-lr-voting):

• Learning rate list : Learning rates that will be used in model training should be

defined at the beginning. Instead of common convention, that is setting single

optimal learning rate and its decay schedule at the beginning of training, array

of learning rates can be initialised at the beginning. Our method tries to select

best learning rate from this list based on validation mini-batch’s loss.

• Best learning rate : In each training step, one mini-batch for gradient update
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and one another mini-batch for validation is sampled from training set. Lets

say they are batch1 and batch2 respectively. After gradient calculated using

batch1, gradient update step with each learning rate in learning rate list is ap-

plied on model then batch2 loss is calculated for each training step. Learning

rate that most decreases loss of batch2 is selected as best learning rate of this

training step. If none of learning rates manages to decrease batch2 loss, best

learning rate selected as zero which means a discard on this step. This learning

rate selection and batch2 loss comparison is completely fair because after each

update, previous model parameters and velocity array are reloaded.

• Voting and learning rate history: In each training step, best learning rate is

found using batch1 and batch2. Best learning rate is not used directly for final

gradient update, instead, they are used to calculate exponential moving decay

of learning rates. Each best learning rate is a vote on learning rate history. This

vote updates the learning rate history using EMA formula:

historyt = α.votet + (1− α).history(t−1)

• Top learning rate: Best learning rate is used as a vote on learning rate history.

After update of learning rate history with selected best learning rate, learning

rate that have highest value on history is called top learning rate. Gradient up-

date with batch1 is applied with top learning rate in each step. To sum up,

actual learning rate used in the training step is found by all learning rate selec-

tions from the beginning of training to current step. Due to EMA, effect of very

earlier training steps are decreased over time.
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Algorithm 4 Learning Rate Search Using Votes of Micro Cross-Validation
Require: Learning rate ε, momentum parameter α

Require: Initial parameter θ, initial velocity ϑ

Require: learning rate selection list: lr_list . typically {0.1, 0.01, 0.001, 0.0001}
Initialize: lr_history ← {0.25, 0.25, 0.25, 0.25} . uniformly in size of lr_list

Initialize: best_loss← inf

while training stopping criterion not met do

Sample a mini-batch of m examples from training set: x11, x12 . . . x1m with

corresponding labels y11, y12 . . . y1m called as batch1

Sample a mini-batch of m examples from training set: x21, x22 . . . x2m with

corresponding labels y21, y22 . . . y2m called batch2

best_lr ← FindBestLR(batch1, batch2, lr_list)

lr_history ← UpdateHistory(best_lr)

ε← TopLR(lr_list, lr_history)

Compute velocity ϑ← αϑ− εg
Apply parameter update θ ← θ + ϑ

end while
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Algorithm 5 Find Best Learning Rate for Training Step
Input: batch1 : x11, x12 . . . x1m and y11, y12 . . . y1m

Input: batch2 : x21, x22 . . . x2m and y21, y22 . . . y2m

Input: learning rate selection list: lr_list . typically {0.1, 0.01, 0.001, 0.0001}
Calculate loss of batch2 : current_loss← 1

m

∑
2i(L(f(x2i), y2i))

Compute gradient estimation of batch1 : g ← 1
m
∇θ

∑
1i(L(f(x1i; θ), y1i))

Back-up model parameters and momentum velocity:

prev_parameters← ∀θ ∈ model
prev_ϑ← ϑ

for all l such that l ∈ lr_list do

ε← l

Compute velocity ϑ← αϑ− εg
Parameter updates θ ← θ + ϑ , ∀θ ∈ model
Calculate new loss of batch2 : new_loss← 1

m

∑
2i(L(f(x2i), y2i))

if (new_loss < current_loss) & (new_loss < best_loss) then

best_lr ← l

best_loss← new_loss

end if

Discard latest gradient update by restoring previous model and velocity:

ϑ← prev_ϑ

model.parameters← prev_parameters

end for

return best_lr

Algorithm 6 Update Learning Rate History

Input: learning rate selection list: lr_list . typically {0.1, 0.01, 0.001, 0.0001}
Input: learning rate history: lr_history, best_lr ∈ lr_list
votes← {lr1 ← 0, lr2 ← 0 . . . lrn ← 0}
votes {best_lr} ← 1

lr_history ← α.votes+ (1− α).lr_history

return lr_history
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Final proposed learning rate search algorithm is adaptive learning rate search using

loss logs of MCV. This algorithm is different in terms of learning rate varieties re-

spect to learning rate search using votes of MCV algorithm. Unlike naive learning

rate search, this algorithm selects best learning rate based on average of validation

losses. Then, new learning rate selection list is constructed by following formula:

lr_list =
[
5lr, 2lr, 4

3
lr, lr, 3

4
lr, 1

2
lr, 1

5
lr
]

By this formula, all possible values between minimum and maximum learning rate

can be used instead of predefined 4-5 learning rates. Adaptive learning rate search us-

ing loss logs of MCV algorithm calculates average of validation loss values obtained

from micro cross-validation to select learning rate for each epoch. For this algorithm

using validation loss is a general idea but we also test the effect of train loss after each

step of candidate learning rate. Different combinations of validation loss of batch_2

and training loss of batch_1 are considered. The formula for logging losses is:

(1− α) ∗ val_loss+ α ∗ train_losses, α ∈ [0, 0.1, 0.3, 0.5]

For this algorithm (Algorithm 8), selection of learning rate strategy is defined in two

different approaches:

• Learning rate having minimum validation loss is selected.

