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IAM, METU

Prof. Dr. Ersan Akyıldız
Mathematics, METU

Assist. Prof. Dr. Erman Ayday
Computer Engineering, Bilkent University

Assoc. Prof. Dr. Ali Doğanaksoy
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ABSTRACT

PRIVACY AND ACCURACY SYSTEMS ON FINANCIAL DATABASES

Bilgen, Adnan

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Ersan Akyıldız

Co-Supervisor : Assoc. Prof. Dr. Murat Cenk

June 2019, 53 pages

A statistical database is a collection of data which contains the sensitive information

of individuals. They are extensively used for many purposes. Since the system con-

tains sensitive data of individuals, it must be secure to protect every individual in the

data set against attackers.

In this thesis, we especially work on the privacy of databases which include financial

data. We use data perturbation techniques to work the accuracy and privacy balance

between the original database and the perturbed one. We test the accuracy of our

masked data on selected statistics. We measure the reliability of our system against

existing attack techniques. We develop user-friendly software to use data sanitization

by using Java and R programming languages.

Keywords: Additive Noise, Privacy, Accuracy, Attack Techniques, Disclosure
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ÖZ

FİNANSAL VERİ TABANLARINDA GİZLİLİK VE DOĞRULUK
SİSTEMLERİ

Bilgen, Adnan

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Ersan Akyıldız

Ortak Tez Yöneticisi : Doç. Dr. Murat Cenk

Haziran 2019 , 53 sayfa

İstatistiksel veritabanları bireyler hakkında hassas verileri de barındırır. Bu sistem-

ler her ne kadar bilimsel çalışmalar açısından önemli bir girdi olsalar da bireylerin

hassas verilerini içerdikleri için; saldırganlara karşı, veri kümesindeki her bir bireyi

koruyacak şekilde güvenli olmalıdır.

Tez çalışmalarımızda, özellikle; finansal verileri içeren veri tabanlarındaki gizliliğin

korunması üzerine çalıştık. Gizlilik doğruluk dengesini sağlamak adına orijinal veriyi

maskeledik. Sistemimizin mevcut ataklara karşı dayanıklılığını test ettik. Java ve R

programa dillerini kullanarak, orijinal veri kümesinden maskelenmiş veri üretilme-

sine olanak sağlayan kullanıcı dostu bir yazılım geliştirdik.

Anahtar Kelimeler: Toplamsal Gürültü, Gizlilik, Doğruluk, Saldırı Teknikleri, İfşa
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CHAPTER 1

INTRODUCTION

A statistical database is a collection of data which contains sensitive information of

individuals (patient, student, company, etc.) which are commonly used in research,

planning and decision making. With the development of technology, it is easy to

achieve, collect and analyze data. Collected data is used extensively by researchers

and decisionmakers in different fields. Increasing amounts of such databases are pro-

vided by agents like census bureaus, universities, hospitals and, business organiza-

tions. A data collector releases the data for more analysis. Released data contain

confidential information such as income, credit ratings, type of disease, or test scores

of individuals. In the medical area, health record systems are constructed for exchang-

ing medical information [1]. In e-commerce, data is collected from many activities

including searching, browsing and online shopping [2]. Mobile healthcare record has

been examined because of the high sensitivity of health data and disclosure risk on it

[3, 4]. In 2015, researchers from MIT described that unimportant dates and places of

only four pieces of consumption records are enough to identify 90 percent of the peo-

ple in a dataset which obtained from credit-card activities of the users [5]. Because of

the concerns about individuals privacy, researchers develop a series of privacy protec-

tion methods mainly including data distortion, data encryption, and restrictive release

[6].

In the privacy context, database fields are categorized into four basic categories. The

first field type is explicit identifiers. This field directly defines individuals, national

security number, social security number are examples for this field. Quasi-identifiers

are the second type. A single quasi-identifier does not define the individuals alone but

some of them together may show the owner of the record. Date of birth, ZIP code, and
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gender are an example of this field. The third type is the reason for all these works,

called sensitive fields. Disease, income, and test score are examples of this field. The

last type is non-sensitive attributes, favorite color is an example of this type [7].

To protect the sensitive information of individuals in healthcare data, the restricted

releasing methods are proposed[8]. These methods are k-anonimity, l-diversity, and

t-closeness. Sweeney and Samarati introduce the first restricted releasing method:

k-anonimity[9, 10]. In k-anonimity, each record is indistinguishable from at least

k − 1 records, but, it may disclose privacy information[11]. Then, l-diversity and

t-closeness were proposed to improve privacy protection [12]. These methods also

cannot protect the privacy of individuals in a data set. The curators sometimes apply

some simple anonymization techniques, but the adversary can destroy the privacy and

re-identify the data set. In the early years, some researchers deanonymize a medical

data set by combining with another public vote list data set [13]. The linked infor-

mation is defined as background information [14]. The adversary with background

information will be able to identify the individuals records with high probability.

The main purpose of this study is to make financial data sets available to researchers

while ensuring the confidentiality of the data. Since financial data sets include sensi-

tive data, releasing them is not a good idea. Instead of the original data set, the owner

of the data sets will release the sanitized data set by masking the original data using

either additive [15] or multiplicative [16] noise addition methods. In this thesis, we

have two important aim. The first one is in the masked dataset, we want to preserve

the statistical properties of the original dataset. Besides accuracy, we want to satisfy

the privacy of the individuals in a dataset. We have to balance accuracy and privacy.

The second one is we want to get accurate results in a masked data set for the highest

number of statistical functions as possible. We want to construct a non-interactive

system, which means that it would suffice to mask the data once before releasing it.

In Chapter 1 we discuss the studies on privacy and define our problem. In Chapter 2,

we give brief information about some statistical methods. In Chapter 3, we explain the

techniques we developed to obtain perturbed (masked) data. Also in this chapter, we

test the accuracy on selected statistics (mean, standard deviation, kurtosis, skewness,

simple and multiple linear regression analysis, simple and multiple logistic regression

2



analysis) when we work on masked data sets instead of the original data sets. We also

test accuracy on log-transformed masked data. In Chapter 4, we study the known

attacks from literature. We apply these techniques to our masked data sets to measure

the reliability of our system against existing attack techniques. In this section, we

have seen the weakness of the classical random number generator used in R-program.

