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ABSTRACT 

 
 

A NOVEL APPROACH TO EMOTION RECOGNITION IN VOICE: 

A CONVOLUTIONAL NEURAL NETWORK APPROACH AND GRAD-CAM 
GENERATION 

 

 

Canpolat, Salih Fırat 

MSc., Department of Cognitive Sciences 

Supervisor: Prof. Dr. Deniz Zeyrek Bozşahin 

 

June 2019, 75 pages 

 
 
 

Emotion is one of the essential components in human and human-machine interaction. 
One of the most common communication channels is the sound. Understanding the 
underlying mechanisms of emotion recognition in the sound signal is an essential step 
in improving both types of interaction. For this purpose, we developed an emotion 
recognition model, and a Turkish-specific database, referred to as the Turkish 
Emotion-Voice (TurEV) database. The database contains one-word-vocalizations of 
four emotion types; angry, calm, happy, and sad in three different frequency bands. 
The model was trained using TurEV, and human validation studies were conducted. 
The results indicate that the model is feasible for emotion recognition tasks. The 
comparison of the humans with the computational model indicate that the model 
achieves better results using feature-rich frequency bands, the humans use all other 
aspects of the sound signal. 

 

Keywords: cnn, emotion, voice, corpus, Turkish  
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ÖZ 

 
SESTE DUYGU TANIMLAMASI ÜSTÜNE YENİ BİR YAKLAŞIM: 

KONVOLUSYONEL SİNİR AĞLARI VE GRAD-CAM 
OLUŞTURULMASI 

 

Salih Fırat Canpolat 

Yüksek Lisans, Bilişsel Bilimler Bölümü 

Tez Yöneticisi: Prof. Dr. Deniz Zeyrek Bozşahin 

Haziran 2019, 75 sayfa 

 

Duygu, insan ve insan-makine etkileşiminin temel bileşenlerinden biridir. İnsan ve 

insan-makine etkileşiminde sık kullanılan iletişim kanallarından biri de sestir. Ses 

sinyalinde duygu tanımayı sağlayan temel yapıları anlamak iki tip etkileşimi de 

geliştirmek için önemli bir basamaktır. Bu amaçla, bu çalışma kapsamında, yeni bir 
duygu tanıma modeli ve Türkçeye özgü olan, Türk Ses-Duygu (TurEV) veritabanı 

geliştirildi. Veritabanı, dört duygu tipinin (kızgın, sakin, mutlu ve üzgün) üç farklı 

frekans bandında bir kelimelik seslendirmelerinden oluşmaktadır. Model, TurEV 
kullanılarak eğitildi ve insan doğrulama çalışmaları yapıldı. Sonuçlar, modelin duygu 

tanımada kullanılabilir bir yapıya sahip olduğuna işaret etmektedir. Karşılaştırmalı 

analizler, bilgisayarlı modellerin özellik bakımından zengin frekans bantlarını 

kullanarak daha iyi sonuç almasına karşın, insan zihninin ses sinyalinin diğer tüm 

özelliklerini kullandığını göstermektedir. 

Anahtar Sözcükler: cnn, duygu, ses, Türkçe  
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Chapter I 

1. Introduction 

 

Human emotion is one of the components that represent human cognition 
interculturally. According to Ekman, emotions are stable through different cultures 
(Ekman, 1972; Ekman et al., 1987). Emotions leave markers in vocalizations, prosody, 
facial expressions, and biological processes such as hormone levels and blood pressure 
(Cowie & Cornelius, 2003; Liscombe, Venditti, & Hirschberg, 2003; Vogt & André, 

2005). To analyze emotion, multimodal models were also developed and they attained 
a high level of success. Among the models, those based on vocalization were the most 
common ones. In fact, vocalization is one of the least intrusive and the most accessible 
form of marker for the emotions. 

Emotions are one of the primary requisites of a healthy interaction between 
individuals. Lacking the ability to convey or understand the emotions is part of many 
pathologies (A. S. Cohen, Najolia, Kim, & Dinzeo, 2012). Studies have been 
conducted on the subject matter of special education and rehabilitation of such 
individuals (Konstantareas, 2006). Understanding the underlying mechanisms in 
emotion recognition, at least in vocalizations is essential to understand human 
interaction. Emotion recognition does not only affect communication between 
humans,  but it is also one of the critical factors in human-machine interaction. In the 
last two decades, the amount of human-machine interaction has increased drastically. 
Human is generally the unpredictable part in human-machine interaction; therefore, 
understanding human emotion is one of the critical aspects of improving this 
interaction. 

In the field of emotion recognition, a great deal of improvement has been made 
through vocal markers. The models which performed barely above chance now have 
over 90% accuracy rating (Nwe, Foo, & De Silva, 2003; Wang, 2014). As 
computational power increased, older models were replaced with support vector 
machines (SVM) and different kinds of neural networks. However, most of these 
studies have tackled the emotion recognition problem through a performance 
perspective. To the best of our knowledge, studies concerned with the performance of 
both machines and human judges are rare.  

Corpus studies are an essential part of emotion recognition. Although computational 
approaches can be a part of the corpus studies, their main focus is creating a validated 
corpus of emotion. To date, emotion corpora with different properties have been 
compiled. For example, Berlin Emotional Speech Database (Burkhardt et al., 2005) 
consists of a single language German, has 800 vocalizations, and is free. INTERFACE 
(Hozjan, Zdravko, Asuncion, Antonio, & Albino, 2002) on the other hand consists of 
English, Slovenian, Spanish, and French has 175 to 190 vocalizations and is 
commercially available. 

The Turkish language hardly shares the rich literature in the emotion recognition field 
other languages enjoy. The link with emotion and voice is even less studied. Among 
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the studies that exist, we can name works on fundamental frequency (Fidan, 2007), 
and on machine learning models in emotion recognition (Erdem, 2014). However, to 
the best of our knowledge, there are no voice-emotion corpora studies in Turkish.  
Thus, this study aims to address these issues and by providing a machine learning 
model, it intends to set up the first step to reveal the possible link between voice and 
emotion in Turkish.  

 

1.1 Goals 

In this thesis, we aimed to reach four goals. Our first goal was to develop a novel 
model type for emotion recognition that is trained using a set of Turkish words, which 
is robust to noise and manipulation, and whose decision-making process is visualized 
with various techniques. Our second goal was to compile the Turkish Emotion Voice 
Database (TurEV Database) that is representative of the acoustic changes in Turkish 
one-word vocalizations and is validated by expert judges. We hope that the TurEV 
Database will be a precursor for the future studies in emotion-voice corpora studies. 
Our third goal was to do a comparative analysis between the predictions of the model 
and the judges. 

 

1.2 Scope  

The machine learning model used in this thesis is a variant of the Convolutional Neural 
Network Model. The model is designed to allow Grad-CAM model construction and 
heat map generation. Unlike other emotion recognition models, the model used in this 
thesis accepts images. The Turkish Emotion Voice Database (TurEV) Database 
consists of vocalizations of four emotional categories; angry, calm (neutral), happy, 
and sad voiced by six amateur actors (3 male, three female). TurEV consists of words 
in three different frequency bands. 

TurEV is based on 82 words, each of was vocalized in each emotional category by 
each amateur actor. Each vocalization in TurEV is accompanied by a spectrogram of 
that vocalization. 

In the thesis, the performance of the model and the judges are compared using a series 
of analyses, the results of which are finally presented in contingency tables. The 
judges’ assessment of emotions is considered as the golden key on the basis of which 
machine learning is assessed. 

This thesis is primarily concerned with producing an emotion-voice database, and a 
neural network model that predicts four emotions. The focus of the thesis is on these 
productions and their analysis. 
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1.3 The Research Gap in Contemporary Computational Voice-Emotion Studies 

The review of literature in Chapter II will show that there are certain gaps in the 
contemporary computational voice-emotion studies. For example, the models 
produced are accurate and fast, yet they are either not fully transparent in their 
decision-making process, or they merely provide the underlying feature maps. The 
human voice and its interaction with emotion create non-linear relationships in the 
features. It is possible to derive information about the features, yet the existing models 
only provide linear features such as the fundamental frequency (F0) contour. A novel 
type of model that tackles the problem of emotion recognition is entirely missing in 
Turkish.  

Secondly, the number of corpora used in emotion recognition studies has significantly 
increased. These corpora have many different properties, such as the number of 
languages, several vocalizations, accessibility, validation techniques, so on and so 
forth (El Ayadi, Kamel, & Karray, 2011). However, an established voice-emotion 
corpus for the Turkish language that is open to the public does not exist. The studies 
conducted in this area have either built their own dataset or used corpora of other 
languages (Erdem, 2014). 