• Learning rates whose average validation loss is lower than the average loss of

validation batch before training update, i.e. avg_current_loss, are collected.

Then, the largest valued learning rate of them is selected. If none of learn-

ing rate can decrease validation loss in average, learning rate having minimum

validation loss is selected like first approach.

Stopping criteria of adaptive learning rate search using loss logs of MCV is defined

as following steps:

• If average validation loss of epoch is not decreased in pre-defined epoch limit,

i.e. patience, training is stopped.

• If average validation loss of epoch is none because of exploding gradients prob-

lem comes from bigger learning rates, training is stopped and epoch of last

recorded minimum average validation loss is selected as stopped epoch.
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• If first and second criterias are not executed, training is done with pre-defined

epoch number.

Algorithm 7 Collect Losses for Learning Rate Selection
Input: batch1 : x11, x12 . . . x1m and y11, y12 . . . y1m

Input: batch2 : x21, x22 . . . x2m and y21, y22 . . . y2m

Input: learning rate selection list: lr_list . typically {0.1, 0.01, 0.001, 0.0001}
Initialize: losses← {}
Calculate loss of batch2 : current_loss← 1

m

∑
2i(L(f(x2i), y2i))

Compute gradient estimation of batch1 : g ← 1
m
∇θ

∑
1i(L(f(x1i; θ), y1i))

Back-up model parameters and momentum velocity:

prev_parameters← ∀θ ∈ model
prev_ϑ← ϑ

for all l such that l ∈ lr_list do

ε← l

Compute velocity ϑ← αϑ− εg
Parameter updates θ ← θ + ϑ , ∀θ ∈ model
Calculate new loss of batch2 : new_loss← 1

m

∑
2i(L(f(x2i), y2i))

losses← losses+ {new_loss}
Discard latest gradient update by restoring previous model and velocity:

ϑ← prev_ϑ

model.parameters← prev_parameters

end for

return losses, current_loss
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Algorithm 8 Adaptive Learning Rate Search Using Loss Logs of Micro Cross-

Validation
Require: Learning rate ε, momentum parameter α

Require: Initial parameter θ, initial velocity ϑ

Require: learning rate selection list: lr_list . typically {0.1, 0.01, 0.001, 0.0001}
Initialize: losses← {} , lr ← min(lr_list)

for each epoch ∈ total_epochs do

if epoch > 1 then

lr ← SelectLR(avg_losses, current_loss, lr_list)

lr_list←
[
5lr, 2lr, 4

3
lr, lr, 3

4
lr, 1

2
lr, 1

5
lr
]

end if

avg_losses← {0, 0, 0, 0, 0, 0, 0}
avg_current_loss← 0

while sample mini-batches batch_1, batch_2 ∈ training_set do

losses← CollectLosses(batch1, batch2, lr_list)

avg_losses← avg_losses+ losses

avg_current_loss← avg_current_loss+ current_loss

ε← lr

Compute velocity ϑ← αϑ− εg
Apply parameter update θ ← θ + ϑ

end while

avg_losses← avg_losses/batch_num

avg_current_loss← avg_current_loss/batch_num

end for
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CHAPTER 4

EXPERIMENTS

4.1 Introduction

In this chapter, we present our experimental results for the micro (i.e. batch-level)

cross-validation (MCV) methods described in Chapter 3. We designed our experi-

ments to answer the central questions that we pose in the Introduction section of this

thesis:

• [Q1] In a setting where learning rate and its decay schedule are given, does

micro cross-validation help improve generalization? Does it yield a better test

set accuracy?

• [Q2] In what ways can we use micro cross-validation to automate the search

for optimal learning rate and learning rate schedule?

• [Q3] Do MCV methods that automatically select learning rates improve test set

accuracy over baseline methods?

Exploring these questions on a single dataset using a single network architecture

would give us a limited picture. In order to increase the generality of our answers,

in our experiments, we used three image datasets, two of them being widely used

small-scale benchmark datasets (CIFAR-10 [34] and SVHN [35]) and one of them

being a larger scale dataset for age prediction from face images (Adience [36]). We

evaluated three different convolutional neural network (CNN) architectures: a small,

custom CNN, a ResNet[20] and a VGG[37] network.

