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ABSTRACT

RESCORING DETECTIONS BASED ON CONTEXTUAL SCORES IN
OBJECT DETECTION

Zorlu, Ersan Vural
M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Emre Akbaş

July 2019, 60 pages

To detect objects in an image, current state-of-the-art object detectors firstly define

candidate object locations, and then classify each of them into one of the predefined

categories or as background. They do so by using the visual features extracted locally

from the candidate locations; omitting the rich contextual information embedded in

the whole image. Contextual information can be utilized to complement the informa-

tion extracted locally and thereby to improve object detection accuracy. Researchers

have proposed many models that exploit scene-level and/or instance-level context by

using non-local features from the same image. In this work, we propose models to

improve object detection by utilizing contextual information embedded in the con-

fidence scores of detections in the whole image without using any visual features.

Our models use object-to-object spatial and scale-related relationships and work as a

post-processing step that can be plugged into any object detector. Specifically, for a

reference detection output by the base object detector, our model first defines a variety

of spatial and scale-based regions relative to the location of the reference detection.

Then, each of these regions is summarized by the confidence scores of detections
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inside it. Next, the confidence scores of the reference detection and the contextual

confidence scores are processed by our models. We propose three variants based on

multilayer perceptrons. We evaluate our models in conjunction with the state-of-the-

art RetinaNet object detector on the widely used MSCOCO benchmark dataset, where

we show that our models improve average precision by up to %1.8 points.

Keywords: Object Detection, Context, Object Recognition, Deep Learning, Artificial

Neural Networks
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ÖZ

NESNE ALGILAMA YÖNTEMLERİNDEN ELDE EDİLEN SEZİMLERİN
SKORLARININ BAĞLAM BİLGİSİ KULLANILARAK YENİDEN

HESAPLANMASI

Zorlu, Ersan Vural
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Emre Akbaş

Temmuz 2019 , 60 sayfa

Modern nesne algılama yöntemleri, problemi çözmek için öncelikle verilen bir gö-

rüntüde aday nesne bölgeleri belirler, daha sonra bu aday bölgelerin görsel öznitelik-

lerini kullanarak sınıflarını kestirmeye çalışır. Bu yöntemler, sadece aday nesne böl-

gelerinden elde edilen görsel öznitelikler üzerinde çalıştıklarından, resimdeki bağlam

bilgisini gözardı etmektedirler. Nesne tanıma başarımını artırmak amacıyla bölgesel

özniteliklere ek olarak resimlerdeki bağlam bilgisinden faydalanılabilir. Bu amaçla

geliştirilen yöntemler, görüntü seviyesinde ve/veya nesne seviyesinde bağlam bilgi-

sini aynı görüntüdeki alakalı başka bölgelerin görsel özniteliklerini de hesaplamaya

katarak değerlendirmiş olurlar. Bu çalışmada, nesne tanıma başarımını artırmak ama-

cıyla, aynı görüntüde tespit edilen diğer nesnelerin güven puanlarını bağlam bilgisi

olarak kullanan yöntemler önerilmektedir. Bu çalışmada önerilen yöntemler, herhangi

bir nesne algılama yönteminin sonuçları üzerinde uygulanabilir ve nesnelerin arasın-

daki konumsal ve ölçeğe dayalı ilişkileri kullanır. Açıklamak gerekirse, nesne algı-

lama yöntemi tarafından tespit edilen her nesne için, o nesneye göreceli olacak şe-
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kilde çeşitli konumsal ve ölçeğe dayalı bölgeler belirlenir. Bu bölgelerin özet bilgisi,

bölgenin içerisine düşen nesnelerin güven puanları kullanılarak çıkartılır. Referans

nesnenin güven puanları ve tanımlanan bölgelerin özetleri işlenerek referans nesne

için yeni güven puanları hesaplanır. Performans artırımını sağlayabilmek amacıyla

bu çalışmada çok katmanlı algılayıcı tabanlı üç model önerilmektedir. Bu modeller

RetinaNet modelinin sonuçları kullanılarak MSCOCO veri kümesi üzerinde değer-

lendirilmiş ve ortalama hassasiyet değerinin temel alınan RetinaNet modeline göre

%1.8’e kadar artırıldığı gözlenmiştir.

Anahtar Kelimeler: Nesne Algılama, Bağlam, Nesne Tanıma, Derin Öğrenme, Yapay

Sinir Ağları
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accomplish this work, he also encouraged me when I was struggled. This work could

not be completed without his constant support. It is an honor for me to be his student.

My dearest thanks to Duygu, who made this work possible with her support and love.

She is the one who made me keep going when I was struggled and stressed.

Finally, I would like to express my gratitude to each member of my family for sup-

porting all the way through my education and academic life.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . . . 7

2.1 Object Detection Methods . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Two-stage Object Detectors . . . . . . . . . . . . . . . . . . 8

2.1.2 One-stage Object Detectors . . . . . . . . . . . . . . . . . . . 10

2.1.3 Context Information . . . . . . . . . . . . . . . . . . . . . . . 12

3 CONTEXT RE-SCORING AS POST PROCESSING . . . . . . . . . . . . 23

xi



3.1 Context Information . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 The MLP Model . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 The Gated MLP Model . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 The Pairwise MLP Model . . . . . . . . . . . . . . . . . . . . 29

3.2 Methods of Analyzing Results . . . . . . . . . . . . . . . . . . . . . 29

4 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 The Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Detections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Preliminary Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xii



LIST OF TABLES

TABLES

Table 2.1 Comparison of different context models. Type 1 utilizes scene-

level context or context around the proposal. Type 2 utilizes relationships

between objects. The last row of the table lists our proposed method to

put it into context within the related work. . . . . . . . . . . . . . . . . . 19

Table 4.1 Improvement obtained by our MLP context model when ground-

truth labels are used for the context detections. Results are shown on

the COCO val2017 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 4.2 Results of different models on MS COCO val2017. . . . . . . . . 40

Table 4.3 LRP errors obtained by different models on MS COCO val2017. 41

Table 4.4 Class by class detection results on MS COCO test2017 split.

AP 50 scores are given for class by class comparison. RetinaNet results

are obtained by applying a score threshold of 0.05 over top 100 scored

detections. Our results are obtained by applying a score threshold of 5 ·10−4. 41

Table 4.5 AP results for different structures of the MLP model. Results

obtained by using only spatial regions and results obtained by only scale-

related regions are compared. Also, results by cross entropy loss for bi-

nary classification are listed. . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 4.6 AP results for different structures of the Gated MLP model. . . . 51

xiii



LIST OF FIGURES

FIGURES

Figure 1.1 Example erroneous detections of RetinaNet. Mislabeled de-

tections are drawn with dashed-line boundaries. Images are from the

MSCOCO dataset [1]. (a) Sports ball is mislabeled as bird (b) Horse is

mislabeled as cow with high confidence. . . . . . . . . . . . . . . . . 2

Figure 1.2 Processing pipeline of our proposed method. First, we ob-

tain top 100 scored detections from the base object detector for each

image. Score summaries of regions based on relative locations and rel-

ative scales of detections with respect to the query detection, which is

d2 in this example, are extracted. Score summaries are concatenated

with the scores of query detection. The concatenated vector is pro-

cessed by MLP to re-score the query detection. Also, the scores of the

query detection is fed to another MLP. The results of 2 MLPs are ag-

gregated using a sigmoid gate. In this figure, we demonstrate re-scoring

of detection 2, while the same procedure is applied for all detections in

the same scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.1 Processing pipeline of object detection using context models.

Current context models are integrated into the object detection pipeline

typically after the region proposal stage. They complement local fea-

tures of proposals with the features extracted from whole scene, from

predefined regions, or from other proposals in the same scene. . . . . . 14

xiv



Figure 3.1 Visualization of spatial and scale-based contextual regions.

Each context detection is assigned to one spatial region and one scale-

based region based on its relative location and scale with respect to the

query detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.2 Visualization of spatial and scale-based contextual regions.

The query detection is marked with yellow borders, while the contex-

tual detections (with respect to the query detection) are shown with red

borders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 3.3 Network architecture of the MLP model. . . . . . . . . . . . 31

Figure 3.4 Network architecture of the Gated MLP model. . . . . . . . 32

Figure 3.5 Network architecture of the Pairwise MLP model. . . . . . . 33

Figure 4.1 Train and validation loss graphs. Loss graphs of MLP, Gated

MLP and Pairwise MLP respectively with parameters learning rate=1e-

5, batch size=100, dropout=0.3 . . . . . . . . . . . . . . . . . . . . . . 47

Figure 4.2 Error analysis charts. These charts visualize percentage of

different error types in the top N scored predictions of RetinaNet and

Gated MLP for all categories. N parameter is selected as the number of

ground truth objects in each category. (a) RetinaNet results. (b) Gated

MLP results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 4.3 Error analysis plots. These plots visualize overall precision-

recall curve of results averaged over all categories. Results are obtained

on the val2017 split of COCO. (a) RetinaNet results. (b) Gated MLP

results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xv



Figure 4.4 Qualitative results of baseline vs Gated MLP on MS COCO.

In every pair, left is based on baseline, right is based on Gated MLP.

Detections drawn with dashed-line boundaries are mislabeled by base-

line and corrected by Gated MLP while detections drawn with solid

line boundaries are labeled correctly. Top 2 class confidence scores for

corrected detections are provided for both methods. . . . . . . . . . . . 52

Figure 4.5 Qualitative results of baseline vs Gated MLP on MS COCO.