 

1.4 Contributions of the Thesis 

In this thesis, we aimed to contribute to the voice-emotion studies literature in three 
significant aspects, namely, methodologically, empirically, and cognitively. 

 

1.4.1 The Methodological Contribution 

We used a novel method in order to create a feature map that is representative of the 
Turkish sound signal in time and frequency domain providing different frequencies. 
The method we chose was short-time Fourier transformation, and feeding this 
information into a convolutional neural network (CNN) (Owens & Murphy, 1988). 
We have chosen the CNN because it allows the object detection paradigm to be applied 
to the data (Cai, Fan, Feris, & Vasconcelos, 2016). Moreover, the CNN architecture 
allowed us to use Grad-CAM (Class Activation Map), which enabled us to learn more 
about the model’s decision process and extract the heat maps that show essential 
features. 

 

1.4.2 The Empirical Contribution 

Corpora play a critical role in voice-emotion studies. In this thesis, we compiled a 
comprehensive database called the Turkish Emotion Voice Database (TurEV). TurEV 
consists of a corpus component and an analysis component. The corpus component 
includes vocalizations of 82 words, three different versions of these vocalizations in 
different frequency bands, spectrograms derived from these vocalizations, and heat 
maps. The analysis component includes F0 values, validation statistics, model  
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decision statistics, and heat maps for the validation set. Moreover, the corpus is 
validated by expert judges for each frequency band, and the data from the comparative 
analysis is included in the database. 

 

1.4.3 The Cognitive Contribution 

The present study investigates the voice-emotion corpus through a computational 
model as well as an ablation study.1 In the context of our study, ablation involves 
removing the voice properties from certain frequency bands of the model. We then 
test the predictions of the model in each frequency band as well as asking the human 
judges to assess their perception of emotion category in each frequency band. The 
discrepancies and the parallelisms between the model and the judges are revealed and 
analyzed. In this way, we were able to make inferences about the nature of 
phonological information provided in different frequency bands, because we could 
understand how the human ear perceives emotion even when information in certain 
frequency bands is missing.  

 

1.5 Structure of the Thesis 

Chapter I - Introduction 

In this chapter we presented a brief view of the thesis in terms of its goals, 
contributions, the gaps in research in this emotion-voice studies, and what our 
contribution will be. 

Chapter II - Background 

In this chapter, we present the theoretical background of emotion-voice studies. 
Theoretical background includes computational approaches to emotion-voice studies, 
the phonology of emotion, the structure of emotion, and corpora studies conducted on 
emotion-voice. 

Chapter III - Method 

In this chapter, we present the methodological approach used in this thesis. The chapter 
starts with how the data is handled including its collection and validation, it continues 
with the presentation of the neural network architecture, and ends with the information 
on statistical analysis conducted on the fundamental frequency (F0). 

Chapter IV – Analysis and Results 

In this chapter, we present the results of the analysis conducted on the model, the 
validation study, and statistical analysis explained in Chapter III. The chapter starts 
with the analysis of the model, continues with the analysis of the human judges’ 

decisions, and ends with the results of an analysis comparing machine learning with 
human learning. 

 
1 Ablation is a type of study in which models are tested with modified, removed, or damaged features. 
This allows models to be tested in the absence of manipulation of these features. 
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Chapter V – Turkish Emotion-Voice Database (TurEV Database) 

In this chapter, we describe the TurEv database. We present the results of the Turkish 
Emotion-Voice Database study. We start with information on the corpus and the 
coverage of the database. Lastly, we present the evaluation of the corpus component 
of the TurEV Database. 

Chapter VI – Conclusion 

In this chapter, we summarize the results obtained in Chapter IV and conclude in light 
of the information presented in Chapter II. We discuss the implications and limitations 
of the thesis, and lastly, we conclude this chapter with suggestions for further research. 
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Chapter II 

2. Background 

 

 

2.1 Introduction 

In this chapter we present the theoretical background of emotion, the emotion-voice 
studies, and give brief information on phonological aspects of emotion-voice. We 
present an overview of what emotion is, the relevant contemporary research on 
emotion, the features, and model types in emotion-voice studies, then we briefly 
introduce the role of phonology in emotion-voice studies. We conclude this chapter 
with information on the existing emotion-voice databases and their properties. 

 

2.2 Emotion 

Emotion is an essential part of not only interpersonal communication but also human-
machine interaction. Various emotions are conveyed through voice as well facial 
expressions, posture, gestures, and such (Busso, Bulut, Lee, & Narayanan, 2008). 
However, the majority of the human-machine interaction happens through the voice 
channel with the assistants such as  Microsoft’s Cortana and Apple’s Siri (Hoy, 2018).  
On the interpersonal communication side, phones allow humans to communicate 
through voice-only channels. This communication channel has been enhanced by the 
introduction of mobile phones and voice to IP (VoIP) communication systems. These 
changes have made emotion-voice studies inevitable. In order to proceed, one question 
requires to be answered: what is emotion? 

 

2.2.1 What is emotion? 

In order to work on a concept, it is imperative first to operationalize it. According to 
Scherer, emotion can be operationalized with a component process model, which 
divides the concept into three significant parts, namely, the function, subsystems, and 
components (Scherer, 1982). In this regard, emotion is an interconnected change that 
effects the subsystems in the component process model and that change must be in 
synch and be caused by an event that has importance to the organism (Scherer, 1987, 
2001). Emotion also has its valence, namely positive and negative emotions. Within 
the boundaries of the thesis and the component process model, emotion can be 
measured using action functions that use the somatic nervous system manifested as a 
motor expression. This could be a facial expression or changes in intonation. 
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2.2.2 Affect, Emotion, and Mood 

Emotion has a type-token relationship with affect and mood with both affect and mood 
being types of emotion; they have significant differences that affect their functions. 
Mood is a type of emotion that has a slow rate of change and relative longevity that 
lasts from hours to days. In pathological conditions such as depression, mood might 
not change for six months or longer. Affect, on the other hand, is short lasting, it can 
last from milliseconds up to an hour in some cases. During a conversation, affect can 
change in various ways. 

The present thesis aims to study the affect type of emotion. During the study, affect 
and emotion will be used interchangeably. 

 

2.3 Contemporary Research on Emotion Recognition 

Contemporary research on emotion recognition through computational approaches is 
focused on audio, visual and audiovisual methods (Y. Kim, Lee, & Provost, 2013).  
Audiovisual methods provide ample amount of data and offer high precision which is 
a requirement in pathological cases such as depression (Cohn et al., 2009). In exchange 
for the increased accuracy, audiovisual models suffer from increased data size and 
problems in parallelization of the sound and image.  On the other hand, using sound 
as the sole source of information in machine learning models lower data density and 
the total amount of information. Lowering the signal to a single type, however, 
removes the need to parallelize two different data types and allows the models to use 
the sound in various ways. 

The sound signal can be utilized in different ways to create estimators that categorizes 
and recognizes different emotions. A widely used approach is to extract handcrafted 
features from the signal then use these features to classify the emotions. This is a 
robust approach in a given dataset with strong internal validity. Handcrafting the 
features allows researchers to pinpoint the specific properties of the data and extract 
them as needed. This approach is robust in terms of the classification made for the 
dataset they are developed for; however, they it lacks external validity. Therefore, such 
approaches are not accurate on the novel data. One exception to this phenomenon is 
the depression studies. According to the Diagnostic and Statistical Manual of Mental 
Challenges, V (DSM V), the major depressive disorder, is a mood disorder 
characterized by an extensive and unrealistic feeling of sadness for a prolonged time 
(American Psychiatric Association, 2013). The research performed on the 
categorization of the depression through vocal prosody can successfully be 
generalized to the cross-corpus applications (Alghowinem, Goecke, Epps, Wagner, & 
Cohn, 2016; Mitra, Shriberg, Vergyri, Knoth, & Salomon, 2015). This approach has 
high external validity in terms of the stability of depressive expressions across 
cultures. As depression prolongs sadness, it lowers the energy in the sound signal, 
widens the gaps in speech, and lowers the variation of pitch regardless of the culture 
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and language. Depression categorization through vocal biomarkers also focuses on the 
binary categorization of depressed. Therefore, it is possible to use handcrafted 
features. 