To explore answers to the above questions, we proposed various MCV methods. For
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Q1, as done in the standard gradient descent optimization, we simply calculate the

gradient but before doing the update, we test this gradient direction with the current

learning rate on a random mini validation batch. If the loss is decreased on this

validation batch, the gradient update is accepted, and otherwise it is rejected. For

Q2, we proposed two different adaptive learning rate search methods. The first one

computes a moving average of the votes for the best batch-level learning rates, and

instantaneously uses the highest-voted learning rate for actual gradient updates. In the

second method, a constant LR is used during an epoch and while doing so, average

validation loss is computed per LR in the search array. At the beginning of a new

epoch, we choose the best. For this second method, we proposed two different loss

functions. These loss functions take into account the validation batch loss and various

combinations of validation batch loss and training batch loss. To answer Q3, we used

SGD with momentum learning method within a naive (grid) search cross-validation,

early-stopping framework as our baseline method.

We describe the datasets in Section 4.2, the network architectures in Section 4.3 and

performance metrics in Section 4.4. The rest of the sections present and discuss the

results of our experiments.

4.2 Datasets

4.2.1 CIFAR-10

The CIFAR-10[34] dataset contains 60000 32x32 color images from 10 classes which

are airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. 50000

images used as training examples and remaining 10000 images used as test examples.

4.2.2 SVHN

The Street View House Numbers (SVHN) dataset [35] contains colored digits from

Google Street View images which are obtained from real world street house num-

bers. We used the cropped and centered version of SVHN that contains 32x32 73257

training examples and 26032 test examples.
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4.2.3 Adience

The Adience[36] dataset includes face images for the tasks of age and gender predic-

tion. The dataset consists of 26,580 images from 2,284 subjects which are labeled to

following 8 age interval classes ((0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, 60-)).

Cropped and aligned images are also provided which we used in our work. Provided

train, test, validation sets include 11823, 4316 and 1284 images respectively. We

performed only age classification task for Adience dataset.

4.3 Network Architectures

Experimented architectures of CIFAR-10 and SVHN, which are Resnet-18 and VGG-

11, are demonstrated and explained in Figure 4.1. Also, we conduct experiments for

small custom CNN architecture that have only convolutional and fully connected lay-

ers without any regularization such as batch normalization and dropout. Small CNN

architecture for Cifar-10 includes six 3x3 convolutional layers which have 48, 48, 96,

96, 192, 192 output channels respectively. Convolutions are followed by three fully

connected layers which are 512, 265, 10 output size respectively. Since digit classi-

fication is an easier task, we used two different small architectures for CIFAR10 and

SVHN. Small CNN architecture of SVHN experiments has four 3x3 convolutional

layers which have 32, 32, 64, 64 output channels respectively. Convolutions are fol-

lowed by 2 fully connected layers, 512 and 10 size. Unlike CIFAR-10 and SVHN,

Adience dataset is more challenging (it has high-resolution human face images). So,

a large capacity neural network can be beneficial for this dataset’s age classification

task. So, we choose to use Resnet-50 architecture for Adience.
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Figure 4.1: VGG-11 and Resnet-18 architectures are shown respectively. VGG-11 ar-

chitecture consists of 3x3 convolutional layers followed by 3 FC layers with dropout

layers. Resnet-18 architecture includes 3x3 convolutional layer followed by 8 basic

blocks and single FC layer for output. Basic block can be shown bottom of Resnet-18

architecture that includes two 3x3 convolutional layers with identity shortcut connec-

tion which is added to stacked layers output. Note that only Resnet-18 architecture

has batch normalization on convolutional layers.
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4.4 Performance Metrics

Performance of baseline methods and automated adaptive learning rate search meth-

ods are also compared in terms of time cost. Two different performance metrics are

used:

• Running time of experiments: Running (wall clock) time of baseline experi-

ments and automated adaptive learning rate search experiments are reported for

comparison. For the baseline, running time of all experiments for each learn-

ing rate and its decay settings are summed up to obtain total time passed while

the best learning rate and its decay setting is found. For adaptive learning rate

search methods, time cost of single execution is reported using average epoch

counts. Multiple experiments of the same learning rate setting are ignored for

baseline and our methods.

• Theoretical complexity: Complex operations of training, i.e. high time cost,

are forward, backward and step operations. Forward operation refers to calcula-

tion of output layer’s values through passing all neurons of DNN with input. A

single forward is required for calculation of loss between output of network and

real classes. Backward operation is performing backpropagation from networks

last layer to the first layer by applying the chain rule to calculate gradients. Af-

ter the backward operation, weights (i.e. parameters) of network are updated

with step operation. Step operation calculates final parameter update inside

optimizer with gradients (e.g. momentum buffer calculation for SGD with mo-

mentum). Table 4.1 shows the number of those operations per training step and

explains those numbers with algorithmic details. An experiment’s theoretical

complexity is calculated with the following formula:

cost = avg_epochs ∗ steps_per_epoch ∗ [(#forward+ #backward),#step]
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Table 4.1: Theoretical complexity of a training step for classical training and adap-

tive learning rate search methods are reported for comparison. These numbers are

given for 7 learning rates in learning rate search list for querying. Classic training

(baseline) requires single forward and backward followed by single step update on

model weights. Even if classical training seems effective in terms of theoretical com-

plexity, multiple runs for different learning rates result in poor performance at total.