Background regions labeled as objects by baseline method are corrected

by Gated MLP. Background detections of baseline model that are re-

moved by Gated MLP are drawn with dashed-line boundaries while de-

tections labeled correctly by baseline are drawn with solid line boundaries. 53

Figure 4.6 Qualitative results of baseline vs Gated MLP on MS COCO.

In every pair, left is based on baseline, right is based on Gated MLP.

Detections drawn with dashed-line boundaries are mislabeled by Gated

MLP although they are labeled correctly by baseline while detections

drawn with solid line boundaries are labeled correctly. Top 2 class con-

fidence scores for falsified detections are provided for both methods. . . 54

xvi



LIST OF ABBREVIATIONS

AP Average Precision

BAN Boundary Aware Network

CNN Convolutional Neural Network

COCO Common Objects in Context

FC Fully Connected

FPN Feature Pyramide Network

GRU Gated Recurrent Units

IoU Intersection over Unioin

LRP Localization Recall Precision

mAP Mean Average Precision

MLP Multilayer Perceptron

MMSE Minimum Mean Square Error

NMS Non Maximum Suppression

RoI Region of Interest

RPN Region Proposal Network

R-CNN Region based Convolutional Neural Network

SIN Structure Inference Network

SS Selective Search

SSD Single Shot Multibox Detector

VGG Visual Geometry Group

YOLO You Look Only Once

xvii



xviii



CHAPTER 1

INTRODUCTION

Object detection is the problem of detecting object instances from a predefined set

of classes and their locations in an image. This problem is challenging because un-

like image classification, it requires to process localization of an excessive number

of candidate object locations and then refine those candidate locations to match loca-

tions of ground truth objects precisely. Current state-of-the-art object detection meth-

ods mostly follow one of the two paradigms; one-stage object detection or two-stage

object detection. Both of these methods make use of convolutional neural networks

(CNNs) to extract visual features from images and show great success in performance

and accuracy. However, they still make errors due to a various number of reasons in-

cluding intra-class variation, not enough training data, low-resolution (small) objects,

occlusion and changes in viewpoints. To exemplify such cases, some detection errors

of state-of-the-art RetinaNet [2] object detector are demonstrated in Figure 1.1. In

the first scene, a sports ball object is mislabeled as a bird. In the second scene, Reti-

naNet mislabels a horse object as a cow although it successfully labels other horse

objects in the same scene. These objects are hard to detect by visual appearance only

since they are very small or low-resolution objects, so it is not a surprise that Reti-

naNet mislabels them. If context information embedded in images such as spatial and

scale-related relationships between objects are used, false labels in such cases could

be eliminated.

When a human looks at a scene, s/he first scans the general structure to interpret it and

then focuses on the objects in the scene. Humans classify occluded or low-resolution

objects by making inferences based on the rest of the scene. For example, when we

see tiny objects appearing in a scene with the sky in the background, we expect them
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(a)

(b)

Figure 1.1: Example erroneous detections of RetinaNet. Mislabeled detections are

drawn with dashed-line boundaries. Images are from the MSCOCO dataset [1]. (a)

Sports ball is mislabeled as bird (b) Horse is mislabeled as cow with high confidence.
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to be birds or aeroplane; or boats generally appear with the sea in the background.

Similarly, when we see a relatively small object next to a keyboard, we expect that

object to be a mouse. With the help of context information embedded in images, this

type of inferences based on the surroundings of objects help us to interpret images and

discover objects appear in it even if they are blurry or occluded. However, most of the

currently popular object detectors try to classify bounding box regions based on only

the visual features extracted from the region inside of the reference bounding box

ignoring the rich contextual information embedded in images. Therefore, integrating

context information to object detectors is currently a popular topic. Two types of

context have been used in literature. The first type makes use of scene level context

or context around the object while the second utilizes instance level object to object

relationships. For example, the first type is used to infer that tiny objects in the sky

are birds and the second type is used to infer that relatively small object next to a

keyboard is quite likely a mouse. Most of the current context models are integrated to

a common object detector training pipeline after region proposal step. For each region

of interest (RoI), local features are combined with the features of context regions by

applying various methods. Then, RoI classifications and bounding box regressions

are evaluated using combined features instead of the local features that are the visual

features extracted from RoI.

1.1 Proposed Method

In this work, we try to exploit context information embedded in images to improve

the detection performance of popular object detectors. To this end, we utilize instance

level context and use the detections predicted by RetinaNet. Our aim is to improve the

detection performance of a base object detector by applying a post-processing step on

its predictions so unlike other context models, our model is not trained end to end with

the base detector, but it is lightweight and has a simple structure. The post-processing

step re-scores each detection given scores, relative locations and relative scales of

other detections in the same image. Specifically, for each detection of RetinaNet, we

define multiple spatial and scale-based regions such as up, down, bigger, smaller, etc.

with respect to that detection. Each region is summarized by first finding a subset

3



of detections which are belong to that region and then taking maximum scores of

those detections for each object category. Finally, summary scores for regions are

concatenated with the scores of query detection and fed to a neural network to re-

score the query detection. Thus, objects contradicting with the spatial or scale-related

context are refined while scores of objects approved by context are increased. Figure

1.2 presents the processing pipeline of our proposed method.
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1.2 Contributions

The following items are the main contributions of this work:

• We propose a context model as a post processing step for object detection to

improve performance.

• Our model utilizes spatial and scale-based relationships between objects in the

same scene and can be plugged into any object detector.

• We evaluated our model on MS COCO and showed that it improves average

precision (AP) of baseline by %1.8. Moreover, we analyze different false posi-

tive types obtained by both baseline model and our model.

1.3 Thesis Outline

The rest of this thesis is organized as follows.

In Chapter 2, we review the current state-of-the-art one-stage and two-stage detec-

tors. Also, methods proposed to integrate explicit context to detectors in literature are

discussed.

Chapter 3 describes how we use bounding boxes and scores of detections obtained

from predictions of a detector to utilize context information embedded in images for

object detection task.

Chapter 4 presents experimental results of our method, compares our results with the

base object detector, analyzes false positive predictions of both our method and base

detector. Additionally, we present qualitative successful and failure cases obtained

using our context model.

Chapter 5 provides a brief summary and discussion.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, advances in object detection task are presented. Different approaches

to object detection in the literature are overviewed. Finally, methods that integrate

contextual information to detectors are reviewed and compared.

2.1 Object Detection Methods

Object detection is the task of proposing object locations and map that locations to

a predefined set of object classes in an image. For each candidate object location in

an image, most detectors predict object proposals that consist of 4+C values where

C is the number of classes; (x,y) coordinates, width, height of proposal and confi-

dence score for all classes. Two approaches have been used for object detection task;

one-stage and two-stage object detection. Both of these approaches try to refine initial

candidate object locations by applying a regression network in order not to be obliged

to predict exact ground truth object locations precisely in the beginning. However,

two approaches basically diverge in the way of preparing initial candidate object lo-

cations. Two-stage detectors make use of various methods for region proposal such as

Selective Search (SS)[3] to determine candidate object locations and then refine coor-

dinates of those locations to approximate ground truth boxes. Region proposal phase

narrows down candidate object locations to a small number. For example, Faster R-

CNN [4] achieves state-of-the-art performance with only 300 proposals per image.

Since object detector’s performance depends on the quality of region proposals, any

object location should not be missed as much as possible on region proposal step

while filtering out majority of negative locations. One-stage detectors start predic-
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tion generally with a lot more number of predefined proposals compared to two-stage

detectors, e.g. RetinaNet classifies ~100K proposals per image that are covering dif-

ferent scales and aspect ratios and regress them closer to the ground truth boxes.

Since one-stage detectors use predefined proposals, there is no intermediate step such

as region proposal. Therefore, one-stage detectors are mostly faster than two-stage

detectors but with lower mean average precision (mAP) because of the limitations

arise from predefined proposals.

Both of the approaches firstly extract rich feature representations from images. To ex-

tract those features, they make use of well known CNN architectures such as VGG-16.

This CNN part is called the backbone network and it is mostly pretrained on a simpler

task such as image classification and then fine-tuning is applied for object detection

task. After training the backbone network for the classification task, this network is

truncated before classification layers and an auxiliary network structure is added in-

stead. Then, the new network is trained to regress proposals and predict class scores

for proposals. The following section explains some of the currently popular methods

of two approaches in more detail. Then, methods integrate context information on

existing detectors are discussed.

2.1.1 Two-stage Object Detectors

Modern object detectors mostly follow a two-stage approach that first generates can-

didate object proposals in the first stage, then classifies and refines proposals by ad-

justing their coordinates in the second stage. Because of the intermediate steps such

as region proposal and subsequent feature resampling, two-stage detectors are usually

slower but show better detection performance compared to one-stage object detectors

[5].

R-CNN[6], Fast R-CNN[7] and Faster R-CNN are the representative methods of two-

stage approach.

R-CNN follows 3 steps to train a detector. First step is to generate class-independent

region proposals by Selective Search. Second step does feature resampling by warp-

ing each region proposal into fixed size images and extracting fixed length feature
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vectors from those images by a large CNN. Finally, for each feature vector extracted

in the second step, two sibling outputs are generated by fully connected layers; one is

to predict classes of proposals, the other is to regress proposals that were generated

by Selective Search in the first step.