Feature extraction can also be done with the brute force approach and is shown to be 
a successful way of extracting features (Pachet & Roy, 2009; Vogt & André, 2005). 
The brute force approach generates thousands of features from the present data then 
eliminates those using different procedures. Culling of the features that do not improve 
the model can be done in various ways. Genetic algorithms can be used in this manner, 
change in explained variance or cross-correlation can be used as an indicator. The 
brute force approach is slow and computationally expensive. Advantages of a brute 
force approach are using a computational method to extract most robust features 
instead of handcrafted features. This eliminates the need of human expertise in feature 
extraction, it also eliminates human error. Therefore, this approach adds to the overall 
strength of the model. 

 

2.4 Common Feature Types Used in Emotion Recognition 

Depending on the type of research, the model, the estimator, and the corpus, different 
set of feature types can be used. Except for rare occasions, features are singular 
estimations of the window functions, and their vectorized representations are used in 
the models. These features can be categorized into three different groups being; 
continuous, spectral, and TEO-Based (El Ayadi et al., 2011). 

 

2.4.1 Continuous Features 

Pitch, energy, and formants are the most common continuous features. These features 
are not mutually exclusive, and they can have a part-whole relationship. They are all 
time dependent and generally used within a window. A formant range has its energy 
value, and different pitches have different densities at different formats. Different 
measures can be used for these continuous features. Most commonly used measures 
are mean, standard deviation, range, skewness, and kurtosis. 

Pitch is the frequency of the sound -- a high pitched sound has high amplitude at higher 
frequencies, whereas a low-pitched sound has high amplitude at lower frequencies. 
Unlike artificially created sounds that can have a single pitch value such as 123.47 for 
the musical note A#, the human voice is a mix of different frequencies at different 
amplitudes. 

Formants are spectral shifts in the vocal tract that result from acoustic resonance, and 
they are represented by intervals in hertz. In most phonology studies, five formants 
are used (up to 5000 Hz). Formant 1 (F1) resides between 500 and 1000 hertz. The 
values of the formants are presented in Table 1. This thesis, however, uses frequencies 
that reach up to 8000 Hertz. In the context of the thesis, frequency band between 5000 
and 8000 will be called the non-formant band. 
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Table 1: Formants and their frequency bands 
 

Name Lower Limit Higher Limit 

Formant 1 (F1) 500 1000 

Formant 2 (F2) 1000 2000 

Formant 3 (F3) 2000 3000 

Formant 4 (F4) 3000 4000 

Formant 5 (F5) 4000 5000 

 

Energy is the total signal strength. Studies have shown that one of the dependencies 
of energy is the emotional state (Cowie & Cornelius, 2003). The energy of a signal 
with finite length can be explained by its power. The power is the sum of energy in a 
given time. The energy of a signal varies for a given timeframe; the energy may be 
high or low depending on the signal. The emotion categories sad and calm produce 
low energy sound signals whereas the emotion categories angry and happy produce 
high energy sound signals. Moreover, the energy may vary depending on the 
phonological properties. 

 

2.4.2 Spectral Features 

The continuous features are dependent on the time domain, whereas the spectral 
features are dependent on the frequency domain. They represent the spectral 
distribution of the sound in a given window or the whole signal itself. Autocorrelation,  
Mel frequency cepstral coefficients (MFCC), and fast Fourier transformations (FFT) 
are several examples of spectral features (El Ayadi et al., 2011). The thesis uses a 
hybrid feature. The hybrid-feature is spectrogram derived from short time Fourier 
transformation (STFT). The result of STFT represents the change of frequencies and 
their amplitude in time. Because the STFT is both time-dependent and frequency-
based, it is an hybrid type of feature. The STFT represents the change in frequencies 
across time. The STFT and spectrograms are rarely used in speech recognition. A 
recent study has shown that extracting and processing features as images using the 
STFT method is a viable option (Wang, 2014). However, this study uses the STFT 
method only as a feature extraction and processing tool rather than using it as the main 
input data. 

 

2.5 Commonly Used Models in Emotion-Voice Studies 

Various types of models have been used in emotion-voice studies depending on the 
available computational power and the selection of the features. Moreover, these 
models can be used in conjunction with other models or as hybrid models such as the 
Subspace Mixed Gaussian Hidden Markov Model which is a hybrid of neural 
networks and hidden Markov models. Each of these models is briefly explained below.  
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2.5.1 Hidden Markov Models 

The Hidden Markov Models (HMM) are commonly used in speech signals for various 
purposes ranging from emotion recognition to word classification (Nwe et al., 2003). 
The Hidden Markov Models use the outcomes of the first-order Markov chains, and 
from there estimates what the chains consist of (Rabiner & Juang, 1986). Commonly 
used features in the HMMs are spectral features such as MFCCs. Although the HMMs 
no longer have their old popularity, their hybridizations with other models  still 
produces robust results (Mao, Tao, Zhang, Ching, & Lee, 2019). 

 

2.5.2 Gaussian Mixture Models 

The Gaussian Mixture Models (GMM) are simple yet robust models; like the HMMs 
they use spectral features. The GMMs create a map of probabilities and categorize the 
sound signal according to its position in the probability space. Contemporary research 
shows that the GMMs have high performance when used in conjunction with 
optimized algorithms (Tang, Chu, Hasegawa-Johnson, & Huang, 2009). 

 

2.5.3 Neural Networks 

The Neural networks (NN) are prevalent in many different fields. However, they do 
not offer robustness or yield good performance when they are used on their own in 
emotion recognition through sound. There are several types of neural networks, such 
as the deep neural networks (DNN), recurrent neural networks (RNN), and 
convolutional neural networks (CNN). The DNNs and RNNs are generally used in 
conjunction with other models such as the HMMs. However, the CNN architecture is 
very rarely used. To the best of our knowledge, there are few published studies that 
use the CNN architecture for emotion recognition. For example, one study uses 
spectral estimates (Weißkirchen, Böck, & Wendemuth, 2018) and the other one uses 
one dimensional convolutions with long short term memory (Trigeorgis et al., 2016). 
Moreover, the study which had used spectral estimates (Weißkirchen et al., 2018) 
produced an average accuracy score of 52%, which is much lower than the average 
accuracy score achieved in this thesis. 

The thesis utilizes CNN as its model framework. CNNs generally accept images as 
inputs, and they conduct convolution operation on the images. They are robust to the 
changes in orientation, distortion, and partial exposure of the subject. In the thesis, we 
aim to utilize the CNNs’ ability to recognize objects in emotion recognition. 

 

2.5.4 Support Vector Machines 

The Support Vector Machines (SVM) are the most commonly used model types in 
emotion recognition. They accept both the spectral and the continuous features, and 
they have high performance. The SVMs work by increasing dimensionality and 
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making categorization at higher dimensions. The SVMs discriminate two classes with 
one versus all paradigm. However, the new algorithms allow the SVMs to make 
multiclass discrimination (Wu, Lin, & Weng, 2004). 

In this thesis, we used the CNN architecture instead of the SVM architecture because 
the CNN architecture is robust to the noise in the data and it can produce heat maps. 
The heat maps can be used to probe into inner workings of a CNN model. 

 

2.6 Phonology of Emotion 

Studies on the phonology of emotion have mostly focused on fundamental frequency 
(F0), and its properties such as value, pitch, jitter, contour, and tilt (Busso et al., 2008; 
Johnstone & Scherer, 1999; McGilloway et al., 2000; Paeschke, Kienast, & 
Sendlmeier, 1999). In the thesis, we analyzed the F0 values as part of the corpus study, 
but our model was designed to learn the features in all five formants, as well as the 
features that reside in the non-formant frequencies. The frequencies over 5000 hertz 
are not studied within phonetics and generally have no formant labels. We refer to  
these frequencies as non-formant frequencies. 

 

2.7 Emotion-Voice Databases 

The validated corpora 2 is the essential component of any emotion-voice study. The 
construction of an emotion-voice database is a complex process. Some of the 
important components of the emotion-voice corpora and databases are presented 
below. 

The essential components of emotion-voice corpora are; 

• Emotion types 
• Source of emotions 
• Number of vocalizations and utterances 
• Language(s)  

The essential components of emotion-voice databases are; 

• The corpus 
• The validation study 
• Peripherals such as spectrograms and statistics 

 

 
2 A In this thesis, the term corpus will be used for the linguistic component of the 
database such as vocalizations and utterances, and the term database will be used for 
the data as a whole such as the validation results, extracted statistics, models, etc.  
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 We will compare the Turkish Emotion-Voice (TurEV) Database with the 
exemplars while explaining the components above to emphasize the differences and 
parallelisms. 