The necessity of improving the way of producing random numbers emerged. We

made an improvement in random number generation part. In this section, we also

define some possible attacks and offer some data releasing strategies to protect our

system from these attacks. In Chapter 5, we give brief information about our user-

friendly software which will be used to generate secure masked data sets from the

original data. On the last chapter, we give a brief summary and talk about future

works.

3



4



CHAPTER 2

PRELIMINARIES

2.1 Statistical Database

A statistical database is a collection of data which contains the sensitive information

of the individuals. They are used in many research, planning and decision making.

Increasing amounts of statistical information are provided by agents like census bu-

reaus, universities, hospitals, and business organizations. They contain confidential

information such as income, credit ratings, type of disease, or test scores of individ-

uals. Researchers are using these databases for their scientific works. For example,

they obtain Mathematical models from the analysis to predict future results. Firms

use statistical databases to define strategies to increase their profit.

Financial databases are a special kind of statistical databases. They include financial

data of individuals or firms, such as budget, revenue, and profit.

2.2 Normal Distribution

Normal distribution (Gaussian distribution) or a bell curve is a continuous probability

distribution. The normal distribution suits many natural phenomena such as height

and blood pressure, so it is the most important probability distribution in statistics. It

describes how the values of a variable are distributed. Most of the observations cluster

around the central peak and probability of the values further away stands equally

in both directions in normal distribution as a symmetric distribution. It is defined

by its mean and standard deviation. The distribution is shifted by the mean value,

either to the left or to the right on the x-axis, and the standard deviation controls
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the spread. The standard deviation is the same in all directions. That is the important

characteristic from other distributions. The general formula for the probability density

function of the normal distribution is

f(x) =
e−(x−µ)

2/2σ2

σ
√

2π
(2.1)

where µ is the location parameter and σ is the scale parameter.

Figure 2.1: PDF of Normal Distribution

Standart normal distribution is the case where µ = 0 and σ = 1. The equation for the

standart normal distribution is

f(x) =
e−x

2/2

√
2π

. (2.2)

The cumulative distribution function of the standard normal distribution is

F (x) =

∫ x

−∞

e−π
2/2

√
2π

. (2.3)
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Figure 2.2: CDF of Standart Normal

2.3 Statistics

Statistics is the area that deals with developing and studying methods for collecting,

analyzing, interpreting and presenting experimental data. In all scientific fields, sta-

tistical methods are used. They are used to perform technical analysis of data. During

our work, we use the following statistical functions.

2.3.1 Mean

The statistical mean refers to the mean or average that is used to derive central ten-

dency of the data in question. The mean of a sample x1, x2, . . . , xn is usually denoted

by x, and it is the sum of the values divided by the number of the values in the sample.

x =
1

n

n∑
i=1

xi =
x1 + x2 + . . .+ +xn

n
(2.4)

Statistical mean has a wide range of use. We can eliminate accidental errors by cal-

culating the mean of the result of the experiments instead of the result derived from a

particular experiment. The statistical mean is popular because it includes every item

in the data set and it can easily be used with another statistical measurement. In a

normal distribution, the statistical mean is equal to median and mode.
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The major disadvantage in using statistical mean is that it can be affected by extreme

values, and therefore it might be biased.

2.3.2 Standard Deviation

In statistics, the standard deviation is a measure for a group that shows how they are

spread out from average(mean). For a sample x1, x2, . . . , xn, the standard deviation

can be calculated as follows:

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (2.5)

The standard deviation tells us how well the mean represents all of the data. It mea-

sures the deviation from the mean and shows the central tendency. It squares and

makes the negative numbers positive. The square of small numbers is smaller and the

square of large numbers is larger. So it makes you ignore small deviations and see the

larger one clearly.

2.3.3 Skewness

In a statistical distribution, skewness is asymmetry. The curve skewed either to the

left or to the right. The graph is symmetrical in a normal distribution. On each side of

the curve, the tails are exact mirror images of each other. The tail on the curve’s left-

hand side is longer than the tail on the right-hand side when a distribution is skewed

to the left. This situation is called a negative skewness. The tail on the curve’s right-

hand side is longer than the tail on the left-hand side when a distribution is skewed

to the right. This situation is called a positive skewness. Skewed data arises quite

naturally in many situations. For example, salaries are skewed to the right because

the mean can greatly be affected by even just a few individuals who earn millions

of dollars, and there are no negative incomes. We see all kind of skewness on the

following figure.

8



Figure 2.3: Skewness

2.3.4 Kurtosis

Kurtosis is a measure of the "tailedness" of the probability distribution of a real-valued

random variable in probability theory and statistics. The kurtosis of any univariate

normal distribution is 3. It is common to compare the kurtosis of distribution to this

value. Distributions with kurtosis less than 3 are said to be platykurtic, greater than

3 are said to be leptokurtic and equal to 3 are said to be mesokurtic. The next figure

shows us all types of kurtosis.

Figure 2.4: Kurtosis

2.3.5 Simple and Multiple Linear Regression

One of the important question is that, how the variables are related, if we have data

with multiple variables. Regression is a set of techniques for estimating relation-

ships. We start with simple linear regression in which there are only two variables

of interest.

9



We fit our data to a line y = β0 + β1x in simple linear regression. x is called the

independent (predictor) variable and y is called the dependent (response) variable

here. β1 is one of the most important quantity in any linear regression analysis. It is

the slope of the line. If β1 is close to zero then it indicates small to no relationship.

If the value of β1 is large, either positive or negative values, then it indicates large

positive or large negative relationship respectively. β0 is the intercept of the line.

We calculate β0 and β1 by using least square method as following:

β1 =

∑n
i=1 xiyi −

1
n

∑n
i=1 xi

∑n
i=1 yi∑n

i=1 x
2
i − 1

n
(
∑n

i=1 xi)
2

= r
sy
sx

(2.6)

β0 = ȳ − β̂1x̄ (2.7)

where x̄,ȳ,sx and sy are the sample means and standart deviation for x values and y

values, respectively. And the correlation coefficient r is defined as :

r =
1

n− 1

n∑
i=1

(
xi − x̄
sx

)(
yi − ȳ
sy

). (2.8)

The multiple linear regression is the case when there are more than one independent

variable, instead of x we have a vector (x1, x2, . . . , xp) for every data point i. So, we

have n data points, each with p different predictor variables. We will then try to

predict y for each data point as a linear function of the different x variables :

y = β1x1 + β2x2 + . . .+ βpxp. (2.9)

We will represent our input data in matrix form as X , an n×p matrix where each row

corresponds to a data point and each column corresponds to a feature. We’ll represent

the collection as an n-element column vector y, since each output yi is just a single

number. Then our linear model can be expressed as

y = Xβ + ε (2.10)
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where β is a p-element vector of coefficients, and ε is an n-element matrix where

each element like εi earlier, is normal with mean 0 and variance σ2. To solve the

optimization problem, we can use some basic linear algebra:

β̂ = (XTX)−1XTy. (2.11)

2.3.6 Logistic Regression

A generalized linear model (GLM) logistic regression is used to model a binary cate-

gorical variable using numerical and categorical predictors.