Although R-CNN achieves great accuracy, it is slow in training and testing since it

processes same CNN for each proposal individually. Also, generated features for each

proposals are written to disk which requires lots of storage. Moreover, R-CNN can

not be trained end-to-end which may lead to instabilities while training. To handle

these drawbacks of R-CNN, Girshick proposed Fast R-CNN. Fast R-CNN preserves

most of R-CNN structure other than the feature extraction step for proposals. Instead

of processing CNN for each region of interest (RoI) obtained by selective search, Fast

R-CNN processes whole image and patches are extracted from whole image features.

Then, those patches are warped into fixed size features by RoI pooling. Since there

are thousands of RoIs, this modification over R-CNN reduces training time by 3x.

Selective Search method runs on CPU and it is the main performance drawback of

Fast R-CNN. Also, since accuracy of Fast R-CNN highly depends on the proposals

generated by SS, too many proposals are generated in the first step not to miss any

object position with different scales and aspect ratios. Faster R-CNN replaces SS

method of Fast R-CNN with an internal convolutional neural network that is Region

Proposal Network (RPN). RPN shares same convolutional features with detection

framework, thus proposes a nearly cost free solution to extract ROIs. RPN works

by running sliding windows over the convolutional feature map output by the last

shared convolutional layer. For each sliding window location, k region proposals are

predicted where k denotes different scales and aspect ratios. These region proposals

are called anchors. Anchors are centered at the related sliding windows’ center and

anchors centered at same locations have different scale or aspect ratio. After sliding

window, two sibling fully connected layer is applied; reg layer and cls layer. Reg

layer outputs proposed box regressions, cls layer outputs objectness score of that

anchor. Thus, for each location in sliding window, k*(4+2) outputs generated. Then,

the classifier of Faster R-CNN only looks at the anchors having objectness score over

a threshold. By replacing SS with RPN, Faster R-CNN derives performance gain over

Fast R-CNN while achieving more accuracy.

9



2.1.2 One-stage Object Detectors

One-stage detectors are faster compared to two-stage detectors, but often with lower

mAP. Since one-stage detectors do not have region proposal and use a single network

for both classification and regression, they often achieve real time performance. Since

speed is important for real time applications, several approaches are suggested in this

area.

In You Look Only Once (YOLO)[8], Redmon et al. use a single CNN network which

is trained on the entire image to predict all objects in an image simultaneously. They

divide image into SxS grid cells. Each cell contains B bounding boxes. A bounding

box consists of 5 predictions; (x,y) coordinates, width, height and confidence score.

If a cell does not contain any objects, confidence scores of boxes inside that cell

should be zero; otherwise, the confidence score should be intersection over union

(IoU) between predicted box and the ground truth box. Class scores are predicted

for each grid cell which means all B bounding boxes in the same cell have the same

class predictions. Probability of an object of a category present in a bounding box is

calculated by multiplying the confidence of the box with the class scores of the related

grid cell. Consequently, they use a single network which uses entire image features to

output SxSx(Bx5+C) shaped tensor where C is the number of object categories. Since

YOLO uses a single network, it is extremely fast and has comparable mAP results

with most of the two-stage object detectors. Also, they demonstrate that YOLO is

highly generalizable, so it can be trained on real world images and results still will

be fairly accurate. Since YOLO uses global image features, they claim it is able to

encode contextual information implicitly. However, YOLO constraints with spatial

limitations due to the limited number of bounding boxes and grid cells. YOLO may

not detect nearby objects or object groups since a grid cell can contain only one object

class.

Liu et al. propose Single Shot Multibox Detector (SSD)[9] that is also a single net-

work like YOLO but starts with predefined bounding boxes called priors (similar to

anchor boxes in Faster R-CNN) as prediction. SSD trains a single network to pro-

duce labels to priors and regress the priors closer to the ground truth boxes. SSD uses

VGG-16 as backbone network. Fully connected layers are removed from the VGG-16
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structure and some convolutional layers are added producing feature maps of different

sizes and depth. Each feature map has multiple priors at different spatial locations,

scales and aspect ratios as reference point to the ground truth boxes. For each prior, a

discrete class probability vector and continuous regression values are predicted using

related feature map. This way, feature maps are used to detect objects of different

sizes and scales; earlier layers are used to detect smaller objects while last layers are

used to detect larger objects. YOLO is limited since aspect ratios of predefined grid

cells are fixed. SSD improves that by allowing more aspect ratios. Another improve-

ment over YOLO is that SSD uses more convolutional layers for different scales of

ground truth boxes that helps to detect objects at multiple scales better. When S is 7

and B is 2 in above YOLO calculation, YOLO predicts 7x7x2 = 98 confidence score

for each class while SSD makes prediction for over 10K priors. Most of these priors

are not a match to a ground truth box since most images contain only a few objects.

This results in class imbalance problem on classification task for one-stage detectors.

To solve class imbalance, SSD uses Hard Negative Mining.

To eliminate class imbalance emerges in one-stage detectors, Lin et al. proposes

RetinaNet that uses focal loss. They reveal that the foreground-background class

imbalance problem in one-stage detectors is the reason behind the lower accuracy

against two-stage detectors. RetinaNet works on ~100k predefined anchors and most

of these anchors are background i.e, do not match to any ground truth object. Unlike

many other works like Huber Loss [10] focusing on eliminating or down weighting

outlier data in loss calculation, RetinaNet down weights easy examples by modifying

cross entropy loss in order to prevent easy examples dominating loss calculation so

that classifier can focus on hard examples. Focal loss is based on standard cross

entropy loss for binary classification. Standard cross entropy loss definition is given

in Equation 1.

CE(p, y) =

−log(p) if y = 1.

−log(1− p) otherwise.
(1)

Where y ∈ {±1} is the ground truth label, and p ∈ [0, 1] is the estimated class

probability by the model. With this loss calculation, even easily classified examples
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with high confidence have nontrivial effect on loss value. When there is too much

easy examples, they dominate the loss calculation. To prevent easy examples from

overwhelming the classifier subnetwork, RetinaNet modifies cross entropy loss with

a modulating factor. Modified loss is given in Equation 2.

FL(p, y) =

−(1− p)
γlog(p) if y = 1.

−pγlog(1− p) otherwise.
(2)

This way, if an example is classified correctly with high confidence, modulating factor

approaches to zero and have smaller effect on loss, while the effect of misclassified

examples increases since the modulating factor approaches to 1 as the confidence

increases.

Other than focal loss, RetinaNet has a simple structure. As the backbone network,

RetinaNet builds Feature Pyramid Network (FPN) [11] on the top of ResNet archi-

tecture. This way, a rich multi-scale feature pyramid is extracted from an image. By

using multiple levels of the pyramid, they can better detect objects at different scales.

After extracting features using FPN, RetinaNet regresses and classifies predefined

proposals using two sibling subnetworks. Different than other one-stage detectors,

they propose focal loss on classification task to handle huge class imbalance prob-

lem.

2.1.3 Context Information

Most two-stage object detectors consider proposals individually without making in-

ference about contextual information explicitly. Detectors based on CNNs, such as

YOLO, implicitly make use of context information since the receptive fields of neu-

rons grow with depth, and covers the entire image in the last layers.

To analyze the effect of visual context for data augmentation in scene understanding,

Dvornik et al. [12] propose a context driven data augmentation method. Basically,

they augment training images by blending objects in existing scenes and then train a

common CNN based detector, Faster R-CNN, on augmented dataset. Object instances

to blend are extracted from images using the segmentation annotations of the same
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dataset. Unlike Dwibedi et al.’s work [13] where random object instances are copied

and pasted to random locations, they blend object instances at locations consistent

with context. To blend objects consistent with context, they don’t paste random ob-

ject instances at random locations, but train an explicit context model. They generate

multiple subimages with different scales and aspect ratios from each image of dataset

where a subimage fully encloses a subregion that is either a ground truth bounding

box or a background region. The subregion content from the subimage is masked out.

The context model is trained to predict the class of the object in the masked out area

using the features of surrounding region in the subimage. After the context model is

trained, it is used to blend objects consistent with context at random locations of im-

ages with different scales and aspect ratios. After blending artefacts, standard object

detection training is applied on the augmented dataset. In order to prevent the detector

to detect blended objects instead of the initial objects, several blending methods are

used such as gaussian or linear blur. The authors showed improved results on the aug-

mented dataset compared to results of original dataset which indicates that implicit

utilization of context is available in CNN based detectors. Also, they compare their

results with the work by Dwibedi et al. [13], and experimentally show that random

placement of objects may hurt the detector performance while placement consistent

with context increases the performance.

To make context explicitly available, several approaches are proposed recently. Cur-

rent studies on context try to make use of context information mostly by integrating

with the modern object detectors after the region proposal step. Given the RoI pooled

features of each proposal, they use non-local features such as features of other pro-

posals, features of whole scene or features of predefined regions as complementary

information along with the local features. This new contextually rich features are used

to classify and regress proposals instead of features that are extracted locally. Thus,

recent studies on contextual information exploit object relationships, scene context or

context around query proposal. Figure 2.1 presents the processing pipeline of current

context models.