 

2.7.1 Emotion-Voice Corpus Components 

 

2.7.1.1 Emotion Types 

The Emotion types are the number of emotion categories. This number can vary 
significantly between corpora, it can be four as in the KES Database (E. H. Kim, Hyun, 
Kim, & Kwak, 2007) and in the TurEV database. It can be as high as 20 as in The EU 
Emotion-Voice Database (Lassalle et al., 2018). Most studies stay within the 
confinement of the six base emotions, i.e., anger, disgust, joy, fear, sadness, surprise, 
as stated by Ekman (Ekman, 1972). A neutral emotional state is sometimes added. 
TurEV uses angry, calm (neutral), happy, and sad as its emotion categories. 

 

2.7.1.2 Source of Emotions 

The source of emotions can be professional or amateur actors, participants, or in-vivo 
samples. 

Nearly all of the studies conducted in the emotion-voice area is conducted on the 
recordings generated by either professional or amateur actors. TurEV uses amateur 
actors (i.e. individual who have no training in acting), who  simply act out a type of 
emotion and generate the required voice as if they were experiencing that particular 
emotion. Another way of using actors is by collecting the data from already recorded 
media such as TV series, movies, or other similar mediums. 

Participants, on the other hand, participate in an experimental condition to induce 
emotion. In this kind of methodology, emotion induction through imagination is used 
(Johnstone & Scherer, 1999). This methodology is rarely used, but it produces the data 
with the most potent external validity. 

In-vivo sampling is another method to obtain emotion-voice samples. It consists of the 
lengthy procedure of obtaining voice samples from call centers, auto dealers, etc., then 
processing them in chunks. Due to ethical implications, this method is rarely used. An 
example of this kind of sampling is Natural Database containing emotion-voice 
samples obtained from call centers (Morrison, Wang, & De Silva, 2007). This 
sampling method is used commonly in clinical studies for depression within ethical 
boundaries (Mitra et al., 2015). 

 

2.7.1.3 Number of Vocalizations and Utterances 

The number of utterances and vocalizations changes drastically among corpora. It can 
be as low as 80 as in the Pereira Database (Pereira, 2000) or can be as high as 16000 
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in the SUSAS Database (Hansen & Bou-Ghazale, 1997). The TurEV has over 1700 
vocalizations produced by 6 actors vocalizing 82 words in 4 emotional categories. 

 

2.7.1.4 Language(s) 

The language aspect of a corpus determines the area(s) it can be used. Most corpora 
are developed for a single language. Most commonly used language is English. A 
multilingual corpus is one of the most valuable sources for emotion-voice studies 
because it allows cross-cultural studies. The EU Emotion-Voice Database with 
English, Swedish, and Hebrew languages is one of the recent and prime examples for 
this kind of practice (Lassalle et al., 2018). The TurEV supports only Turkish 
language. 

 

2.7.2 Emotion-Voice Database Components 

 

2.7.2.1 The Corpus 

The corpus is the most critical component of an emotion-voice database. It is the only 
component that is necessary for the existence of an emotion-voice database. The 
accessibility component of a corpus is one of the main bottlenecks in emotion-voice 
studies. Nearly all of the emotion-voice corpora that exist are either private or have 
license fees. There are only a few corpora on a public domain such as The Berlin 
Emotional Speech Database (Burkhardt et al., 2005). The TurEV is also planned be 
on the public domai. 

 

2.7.2.2 The Validation Study 

The validation study ensures the validity of the study performed on the database. A 
validation study is generally performed by rating the items of the corpus by the human 
judges. The EU Emotion-Voice Database is one of the prime examples. In The EU-
Emotion-Voice Database study, expert judges eliminated the recordings that do not 
reflect the emotional state, then non-expert judges validated the corpus on a grand-
scale (Lassalle et al., 2018). In the validation study of the TurEV, three expert judges 
were used to rate the finished corpus with respect to which category each word fits. 
The detailed process of validation study is presented at 3.2.7. 

 

2.7.2.3 The Peripherals 

The peripherals are not an essential part of the database. However, they enrich the 
study. Peripherals can be frequency and formant information, statistical information, 
machine learning models, and similar information. TurEV offers all these peripherals 
with the addition of heat maps and spectrograms that allows researchers to conduct 
both a visual analysis and exploit differentmachine learning models. 
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2.8 Summary 

In this chapter, we presented general information and theoretical background on the 
contemporary emotion-voice studies. We defined emotion in the context of our study, 
tapped on the contemporary research on the subject matter. We presented information 
on the standard features and model types used in contemporary research. We ended 
the chapter with information on the databases used in emotion-voice studies. 
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Chapter III 

3. Method 

 

3.1 Introduction 

In the previous chapter, we presented information on the theoretical background of 
emotion-voice studies. In this chapter, we present the methodology used in the thesis. 
This chapter is divided into three main topics; the data, the machine learning 
experiment, and the frequency based statistical analysis. 

 

3.2 Data  

In this section, we introduce our data processing pipeline. We first explain the process 
from a bird’s eye view, then move on to how we selected the words. We explain our 

procedure which involves amateur actors, data collection, data cleaning, and 
segmentation procedures. Finally, we explain our data validation procedure. 

 

3.2.1 Overview 

Single-word vocalizations were collected from amateur actors who joined the study 
through a convenience sampling method. Collected vocalizations were analyzed for 
their noise profile using the silent parts of the recordings. Each recording produced a 
unique noise profile; this noise profile was used for removing the noise from the end-
to-end section of each recording. The de-noised recordings were trimmed after this 
operation. The trimming was done by cutting the excess silence from the sound file 
leaving 150 milliseconds of silence before the vocalization starts and after the 
vocalization ends. The result of this data cleaning process was used in two different 
analyses. The neural network model is the heart of the thesis as well as the frequency-
based analysis as a part of the two-stage validity verification procedure. 

 

3.2.2 Selection of One-Word Vocalizations  

Eighty-two words were selected from Türkçenin Ses Dizgesi (Ergenç & Bekar Uzun, 

2017). These words reflect different phonological properties of Turkish language. For 
instance; the initial sound ç in çilek is voiceless. However, when the same sound 
appears word-finally as in kulaç, it is voiced (Ergenç & Bekar Uzun, 2017) Such 
phonological variation allowed our model to be tested for different conditions and 
increased its robustness. Moreover, these words had already been investigated in their 
neutral (calm) emotional state, and their F0 values, density graphs, and their 
spectrograms up to 5000 hertz are provided (Ergenç & Bekar Uzun, 2017). In short, 
this set of words provided a perfect data and the baseline of our experiments. 
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3.2.3 The Amateur Actors 

The amateur actors were recruited using convenience sampling. The actors were 
named amateur because they did not have professional acting experience. Six amateur 
actors were recruited, 3 of them being female and 3 of them being male. Age of the 
actors ranged from 23 to 35. Mean age of the actors was 26.83 with a standard 
deviation of 4.35. Amateur actors were presented with digital copies of the amateur 
actor manual, the amateur actor number, the amateur actor consent form, and a list of 
words. The information package presented to the actors are given in APPENDIX A. 

 

3.2.4 Data Collection 

Voice recordings were done by amateur actors without supervision; i.e. the amateur 
actors were not supervised by an assistant and they conducted the recording procedure 
by themselves base on the guidelines (cf. Appendix A). Collected emotional states 
were angry, calm (neutral), happy, and sad. These emotions were chosen because they 
fit in the different axes of the valence-arousal axis (Figure 18) (Barrett, 1998). The 
amateur actors were requested to vocalize each word in the list as if they were in that 
emotional state and were feeling the emotion in high intensity. The amateur actors 
uttered the words as many times as needed, and they picked the best result that 
expressed the aimed emotion. The amateur actors were given the freedom to present 
their single-word vocalizations to others and ask their opinion to informally validate 
the correctness of the emotional states. According to the feedback given by the 
amateur actors, they used outside feedback in their decision process. Moreover also 
according to the feedback given by amateur actors, the process of recording the single-
word vocalizations took between 4 to 8 hours for four emotional states for each actor.  

The amateur actors were told to vocalize all the words in the normal tone of voice but 
as if they are feeling the emotion in high intensity. Thus, all emotions were vocalized 
in high intensity except for calm (neutral) which is obviously the default state.  

The single-word vocalizations were collected in two different environments 
depending on the hardware available to the amateur actors. The amateur actors with 
access to computers recorded their vocalizations using the freely available application 
Audacity 2.3.0. Audacity 2.3.0 is available for all of the commonly used operating 
systems. The amateur actors who had access to smartphones but not to a computer that 
can record voice adequately used the Sound Recorder application from Sony Mobile 
Productions. Regardless of the platform and the operating system, the vocalizations 
were recorded in the mono channel, had the WAV format, and were in 44100-hertz 
sampling rate. 