We assume a binomial distribution produces the outcome variable and we want to

model p the probability of success for a given set of predictors. We need to establish

a reasonable link function that connects a linear model η = β0+β1X1+ . . .+βnXn to

p to complete specifying the logistic model. There are lots of options but commonly

used is the so-called logit function which is described as follows:

logit(p) = log(
p

1− p
), for 0 ≤ p ≤ 1 (2.12)

The logit function takes a value between 0 and 1. And also maps it to a value between

−∞ to∞. Inverse logit(logistic) function

g−1(x) =
exp(x)

1 + exp(x)
=

1

1 + exp(−x)
(2.13)

takes a value between −∞ and∞ and maps it to a value between 0 and 1.

2.3.7 Log Transformations

The log transformation can be used to transform highly skewed distribution to less

skewed distribution. This is important for making patterns in the data more inter-

pretable.

As an example how a log transform make patterns more visible; Consider brain

weights of animals as a function of their body weights. In Figure 2.5 both graphs

11



plot the brain weight of them. On the left panel the raw weights are shown, on the

right panel the log transformed weights are plotted. After log transform the pattern of

the data becomes more visible.

Figure 2.5: Raw and log-transformed form of skew data

2.4 Random Numbers

Random numbers are the set of numbers where the values are uniformly distributed

over a defined interval and it is impossible to predict future values by using present

ones. They are important in statistical analysis and probability theory.

Mostly, they are randomly derived from single-digit decimal numbers, integers in

{0, 1, . . . , 9}. Generating random digits from this set is not trivial. In lotteries this

method is popular . Digits are selected one by one. After each selection, the selected

ball come back to the set and the balls are mixed a while, then another ball is allowed

to exit.

The existing number-generation algorithms produce future values by using past and/or

current ones. Random numbers which are generated by some kinds of algorithms are

called pseudo-random numbers. To generate such random numbers, we start with a

seed value. Seed is the starting point. In our work we use R programming language

to produce random numbers. In R the seed must be an integer between −231 + 1

and 231 − 1. This is, of course, a small number considering today’s technology, and

therefore it is not secure against a brute force attack.

In our work, we generate random numbers as a noise for masking original data sets.
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2.5 Sinusoidal and Triangular Data

A sinusoid is a periodic continuous wave. We use sinusoidal distributed data to verify

the work on existing attack techniques which we will discuss later on the related

section . We generate 10000 random numbers from sin function using the following

equation :

y(x) = sinx (2.14)

We see the first 250 generated number on a graph.

Figure 2.6: Section from sinus wave

A triangle wave is a non-sinusoidal, called triangular because of its shape. It is a

periodic, piecewise linear, continuous real function. To generate triangular distributed

data, we use the following equation :

y(x) =
2

π
arcsin(sin(πx)) (2.15)
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Figure 2.7: Section from triangular wave
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CHAPTER 3

SANITIZATION AND ACCURACY IN STATISTICS

3.1 Sanitization

Data sanitization is the process to secure sensitive data. Noise addition works by

adding or multiplying a stochastic or randomized numbers to confidential quantitative

attributes.

In our work to achieve privacy without losing accuracy, we mask our original financial

data before releasing. We use additive and multiplicative noise to sanitize the original

data set. We generate noise from normal distribution. To generate random numbers

from the normal distribution, we have to define two parameters, mean and variance.

We use the mean and variance of the original data as input parameters.

3.1.1 Additive Masking

Figure 3.1: Additive Masking
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When using noise to masking numerical data sets, the general assumption in the liter-

ature is that the mean of the generated noise is zero and the variance of the generated

noise is proportional to the variance of original data [15]. In our study, we set the

mean of the noise proportional to the mean of the original data instead of zero. Let X

is the original data. We generate the noise from normal distribution as : N(bµ, cσ2)

where µ and σ2 are mean and variance of original data respectively.b and c are the pro-

portion parameters.We can use b and c to control the accuracy in desired level.Let Y

and e is masked data and generated noise respectively. We release masked Y instead

of original data X , as following:

Y = X + e (3.1)

where

Y =


y1

y2
...

yn

 , X =


x1

x2
...

xn

 , and e =


e1

e2
...

en

 . (3.2)

3.1.2 Multiplicative

Multiplying original data with generated noise might protect the confidentiality better,

but there will be accuracy problems in statistical functions. LetX be the original data.

We generate the noise from normal distribution with mean 1 and variance proportional

to the variance of original data such that N(1, cσ2). We release the masked Y as

following:

Y = X × e (3.3)

explicitly,
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y1

y2
...

yn

 =


x1 × e1
x2 × e2

...

xn × en

 . (3.4)

When we compare with additive noise, multiplicative noise is safer but cannot main-

tain the statistical properties of the data [16].

3.2 Accuracy on Statistical Methods

Accuracy refers to the closeness of the results of statistical functions computed with

the original and masked data sets. In this section we make experiments to discuss the

accuracy on selected statistics when we work with masked data instead the original

data. For our experimental works we choose 5 variables randomly from our financial

data set. Our variables consist 7951 row. Some of them includes positive, some of

them negative , and some of them include both negative and positive values.

Table 3.1: Summary of variables that are used in the experiments

Range (−∞, 0) 0 (0,∞)

var1 (−∞,∞) 2342 7 5602

var2 (0,∞) - 4685 3266

var3 (0,∞) - 750 7201

var4 (0,∞) - 369 7582

var5 (−∞, 0) 7311 64 -

3.2.1 Accuracy on Additive Masked Data

Firstly, we compute the descriptive statistics. For each variable we calculate the mean,

standart deviation, kurtosis, and skewness for both the original and masked data set.