Since Method1 and Method3 collect validation losses of candidate learning rates, 7

forwards are applied in each step before the actual training step’s forward operation.

Also, current validation loss calculation (validation loss value before new step with

candidate learning rate) adds one more forward operation that is 9 total forward op-

erations per training step. Method 2 uses both training batch’s loss and validation

batch’s loss of each candidate learning rate step operation. So, this adds 14 forward

operations to the two forward operations (average current validation loss and actual

step) that is 16 in total. Since gradients are re-used for each candidate step, backward

count is 1 for all custom methods. Step counts of learning rate search methods are

equal to the number of the candidate learning rate for search phase (which is 7 in our

adaptive algorithms) and one more actual applied step that is total 8.

Method #Forward #Backward #Step Update

Baseline 1 1 1

MCV-lr-voting |LR|+2 1 |LR|+1

Method 1 |LR|+2 1 |LR|+1

Method 2 2|LR|+2 1 |LR|+1

Method 3 |LR|+2 1 |LR|+1
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4.5 CIFAR-10 Experiments

We experimented with several different MCV methods on CIFAR-10 dataset using

small CNN, Resnet-18 and VGG-11 architectures. Architectures are explained in

Section 4.3 in detail. To compare our proposed methods with classical training, first,

we obtain baseline results, we used early stopping for hyper-parameter tuning. Specif-

ically, learning rates which are {0.1, 0.01, 0.001, 0.0001} without any decay or com-

plex schedule are evaluated using early stopping algorithm of patience of 20 epochs.

Each learning rate is trained 5 times to obtain average results because each time we

split training dataset into stratified random %80 for training and %20 for validation

dataset that introduces randomness on results. Epoch count is decided from the first

model run with early stopping. Second model using the same setting and %100 of

training dataset is trained with the epoch count found on first model run with early

stopping. Second model is evaluated to obtain final test error value and accuracy.

This dataset split introduce randomness between runs that requires multiple runs to

obtain final learning rate and decay setting selection. The best resulting learning

rate is selected as the base learning rate for further experiments with several learn-

ing rate decay selections. Learning rate decay is an exponential decay formulated

as initial_lr ∗ 1
1.+lr_decay∗step . Baseline runs are conducted separately for SGD with

momentum and Adam optimizers. Since Adam uses implicit decaying, learning rate

decay is not applied to experiments explicitly. Baseline results of all architectures are

demonstrated in Table 4.2, 4.3 and 4.4.
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Table 4.2: CIFAR-10 baseline results on small CNN architecture. Experiments

with average epoch count, test accuracy and test loss that are conducted to obtain

learning rate and learning rate decay setting of best accuracy result. Each setting

of learning rate and learning rate decay is repeated 5 times due to randomness of

%80-%20 training set, validation set splits for early stopping. The best resulting

learning rate and learning rate decay will be used in further experiments of the same

CNN architecture. Since none of regularization methods are not applied to network,

overfitting starts quickly according to early stopping with 20 epoch patience factor.

Reported epoch numbers in the table shows epochs that gives smallest validation error

with a 20 more epoch training tries, i.e. 20 epoch patience of early stopping.

Optimizer LR LR Decay Epochs Test Loss Test Acc

Momentum SGD 10−1 – 3 1.77 33.5

Momentum SGD 10−2 – 6 0.72 76.37

Momentum SGD 10−3 – 16.6 0.86 72.23

Momentum SGD 10−4 – 80 0.97 67.21

Momentum SGD 10−2 10−3 7.4 0.77 74.63

Momentum SGD 10−2 5.10−4 6.8 0.75 75.46

Momentum SGD 10−2 10−4 6.4 0.72 76.6

Adam 10−1 – 13.8 2.31 10

Adam 10−2 – 14.4 2.20 14.33

Adam 10−3 – 4.8 0.68 77.3

Adam 10−4 – 12 0.79 74.25
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Table 4.3: CIFAR-10 average baseline results on Resnet-18. Experiments with av-

erage epoch count, test accuracy and test loss that are conducted to obtain learning

rate and learning rate decay setting of best accuracy result. Each setting of learning

rate and learning rate decay is repeated 5 times due to randomness of %80-%20 train-

ing set, validation set splits for early stopping. The best resulting learning rate and

learning rate decay will be used in further experiments of the same Resnet-18 archi-

tecture. Since none of regularization methods are not applied to network, overfitting

starts quickly according to early stopping with 20 epoch patience factor. Reported

epoch numbers in the table shows epochs that gives smallest validation error with a

20 more epoch training tries i.e. 20 epoch patience of early stopping.