  

3.2.5 Data Cleaning 

The collected data were ported into Audacity 2.3.0 (Audacity, 2018). Each recording 
was first analyzed for its noise profile using parts of the recording that is supposed to 
contain no sound. Those parts of the recording were supposed to be silent; however, 
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they had noise. The procedure sampled this noise. The profile was then used for 
removing the noise from the file which it was generated from. Steps of noise removal 
are presented in Figure 1. The process involved the following steps: 

1- The recording was loaded into Audacity 2.3.0. 
2- The signal view was changed from the waveform into the spectrogram. 
3- The area that contained no vocalization, therefore, supposed to be silent 

was selected. 
4- The noise profile that was generated before was used in conjunction with 

the noise remover effect for the entirety of the recording. 
5- The recording was trimmed leaving 150 milliseconds of silence at the 

beginning and end of it, and the rest of the recording was removed. 
6- The recording was exported in 32-bit Float Pulse Code Modulation (PCM) 

WAV format (Microsoft, n.d.). 

 

 
Figure 1: Steps of noise removal procedure in Audacity. 

 

In this procedure, the spectrogram view was explicitly used in order to be able to view 
the low amplitude high-frequency parts of the vocalization as well as the noise 
recorded. The spectrogram view also allowed the file to be inspected more clearly. 
The noise profile generation used an internal statistical procedure within Audacity. 
The selected area for the profile generation should be at least 2048 samples long, 
which translates into 0.05 seconds when the 44100-hertz sampling rate is used 
(Audacity Team, n.d.). Uniform areas of noise longer than 2048 samples did not make 
any improvements in noise reduction, however more significant areas that contain 
different noise characteristics improve the noise reduction performance. In some 
cases, the noise reduction procedure had failed to remove a band of the noise that 
settled at 0-500 hertz band; in these cases, a second profile generation and the 
reduction was applied. Depending on the environment, the recording device, and the 
amateur actor, the denoising procedure managed to remove noise with varying amount 
of success. 
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The de-noised data was then inspected in the spectrogram view as well as the 
waveform view in order to determine the beginning and end of the single-word 
vocalization. After the inspection, it was inspected again by listening to the recording 
between 1x and 0.05x speeds. Once the beginning and the end of the recording was 
determined, 150 milliseconds of silence was kept at the beginning, and at the end of 
the recording, the rest of the silence was trimmed out. The main reason of adding this 
extra step was standardization of the recordings to a particular format, and the second 
reason was to eliminate excess silence. Elimination of excess silence without changing 
the structure of the word allowed the model to be able to work in a more data-dense 
space.  The silence that was kept at the beginning and the end of the vocalization was 
used for compensation of possible human errors done in recording and trimming, and 
allow for future human inspection. 

The denoising process removed the majority of the noise.This process was done with 
extreme care. Denoised recordings were inspected in different playback speeds. The 
process is depicted at Figure 1. 
The data cleaning process was finished by exporting the processed recording in 32-bit 
Float PCM WAV format. During the exporting procedure, the file was scanned for 
possible tags embedded in the original WAV file and found tags were removed. 32-
bit float PCM allowed for a broader representation of data with the 32-bit precision. 
The 16-bit signed integers were not preferred because they did not have the resolution 
the 32-bit float format can offer. 

 

3.2.6 Segmentation of Data into Different Frequency Bands 

The recordings were subjected to three different frequency manipulation. Each 
manipulation was conducted by the Butterworth filter. 

A. The frequencies over 8000 hertz were trimmed out, and only the 
frequencies between 0 and 8000 hertz were kept. This band represented the 
frequencies expressed by human speaking voice. 

B. The frequencies over 5000 hertz were trimmed out, and only the 
frequencies between 0 and 5000 hertz were kept. This band only contained 
the frequencies represented by the formants. 

C. The frequencies over 8000 hertz and under 500 hertz were trimmed out, 
and only the frequencies between 500 and 8000 hertz were kept. This band 
represented the frequencies expressed by human speech voice but lacked 
fundamental frequency (F0). 

 

Band A was used for training the model (i.e. frequencies between 0 and 8000). 

Band A represented human speaking voice in almost all of the cases even when the 
speaker has extremely high-pitched voice or when certain vocalizations contained high 
pitched sound signals. Band A, then, has the most representative frequency range for 
human speech sound.  

All three frequencies (A, B, C) were used for the validation of the model, and they 
were also presented to the human judges for human validation. 
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3.2.7 Data Validation 

10% of the all recorded vocalizations were selected as the validation sample. The 
selected validation sample was used in two different validation processes. The neural 
network validation process and the human validation process used the same validation 
data set. Because both the neural network and the human raters used the same 
validation data set, it became possible to compare the performances of the neural 
network and the human raters. 

Three judges were recruited to evaluate the collected vocalizations. The judges had a 
BA degree in psychology. Two of them also had a MSc degree in psychology, and one 
was a graduate student in a psychology MSc program. Each judge rated one 
spectrogram band. Each judge was presented with the vocalizations with the name of 
the vocalization changed from ID_EMOTION_WORD to YXXXXX where X and Y 
are figures, and Y is greater than zero. Each judge listened to the validation data set 
independent of other judges. The judges were allowed to listen to the vocalizations as 
many times as they would like. Then they rated the vocalizations into one of the 
emotional categories angry, calm, happy, and sad. 

 

3.3 The Machine Learning Experiment 

3.3.1 Overview 

The preprocessed recordings were fed to a spectrogram producing a script written in 
Python 3.6.8 using SciPy libraries Numpy, Pandas, and Matplotlib (Hunter, 2007; 
McKinney, 2010; Oliphant, 2007; Van Der Walt, Colbert, & Varoquaux, 2011). The 
script produced a specifically tailored spectrogram that has optimum spatial and 
temporal resolution using short time Fourier transformation (Owens & Murphy, 1988) 
with highly overlapping windows.  

The spectrogram files were split into training and validation sets by using a random 
sampling method through a pseudo-random algorithm. 80% of the data was used for 
the training set and 20% of the data was used for the validation set. For every ten 
spectrogram files, 8 training and 2 validation samples were selected. Then, a separate 
six-fold cross-validation was conducted over the whole dataset in order to validate the 
main model. 

The neural network model belongs to the convolution neural network architecture. 
This architecture is mainly used for computer vision tasks. The general architecture of 
our model consisted of 4 convolutional layers, one dense layer, and one softmax layer. 
The model was trained for 9 epochs using the training samples for fitting and the 
validation samples for validation. The resulting model was saved by the h5 
specifications. 
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The convolutional neural network (CNN) model was loaded back into the memory, 
and the last convolutional layer was copied as well as the output of the softmax layer. 
Gradients of the last convolutional layer were calculated according to the output of the 
softmax layer, and a heat map was generated. This heat map was applied to the original 
spectrogram image to make a comparative analysis of activations. 

 

3.3.1.1 What is a spectrogram? 

A spectrogram is a representation of the signal on time domain. In a spectrogram, the 
signal is represented as the change of amplitude in different frequencies over time 
(Pacific Northwest Seismic Network, n.d.). In the thesis, the X-axis represents time, 
whereas the Y-axis represents frequency. Change in the luminosity represents the 
change in the amplitude, the colour closer to white means the sound is higher in 
amplitude. The spectrogram image presented at Figure 2 demonstrates the change in 
amplitude and frequencies in time. 

 

 

 
Figure 2: Spectrogram of the vocalization of the word çene in emotional state angry 

 

 

3.3.1.2 What is a heat map? 

A heat map is a specialized type of a shaded matrix; however, it can have more than 
two dimensions. In a heat map, the data is represented by color or luminosity 
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(Wilkinson & Friendly, 2009). Spectrograms are also heat maps in this context; 
however, within the boundaries of the thesis, heat maps represent the gradient 
activations in the spectrograms. In Figure 3 a demonstration of a heat map is presented 
for the vocalization of the word çene in the emotional state angry. The redder areas in 
the heat map represents the strong activations the model created. 