We use aditive data perturbation technique. We generate noises from normal distri-

bution as N(b × µ, c × σ2), where the parameters |b| and |c| are both in the interval
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[0, 0.05]. We choose |b| and |c| in the defined interval to preserve accuracy close to

desired values. If b and c choosen close to 0.05 privacy on masked data is increas-

ing, while accuracy is decreasing. If b and c choosen close to 0 accuracy on masked

data set is increasing while privacy is decreasing. We prepare the following table for

descriptive analysis. In this work we take b = c = 0.025. We calculate each statis-

tical function on original data, then on the masked data and take the ratio to see the

accuracy. We prepare the following table for randomly selected variables :

Table 3.2: Accuracy of descriptive statistics on original and additively masked data

set

var1 var2 var3 var4 var5

mean(original)/mean(masked) 0.982 0.979 0.978 0.973 0.978

stdev(original)/stdev(masked) 1.001 1 0.999 0.997 1.001

kurtosis(original)/kurtosis(masked) 1.001 1.001 1.001 0.999 1.001

skewness(original)/skewness(masked) 1.001 1.001 1.001 0.997 1.002

If we use b and c from defined interval and using normal distribution for masking,

we obtain desired and measurable accuracy, when we work with masked data instead

original data.

We continue with simple and multiple linear regression analysis. For simple linear

regression analysis, we choose var1 as dependent variable and var2, var3 as inde-

pendent variable respectively. Our first result is for the dependent variable var1 and

the independent variable var2:

Table 3.3: Simple linear regression analysis on original data set

Coefficients : Estimate Std.Error t Value Pr(>|t|)

Intercept −135264.30982 143950.58319 −0.94 0.35

var2 0.0305 0.05895 0.05 0.96

Signif. codes : 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual Standart error : 12800000 on 7949 degrees of freedom

Multiple R-squared : 3.36e-07, Adjusted R-squared: -0.000125

F-static: 0.00267 on 1 and 7949 DF, p-value: 0.959
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Table 3.4: Simple linear regression analysis on masked data set

Coefficients : Estimate Std.Error t Value Pr(>|t|)

Intercept −137729.1288 143899.0628 −0.96 0.34

var2M 0.032 0.0589 0.05 0.966

Signif. codes : 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standart error : 12800000 on 7949 degrees of freedom

Multiple R-squared : 3.71e-07, Adjusted R-squared: -0.000125

F-static: 0.00295 on 1 and 7949 DF, p-value: 0.957

We repeat simple linear regression analysis for dependent variable var1 and indepen-

dent variable var3:

Table 3.5: Simple linear regression analysis on original data set

Coefficients : Estimate Std.Error t Value Pr(>|t|)

Intercept −110287.1128 144131.0597 −0.77 0.444

var3 −0.0567 0.0328 −1.73 0.084 .

Signif. codes : 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standart error : 12800000 on 7949 degrees of freedom

Multiple R-squared : 0.000376, Adjusted R-squared: 0.000251

F-static: 2.99 on 1 and 7949 DF, p-value: 0.0837

Table 3.6: Simple linear regression analysis on masked data set

Coefficients : Estimate Std.Error t Value Pr(>|t|)

Intercept −113210.9379 144089.9644 −0.79 0.432

var3M −0.0543 0.0327 −1.66 0.097 .

Signif. codes : 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standart error : 12800000 on 7949 degrees of freedom

Multiple R-squared : 0.000346, Adjusted R-squared: 0.000221

F-static: 2.76 on 1 and 7949 DF, p-value: 0.097

We repeat simple linear regression analysis many times for randomly selected pairs,

chosen from our financial data set. We always get accurate results.

Multiple lineer regression analysis is the next. We choose var1 as dependent variable,

var2 and var3 as independent variables. We obtain the following results :
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Table 3.7: Multiple linear regression analysis on original data set

Coefficients : Estimate Std.Error t Value Pr(>|t|)

Intercept −111732.05583 144570.77643 −0.77 0.440

var2 0.00764 0.05900 0.13 0.897

var3 −0.05687 0.03280 −1.73 0.083 .

Signif. codes : 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standart error : 12800000 on 7948 degrees of freedom

Multiple R-squared : 0.000379, Adjusted R-squared: 0.000127

F-static: 1.5 on 2 and 7948 DF, p-value: 0.222

Table 3.8: Multiple linear regression analysis on masked data set

Coefficients : Estimate Std.Error t Value Pr(>|t|)

Intercept −114684.31793 144548.09886 −0.79 0.428

var2M 0.00763 0.05897 0.13 0.897

var3M −0.05449 0.03275 −1.66 0.096 .

Signif. codes : 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standart error : 12800000 on 7948 degrees of freedom

Multiple R-squared : 0.000349, Adjusted R-squared: 9.7e-05

F-static: 1.39 on 2 and 7948 DF, p-value: 0.25

We increase the number of independent variables and repeat multiple linear regres-

sion analysis for selected variables. We choose var4 as dependent variable and

var1,var2,var3, and var5 as independent variables. We obtain the following result:

Table 3.9: Multiple linear regression analysis on original data set
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Coefficients : Estimate Std.Error t Value Pr(>|t|)

Intercept 24233079.8079 353862.8486 68.48 < 0.0000000000000002 ***

var1 0.5097 0.0315 16.19 < 0.0000000000000002 ***

var2 0.1635 0.1402 1.17 0.24

var3 0.3576 0.0788 4.54 < 0.0000058 ***

var5 −1.0484 0.0524 −20.01 < 0.0000000000000002 ***

Signif. codes : 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standart error : 30300000 on 7946 degrees of freedom

Multiple R-squared : 0.0602, Adjusted R-squared: 0.0597

F-static: 127 on 4 and 7946 DF, p-value<0.0000000000000002

Table 3.10: Multiple linear regression analysis on masked data set

Coefficients : Estimate Std.Error t Value Pr(>|t|)

Intercept 24922342.6657 355669.4495 70.07 < 0.0000000000000002 ***

var1M 0.5128 0.0316 16.23 < 0.0000000000000002 ***

var2M 0.1636 0.1406 1.16 0.24

var3M 0.3558 0.0790 4.50 < 0.0000068 ***

var5M −1.0538 0.0526 −20.04 < 0.0000000000000002 ***

Signif. codes : 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standart error : 30400000 on 7946 degrees of freedom

Multiple R-squared : 0.0603, Adjusted R-squared: 0.0599

F-static: 128 on 4 and 7946 DF, p-value<0.0000000000000002

When we work with masked data set instead of original data set we also obtain accu-

rate result for simple and multiple linear regression analysis.