Optimizer LR LR Decay Epochs Test Loss Test Acc

Momentum SGD 10−1 – 6.2 0.63 80.7

Momentum SGD 10−2 – 4.4 0.63 79.3

Momentum SGD 10−3 – 6.8 0.75 76.12

Momentum SGD 10−4 – 13.6 0.92 68.07

Momentum SGD 10−1 10−3 5.4 0.58 81

Momentum SGD 10−1 10−4 6.4 0.60 81.5

Momentum SGD 10−1 5.10−4 6.0 0.60 81.44

Adam 10−1 – 9 0.76 77.04

Adam 10−2 – 5.6 0.61 80.17

Adam 10−3 – 6.4 0.59 82.27

Adam 10−4 – 3.4 0.73 75.35
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We performed the naive versions of micro cross-validation experiments on training

step verification (i.e. MCV-discard) that only decides to accept or discard train-

ing step. To compare MCV method and baseline, epochs that have approximately

equal number of updates are selecting as stopped epoch of MCV-discard method. We

also performed naive learning rate search algorithm (i.e MCV-lr-voting) which is ex-

plained in Algorithm 4 in Chapter 3. Basically, this method combines a naive learning

rate search and training verification using MCV. Pre-defined epoch count is used for

MCV-lr-voting method. Querying learning rates are {0.1, 0.01, 0.001, 0.0001} in this

learning rate search method.

Final proposed adaptive learning rate search methods are summarized in following:

• Adaptive LR search method 1: Top learning rate is selected based on average

loss of validation mini-batches at the end of each epoch. In each step, validation

losses are collected then, these losses of each learning rate are averaged at the

end of epoch. Learning rate having smallest average validation loss is selected

for the subsequent epoch.

• Adaptive LR search method 2 Top learning rate is selected based on average

validation loss and training loss combination at the end of each epoch. In each

step, validation and training losses are collected then, these losses of learning

rates are averaged at the end of epoch with following formula:

(1− α) ∗ val_loss+ alpha ∗ train_losses, α ∈ [0.1, 0.3, 0.5]

Learning rate having smallest average loss is selected for the subsequent epoch.

• Adaptive LR search method 3 This method only uses validation losses of

validation mini-batch like method 1. Different from method 1, this approach

selects the largest learning rate that decreases the validation loss compared to

previous validation loss calculated at the beginning of training step. If none of

learning rates decreases validation loss with the training update, learning rate

that have minimum validation loss is selected.

For these methods, initial learning rate list, i.e. querying learning rates, is

{0.1, 0.01, 0.001, 0.0001} and change rule of learning rate list is:

lr_list =
[
5lr, 2lr, 4

3
lr, lr, 3

4
lr, 1

2
lr, 1

5
lr
]
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Table 4.4: CIFAR-10 average baseline results on VGG-11 architecture. Baseline

experiments with average epoch count, test accuracy and test loss that are conducted

to obtain learning rate and learning rate decay setting of best accuracy result. The

same early stopping algorithm is used of other networks. Each setting of learning rate

and learning rate decay is repeated 5 times due to randomness of %80-%20 training

set, validation set splits for early stopping. The best resulting learning rate and learn-

ing rate decay will be used in further experiments of the same VGG-11 architecture.

Since none of regularization methods are not applied to network, overfitting starts

quickly according to early stopping with 20 epoch patience factor. Reported epoch

numbers in the table shows epochs that gives smallest validation error with a 20 more

epoch training tries i.e. 20 epoch patience of early stopping.

Optimizer LR LR Decay Epochs Test Loss Test Acc

Momentum SGD 10−1 – None None 10

Momentum SGD 10−2 – 9.8 0.80 75.4

Momentum SGD 10−3 – 42.4 0.96 73.26

Momentum SGD 10−4 – 80 1.77 31.3

Momentum SGD 10−2 10−3 13.2 0.82 73.3

Momentum SGD 10−2 10−4 9.8 0.78 75.72

Momentum SGD 10−2 5. 10−4 11 0.85 73.61

Adam 10−1 – 11.2 2.30 10

Adam 10−2 – 12.8 2.30 10

Adam 10−3 – 7.4 0.84 75.1

Adam 10−4 – 9.2 0.83 73.05
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Each of our customs methods is run 10 times to report average results due to ran-

domness of PyTorch Python library and CUDA and random split of mini-batches in

MCV validation. Our test environment includes 2x Xeon Scalable 6148 2.40 GHz

CPU processor with 16GB RAM and 4x NVIDIA Tesla V100 16GB. Also, Cuda 9.0

version installed on test environment. The models are implemented in Pytorch but we

also used Keras implementation with Tensorflow backend in very earlier experiments.