 

 
Figure 3: Heat map generated from the vocalization of the word çene in emotional state angry 

 

3.3.2 Python and Its Libraries 

Python is a high-level, general-purpose language which has been used for various 
purposes from data processing to web design. Python is currently in its third iteration. 
Python and its modules have been extensively used in the thesis from the data 
processing to the neural network generation and training. All of the Python libraries 
and the tools that had been used in the thesis are freely available for public use. 
Anaconda version of the Conda package manager was used for organizing Python and 
its libraries (Anaconda, 2014). Interfaces used in the thesis were Jupyter Notebook 
and Spyder (DataCamp, 2016; Spyder, 2018). Jupyter Notebook and Spyder were used 
as an interface for the Python interpreter. All of the interfaces were used through 
Anaconda Navigator. These interfaces can be separately installed and run from other 
package managers. However, the author has chosen the Conda package manager for 
its ease of use. 

SciPy and packages under the SciPy umbrella were extensively used in the study. 
These packages are Numpy, Pandas, and Matplotlib. The Convolutional Neural 
Network (CNN) architecture was built using Tensorflow as backhand and Keras as a 
frontend (Chollet François, 2015; GoogleResearch, 2015). cuDNN and libraries under 



 

24 
 

its umbrella had worked with a backhand to allow training on GPU (C, 2010). Lastly, 
OpenCV was used for manipulating the heat maps (OpenCV, 2010). 

 

 

 

3.3.3 Preprocessing and Spectrogram Generation 

The recordings in 32-bit Float PCM WAV format were passed to a script designed to 
generate spectrograms specifically tailored for requirements of neural networks. The 
loaded recordings were subjected to a low-pass filter at 8000 hertz then transformed 
using the short time Fourier transformation. The resulting data was saved as images in 
PNG format. In Figure 2 one such example of a spectrogram image is presented. 

The low-pass filter was designed as a digital Butterworth filter with an order of 8 and 
8000-hertz cut point. The recordings were not down-sampled in order not to decrease 
Nyquist frequency, which is half of the sampling rate (Yao, 2014). This decision was 
made to have the highest possible resolution in the sound signal. The resulting signal 
did not contain any noise on frequencies 8000 and higher due to the order to the filter 
and its cut point. 

The short time Fourier transformation (STFT) was applied to the filtered sound with 
the Hamming window as its window type (Podder, Zaman Khan, Haque Khan, & 
Muktadir Rahman, 2014). Each window was 2205 samples long with a sampling 
frequency of 44100 Hertz. Overlapping points were kept in 2100 to achieve stronger 
resolution in the expense of computational power. The effect of sample size and 
windowing on spectrograms is presented in Figure 4. 

 

 
Figure 4: The effect of sample size and windowing on spectrograms 
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The resulting array was used to generate a pseudo color plot using Matplotlib. 
However, the grayscale color map was used while mapping colors to save final 
spectrogram in grayscale. The spectrogram was configured to have three by two aspect 
ratio with 320 dots per inch (dpi) resolution, and its frequency axis (y-axis) was cut at 
8000-hertz mark. The final spectrogram was saved to the local disc in PNG format. 

 

 

3.3.4 Convolutional Neural Network Model 

3.3.4.1  Comparison Between The CNN and The SVM Models 

The CNN architecture was selected for the machine learning experiment instead of 
the SVM architecture. Firstly, although the SVM architecture produces high 
accuracy scores and it is generally faster than the CNN architecture, it requires hand 
tailored features, such as F0, pitch and energy values of different bands (Alghowinem 
et al., 2016). Hand crafted features allow fast computation but they can’t be used for 

exploratory purposes other than brute force approaches. On the other hand, the CNN 
model can be exploited for its self-feature-extracting properties (Trigeorgis et al., 
2016). Secondly, an ablation study similar to the one conducted in this thesis would 
either not produce any results or would not affect the SVM model. For instance, an 
SVM model that uses Max F0 which resides in the 0-500 hertz band as its feature 
would not produce any results at the 500-8000 hertz frequency band and would not 
be affected at all by the removal of the 5000-8000 hertz band because it does not use 
any of the frequencies over 500 hertz. Moreover, the CNN architecture produces heat 
maps, which are essential components of the TurEV Database that could not be 
produced by an SVM model. Lastly, the CNN model is more robust to the noise and 
changes in the sound signal than an SVM model. The CNN model uses an image, the 
spectrogram, as input and performs an object classification task on it. This operation 
causes the CNN to be more robust. 

3.3.4.2 Convolutional Neural Network Architecture 

The convolutional neural network consisted of one input layer, one softmax output 
layer, four convolutional layers, four dropout layers, two max-pooling layers, one 
flatting layer, and a dense layer. 

 

Input Layer 

The input layer is technically not a layer; its primary role is to hold tensors and transfer 
them to the first layer in the model.  

The input layer was configured to accept grayscale images. It had the input shape of 
400x600 that can accept images 600 pixels wide and 400 pixels high and flexible in 
batch size. 

Convolutional Layer 

The convolutional layer is the central part of neural network architecture; convolution 
is defined as a continuous dot product of one function over another, which expresses 



 

26 
 

the similarity between them (M. Cohen, 2014; Owens & Murphy, 1988). From the 
neural network perspective, a convolutional layer takes a signal and subjects it to the 
layer’s kernel and passes the result to the next layer. 

Convolutional layers all had a 3x3 kernel size and rectified linear unit (ReLU) 
activation function. 

Dropout Layer 

The dropout layer partially sets the input of the previous layer to 0, effectively 
disabling set tensors for that data pass. It lowers the chance of overfitting. 

Maxpooling Layer 

The maxpooling layer down samples previous layer considering all of the values in its 
pool size then transcribes the maximum value to the next layer. A maxpooling layer 
with pool size four checks for 4x4 (in 2-dimensional data) and transcribes the 
maximum value to the next layer. A maxpooling layer effectively reduces the previous 
layer it is applied by a factor of maxpooling layer’s pool size. 

Flatten Layer 

The Flatten layer flattens the previous layer to 1 dimension. However, it does not effect 
the batch size. A convolutional layer with 5x5x3 shape will turn into 75. 

Dense Layer 

The dense layer is a standard layer type of neural networks. 

Softmax Layer 

The softmax layer is a dense layer with softmax activation. It normalizes outputs 
between 1 and 0, and the sum of all outputs always equal to 1. 

 

3.3.4.3 Activations in a Neural Network 

In a neural network, the data flow from one node to the other. Each input data goes 
through a series of weights then it goes through an activation function. The result of 
this activation function is called activation and the result of the activations in a layer 
is called layer activation. It is also possible to collect the activations of a filter or the 
result of convolution operation performed by a filter. If activations are collected with 
respect to a category, it is called the gradient activation. Neural networks in general 
enable users to observe these activations and collect them but in most cases these 
activations do not carry any meaning. Convolutional Neural Networks, on the other 
hand, result in meaningful activations that show the parts of image where the model 
had “focused on” or the features which the model uses. 

 

3.3.4.4 Convolutional Neural Network Build 

The final architecture of the neural network was an input layer accepting 600x400 
pixel sized grayscale images then three pairs of 2-dimensional convolutional layers 
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and dropout layers. Each convolutional layer had 3x3 kernel size, and each dropout 
layer had 0.25 probability. Filter sizes were 32, 64, and 64, respectively. This body of 
pairs followed by a max pooling layer with pooling factor of 2 then followed by 
another pair of 2-dimensional convolutional layers and a dropout layer. This was the 
last pair in the architecture and heat maps were generated from this layer. Kernel size 
and drop out probability did not change but the number of filters were increased to 
256 in order to capture as many latent features as possible. This pair was followed by 
a max pooling layer with pooling factor of 8, a flattening layer and a dense layer with 
256 inputs. The dense layer was followed by softmax activation layer with four 
outputs, one for each emotional category. 

All layers that require an activation function in the model used ReLU activation. The 
only exception was the softmax layer, which used a softmax activation to categorize 
the result of the network. Resulting network architecture contained 56827844 
parameters, all of which were trainable. 

The model was compiled using categorical cross-entropy as its loss function. 
Optimizer that was used for the model was Adam optimizer with a learning rate of 
0.0001. The accuracy rating was set to be recorded in the training history, but it wasn’t 

used for training the parameters. The parameter training was handled by categorical 
cross-entropy loss function and the Adam optimizer. The overall architecture of the 
model is presented in Figure 5. 

 

 
 

Figure 5: Overall architecture of the CNN model 
 

 

3.3.5 Train and Validation Data Split 

The spectrogram data was split using a 0.20 ratio between the training set and the 
validation set. 80% of the data was used for training the model, and 20% of data was 
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used for validation purposes. The process of splitting included adding randomly 
generated 6-digit number to the beginning of the file name. The validation set was 
generated from this pool.  This procedure created a pool of files with random file order. 
Generally, due to the data collection guidelines, each data was saved in 
ID_EMOTION_WORD format. After shuffling, the order of words and IDs changed. 
The change allowed the model to be trained without being subject to order effect. This 
process had practically allowed each batch to consist of random words from random 
actors.  