The next statistics is logistic regression analysis. For this statistics we define a thresh-

old value and using this value we convert the dependent variable to categorical binary

form. We use original data set to create dependent variable. Then we use masked

independent variables and test the accuracy. We also check the effect of selected

threshold.

We choose var1 as dependent variable. We set threshold value to 100000. We convert

it to a categorical binary variable. For this threshold there are 4566 1’s and 3385 0’s.

We choose arbitrarily var4 as independent variable. We have the following result for
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simple logistic regression analysis:

Table 3.11: Simple logistic regression analysis on original data set

Coefficients : Estimate Std.Error z Value Pr(>|z|)

Intercept −0.23642578983 0.03145121709 −7.52 0.000000000000056 ***

var4 0.00000002296 0.00000000103 22.20 < 0.0000000000000002 ***

Signif. codes : 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance :10846 on 7950 degrees of freedom

Residual deviance :10180 on 7949 degrees of freedom

AIC : 10184

Number of Fisher Scoring iterations : 4

Table 3.12: Simple logistic regression analysis on masked data set

Coefficients : Estimate Std.Error z Value Pr(>|z|)

Intercept −0.25059155827 0.03189880025 −7.86 0.000000000000004 ***

var4M 0.00000002284 0.00000000103 22.17 < 0.0000000000000002 ***

Signif. codes : 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance :10846 on 7950 degrees of freedom

Residual deviance :10181 on 7949 degrees of freedom

AIC : 10185

Number of Fisher Scoring iterations : 4

We set threshold value to 10000000. For this threshold there are 211 1’s and 7740

0’s. We repeat the previous case for this threshold and obtain the following result for

simple logistic regression analysis:

Table 3.13: Simple logistic regression analysis on original data set
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Coefficients : Estimate Std.Error z Value Pr(>|z|)

Intercept −4.63761299024 0.11586773811 −40.0 0.0000000000000002 ***

var4 0.00000002431 0.00000000146 16.7 < 0.0000000000000002 ***

Signif. codes : 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance :1947.9 on 7950 degrees of freedom

Residual deviance :1702.2 on 7949 degrees of freedom

AIC : 1706

Number of Fisher Scoring iterations : 7

Table 3.14: Simple logistic regression analysis on masked data set

Coefficients : Estimate Std.Error z Value Pr(>|z|)

Intercept −4.65297663670 0.11657350341 −39.9 0.0000000000000002 ***

var4M 0.00000002422 0.00000000145 16.7 < 0.0000000000000002 ***

Signif. codes : 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance :1947.9 on 7950 degrees of freedom

Residual deviance :1702.2 on 7949 degrees of freedom

AIC : 1706

Number of Fisher Scoring iterations : 7

We see that the change of threshold doesn’t effect the accuracy on analysis. Working

with perturbed independent variable gives accurate result for simple logistic regres-

sion analysis. Now we increase the number of independent variables. We will use

var2,var3,var4,and var5 as independent variable. We set the threshold to 1000000.

We obtain the following result for multiple logistic regression analysis:

Table 3.15: Multiple logistic regression analysis on original data set
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Coefficients : Estimate Std.Error z Value Pr(>|z|)

Intercept −4.636587728160 0.115992292071 −39.97 0.0000000000000002 ***

var2 0.000000007678 0.000000021184 0.36 0.72

var3 0.000000000973 0.000000011395 0.09 0.93

var4 0.000000024407 0.000000001480 16.49 0.0000000000000002 ***

var5 0.000000003168 0.000000007371 0.43 0.67

Signif. codes : 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance :1947.9 on 7950 degrees of freedom

Residual deviance :1701.9 on 7946 degrees of freedom

AIC : 1712

Number of Fisher Scoring iterations : 7

Table 3.16: Multiple logistic regression analysis on masked data set

Coefficients : Estimate Std.Error z Value Pr(>|z|)

Intercept −4.65187866939 0.11670117734 −39.86 0.0000000000000002 ***

var2M 0.00000000766 0.00000002119 0.36 0.72

var3M 0.00000000110 0.00000001134 0.10 0.92

var4M 0.00000002431 0.00000000147 16.49 0.0000000000000002 ***

var5M 0.00000000324 0.00000000738 0.44 0.66

Signif. codes : 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance :1947.9 on 7950 degrees of freedom

Residual deviance :1701.9 on 7946 degrees of freedom

AIC : 1712

Number of Fisher Scoring iterations : 7

For simple and multiple logistic regression analysis, working with pertubed data set

instead original data gives accurate results.

As a last experiment we take log transform of the data. For this experiment we choose

nonnegative data sets. We control the data sets and replace all 0’s with 1. Then, we

take the log of original data, then mask it. We compare results of primitive statistics

and regression analysis on original and masked log transformed data.
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Table 3.17: Ratio of descriptive statistics on original and additively masked log trans-

formed data set

var2 var3 var4

mean(original)/mean(masked) 0.9679 0.9576 0.975

stdev(original)/stdev(masked) 1.005 1.002 1

kurtosis(original)/kurtosis(masked) 1.008 1.001 1.002

skewness(original)/skewness(masked) 0.9977 1.001 1.001

For multiple lineer regression analysis on log transformed data, we choose var4 as

dependent variable, var2 and var3 as independent variables. We obtain the following

results:

Table 3.18: Multiple linear regression analysis on original log transformed data set

Coefficients : Estimate Std.Error z Value Pr(>|z|)

Intercept 15.27487 0.05515 276.98 < 0.0000000000000002 ***

var2 0.05729 0.00896 6.40 0.00000000017 ***

var3 0.04183 0.01089 3.84 0.00012 ***

Signif. codes : 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standart error : 3.82 on 7948 degrees of freedom

Multiple R-squared : 0.00777, Adjusted R-squared: 0.00752

F-static: 31.1 on 2 and 7948 DF, p-value<0.0000000000000343

Table 3.19: Multiple linear regression analysis on masked log transformed data set

Coefficients : Estimate Std.Error z Value Pr(>|z|)

Intercept 15.6547 0.0560 279.53 < 0.0000000000000002 ***

var2M 0.0575 0.0090 6.39 0.00000000018 ***

var3M 0.0416 0.0109 3.81 0.00014 ***

Signif. codes : 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standart error : 3.82 on 7948 degrees of freedom

Multiple R-squared : 0.00772, Adjusted R-squared: 0.00747

F-static: 30.9 on 2 and 7948 DF, p-value<0.0000000000000416

Besides shared experiments, we made many other experiments with randomly se-

lected variables. We obtained measurable accuracy for the statistics we mentioned.
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3.2.2 Accuracy on Multiplicative Masked Data

We start with computing the descriptive statistics. For each variable we calculate the

mean, standart deviation, kurtosis, and skewness both for original and masked data

set.