Chen and Gupta [14] integrate an external spatial memory module on Fast R-CNN

to model object-to-object relationships. Fast R-CNN detects each object in parallel

so there is no dependency between objects. In this work, Chen and Gupta model a

13



Figure 2.1: Processing pipeline of object detection using context models. Current

context models are integrated into the object detection pipeline typically after the

region proposal stage. They complement local features of proposals with the features

extracted from whole scene, from predefined regions, or from other proposals in the

same scene.

sequential structure so that the detection of an object depends on detection of other

objects. To achieve that, a spatial memory is used. The memory is an image-like 2D

structure that is initialized as empty. To update the state of memory, features of each

proposal obtained by Fast R-CNN are used in order. They start with the proposal with

the highest foreground confidence score and continue with other proposals in order

by descending confidence scores. Each proposal updates the region of memory that

corresponds to its projection in the image spatially. To detect first object that is the

object having highest foreground confidence score, Fast R-CNN is used. The first

object updates the state of the memory module, and the next object is detected using

both memory module features and the Fast R-CNN module. The same iteration is

applied until a predefined maximum number of object instances are detected.

Bell et al. [15] use RNNs to extract contextual information from an image. They

use Fast-RCNN as baseline detector and "conv5" layer of VGG16 is fed to a model

called Four-directional IRNN to compute context features outside of a RoI. In Four-

directional IRNN, they place four RNNs that move in left, rigth, up and down across

the image. They use a modified version of IRNN that works like an accumulator.

To extract context features outside of a RoI both global and local, they stack 2 Four-

directional IRNN as they claim that after the second IRNN, all output cells depend on

all input cells. Inside the RoI, they use multiple layers of VGG16 to extract fixed size
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features at different scales. Then, the inside features concatenated with the outside

context features and the resulting features are used for class prediction and bounding

box regression.

Hu et. al [16] propose relation networks that integrates into a modern object detector

after RoI pooling where features of possible object locations are calculated. Rela-

tion networks combine the features of the proposals obtained by a FC layer after RoI

pooling with messages coming from other proposals. Multiple relations are defined

between each proposal so each proposal sends multiple messages to other proposals.

The messages are calculated using the visual features of source proposal. In order to

integrate messages from multiple proposals, relation score between each proposal is

calculated using the visual features and geometrical features of proposal pairs. Re-

lation scores between proposal pairs are used to measure the effect of proposals on

each other. Each message is multiplied with the relation score between proposals

and new features of proposals are calculated using these messages coming from other

proposals in the same scene. Thus, new features of a proposal consist of not only the

visual features of the region it covers but also features from other proposals related

geometrically and visually. The new features of proposals are used to predict object

classes of proposals and bounding box regressions.

Liu et al. [17] exploit both scene-level and instance-level context. They model Struc-

ture Inference Network (SIN), an object detector that integrates a context method into

a typical detection framework which is Faster-R-CNN for this work. To predict label

of an object, unlike Faster-R-CNN, they use not only features from that object but also

features from both other objects and scene. To combine features from other objects

and scene with the features of the object in question, they build a graph structure for

each individual image where objects are nodes and relationships between objects are

edges. To adapt graph structure into a neural network, they use Gated Recurrent Units

(GRU) in a novel way. Visual features are extracted for whole scene and for each ob-

ject proposal detected by Faster R-CNN, and spatial features are extracted for each

pair of proposals. Visual features are extracted for each object by a FC layer applied

after RPN. Spatial features are encoded for each edge between objects as spatial rela-

tionship such as width and height ratio, or distance between pairs of proposals. Since

some proposals have stronger relationships compared to others, e.g. a mouse is more
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important to a keyboard, a scalar value is calculated using visual features and spatial

relationships of node pairs to estimate the effect of one node on another node. Then,

visual features of each proposal are multiplied by that scalar before being passed as

a message to other side of the edge to integrate a single message by max pooling

between all messages coming from all nodes. The integrated message is used as an

input to a GRU that takes features of the proposal in question as initial state. Another

GRU also takes proposal features as initial state but the input is the whole scene fea-

tures. Then the outputs of these 2 sets of GRUs are combined together to update the

node state. Finally, instead of only own visual features of each node, integrated node

features are used to predict object category and to refine proposal locations.

Chu and Cai [18] propose an ensemble of object detector that tries to improve per-

formance of Faster R-CNN by exploiting scene-level and instance-level context. To

obtain proposals based on local appearance, they use predictions of the baseline ob-

ject detector. Then, they refine scores of proposals based on object relationships and

global scene context. Like our method, they define layouts to encode spatial relation-

ship between two objects:

• If two proposals do not have intersection, then the spatial relationships of them

can be classified into far, up, down, left and right.

• Otherwise, they can be defined as inside, outside, up, down, left and right.

They use these layouts to estimate the log probability of an object with category

label i appears with an object category j for a given layout which is learned from

the statistic summary of the training set. To encode global scene context, they train a

CNN on scene categorization task on Places2 dataset and the last layer of the CNN is

used to represent scene context. They combine proposals based on local appearance

with relationships between objects and global appearance of image to model a fully

connected conditional random field (CRF) which is formulated in Equation 3.

E(X) =
N∑
i=1

φu(xi) + ωp

N∑
i=1

φp(xi, xj, r) + ωg

N∑
i=1

φg(xi) (3)

where φu(xi) is called unary potentials and are the prediction scores of base detector

for proposal i of image x. φp(xi, xj, r) is called the pairwise potentials and are estima-

tion of log probabilities that represents object relationships mentioned before. φg(xi)
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is called global potentials and represents the global context as mentioned before. N

is the number of proposals while ωp and ωg are the weights of the pairwise and global

potentials respectively.

Li et al. [19] propose a method that utilizes both local context surrounding a pro-

posal and global context. They claim that surrounding of an object (e.g., "road") and

discriminative parts of objects (e.g., "wheel") help to infer the category class of an

object (e.g., "car"). Global context also provides useful clues, e.g., objects such as

person, road, or another car are usually co-occur with a target object of car. However,

not all global regions are helpful for classifying objects, so they try to extract only

positive global context by applying an attention model. To incorporate both local and

global context to detection pipeline, they add two subnetworks after feature map ex-

traction of an image; one is to collect local information around object proposals, the

other one is to select useful information from global image to help classifying pro-

posals. The first subnetwork is not much different from original detection pipeline;

instead of using only proposal features, the bounding box proposals are scaled with

three predefined factors and feature representations of these new bounding boxes are

concatenated with the original features. After concatenation, dimension reduction is

applied by a convolution operation to match the original detection pipeline feature

shape and the reduced features are fed to FC layers. The second subnetwork first

pools the image feature map to a fixed size representation and then a recurrent at-

tention model is applied to detect useful regions from global view. Then, attention

map is fed into FC layers. Finally, the result of first network is used for bounding

box regression and the results of two subnetworks are concatenated to predict object

classes.

Chen et al.[20] propose a context refinement algorithm that augments the existing re-

finement procedure of two-stage object detectors. The algorithm can be interpolated

in any two-stage object detector after the existing refinement procedure. The first step

in their algorithm is to select surrounding regions of a proposal that may carry useful

context. To select useful context regions, they consider IoU between proposal and

other regions. Only regions having IoU greater than a threshold and label prediction

same as the proposal are selected. Second step is to aggregate features of selected re-

gions to form a unified representation based on an adaptive weighting strategy; visual
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features of each selected region are multiplied by a weight obtained by multiplying

confidence scores of the region with the IoU value between region and the proposal.

Then, context visual features are summed and this sum is normalized by the sum of

the weight values. Lastly, context refinement is applied with a FC layer based on

unified context feature representation and the proposal’s own visual features.

Kim et al. [21] propose a context model that uses manually picked regions as context

unlike previously mentioned methods that include other proposal regions as context.

Since most of the two-stage object detectors classify objects only looking the features

of the proposals, misaligned proposals may lead to incorrect classification. To pre-

vent detection difficulties arise from misaligned object proposals, Boundary Aware

Network (BAN) enhance detection accuracy by exploiting additional visual informa-

tion embedded in boundary regions of object proposals. They define 10 boundary

contexts from three types of boundary contexts; side, vertex, in/out-boundary con-

text. The RoIs for side context are centered left, right, up and down sides of the

proposal. The RoIs for vertex context are centered at each vertex of the proposal. The

RoIs for the in and out-boundary contexts are defined as a half size region and double

size region centered at the center of the proposal. Unlike previously mentioned meth-

ods, they do not aggregate context features with the proposals features; instead they

train 11 subnetworks corresponding to 10 context regions and the original proposal.

To classify and align each object proposal integrating with the baseline model, they

aggregate results from 10 different subnetworks corresponding to boundary context

regions and a subnetwork from the original proposal. This way, they not only inte-

grate missing parts due to localization, but also exploit contextual relations between

close objects such as person on a horse.

Arbel et al. [22] also propose a model that uses a subset of proposals as context

instead of using all proposals. They also use proposals obtained by Fast R-CNN and

refine their scores with the help of other proposals. Unlike previously mentioned

approaches that integrate to detection pipeline after RoI pooling, they update only

scores of proposals calculated by detector using scores of other proposals that are

visually similar. They select proposals visually similar to target proposal as contextual

regions. To select visually similar proposals, they calculate a distance value between

proposals by using their color histogram and texture. Then the proposals having
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lower distance are selected. After visually similar proposals called supporters are

selected for each target proposal, the score of the target proposal is updated using its

own score, the scores of the supporter proposals, and the visual distance calculated in

previous step between the target proposal and the supporter by using minimum mean

square error linear estimator (MMSE).

Bozcan et al. [23] extend Boltzmann Machines (BM) and propose Triway BM to

utilize context in scene modeling task. They incorporate objects and spatial relation-

ships between objects for 4 scene modelling tasks; relation estimation between ob-

jects, finding missing objects in a scene, finding objects contradicting with the context

in a scene and generating new scenes given objects or relations between objects.