 

3.3.6 Six-Fold Cross-Validation 

The spectrogram data was shuffled within emotion categories using the shuffling 
method introduced in Section 3.3.5. The shuffled data was subjected to a six-fold 
cross-validation. Each fold was trained for 9 iterations on a newly initialized model. 
The mean accuracy (72.5%) and the mean of maximum accuracy (74.9%) were 
calculated. The results were within the boundaries of the original model (see 
4.2.1.1). Thus, the original model (cf Section 3.3.4.4) is considered valid. Accuracy 
values of the six-fold cross-validation study is presented in Table 2. 

 

Table 2: Accuracy values for the cross-validation study 

Fold Number 
Accuracy 

Maximum 9th Iteration 
1 0.70% 0.65% 
2 0.74% 0.71% 
3 0.75% 0.72% 
4 0.77% 0.77% 
5 0.75% 0.72% 
6 0.79% 0.78% 

 

3.3.7 The Data Flow 

The internal image data generation module of Keras was used for the model dataflow 
procedure. The spectrograms were loaded into memory through directories; two main 
data generators were used for loading the spectrograms. These data generators were 
the training data generator and the validation data generator. Mainly both the training 
and the validation data generators used the same parameters for loading spectrograms 
as grayscale images, rescaling the data format from 0-255 to 0-1 scale, then resizing 
the images to 600x400 pixels. Batch sizes for these models were 4 for the training 
generator and 1 for the validation generator. The training data generator loaded the 
images from the training folder, whereas the validation generator loaded the images 
from the validation folder. 

The training and the validation generators primarily generated data using the same 
module; however, the data loaded by the validation generator was not used in training 
the parameters and did not affect the training regime in any way. It was used to validate 
the training regime and measure its ability through the change in loss and accuracy. 
On overview of dataflow is presented at Figure 6. 
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Figure 6: An overview of data flow 

 

 

 

3.3.8 Model Training 

The model was trained for 9 epochs using the data loaded by the trained generator, the 
validation data was also fed to the model at this stage, and the validation accuracy and 
loss were recorded. The resulting accuracy on the training data was 93%, and 
validation accuracy was 76%. Chance accuracy was 25%, which indicates that the 
model had performed more than three times better than the chance accuracy. 

The training history was saved in CSV format, whereas the model was saved using the 
h5 format. The resulting model was later used for the analysis and for generating the 
heat maps. 

 

3.3.9 Heat Map Generation 

The heat map generation followed the steps given below. 

1- The source image was loaded into the Python environment. 
a. The image was loaded in the color format with red, green blue 

(RGB) layers containing the same information. 
b. The image was loaded in the grayscale format with no RGB layers. 

This grayscale image was used for the generation of the heat map 
in the model. 

2- The model was loaded into the Python environment. 
3- The last convolutional layer was extracted from the model. 
4- The model output relative to the target image was extracted from the 

model. 
5- A new model was produced using the last convolutional layer, and the 

model output. 
a. Gradients from the model output and the last convolutional layer 

were extracted. 
b. Average of these gradients calculated using the mean method. 
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c. The new model was produced using the original model’s input and 

the pooled gradients as the input, and the output of the last 
convolutional layer as the output. 

6- The image loaded at 1b was fed to this model, and the outputs were 
collected. 

a. The last convolutional layer’s output was collected; it will be 

named convolutional output for the simplicity sake. 
b. The pooled gradient’s output was collected; it will be named 

gradient output for the simplicity sake. 
7- Each filter of the convolutional output was multiplied with the gradient 

output. 
8- The average of the convolutional output was calculated using the mean 

method. 

To generate the heat maps, the target image and the model were loaded into the 
working environment. A new model was created using the outputs relative to the target 
image and the last convolutional layer. The image was fed to this new model, and the 
gradient activations were collected from the last convolutional layer. These activations 
were resized to the original size of the target image, and the pseudo color was applied 
to it using the jet colormap. The Heat map’s alpha value was lowered to 40%, and then 

the heat map was applied on the original image creating a mixed image where the 
gradient activations were visible over the spectrogram itself. 

 

3.4 Statistical Analysis 

The recordings that have been preprocessed and cleaned of noise were used for 
calculation of their F0 values. The minimum, maximum, range, and standard deviation 
of F0 values were calculated. These values were subjected to Bayesian ANOVA 4x 
(Emotional Category: Angry, Calm, Happy, Sad) with words themselves and gender 
used as a random factor. 

Fundamental frequency (F0) is the base formant and resides between 0 and 500 hertz 
(“Fundamental Frequency of Continuous Signals,” 2011; Lemmetty & Sami, 1999). 
Fundamental frequency is the frequency range with highest amplitude that resides 
within 0-500 hertz. It defines the intonation contour and is one of the main features 
used in emotion-voice studies. 

Due to the changes in frequency ranges in the speech signal, in this thesis, the data 
were divided into different frequency ranges up to formant five that reaches 5000 
hertz. For more information on formants refer to 2.4.1. 

 

3.5 Summary 

In this chapter, we presented our methodology starting with our data processing 
method moving on to the machine learning experiment. We ended the chapter with the 
procedure of statistical analysis. In next chapter we present the results of the analyses 
described in this chapter. 
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Chapter IV 

4. Analysis and Results 

 

 

4.1 Introduction 

In this chapter, we present and then analyze the results that were derived from the 
model, the judges, and compare the results of the model with the judges. The results 
will be presented in a series of analysis on the model, the judges, and the results of the 
comparative analysis. Each section will include the results derived from the analysis 
and an assessment. 

 

4.2 Machine Learning Results 

In this section, we present the machine learning model results. The subsections will 
contain the results of model training, model validation, and the classifications in 
contingency tables. 

 

4.2.1 Results of Training 

In this section, we present the results of the model through accuracy and loss. The 
results will be presented both for the training set and the validation set (information 
regarding the training and the validation sets were presented in Section 3.3.5). Epoch 
numbers in the context of training represent one cycle of training, where every single 
data point in the training set is subjected to the model. 

Training accuracy is calculated by dividing the hits by the sum of the hits and the 
misses. The formula of accuracy is presented below in Equation 4.1. Training loss is 
calculated by the formula presented in Equation 4.2. Unlike accuracy, it is also 
sensitive to the indecisions made by the model. For instance, in a categorization task 
with A and B categories, categorizing A as A with 0.51 confidence is penalized for 
0.49 loss in confidence (indecision) in categorical crossentropy function where as it is 
not penalized in accuracy calculation. 
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TP + TN

TP + TN +  FP + FN
 

Equation 4.1: 
Accuracy 

  

f(s)i =
esi

∑ esjC
j

, CE =  − ∑ ti log(f(s)i)

C

i

 
Equation 4.2: 
Categorical 
Crossentropy  
 

 

4.2.1.1 Training Accuracy 

The results presented below in Table 3 and Figure 7 indicate that the validation and 
the testing accuracy steadily increased. The training accuracy reached a plateau at 
epoch 7, whereas the validation accuracy showed a steady increase. 

 

. 

 

 
Figure 7: Accuracy score for training and validation sets 
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Table 3: Accuracy score for training and validation sets 

 Set 
Epoch 

Number 
Training Validation 

1 41.76% 42.41% 
2 55.56% 58.17% 
3 67.41% 64.18% 
4 76.01% 67.34% 
5 81.21% 69.05% 
6 87.14% 70.49% 
7 91.33% 71.06% 
8 93.35% 72.21% 
9 93.71% 76.36% 
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4.2.1.2 Training Loss 

The results presented below in Table 4 and Figure 8 indicate that both the training and 
the validation loss function had a steady decrease. The small jump in the validation 
loss at the 9th epoch corresponded to the jump in the validation accuracy. 

 

Table 4: Loss value during for training and validation sets 
 

 Set 

Epoch 
Number 

Training Validation 

1 1.2694 1.2828 

2 1.0748 1.1738 

3 0.8396 0.968 

4 0.6298 0.8849 

5 0.4737 0.8214 

6 0.3555 0.7717 

7 0.2679 0.7874 

8 0.201 0.7588 

9 0.1726 0.6649 

 

 
Figure 8: Loss value during for training and validation sets 
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4.2.1.3 Summary of Training Results 

The steady decline in loss function and increase in accuracy for both training and 
validation sets indicate a healthy training regime. This result is tied to the early stopper 
function used in the training regime. 