In this section, we use the multiplicative data perturbation technique. We generate

noises from normal distribution as N(1, c× σ2). In the following work, we choose c

as 0.025. We calculate each statistical function on original data, then on the masked

data and take the ratio to see the accuracy. We obtain the following results:

Table 3.20: Accuracy of descriptive statistics on original and multiplicatively masked

data set

var1 var2 var3 var4 var5

mean(original)/mean(masked) 0.017 0.508 0.818 0.011 0.165

stdev(original)/stdev(masked) 0.026 0.15 0.838 0.01 0.043

kurtosis(original)/kurtosis(masked) 0.825 0.652 0.917 1.222 0.868

skewness(original)/skewness(masked) 0.727 0.395 0.557 0.811 0.733

During our experimental works we saw that if we use multiplicative masked data, we

cannot guarantee accuracy. To solve this problem we have to choose c close to 0, then

we face the privacy problem. Since we deal with the balance on accuracy and privacy,

in the rest of our work we focus additively masked data.
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CHAPTER 4

PRIVACY ANALYSIS

4.1 Attacks

We study some of existing attacks from the literature which are applicable to our

masked data sets[17]. Researchers assumed the role of an attacker and developed

methods for estimating the original data from the sanitized data. Their work shows

the vulnerabilities of this type of data perturbation.

We define the original data set as an p × q, real valued matrix X . The owner of the

data perturbs X by using additive perturbation methods and release Y . The attacker

uses Y and find an estimation for X , denoted by X̂ . Our first assumption is that

each record of the original data set arose as an independent sample. Let
∑

X denote

the covariance matrix of X . The second assumption is that
∑

X has all distinct and

non-zero eigenvalues.

The data owner replaces the original data set X with

Y = X +R (4.1)

where R is a noise matrix with each column generated independently from a p-

dimensional random vector R with mean vector zero. We assume throughout that∑
R equals σ2I . In our case we use normal distribution.

In this chapter we describe three different attacks against additive peturbation. These

are Spectral Filtering (SF) [18], Singular Value Decomposition (SVD) [19] and Prin-

cipal Component Analysis (PCA) [20]. For each method, we apply the attack to our

masked data sets and obtain so-called estimated data sets. Then, we measure the

distance between the estimated and original values shown as d(O,E) and the dis-
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tance between masked and original shown as d(O,M). A comparison indicator, m,

is defined as:

m =

[
d(O,E)

d(O,M)

]
(4.2)

where d(A,B) is defined as:

d(A,B) =
n∑
i=1

|ai − bi| (4.3)

If m is in (0, 1), after attacking we come close to original data. If m is 1 we find

masked data itself. The methods used to check the privacy are explained in detail in

[17], [18], [19], and [20]. Each method is applied on a hypothetical data set which is

generated using triangular and sinusoidal functions to check that it works. We then

apply these methods to financial data set to show how much privacy is preserved in

case of such attacks.

4.1.1 Spectral Filtering

This technique, developed by Kargupta et al. [18], utilizes the fact that the eigenval-

ues of a random matrix are distributed in a fairly predictable manner. The steps in

applying spectral filtering are as follows:

•We calculate the covariance matrix of masked data.

•We calculate the eigenvalues and the corresponding eigenvectors.

•We calculate the boundaries for eigenvalues by using the following equations:

λmin = σ2(1− 1√
θ

)2, λmax = σ2(1 +
1√
θ

)2 (4.4)

where σ2 is the variance of noise matrix and θ = p(rownumber)
q(columnnumber)

.

The attack is done by using the corresponding eigenvectors of eigenvalues greater

than λmax. For estimating the masked observation we use the following equation,

E = M × A0 × AT0 (4.5)
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whereE stands for the estimation,M is released masked data set, andA0 is the matrix

includes calculated eigenvectors as columns. Afterwards, we compare the closeness

to exact data set by using the measure m we mentioned.

To verify the method we generate sinusoidal and triangular data and mask these ac-

cording to the proposed model. We attack the masked data sets by using spectral filter-

ing approach whose results are presented in Table 4.1 and Figure 4.1. In these graphs,

red circles are the absolute difference between original and masked data points. The

black circles are the difference between the original and estimated data points. We

see that after attacking we come close to original data sets.

Table 4.1: Spectral filtering method tested on sinusoidal and triangular data sets

Sinusoidal Triangular

λmin 0.01121 0.007627

λmax 0.06104 0.04152

p× q 250×40 250×40

d(O,M) 1410 1163

d(O,E) 319.6 205.2

m 0.227 0.176

Figure 4.1: Spectral filtering method tested on sinusoidal and triangular data sets

Application of this attack method to masked financial data set yields the results pre-

sented in Table 4.2 and Figure 4.2. We see that, after attacking with spectral filtering

to masked financial data set, we obtain the masked data itself. In other words, there

is no disclosure of our financial data by applying this attack.
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Table 4.2: Spectral filtering method tested on financial data set

Financial Variable

λmin 45870034800

λmax 194658444176

p× q 250×30

d(O,M) 1964402616

d(O,E) 1964402616

m 1

Figure 4.2: Spectral filtering method tested on financial data set

4.1.2 SVD Filtering

Guo et al. [19] proposed a singular value decomposition-based data reconstruction

approach and proved the equivalence of this approach to spectral filtering. SVD is

applied as following :

•We apply SVD to masked data matrix. We decompose M as M = L̃D̃R̃T

•We find the singular values, σ̃1 ≥ σ̃2 ≥ σ̃3 ≥ . . .

•We apply SVD to noise matrix and find the largest singular value, σv.

•We find k, k = min{i : {(σ̃i <
√

2σv)− 1}}
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•We attack by using the following equation:

E =
k∑
i=1

σ̃i × l̃i × r̃Ti

We compare the closeness to exact data set by using the measure m we mentioned.