Complete results of MCV methods are shown in Table 4.5 that includes small CNN,

Resnet-18 and VGG-11 architectures’ results.

MCV-discard method’s results show that verification of training step and discarding

some of them mostly finalized in high accuracy. However, a few outliers of Resnet-18

runs show that training can be failed due to discarding too much update. Moreover,

defining a stopping criteria based on number of discarded step count is not possible

since number of discard count among epochs is not decreasing or increasing over

epochs. MCV-lr-voting combines MCV-discard and naive learning rate search which

is explained in Algorithm 4 and 5. Compared to MCV-discard, number of discards are

decreased since training tends to select smallest learning rate instead of discarding the

step of pre-defined learning rate. Also, MCV-lr-voting results show that some steps

select highest learning rates 0.1 and 0.01 at earlier three epochs. However, training

continues with selecting more and more smallest learning rates at very earlier epochs

that causes underfitting of network and slow down the training. Since MCV-discard

and MCV-lr-voting did not yield a consistent improvement on CIFAR-10 (in addition

to the other mentioned problems), we decide to continue with other adaptive learning

rate search methods (which are in Table 4.5 as Method1, Method2 and Method3) for

further experiments of SVHN and Adience.
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Table 4.5: Results of MCV methods on CIFAR-10. Small CNN, Resnet-18 and

VGG-11 test accuracy and loss values are reported with theoretical and time costs.

Method Epoch
Test

Loss

Test

Acc.
Theoretic Cost

Time

Cost

C
N

N

Baseline SGD 6 0.72 76.6 (~656K ,~378K) 36min 46s

MCV-discard 44 0.75 77.19 – –

MCV-lr-voting 100 1.41 66.74 (~273K,~195K) 25min 40s

Method 1 53.2 0.91 68.48 (~285K, ~228K) 22min 56s

Method 2, α = 0.1 35.6 1.03 73.59 (~368K, ~173K) 19min 38s

Method 2, α = 0.3 5.2 1.68 38.37 (~167K, ~78K) 8min 54s

Method 2, α = 0.5 4.4 1.49 45.68 (~162K, ~72K) 8min 37s

Method 3 65.8 2.24 71.96 (~334K, ~268K) 27min 10s

R
es

ne
t-

18

Baseline SGD 6.2 0.61 81.5 (~480K, ~240K) 2h 2min

MCV-discard 68 1.51 61.92 – –

MCV-lr-voting 100 0.95 70.33 (~273K, ~195K) 1h 17min

Method 1 100 0.96 65.3 (~390K, ~312K) 1h 40min

Method 2, α = 0.1 100 0.95 68.71 (~664K, ~312K) 2h 12min

Method 2, α = 0.3 55.9 1.01 75.29 (~503K, ~237K) 1h 41min

Method 2, α = 0.5 44.4 0.76 81.03 (~427K, ~201K) 1h 25min

Method 3 82.7 0.93 76.91 (~390K, ~312K) 1h 40min

V
G

G
-1

1

Baseline SGD 9.8 0.80 75.72 ( ~416K,~208K) 1h 34min

MCV-discard 100 0.89 74.09 – –

MCV-lr-voting 100 1.56 41.56 (~137K, ~98K) 33min 30s

Method 1 70.9 1.04 63.31 (~178K, ~142K) 37min 7s

Method 2, α = 0.1 100 1.87 68.05 (~332K, ~156K) 52min 30s

Method 2, α = 0.3 26 0.89 73.91 (~153K, ~72K) 24min 9s

Method 2, α = 0.5 14.4 0.92 70.74 (~114K, ~54K) 18min 4s

Method 3 47 1.54 77.51 (~121K, ~105K) 27min 21s
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4.6 SVHN Experiments

Comprehensive experiments that measure the accuracy and performance of adaptive

learning rate search methods are also conducted for SVHN dataset. Since image

dimensions (32x32) are equals to CIFAR-10 dataset images, the same architectures

are used as Resnet-18 and VGG-11. However, we used different smaller CNN from

CIFAR-10 that have less convolutional filters. Basic CNN architecture designed as

four 3x3 convolutional layers which have 32, 32, 64, 64 output channels respectively.

Convolutions are followed by 2 fully connected layers, 512 and 10 sized.

The same test environment of CIFAR-10 experiments is also used in SVHN exper-

iments. Baseline methods are obtained with the same early stopping procedure that

repeated 5 times for each learning rate setting which is explained in Section 4.5. Base-

line results of small CNN, Resnet-18 and VGG-11 are reported in Tables 4.6, 4.7 and

4.8.
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Table 4.6: SVHN average baseline results on small CNN. Experiments with aver-

age epoch count, test accuracy and test loss are reported. They are conducted to obtain

learning rate and learning rate decay setting that gives best accuracy result.Each set-

ting of learning rate and learning rate decay is repeated 5 times due to randomness

of %80-%20 training set and validation set splits for early stopping. Final accuracy

results are obtained from models trained with %100 training set with epoch counts

found by early stopping.