Table 2.1 summarizes the reviewed work above.

Table 2.1: Comparison of different context models. Type 1 utilizes scene-level

context or context around the proposal. Type 2 utilizes relationships between objects.

The last row of the table lists our proposed method to put it into context within the

related work.

Study Type

1

Type

2

Selected context

regions

Context model & feature unification

[14] 7 X other proposals A spatial memory module is pro-

posed. Objects are detected in se-

quential manner and each detected ob-

ject updates the state of the memory.

Subsequent objects are better detected

with the help of the memory module.

[15] X 7 Whole scene Context features outside of proposal

region are obtained by applying Four

directional IRNN on conv5 layer of

VGG16. Proposal features are con-

catenated with context features before

prediction.

Continued on next page
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Table 2.1 – Continued from previous page

Study Type

1

Type

2

Selected context

regions

Context model & feature unification

[16] 7 X Other proposals Multiple relation types between ob-

jects are defined so multiple context

features obtained from other propos-

als using linear transformation. Each

context feature received from other

proposals with same relation type are

summed, and the resulting vector for

each relation type is concatenated.

The result is summed with the original

proposal features.

[17] X X Whole scene and

other proposals

Features of other proposals are multi-

plied with a scalar calculated consid-

ering the spatial and semantic relation-

ships with the query proposal. These

features are input to a GRU where the

initial state is set to the features of

query proposal. Another GRU with

same logic is applied where the input

is scene-level features. Output state of

2 GRUs are summed.

[18] X X Whole scene &

score predictions

of other proposals

A conditional random field model is

used to include the effect of other pro-

posals and scene-level context.

Continued on next page
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Table 2.1 – Continued from previous page

Study Type

1

Type

2

Selected context

regions

Context model & feature unification

[19] X X Surrounding re-

gions of proposal

and the regions

selected by atten-

tion network from

global view

Global context regions are unified by

pooling; local context regions are uni-

fied by concatenation. The results of

global and local context regions are

concatenated to make final classifica-

tion.

[20] 7 X Other proposals

in image having

same label pre-

dictions and a

IoU greater than

a threshold with

query proposals

Visual features of context proposals

are multiplied by a scalar obtained by

multiplying IoU between context pro-

posal and query proposal with the con-

fidence score of context proposal.

[21] X 7 10 manually

picked regions

around the query

proposal

Features of manually picked regions

and proposal in question are used in

different subnetworks separately. The

results of subnetworks are aggregated

by applying learnable weights for final

prediction.

[22] 7 X Proposals visually

similar to the tar-

get proposal

Confidence scores of target proposal

and other visually similar proposals,

and visual distance between them are

used to re-score target proposal by

MMSE.

Continued on next page
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Table 2.1 – Continued from previous page

Study Type

1

Type

2

Selected context

regions

Context model & feature unification

Our

work

7 X Confidence scores

of other detections

Confidence scores of other detections

are used to generate spatial and scale-

based region summaries. Region sum-

maries and scores of query detection

are fed through an MLP network to re-

score the query detection.
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CHAPTER 3

CONTEXT RE-SCORING AS POST PROCESSING

In this chapter, we explain our proposed method which utilizes context information to

improve performance of object detectors along with the neural network model details.

3.1 Context Information

Some object categories in images tend to co-occur frequently; such as mouse and

keyboard. Also, objects have spatial relationships between each other; for example,

monitor objects tend to appear above of mouse objects or tie objects tend to be on per-

son objects. Humans are able to make use of these kinds of contextual relationships

between objects while interpreting an image. The performance of an object detector

can be enhanced by exploiting object relationships in the same manner.

Object detector models process visual features and output an arbitrary number of

detections for each image. A detection is given by a bounding box and scores for

each category in the dataset. Each bounding box consists of 4 predictions; x, y, w, h.

The (x, y) coordinates represent the upper left corner or the center of the bounding

box where the (w, h) represent the width and height of the box. Category scores are

estimated probability scores between [0,1] defined for each category and represent

the confidence of the model for that bounding box to belong to that specific category.

Our model runs on these results predicted by any object detector.

The aim of our model is to improve object detection accuracy by exploiting context

information embedded in images. We benefit from two types of relationships between

objects based on relative locations and scales of objects. By using spatial and scale
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based relationships, for example, our model may predict that a relatively bigger object

next to a mouse object is a keyboard. Unlike many other models that use non-local

visual features from the same scene as context, visual features of the scene are not

considered in our model. Our method can be seen as a post-processing step on pre-

dictions of any object detector. An object detector is run on the input image, we keep

the highest scoring 100 detections. Each prediction is re-scored using the scores of

other detections in the same scene. In the rest of this section, we use the expression

“query detection” to refer to the detection to be re-scored and “context detections” to

refer to all other detections in the same image.

To establish relationships between detections, we have to tackle detections in different

locations and scales. To simplify this problem and encode spatial and semantic rela-

tionships between objects, we define multiple regions based on relative locations and

scales of detections. Specifically, we use 9 regions; 6 spatial: upper, lower, middle,

overlapping, inside, outside; and 3 scale-related: bigger, smaller, equidimensional.

Since spatially horizontal (i.e. left and right) relationships between objects vary from

one image to another, i.e., a mouse object may appear at both sides of a keyboard

object, they are not included in regions and ignored. The definitions of regions are

given below:

• Upper: Context detections whose lower edge is above the upper edge of the

query detection.

• Lower: Context detections whose upper edge is below the lower edge of the

query detection.

• Middle: Context detections falling in the area between upper and lower.

• Overlapping: Context detections whose IoU with the query detection is greater

than 0.

• Inside: Context detections residing inside of the query detection.

• Outside: Context detections surrounding the query detection.

• Bigger: Context detections whose area is larger than the query detection with a

margin of x1.5

24



(a) Spatial regions. (b) Scale-based regions

Figure 3.1: Visualization of spatial and scale-based contextual regions. Each con-

text detection is assigned to one spatial region and one scale-based region based on

its relative location and scale with respect to the query detection.

• Smaller: Context detections whose area is smaller than the query detection with

a margin of x1.5

• Equidimensional: Context detections whose area is between bigger and smaller.

Figure 3.1 demonstrates region assignments of context detections based on their rel-

ative locations and sizes with respect to the query detection. These regions are de-

fined relative to the query detection and they are used to construct a context summary

around the query detection using other detections as context in the same image. Each

context detection is included in 2 regions; one of the 6 spatial regions and one of

the 3 scale-related. Sample objects for these regions are given in Figure 3.2. One

example is demonstrated for each spatial region while zero or more objects for each

region may exist for a detection in any image. Query detections are denoted by yel-

low boxes while context detections are denoted by red boxes. In the first scene, region

categories of some objects are shown with respect to the keyboard object while in the

second scene, region categories of objects are shown with respect to the apple object.

Score predictions of objects denoted by red boxes and other objects that exist in the

same scene but are not denoted in the figure are used to calculate region summaries

with respect to the objects in yellow bounding boxes.

We propose three models that use previously defined 9 regions; Multi layer perceptron
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(a)

(b)

Figure 3.2: Visualization of spatial and scale-based contextual regions. The query

detection is marked with yellow borders, while the contextual detections (with respect

to the query detection) are shown with red borders.
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(MLP), Gated MLP and Pairwise MLP. The structure of these models are visualized

in figures 3.3, 3.4 and 3.5, respectively. Our proposed models are explained in Section

3.1.1, 3.1.2 and 3.1.3.

3.1.1 The MLP Model

For the MLP and the Gated MLP models, we extract region summaries by using

scores of a subset of detections that spatially or dimensionally fall into the same re-

gion with respect to the query detection. More specifically, to extract summaries of a

region, we evaluate maximum class scores for each object category using the detec-

tions reside in that specific region. For example, detections to the upper side to query

detection are found and maximum class scores are evaluated using only those detec-

tions’ scores for the ‘Upper’ region. The same is applied for all regions. This way, we

obtain a unified context summary representations for each detection using class scores

of surrounding detections for multiple regions. After calculating summaries for all re-

gions, we obtain a tensor shaped (NumberOfRegions ∗ NumberOfClasses) for

each detection. NumberOfRegions is the number of regions explained before and

9 in our case. NumberOfClasses is the number of object categories exist in detec-

tion benchmark (For COCO benchmark, it is 80). Since this tensor holds maximum

category scores for each region, all values are between 0 and 1. The same region ex-

traction step is applied for each detection in the same scene. For example, if keyboard

and laptop objects detected in a region correspond to upper region of a mouse detec-

tion by RetinaNet, the score indices correspond to upper keyboard and upper laptop of

mouse detection will be close to 1 while the score indices correspond to down mouse

of both laptop and keyboard detections will be close to 1. Thus, we obtain a ten-

sor shaped (NumberofDetections, NumberOfRegions ∗ NumberOfClasses)
where NumberOfDetections is the count of the detections predicted by baseline

object detector for an image which is 100 in our case. This tensor is fed to a neural

network to re-score each detection benefiting from the instance-level relationships.

For the MLP model, we input query detection’s scores concatenating with the 9 re-

gions summary scores to a 3-layer MLP. This network predicts new class scores for

the query detection benefiting from the relationships between instance summaries for

regions and the query detection.