Similar to the first method, we first generate sinusoidal and triangular data and mask

them. We attack the masked data sets by using SVD. The results of this attack method

is shown in Table 4.3 and Figure 4.3. We see that the red circles in the graph are the

absolute difference between original and masked data points. The black circles are the

difference between the original and estimated data points. We see that after attacking

we come close to original data sets.

Table 4.3: SVD filtering tested on sinusoidal and triangular data sets

Sinusoidal Triangular

p× q 250×40 250×40

d(O,M) 1410 1163

d(O,E) 319.5 205.4

m 0.227 0.177

Figure 4.3: SVD filtering tested on sinusoidal and triangular data sets

Application of SVD attack method to masked financial data set yields the results

presented in Figure 4.4. We see that, after attacking with SVD to masked financial

data set, we obtain the masked data itself. In other words, there is no disclosure of

our financial data by applying this attack.
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Table 4.4: SVD filtering tested on financial data sets

Financial Variable

p× q 250×30

k 30

m 1

Figure 4.4: SVD filtering tested on financial data set

4.1.3 PCA Filtering

Huang et al. [20] proposed a filtering technique based on PCA(Principle Component

Analysis). A major difference with spectral filtering, is that PCA filtering does not use

matrix perturbation theory and spectral analysis to estimate dominant PCs of original

data. PCA can be applied as following:

• We compute the mean of each column of masked matrix, then subtract it from

calculated column.

•We calculate the covariance matrix of the new form of masked matrix. We produce:∑
X̂ =

∑
Ŷ − σ2I

an estimate of
∑
X .
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•We calculate the eigenvalues of
∑
X̂ and count the number of dominant eigenvalues

and denote it as k.

• Using the k dominant eigenvalues, we calculate the corresponding eigenvectors.

V̂x = [v̂1x . . . v̂
k
x]

•We attack by using the following equation

X̂ ≈ Y V̂xV̂
T
x

As a last step we compare the closeness to the exact data set by using the measure

function that we mentioned.

Implementation of PCA on experimental functions are presented in Table 4.5 and

Figure 4.5. We observe similar result as in other two methods. The red circles are

the absolute difference between original and masked data points. The black circles

are the difference between the original and estimated data points. We see that after

attacking we come close to original data sets.

Table 4.5: PCA filtering tested on sinusoidal and triangular data sets

Sinusoidal Triangular

m× n 250×40 250×40

d(O,M) 1408 1173

d(O,E) 312.2 263.2

m 0.228 0.1224

Figure 4.5: PCA filtering tested on sinusoidal and triangular data sets
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Application of PCA on financial data set yields no disclosure of original data as pre-

sented in Table 4.6 and Figure 4.6.

Table 4.6: PCA filtering tested on sinusoidal and triangular data sets

Financial variable

p× q 250×30

k 30

m 1

Figure 4.6: PCA filtering tested on financial data set

4.2 Some More Privacy for Data Releasing

We defined some restrictions on data releasing because some kind of requests may

threat the privacy of the data.

4.2.1 Every variable must have the same masked form

We start with the following question. If we have two different masked set of same

data, is there any disclosure risk?

Let X be the original data set such that:
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X =


x1

x2
...

xn

 (4.6)

Assume that we have two different masked form of the same data set.

X1 =


x11

x12
...

x1n

 =


x1 + ε11

x2 + ε12
...

xn + ε1n


and

X2 =


x21

x22
...

x2n

 =


x1 + ε21

x2 + ε22
...

xn + ε2n


By using X1, and one record reduced version of X2, we construct S and T as follow-

ing:

S = x11 + . . .+ x1n

= x1 + . . .+ xn + ε11 + . . .+ ε1n

and

T = x21 + . . .+ x2n−1

= x1 + . . .+ xn−1 + ε21 + . . .+ ε2n−1

We calculate S − T ,

S − T = xn + ε11 + . . .+ ε1n︸ ︷︷ ︸
n×b×X

− (ε21 + . . .+ ε2n−1)︸ ︷︷ ︸
(n−1)×b×X

(4.7)
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Then we simplify equation (4.7) and find the following equality,

xn = S − T − bX (4.8)

where S, T and average of masked data are known.

Consequently, we see that if we have two different masked set of same data, there

might be a disclosure risk. Therefore we propose to mask a data once for all requests,

the response of the same request must be exactly same.

4.2.2 One record difference between two request

We start this section with the following question.Is there any disclosure risk, if we

response two query with one record difference?

We have two query such that the result sets have only one record difference. We have

the following result sets.

X1 =


x1

x2
...

xn

 and X2 =


x1

x2
...

xn−1

 (4.9)

We masked and release this two data set as following:

X1 = X1 + N(b × µ1, c × σ2
1) and X2 = X2 + N(b × µ2, c × σ2

2) where µ1, µ2 are

the mean and σ2
1, σ

2
2 are the variance of X1, X2 respectively. In vector form we have

the following masked data sets,
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X1 =


x1 + ε11

x2 + ε12
...

xn + ε1n

 and X2 =


x1 + ε21

x2 + ε22
...

xn−1 + ε2n−1

 (4.10)

Now, we define S and T such that :

S = x1 + . . .+ xn + ε11 + . . .+ ε1n (4.11)

and

T = x1 + . . .+ xn−1 + ε21 + . . .+ ε2n−1 (4.12)

We calculate S − T ,

S − T = xn + (ε11 + . . .+ ε1n)︸ ︷︷ ︸
n×b×µ1

− (ε21 + . . .+ ε2n−1)︸ ︷︷ ︸
(n−1)×b×µ2

(4.13)

Then we substitute µ1 and µ2 into equation (4.13)

S − T = xn + n× b× x1 + . . .+ xn
n

(4.14)

− (n− 1)× b× x1 + . . .+ xn−1
(n− 1)

We simplify equation (4.14) and obtain the following equality.

S − T = xn(1 + b) → xn =
S − T
1 + b

(4.15)

where S and T is known and b is predictable.

Consequently, if the result set of new query has only one different record from one of

the result set of the past queries we don’t response.
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4.3 The Inclusion of Random Number Generation in Privacy

In R-software system there are totally 230 different seed values. If we use a seed value

to generate all random numbers producing the noises, an attacker can recover the

original data by constructing 230 tables. In order to construct a table from a possible

seed, the attacker generates the noises from this seed and then they are subtracted

from the masked data. The tables from all other possible seeds are built similarly.