Optimizer LR LR Decay Epochs Test Loss Test Acc

Momentum SGD 10−1 – 5 0.55 84.75

Momentum SGD 10−2 – 6 0.36 90.16

Momentum SGD 10−3 – 16.8 0.46 87.79

Momentum SGD 10−4 – 30 0.97 77.84

Momentum SGD 10−2 10−3 5.6 0.39 89.16

Momentum SGD 10−2 5.10−4 5 0.37 89.56

Momentum SGD 10−2 10−4 4.5 0.36 89.66

Adam 10−1 – 14.2 2.23 19.58

Adam 10−2 – 15.2 2.22 19.58

Adam 10−3 – 3.8 0.33 91.08

Adam 10−4 – 10 0.41 89.1
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Table 4.7: SVHN average baseline results on Resnet-18. Experiments with average

epoch count, test accuracy and test loss are reported. They are conducted to obtain

learning rate and learning rate decay setting that gives best accuracy result.Each set-

ting of learning rate and learning rate decay is repeated 5 times due to randomness

of %80-%20 training set and validation set splits for early stopping. Final accuracy

results are obtained from models trained with %100 training set with epoch counts

found by early stopping.

Optimizer LR LR Decay Epochs Test Loss Test Acc

Momentum SGD 10−1 – 4.2 0.21 94.17

Momentum SGD 10−2 – 3.4 0.22 93.69

Momentum SGD 10−3 – 6 0.26 92.50

Momentum SGD 10−4 – 23.6 0.30 91.02

Momentum SGD 10−1 10−3 3.8 0.20 94.25

Momentum SGD 10−1 5.10−3 3.2 0.20 94.30

Momentum SGD 10−1 10−4 3.8 0.21 94.01

Adam 10−1 – 13.4 1.07 62.81

Adam 10−2 – 15.2 0.22 93.63

Adam 10−3 – 3.8 0.21 94.12

Adam 10−4 – 10 0.26 92.18
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Table 4.8: SVHN average baseline results on VGG-11. Experiments with average

epoch count, test accuracy and test loss are reported. They are conducted to obtain

learning rate and learning rate decay setting that gives best accuracy result.Each set-

ting of learning rate and learning rate decay is repeated 5 times due to randomness

of %80-%20 training set and validation set splits for early stopping. Final accuracy

results are obtained from models trained with %100 training set with epoch counts

found by early stopping.

Optimizer LR LR Decay Epochs Test Loss Test Acc

Momentum SGD 10−1 – None None None

Momentum SGD 10−2 – 8 0.27 92.3

Momentum SGD 10−3 – 37.8 0.26 90.34

Momentum SGD 10−2 10−3 15.8 0.32 91.32

Momentum SGD 10−2 5.10−4 8.6 0.30 91.94

Momentum SGD 10−2 10−4 9.4 0.30 92.53

Adam 10−1 – 10 2.23 19.58

Adam 10−2 – 11.2 2.22 19.58

Adam 10−3 – 5.4 0.28 92.3

Adam 10−4 – 7 0.29 91.7
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Table 4.9: Adaptive learning rate search results of SVHN. Small CNN, Resnet-18 and

VGG-11 architectures’ test accuracy and loss values are reported.

Method Epoch
Test

Loss

Test

Acc.
Theoretic Cost

Time

Cost

C
N

N

Baseline SGD 4.8 0.36 90.16 (~440K, ~220K) 36min 30s

Method 1 27.8 0.37 89.55 (~137K, ~109K) 14min 25s

Method 2, α = 0.1 33.4 0.62 89.15 (~260K, ~122K) 17min 37s

Method 2, α = 0.3 6 0.55 83.30 (~126K, ~60K) 8min 35s

Method 2, α = 0.5 3.6 1.20 58.85 (~115K, ~54K) 7min 47s

Method 3 50 0.82 90.27 (~200K, ~160K) 21min 17s

R
es

ne
t-

18

Baseline SGD 3.2 0.20 94.3 (~388K, ~194K) 2h 47 min

Method 1 80.5 0.40 88.53 (~286K, ~229K) 2h 2 min

Method 2, α = 0.1 92.6 0.31 91.45 (~496K, ~229K) 2h 53 min

Method 2, α = 0.3 66.25 0.38 93.78 (~420K, ~197K) 2h 29min

Method 2, α = 0.5 23.4 0.27 92.73 (~211K, ~99K) 1h 15min

Method 3 72.4 0.25 93.95 (~264K, ~212K) 1h 53min

V
G

G
-1

1

Baseline SGD 9.8 0.30 92.53 (~436K, ~218K) 1h 37min

Method 1 100 0.45 86.25 (~286K, ~229K) 59min 55s

Method 2, α = 0.1 13.7 1.46 48.7 (~163K, ~77K) 25min 54s

Method 2, α = 0.3 3.4 2.05 26.3 (~114K, ~54K) 17min 59s

Method 2, α = 0.5 2 2.23 19.6 (~107K, ~50K) 16min 54s

Method 3 45.7 1.01 72.08 (~188K, ~150K) 39min 32s
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4.7 Adience Experiments