27



3.1.2 The Gated MLP Model

The MLP model is trained to learn relationships between objects. However, some ob-

ject categories in dataset may not be convenient to extract contextual relationships as

other categories. Therefore, to make the MLP model more robust to errors in contex-

tual inference, we propose the Gated MLP model that is built on the MLP model. The

Gated MLP model attaches a sigmoid gate to the MLP model that aggregates predic-

tions of the MLP model with the predictions of baseline object detector. It consists

of two MLP branches where the first branch shares the same structure with the MLP

model and evaluates new category scores for each detection using region summaries.

Since the results of the first network are logits, it is required to transform the score

predictions of the base detector to logits before aggregation. The input to the second

network is only the scores of query detection. The second network learns to transform

the class scores that are between 0 and 1 to logits and scale these logits to match the

scales of the results of the first network that makes contextual inference. The results

of two networks are aggregated using a sigmoid gate. The sigmoid gate has different

value for each object category so categories that are hard to model in context may

preserve category predictions of RetinaNet.

s
′

x,i = f([sx,i, sregion1,i, sregion2,i, ..., sregion9,i]) (1)

s
′

x,i = σ(ω) ∗ f1(sx,i) + (1− σ(ω)) ∗ f2([sx,i, sregion1,i, sregion2,i, ..., sregion9,i]) (2)

Equation 1 and 2 formulates the MLP model and the Gated MLP model respectively

where sx,i and s′x,i are the score predictions of detection i in image x obtained from

RetinaNet and our methods respectively. sregion,i variables are the region summaries

with respect to detection i obtained by using maximum scores of detections falling in

specific regions. f , f1 and f2 represent the MLP networks. ω is a learnable parameter

having shape of the number of classes of the dataset that enables weighted aggregation

of RetinaNet predictions with the context predictions using sigmoid gate σ.
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3.1.3 The Pairwise MLP Model

The Pairwise MLP model differs from the first two models since instead of using

region summaries to extract relationships between objects, it calculates the effect of

each detection on the query detection individually by modelling pairwise relation-

ships. To calculate the effect of a detection on another detection, a binary vector that

is in the shape of number of regions is generated. Each index of the binary vector

corresponds to one of the regions. To encode relationship between two objects, the

indices that correspond to region of the binary vector are set to 1 while other indices

are set to 0. For instance, if a detection is ‘Upper Bigger’ to the query detection,

the index that corresponds to upper region and the index that corresponds to bigger

region of the binary vector are set to 1. The generated binary vector, the scores of

the query detection and the scores of context detection are concatenated. The con-

catenated tensor is fed to a 3-layer MLP. To calculate the final score for a detection,

same procedure is applied using each context detection, and the final score for the

query detection is obtained by summation of all results. Thus, the final score of each

detection is calculated using the pairwise relationships between the query detection

and all other detections in the same scene. The formulation of the Pairwise MLP

model is given in Equation 3 where sx,i is the score predictions of detection i and sx,j

is the score predictions of detection j for image x obtained from RetinaNet. Ri,j is

the binary vector generated using the relation between detection i and detection j. f

represents the MLP network.

s′x,i =
∑
j 6=i

f([sx,i , sx,j, Ri,j]) (3)

3.2 Methods of Analyzing Results

Using our models, we can refine false positive predictions of the base detector by

refining class scores with the help of the surrounding predictions. There are multiple

types of false positives in object detection task. We can classify predictions as true

positive (TP) or one of the false positive (FP) types inspired by the study of [24].

According to that study, detections can be classified based on the following context:
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• Correct (TP): Predictions having a maximum IoU >= 0.5 with a ground truth

object and sharing the same class with that object.

• Similar (FP): Predicted class is in the same super-category with the ground truth

and IoU >= 0.1

• Background (FP): IoU < 0.1

• Localization (FP): Correct class and 0.1 <= IoU < 0.5. Also duplicate detections

that matching the same ground truth object are classified as localization error.

• Other (FP): Class is wrong and IoU >= 0.1

Our models try to correct false positives while enhancing correctly classified detec-

tions. Our models may potentially improve all the false positive categories except the

localization errors arise from low IoU between detections and the ground truth objects

since we do not regress the bounding boxes and only refine the scores of detections

obtained by another object detector.
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Figure 3.3: Network architecture of the MLP model.
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CHAPTER 4

EXPERIMENTS

In this chapter, we describe the dataset and evaluation metric used in experiments.

The effect of context in our proposed methods is presented. Moreover, obtained re-

sults are compared against the results of the baseline method (i.e. the base object

detector without our context model).

4.1 The Dataset

COCO [1] is an object detection, segmentation and captioning dataset. In our ex-

periments, we use COCO for object detection task. We use the “train2017” split for

training and the “val2017” split for validation. COCO contains instances of 80 object

categories where the train2017 split contains 118K images while the val2017 split

contains 5K images and 36K annotations. We use COCO dataset since it is more

suitable for a context model compared to other datasets due to the following reasons:

• COCO consists of everyday scenes of common objects in natural context. Thus,

intra-class variation is high and scenes contain ambiguous object instances that

are hard to detect without using context information.

• The average sizes of objects are smaller for COCO compared to those in other

popular object detection datasets such as Pascal VOC[25] and ImageNet[26].

As small objects are harder to detect, they require more contextual information

than other objects.

• Compared to Pascal VOC and ImageNet, COCO contains more object instances

per image that indicates more context information is available.
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• While ImageNet and Pascal VOC contain less than 2 categories per image in

average, COCO contains 3.5 categories per image.

4.2 Evaluation Metric

As evaluation metric, mean average precision (mAP) is used. mAP is evaluated by

first evaluating average precision (AP) for each category existing in the detection

dataset and then taking the average of AP values. In the rest of this thesis, AP and

mAP are used interchangeably where the distinction can be made from context. To

evaluate AP for each object category, each detection is labeled as one of the following

categories:

• True Positive (TP): Detections having IoU >= threshold with at least one of the

ground truth boxes and share the same label.

• False Positive (FP): Background detections that are having IoU < threshold with

all of the ground truth boxes or misclassified detections.

To categorize detections as TP or FP, IoU is used. IoU is a measure to evaluate the

overlap between predicted bounding boxes and ground truth bounding boxes. IoU

is calculated by dividing intersection between two bounding boxes to union of those

boxes. IoU value is always between 0 and 1; 0 means there is no intersection and

1 means two boxes are perfectly aligned. We need to specify a threshold value for

IoU to decide if a predicted box matches to a ground truth box. COCO API evaluates

AP for multiple values of IoU thresholds; such as AP 50 means the threshold is set

to 0.5. After detections are classified as TP or FP, detections are sorted by their

confidence scores in descending order and a score threshold is applied to eliminate

detections having low confidence. If a ground truth object matches with multiple

detections, the first detection is accepted as TP and the others are categorized as FP.

Then, precision/recall (PR) curve is sampled by calculating the precision for each

unique recall value where the x axis is recall and the y axis is the precision. AP

is defined as the area under PR curve. Precision and recall equations are given in

36



Equation 1 and Equation 2 respectively.

Precision =
NumberofTruePositives

NumberofAllDetections
(1)

Recall =
NumberofTruePositives

NumberofAllGroundTruth
(2)

Precision measures the accuracy of the predictions while recall measures the percent-

age of the ground truth objects that are matched. If redundant predictions are made

to increase recall, precision value will decrease since the quality of predictions will

decrease. If quality of detections is increased by setting an ultrahigh score threshold

value, then precision will be high but recall will decrease. Thus, there is always a

trade-off between precision and recall. Recall monotonically increases as new detec-

tions are appended while precision may increase or decrease which causes zigzags in

the PR curve. To smooth the zigzag pattern, precision at each recall level r is replaced

with the maximum precision value of any recall level r′ > r. After the PR curve is

smoothed, AP is evaluated by calculating the area under the smoothed curve.

Although AP is the most widely used performance evaluation metric for object detec-

tion, it may return same results for different PR curves. To understand the differences

between different PR curves, further analysis is required by inspecting PR curves.

Also, AP do not directly measure localization accuracy that is how tightly the detec-

tions are intersecting with the ground-truth objects. Therefore, we also evaluate lo-

calization recall precision [27] (LRP) error on detections obtained by both our models

and base object detector. LRP error consists of three components that are related to

localization, false positive rate and false negative rate. Optimal LRP corresponds to

the minimum achievable LRP error that represents the best achievable configuration

by an object detector.

4.3 Detections

Keras implementation of RetinaNet is available on github1. The implementation

uses ResNet-50 as backbone network and a 800 pixel train and validation image
1 https://github.com/fizyr/keras-retinanet
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scale. RetinaNet predicts regression values and confidence scores for each prede-

fined bounding box as output. Then, deduplication and a score threshold are applied

to eliminate duplicate detections and boxes having low confidence scores. Non max-

imum suppression (NMS) is used for deduplication. NMS calculates IoU between

each pair of bounding boxes in the same scene and if IoU between two detections is

over a threshold value, the detection with the low confidence score is removed. Ap-

plying deduplication and score threshold results in arbitrary number of detections for

each image. Our context models are applied as post processing step on detections of

RetinaNet. To fix the number of detections for each image, we remove score thresh-

old and take top 100 scored detections instead after NMS is applied. To compare our

methods with the baseline that is RetinaNet, we evaluate AP for both baseline and our

methods. AP for baseline is evaluated applying a 0.05 threshold on top 100 detections

of baseline.

To be able to train and validate our model, it is required to label each bounding box

obtained from RetinaNet as background or as one of the 80 categories of COCO

dataset. We follow the same labeling strategy that is used in the RetinaNet work [2].