Note that one of these tables is the original data. If there are n values of data, then

the total size of the tables is n230. This amount of data can be efficiently stored in

practice for the values of n used in practical applications. Therefore, while generating

a masked data, a different seed value must be used for each value in the data in

order to avoid such an attack. Moreover, if a masked data that was generated before

is requested, the system must generate the same masked data, i.e., the same noises

should be employed for generating the masked data. Otherwise, the system would be

vulnerable against collusions. Under these requirements, we propose the following

method described in Table 14 for noise generation. In this method, k is a key that

must be kept secret by the authority generating noise. We use a function f to generate

the seeds. The seed values are dependent on the original value of the data so that

whenever the system gets a request of generating a masked data produced before, the

same masked data will be generated. In the proposed system, we chose a nonlinear

function f(x) = µx3 + σ where µ and σ are the mean and the standard deviation of

the original data, respectively.

Table 4.7: Privacy algorithm using proposed random number generation

Original data Seed Noise Masked data

x1 s1 = f(k + x1) mod 230 ε1 = RNG(s1) x′1 = x1 + ε1

x2 s2 = f(x2 + x′1) mod 230 ε2 = RNG(s2) x′2 = x2 + ε2
...

...
...

...

xn sn = f(xn + x′n−1) mod 230 εn = RNG(sn) x′n = xn + εn

It should be remarked that µ and σ are also uncertain for the attacker. If it is easy to

estimate those values for an attacker, then several more keys can be used in order to

increase the privacy. In this case, we use si = f(ki + xi) mod 230 for i = 1, 2, . . . , t

and si = f(xi + x′n−1) mod 230 for i = t+ 1, . . . , n where t is a privacy parameter.
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In practice, selecting a master key of size about 1200-bit, splitting it in 40 equal parts

having each 30-bit (that is t = 40) and assigning each 30-bit to a subkey ki will be

more than enough to provide approximately a privacy level of 100-bit.
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CHAPTER 5

SOFTWARE FOR MASKING FINANCIAL DATA SETS

We develop user-friendly software that enables raw data in the database to be shared

with external users by perturbing it with a secure and easy to use transformation. In

this software, a secure masking technique resistant to possible attacks from external

users is aimed to be developed such that some specific statistical analysis results on

masked data are close to the original within the defined accuracy limits (±5%).The

application masks the data in such a way that the researchers’ results are reasonably

close to the original results.

The software applies masking on the original data and/or on the logarithm of the

original data. It also enables to define the dependent variable that is necessary for lo-

gistic regression analysis. Masking operation can be defined in two ways: Automatic

or Manuel. While Automatic masking option masks all cells of selected data set, the

manual masking option enables users to choose a subset of data, they can execute their

own SQL. Moreover, masking can be performed according to two different methods:

(i) Additive; (ii) Multiplicative. The additive masking technique adds generated noise

to data and the multiplicative masking technique multiplies data by generated noise.

For both methods, two parameters, the coefficient of the mean (b) and the coefficient

of (c) must be selected. These parameters take values in the interval (0-0,05), but

when these values get closer to zero the probability of occurrence of a privacy flaw

rises.

When application starts User Login Screen appears. It is mandatory to be a registered

user to be able to use the application. Two roles as Admin and Operator are defined.
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Figure 5.1: Login Page

After login by filling the User Name and Password fields, they can start to use this

program.

Figure 5.2: Home Page

In the Home Page on Figure 5.2, primarily the information about the researcher who

made a request for data is entered and saved to database. The scanned ‘jpeg’ version

of the document signed by the researcher requesting the data, is uploaded to database

by using the Upload Contract button.
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The software offers three different operations. These are :

• Data masking: Masking the original data

• Logarithmic data masking: Masking the logarithmic transformation of the original

data

• Preparing Binary Categorical Variable for Logistic Regression: Transforming data

into the values 0 and 1 according to a threshold value.

If you are admin user you can also manage the users of the program from interface.

You can add, delete or update a user.

You use the user interface to prepare the data. Processes on data will be done by an

R-script on the backend. In the end, you get the data as an Excel.

43



44



CHAPTER 6

CONCLUSION

In this work, we have studied additive and multiplicative masking techniques to un-

derstand the accuracy and privacy of some statistical algorithms applied to the data

set. Since the multiplicative masking does not provide a reasonable accuracy we have

focused on additive masking and study its properties in detail. For this purpose, we

first generate our noise from a normal distribution. In doing this, the random numbers

are derived from the original data using its mean and the standard deviation. We gen-

erate noise from a normal distribution and mask the original data additively which is

aimed to be shared with researchers.

There are two dimensions of the problem of applying this methodology: accuracy

and privacy of the masked data have to be at desired levels. For the first, we ob-

serve that the accuracy is satisfied for original and log-transformed masked data over

the following statistical analyses such as descriptive statistics (mean, standard devia-

tion, skewness, and kurtosis), simple and multiple linear regression analysis, simple

and multiple logistic regression analysis on masked datasets. Some experimental

results for accuracy are done and illustrated in figures. Each figure presents the ac-

curacy obtained in implementing the additive normal perturbation to some artificial

data sets. The proportion of observed data series and masked data series is expected

to remain within a certain accuracy which is taken to be 5% in our case. We obtain

that the results of descriptive statistics at which the mean, standard deviation, skew-

ness and kurtosis of original data and log-transformed data remain within the target

accuracy limit, respectively. Simple and multiple linear regression applied to original

and masked data sets come up with the same accuracy results which verify that the

masked data yield a certain accuracy in linear modeling. We repeat all experiments

45



many times for randomly selected variables. In these works, we obtain measurable

accuracy for the statistics we mentioned.

After accuracy analysis, we deal with privacy. We study the possibility of getting the

original data from the masked data. We work as an attacker. We apply the attacks to

our masked data from the literature in section 3.1, which are suitable for our system.

First, we verify the attacks as studied in the literature than apply our masked datasets.

We see that our system is reliable against existing attacks that we discussed in detail.

During privacy works, we saw a weakness in our system. Brute force attacks are a

threat to our system. To get rid of this, we improved the noise generation part of our

system, which we discuss in details on the section 4.3. We see also some threats,

we discussed on section 4.2.1 and 4.2.2. For threats, we define some data releasing

strategies. As the last part of our works, we develop a user-friendly software which

includes all constraint check at the backend to prepare reliable masked data.

As future work, we can search for some new attacks and the accuracy of some new

statistical functions on our masked data set.
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