Since Adience images are collected from real world social media, this dataset rep-

resents complex nature. We aim to observe proposed methods performance on this

dataset because of this complex nature and providing a different task (rather than

CIFAR-10 and SVHN datasets) which is age classification of human faces. Since the

age classification task and images are more complex, we used Resnet-50 architecture

for Adience experiments The same test environment of previous experiments is also

used in Adience experiments. Baseline methods results are obtained with the early

stopping procedure that repeated 3 times for each learning rate setting. Since train,

test, validation sets are provided, we used provided validation set in all experiments

instead of random validation set for each experiment. Another reason of using pro-

vided train-test-validation splits is that simple stratified sampling is not enough for

this dataset. Because different images of the same subject should not be in both train

and test splits in order to prevent overfitting.
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Table 4.10: Adience average baseline results on Resnet-50. Experiments with av-

erage epoch count, test accuracy and test loss are reported. They are conducted to ob-

tain learning rate and learning rate decay setting that gives best accuracy result.Each

setting of learning rate and learning rate decay is repeated 5 times.

Optimizer LR LR Decay Epochs Test Loss Test Acc

Momentum SGD 10−1 – 26.6 1.47 50.12

Momentum SGD 10−2 – 12.8 1.65 48.64

Momentum SGD 10−3 – 16.4 1.68 44.81

Momentum SGD 10−4 – 77 1.71 42.61

Momentum SGD 10−1 10−2 139.5 1.44 48.64

Momentum SGD 10−1 10−3 45.6 1.46 49.53

Momentum SGD 10−1 5x10−3 65.4 1.54 45.86

Momentum SGD 10−1 10−4 24.4 1.37 51.02

Adam 10−1 – 25.2 1.51 47.45

Adam 10−2 – 15.6 1.38 51.94

Adam 10−3 – 11.2 1.47 53.33

Adam 10−4 – 8 1.42 49.25
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Table 4.11: Adience average adaptive learning rate search using MCV results

on Resnet-50. Experiments with average epoch count, test accuracy and test loss,

theoretical and wall clock time cost are reported.

Method Epoch
Test

Loss

Test

Acc.
Theoretic Cost Time Cost

Baseline SGD 24.4 1.37 51.02 (~522K, ~261K) 26h 16min

Method 1 75.6 1.80 39.11 (~176K, ~141K) 3h 38min

Method 2, α = 0.1 96.7 1.63 46.75 (~314K, ~148K) 4h 13min

Method 2, α = 0.3 81.6 2.14 48.2 (~314K, ~148K) 4h 13min

Method 2, α = 0.5 72.6 2.28 52.50 (~291K, ~137K) 3h 54min

Method 3 100 1.48 46.41 (~185K, ~148K) 3h 49min
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CHAPTER 5

CONCLUSION

In this thesis, we propose micro cross-validation based methods for deep neural net-

work training. Experiments are conducted to show effects of proposed MCV methods

on three dataset (CIFAR-10, SVHN and Adience) and three convolutional neural net-

works which are small custom CNN, ResNet and VGG architectures. Questions (Q1,

Q2 and Q3) posed in Introduction are discussed using the experimental results. Q1 is

questioning the success of MCV-discard which is training step validation using MCV

with a given learning rate setting. CIFAR-10 results (Table 4.5) give us a mixed an-

swer. There is an improvement on small custom CNN while other architectures do

not have any improvement in terms of test accuracy. Unlike small CNN, Resnet-

18 experiments include erroneous runs because, discarding too many training steps

causes to stuck training on very poor state. Another question, Q2, that we explored

in this work is the convenience of MCV for automated learning rate search. For this

reason, we proposed two different adaptive learning rate search methods. The first

one computes a moving average of the votes for the best batch-level learning rates,

and instantaneously uses the highest-voted learning rate for actual gradient updates.

In the second method, a constant LR is used during an epoch and while doing so,

average validation loss is computed per LR in the search array. At the beginning of

a new epoch, we choose the best. For this second method, we proposed a set of dif-

ferent loss functions. Finally, as an answer to Q3, we analyzed the improvements of

automated learning rate search methods with respect to baseline. MCV based learn-

ing rate search methods do not provide consistent improvement in our experiments.

However, reasonable accuracy is obtained in a much less amount of time compared

to the classical macro-CV based grid search.
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