Specifically, labels of detections having 0.5 or greater IoU with a ground truth object

are set to the label of that ground truth object. Detections having maximum IoU of

less than 0.4 with ground truth objects are labeled as background. Other detections

having IoU between 0.4-0.5 are ignored during training to ensure stability.

4.4 Experimental Setup

For training, we use the train2017 split of COCO benchmark which is validated using

the val2017 split. Our network is trained with the Adam optimizer [28]. In order

to tune learning rate parameter, we used values of [10−3, 10−4, 10−5, 10−6] and best

results are achieved with 10−5. Dropout [29] rate of 0.3 and ReLU activation [30] is

applied between fully-connected layers. Cross entropy loss for multiclass classifica-

tion is used as the objective function. Mini-batch size is set to 100 since there are 100

detections for each image.
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4.5 Preliminary Work

Since our contextual inference to re-score a detection is based on the scores of other

detections, errors of the base detector may mislead our model. To eliminate such cases

and measure the limits of our model, we first evaluate our method with the ground-

truth labels of context detections. In other words, to re-score a query detection, we

use the ground-truth class labels of the context detections (i.e. all the other detections

except the query detection) in the same image. This evaluation using the ground-truth

labels for the context would show how much our method can increase mAP results

at most. Therefore, we evaluate the MLP model using the ground-truth labels of the

context detections and obtain a 4.4% increase on AP50 over the baseline results.

The results are listed in Table 4.1 for both baseline and our model. These results

reveal that object to object relationships can be used to improve performance of an

object detector. Since annotations for test2017 split of COCO are not available, tests

using labels of context detections are evaluated only on the val2017 split.

Table 4.1: Improvement obtained by our MLP context model when ground-truth

labels are used for the context detections. Results are shown on the COCO val2017

dataset.

Method AP AP 50 AP 75 AP small APmedium AP large

Baseline (RetinaNet) 34.7 53.7 36.9 18.9 37.7 46.6

Baseline +

MLP with Labels
36.6 58.1 38.4 21.9 40.0 47.5

4.6 Experimental Results

In this section, we compare our results against results of the baseline detector that is

RetinaNet. For each model, AP results for different IoU thresholds are listed. AP 50

and AP 75 correspond to AP calculated using IoU threshold of 0.5 and 0.75 while

overall AP is calculated by averaging AP results for 10 IoU thresholds between 0.5

and 0.95. Also, AP for small, medium and large objects are demonstrated sepa-

rately. Small objects are considered as the objects having area smaller than 322 while
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medium objects are the ones having area between 322 and 962. Objects with area

larger than 962 are classified as large. Obtained results are reviewed to understand

the contribution of our model. Train and validation loss graphs over epochs for our

models are shown in Figure 4.1.

AP results obtained by our models and the baseline model on the val2017 split of

COCO are listed in Table 4.2. Gated MLP improves AP results for all AP categories

while the other models improve AP for all categories except the AP for large objects

which is expected since it is harder to detect small objects for modern CNN based

object detectors while large objects are classified easily.

Table 4.2: Results of different models on MS COCO val2017.

Method AP AP50 AP75 APsmall APmedium APlarge

Baseline (RetinaNet) 34.7 53.7 36.9 18.9 37.7 46.6

Baseline +

MLP
35.1 55.3 37.0 19.5 38.5 46.5

Baseline +

Gated MLP
35.3 55.5 37.3 19.4 38.7 47.2

Baseline +

Pairwise MLP
34.8 54.9 36.8 19.7 38.0 46.4

Mean optimal LRP (moLRP) errors of detections obtained by our models and the base

object detector on the val2017 split of COCO are listed in Table 4.3. The MLP model

and the Gated MLP model decrease moLRP error for all components except for the

component related to localization. The increase in localization component of moLRP

is expected since the number of mislocalized detections of base detector increase as

our models correct the false positive detections that are not tightly intersecting with

the ground-truth objects.

For each object category, the results obtained by baseline detector and Gated MLP

model on test2017 split of COCO are compared in table 4.4. Results for small

and medium objects improved by Gated MLP while for large objects results do not

change. AP for almost all object categories are increased except for 4 categories; per-

son, dog, zebra, and toaster. The results of these categories are slightly lower than the
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Table 4.3: LRP errors obtained by different models on MS COCO val2017.

Method moLRP moLRPIoU moLRPFP moLRPFN

Baseline (RetinaNet) 0.7106 0.1703 0.2856 0.5069

Baseline +

MLP
0.7052 0.1726 0.2714 0.4980

Baseline +

Gated MLP
0.7039 0.1737 0.2713 0.4914

Baseline +

Pairwise MLP
0.7086 0.1748 0.2952 0.4903

baseline. The biggest improvement is obtained for toothbrush category whose AP is

improved from 18.5% to 24.7%.

Table 4.4: Class by class detection results on MS COCO test2017 split. AP 50

scores are given for class by class comparison. RetinaNet results are obtained by

applying a score threshold of 0.05 over top 100 scored detections. Our results are

obtained by applying a score threshold of 5 · 10−4.

Baseline (RetinaNet) Baseline + Gated MLP

AP 34.8 35.3

AP50 54.0 55.8

AP75 37.4 37.5

APsmall 18.0 18.7

APmedium 37.3 37.9

APlarge 45.0 45.0

person 76.9 76.8

bicycle 53.6 54.9

car 61.2 61.6

motorcycle 65.4 66.6

airplane 76.0 77.2

bus 81.0 81.2

Continued on next page
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Table 4.4 – continued from previous page

Baseline (RetinaNet) Baseline + Gated MLP

train 79.9 81.0

truck 48.7 48.9

boat 41.6 43.6

traffic light 46.7 48.4

fire hydrant 74.7 75.9

stop sign 76.1 77.1

parking meter 55.5 56.7

bench 32.9 33.9

bird 51.5 54.6

cat 83.0 83.4

dog 74.6 74.2

horse 76.7 79.2

sheep 71.0 74.6

cow 69.3 74.7

elephant 87.4 89.1

bear 88.7 89.7

zebra 87.3 87.2

giraffe 89.2 89.9

backpack 34.0 34.4

umbrella 57.0 58.3

handbag 25.7 26.7

tie 46.0 48.0

suitcase 51.0 55.4

frisbee 65.8 69.2

skis 29.8 32.1

snowboard 36.8 38.6

sports ball 50.6 53.2

kite 55.8 60.5

baseball bat 48.1 53.1

Continued on next page
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Table 4.4 – continued from previous page

Baseline (RetinaNet) Baseline + Gated MLP

baseball glove 56.4 59.4

skateboard 66.0 68.9

surfboard 47.2 50.7

tennis racket 73.6 76.5

bottle 51.6 52.6

wine glass 55.2 56.1

cup 52.5 53.6

fork 34.8 36.0

knife 22.5 24.1

spoon 17.2 18.9

bowl 51.0 51.7

banana 40.1 40.5

apple 30.7 31.9

sandwich 49.6 52.2

orange 39.9 40.8

broccoli 50.0 50.7

carrot 31.1 32.4

hot dog 35.7 39.5

pizza 70.9 72.8

donut 61.2 64.9

cake 39.3 41.8

chair 41.4 42.7

couch 54.0 55.4

potted plant 40.9 41.7

bed 63.3 63.6

dining table 42.2 44.3

toilet 75.0 76.3

tv 71.6 72.8

laptop 74.7 76.1

Continued on next page
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Table 4.4 – continued from previous page

Baseline (RetinaNet) Baseline + Gated MLP

mouse 67.9 71.4

remote 43.7 47.8

keyboard 63.9 67.4

cell phone 42.6 43.9

microwave 72.7 73.7

oven 55.2 56.5

toaster 12.5 11.4

sink 49.0 50.6

refrigerator 62.4 64.0

book 19.8 21.7

clock 70.4 70.7

vase 51.8 54.2

scissors 35.7 36.7

teddy bear 60.5 62.1

hair drier 2.8 4.7

toothbrush 18.5 24.7

The RetinaNet implementation we use in experiments achieves a mAP of 53.7 on

the val2017 split and 54.0 on test-dev2017 split of COCO benchmark with an IoU

threshold of 0.5. The train2017 split of COCO contains 118K images, the val2017

split contains 5K images and 36K annotations where RetinaNet predicts ~600K de-

tections for the val2017 split after applying NMS and a score threshold of 0.05. Since

RetinaNet returns almost 17 times more detections than the number of annotations,

most of these detections are false positives. There are multiple types of false posi-

tives in the object detection task that are explained in Section 3.1. We need to analyze

the distribution of errors for RetinaNet predictions and our predictions to fully under-

stand the contribution of our model by comparing results. To analyze false positives

of RetinaNet, we use top 100 scored detections for each image since our models run

on those detections. We use the val2017 split results for false positive analysis since
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annotations are not publicly available for test2017 split. Figure 4.2 visualizes the dis-

tribution of false positives and true positives of RetinaNet detections on the val2017

split. Analyzing false positives helps us to understand the impact of different false

positive types on results. For each category, top N scored detections are used where

N is the number of ground truth objects for that category.

Figure 4.2 reveals that most of the detections are classified correctly by RetinaNet,

while there is a considerable amount of false positives. We can improve mAP of

the detector by refining category scores and eliminating these false positives. In our

models, we can refine all the false positive categories except the localization errors

arising from low IoU with the ground truth object since our method does not mod-

ify the bounding boxes and only refine the scores of pre-predicted boxes. Charts in

Figure 4.2 show that our Gated MLP method increases the percentage of correctly

classified detections while decreasing false positives categorized as similar, other and

background that are the false positives due to misclassification. Percentage of local-

ization errors where detections are classified correctly but misaligned, increases with

our method. Correcting only misclassified detections increases the percentage of TP

detections while correcting both mislabeled and mislocalized detections increases the

percentage of localization errors. Therefore, increase in localization errors is expected

of our models.

Figure 4.3 visualizes a series of precision recall (PR) curves for both RetinaNet imple-

mentations where each PR curve is guaranteed to be strictly higher than the previous

as the evaluation setting becomes more permissive. The definitions of these curves2

are given below for self-readability of this thesis:

• C75: PR at IoU=.75 (AP at strict IoU), area under curve corre-
sponds to AP IoU=.75 metric.
• C50: PR at IoU=.50 (AP at PASCAL IoU), area under curve corre-

sponds to AP IoU=.50 metric.
• Loc: PR at IoU=.10 (localization errors ignored, but not duplicate

detections). All remaining settings use IoU=.1.
• Sim: PR after super-category false positives (fps) are removed. Specif-

ically, any matches to objects with a different class label but that
belong to the same super-category don’t count as either a fp (or tp).
Sim is computed by setting all objects in the same super-category

2 http://cocodataset.org/#detection-eval
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to have the same class label as the class in question and setting their
ignore flag to 1. Note that person is a singleton super-category so
its Sim result is identical to Loc.
• Oth: PR after all class confusions are removed. Similar to Sim,

except now if a detection matches any other object it is no longer a
fp (or tp). Oth is computed by setting all other objects to have the
same class label as the class in question and setting their ignore flag
to 1.
• BG: PR after all background (and class confusion) fps are removed.

For a single category, BG is a step function that is 1 until max recall
is reached then drops to 0 (the curve is smoother after averaging
across categories).
• FN: PR after all remaining errors are removed (trivially AP=1).

These plots demonstrate how mAP will increase as we eliminate false positives of

detection method. They are drawn considering all detections different from the charts

in Figure 4.2 where top N scored detections are considered. Plots demonstrate that

if false positives of type similar are removed from RetinaNet detections, a 2.3% im-

provement on mAP can be achieved while if false positives categorized as other are

removed a 3.2% improvement can be obtained. Like charts in Figure 4.2, plots also

show that our method improves mAP results by decreasing false positives of cate-

gories similar and other. Also, plots reveal that effect of localization errors is in-

creased by our model as expected.
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Figure 4.1: Train and validation loss graphs. Loss graphs of MLP, Gated MLP

and Pairwise MLP respectively with parameters learning rate=1e-5, batch size=100,

dropout=0.3

47



(a)

(b)

Figure 4.2: Error analysis charts. These charts visualize percentage of different

error types in the top N scored predictions of RetinaNet and Gated MLP for all cate-

gories. N parameter is selected as the number of ground truth objects in each category.

(a) RetinaNet results. (b) Gated MLP results
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Figure 4.3: Error analysis plots. These plots visualize overall precision-recall curve

of results averaged over all categories. Results are obtained on the val2017 split of

COCO. (a) RetinaNet results. (b) Gated MLP results
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4.7 Ablation Study

In our experiments, we use 9 regions jointly where 6 of them are spatial and 3 of them

are scale-related. To examine the effect of the spatial and scale-related regions sep-

arately, we evaluate our MLP model using only spatial regions or only scale-related

regions. Also, we evaluated our MLP network by replacing cross entropy loss for

multi-class classification with cross entropy loss for binary classification. The results

are given in table 4.5.

The Gated MLP model has two branches both of which are MLP based networks. The

first network re-scores detections by utilizing context information. The result of the

first network is logits for detections obtained by contextual inference. To make the

predictions of first network more robust to errors, the result is aggregated with results

of RetinaNet using a sigmoid gate. To aggregate logits obtained by the first network

with the class probabilities obtained by RetinaNet, it is required to convert the class

probabilities to logits. For that purpose, a second MLP network is used. Both of

the sibling networks consist of 3 layer MLP. Since the second network could be in a

simpler structure, we evaluate the Gated MLP model by removing 2 layers from the

second network; only 1 FC layer is used. Another model we evaluate for the second

network is to subtract a learnable mu vector from the scores of query detection and

multiply the result with a sigma vector. The results are given in table 4.6.

Table 4.5: AP results for different structures of the MLP model. Results obtained

by using only spatial regions and results obtained by only scale-related regions are

compared. Also, results by cross entropy loss for binary classification are listed.

Method AP AP50 AP75 APsmall APmedium APlarge

Baseline +

MLP
35.1 55.3 37.0 19.5 38.5 46.5

Only Spatial Regions 35.1 55.2 37.1 19.5 38.3 46.5

Only Scale Regions 35.0 55.1 37.0 19.5 38.4 46.3

Binary Classification 35.0 55.2 37.0 19.5 38.3 46.7
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Table 4.6: AP results for different structures of the Gated MLP model.

Method AP AP50 AP75 APsmall APmedium APlarge

Baseline +

Gated MLP
35.3 55.5 37.3 19.4 38.7 47.2

Single FC layer 35.0 55.1 37.0 19.4 38.2 46.7

mu-sigma 35.1 55.2 37.0 19.4 38.5 46.4

4.8 Qualitative Results

In this section, we demonstrate mislabeled examples by base object detector that are

corrected by Gated MLP and examples that are mislabeled by Gated MLP although

they are labeled correctly by baseline. Figure 4.4 demonstrates detections corrected

by our model. In the first case, the bird in the sky is mislabeled as kite by RetinaNet

while our method correctly labels this small object. Also scores of other bird instances

in the same scene are increased by our method. For the next pair in the figure, our

method corrects the horse object that is mislabeled by RetinaNet as cow. In the final

pair of scenes microwave is scored higher than tv for tv object by RetinaNet, while

our method decreases the score for microwave.

Figure 4.5 demonstrates the background regions that are mislabeled by RetinaNet as

detection while our method removes these background detections. In the first case a

background region is classified as suitcase by RetinaNet based on the visual appear-

ance while our method removes the detection based on the detections in the same

scene. For the other cases, our method removes hair drier, broccoli and mouse detec-

tions of RetinaNet based on object to object context information.

Figure 4.6 demonstrates detections that are labeled correctly by baseline but misla-

beled by Gated MLP. In the first case a book is labeled as keyboard. A tennis racket is

mislabeled as bicycle and a teddy bear is mislabeled as vase by Gated MLP although

they are labeled correctly by base object detector.
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(a) Mislabeled bird. (b) Bird is corrected.

(c) Mislabeled horse. (d) Horse is corrected.

(e) Tv labeled as microwave. (f) Confidence score of microwave is decreased.

Figure 4.4: Qualitative results of baseline vs Gated MLP on MS COCO. In ev-

ery pair, left is based on baseline, right is based on Gated MLP. Detections drawn

with dashed-line boundaries are mislabeled by baseline and corrected by Gated MLP

while detections drawn with solid line boundaries are labeled correctly. Top 2 class

confidence scores for corrected detections are provided for both methods.
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(a) Background classified as suitcase.

(b) Background is classified as hair drier.

(c) Background is classified as broccoli. (d) Background is classified as mouse.

Figure 4.5: Qualitative results of baseline vs Gated MLP on MS COCO. Back-

ground regions labeled as objects by baseline method are corrected by Gated MLP.

Background detections of baseline model that are removed by Gated MLP are drawn

with dashed-line boundaries while detections labeled correctly by baseline are drawn

with solid line boundaries.
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(a) Book is labeled correctly. (b) Book is mislabeled as keyboard.

(c) Tennis racket is labeled correctly. (d) Tennis racket is mislabeled as bicycle.

(e) Teddy bear is labeled correctly. (f) Teddy bear is mislabeled as vase.

Figure 4.6: Qualitative results of baseline vs Gated MLP on MS COCO. In ev-

ery pair, left is based on baseline, right is based on Gated MLP. Detections drawn

with dashed-line boundaries are mislabeled by Gated MLP although they are labeled

correctly by baseline while detections drawn with solid line boundaries are labeled

correctly. Top 2 class confidence scores for falsified detections are provided for both

methods.
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CHAPTER 5

CONCLUSION

In this thesis, we propose a contextual method that works on predictions of any com-

mon object detector to improve the object detection performance. Obtaining detec-

tions predicted by any object detector, our contextual method uses MLP based models

to utilize the spatial and scale-based relationships between detections and refine mis-

classified detections. Our method does not propose new candidate object locations,

only re-scores existing detections by applying a post-processing step on them.

Experiments using RetinaNet predictions on the COCO dataset show that our models

decrease the percentage of false positives obtained by the base detector, and improve

the mAP results. We review the false positive distribution of predictions of the base-

line detector and one of our models and observe that our model decreases the per-

centage of false positives categorized as similar and other. Percentage of localization

errors increases with our model since we do not regress bounding boxes; only refine

the class predictions and as we correct the mislocalized detections, localization errors

increase. We evaluated one of our models using the ground-truth labels of detections

except for the query detection, and observe a 4.4% increase on mAP over the base-

line results shows that context information is available in images that can be used to

improve results of object detectors further.

We evaluated our models only on predictions of RetinaNet detector but they are ap-

plicable to any object detector. In this work, we evaluate our model after obtaining

the predictions of the detector on training, validation and test datasets but it can be

integrated to the detection pipeline to train and evaluate the model end to end with the

object detector. We leave this as future work.
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