 

4.2.2 Results of the Validation Study 

In this section, we present the classification scores in terms of precision, recall, and 
F1. We present these scores for three different frequency bands; 0-8000 hertz band, 0-
5000 hertz band, and 500-8000 hertz band. 

The precision score represents the classifier’s (the model’s or the judges’) ability to 

avoid false positives (FP); on the other hand, the recall score represents the classifier’s 

ability to avoid false negatives (FN). The F1 score is the compound metric that 
measures the performance of both precision and recall. However, the F1 score is not 
very sensitive and is the average of both metrics. For example, the precision metric 
can be represented as an email spam filter that prevents spams (TP) but tries not to 
mark any non-spam mail as spam mail (FP). The recall metric, on the other hand, is 
like a medical test, tries to find if there is any ailment (TP) even if it means marking 
non-ill cases as ill (FP). 

Computations of the scores are presented in Equation 4.3, Equation 4.4, and Equation 
4.5. 

 
TP

TP + FP
 

Equation 4.3: Precision 
 

 
TP

TP + FN
 

Equation 4.4: Recall 
 

 
2 ∗ (Precision ∗  Recall)

Precision + Recall
 

Equation 4.5: F1 

 

 

4.2.2.1 0-8000 Hertz Band (Full Spectrum) 

The results presented below in Table 5 and Figure 9 indicate that the category angry 
has the highest classification scores in precision, recall, and the F1 metric. The 
category calm, on the other hand, has the lowest classification scores in precision, 
recall, and the F1 metric. Overall, the category sad has the least amount of variation 
in the classification scores. 
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Table 5: Classification metrics for 0-8000 hertz frequency band 
 

Emotional 
Category 

Classification Metric 

Precision Recall F1 

Angry .84 .76 .80 

Calm .69 .74 .71 

Happy .71 .79 .75 

Sad .79 .75 .77 

 

 

 
Figure 9: Classification metrics for 0-8000 hertz frequency band 
 
 
 

4.2.2.2 0-5000 Hertz Band (Formant Only Spectrum) 

The results presented below in Table 6 and Figure 10 indicate that the category angry 
has the highest precision score, whereas it has the lowest recall score. The number of 
false negatives made in the categorization of the category angry increased 
significantly. Overall, happy is effected most by the loss presented by the 0-5000 hertz 
frequency band and the category angry has lost most of its recall score. 
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Table 6: Classification metrics for 0-5000 hertz frequency band 
 

Emotional 
Category 

Classification Metric 

Precision Recall F1 

Angry .93 .51 .66 

Calm .67 .73 .70 

Happy .60 .85 .71 

Sad .77 .82 .80 

 

 
Figure 10: Classification metrics for 0-5000 hertz frequency band 

 

4.2.2.3 500-8000 Hertz Band (Spectrum That Lacks Fundamental Frequency) 

The results presented below in Table 7 and Figure 11 indicate that the precision score 
and the recall score of the category angry switched places with the 0-5000 hertz band. 
The category angry with high recall score and low precision score indicates that the 
number of false negatives has fallen, whereas the number of false positives has 
increased. The category calm has the lowest of all classification scores except for a 
relatively high precision score. In other words, in this frequency band, the model 
stopped differentiating between angry and other categories. This caused the model to 
flag other categories as angry.  
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Table 7: Classification metrics for 500-8000 hertz frequency band 
 

Emotional 
Category 

Classification Metric 

Precision Recall F1 

Angry .46 .84 .60 

Calm .53 .11 .18 

Happy .41 .64 .50 

Sad .70 .31 .43 

 

 

 
Figure 11: Classification metrics for 500-8000 hertz frequency band 

 

4.2.3 Results of the Classifications for the Model in Contingency Tables 

In this section, we present the classification results in contingency tables. A 
contingency table is a representation of the distribution of one variable within another. 
While the classification metrics offer a birds-eye view of the classification and the 
misclassification ratios, the contingency tables offer a detailed look into the exact 
category where the classifications and the misclassifications were made. 

The contingency tables presented below will offer the number of matches between the 
emotional categories and present the percentile results of how much of the column is 
represented at the column-row intersection. 
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4.2.3.1 Contingency Tables for the 0-8000 Hertz Band 

The results presented below in Table 8 indicate that the classifications and the 
misclassifications are mostly evenly distributed. Majority of misclassifications for 
the true category angry is made as calm with a 10.2% misclassification rate. 

 

Table 8: Contingency tables for the 0-8000 hertz band 
 

 True Category 
Model’s 

Prediction 
Angry Calm Happy Sad 

Angry  
Count  74.00  5.00  4.00  5.00  

Percent  75.5 %  6.1 %  5.6 %  5.2 %  

Calm  Count  10.00  61.00  6.00  12.00  

Percent  10.2 %  74.4 %  8.3 %  12.4 %  

Happy  
Count  9.00  7.00  57.00  7.00  

Percent  9.2 %  8.5 %  79.2 %  7.2 %  

Sad  Count  5.00  9.00  5.00  73.00  

Percent  5.1 %  11.0 %  6.9 %  75.3 %  

 

4.2.3.2 Contingency Tables for the 0-5000 Hertz Band 

The results presented below in Table 9 indicate that classifications and the 
misclassifications are not evenly distributed; the majority of the misclassifications 
for the true category angry is made as to the category happy with a 27.6% 
misclassification rate. 

Table 9: Contingency tables for the 0-5000 hertz band 
 

 True Category 
Model’s 

Prediction 
Angry Calm Happy Sad 

Angry  
Count  50.00  3.00  0.00  1.00  

Percent  51.0 %  3.7 %  0.0 %  1.0 %  

Calm  Count  13.00  60.00  5.00  12.00  

Percent  13.3 %  73.2 %  6.9 %  12.4 %  

Happy  
Count  27.00  9.00  61.00  4.00  

Percent  27.6 %  11.0 %  84.7 %  4.1 %  

Sad  Count  8.00  10.00  6.00  80.00  

Percent  8.2 %  12.2 %  8.3 %  82.5 %  

 
 
 

4.2.3.3 Contingency Tables for the 500-8000 Hertz Band 

The results presented below in Table 10 indicate that classifications and the 
misclassifications are not evenly distributed. The lowest categorization rate belongs 
to the category calm with 11% prediction rate. The highest categorization rate 
belongs to the category angry with 83.7% prediction rate. However, the following 
emotional categories were misclassified as the category angry; calm (42.7%), happy 
(27.8%), and sad (41.2%). 
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Table 10: Contingency tables for the 500-8000 hertz band 
 

 True Category 
Model’s 

Prediction 
Angry Calm Happy Sad 

Angry  
Count  82.00  35.00  20.00  40.00  

Percent  83.7 %  42.7 %  27.8 %  41.2 %  

Calm  Count  1.00  9.00  3.00  4.00  

Percent  1.0 %  11.0 %  4.2 %  4.1 %  

Happy  
Count  14.00  29.00  46.00  23.00  

Percent  14.3 %  35.4 %  63.9 %  23.7 %  

Sad  Count  1.00  9.00  3.00  30.00  

Percent  1.0 %  11.0 %  4.2 %  30.9 %  
 

 

4.2.4 Assessment of the Machine Learning Results 

So far, we have mainly concluded that; 

1. The category angry has more false negatives in the 0-5000 hertz band, whereas 
it has more false positives in 500-8000 hertz band. The model is using 5000-
8000 hertz band to flag the category angry whereas it uses 0-500 hertz band to 
flag other categories. 

2. The category angry is mostly misclassified as the category happy in 27.6% of 
the cases in 0-5000 hertz band. 

3. The category angry is misclassified as the category calm, happy, and sad in 
42.7%, 27.8%, and 41.2% of the cases respectively in 500-8000 hertz band. 

4. The category calm has the lowest categorization rating at 11.0% for 500-8000 
hertz band. 

Moreover, other conclusions are; 

• The category angry has the highest classification scores for the 0-8000 hertz 
band. 

• The category calm has mostly low classification scores for all three bands. 
• The category calm has less than chance F1 score for the 500-8000 hertz band. 
• The category angry is misclassified as the category calm for 10.2% in 0-8000 

hertz band. 
• The category angry is misclassified as the category happy for 27.6% in 0-5000 

hertz band. 

 

According to the findings, we can assume that the category angry has the highest 
interaction with other categories in classification. In the 0-5000 hertz band, where the 
category angry has shown to have high false negatives (finding 1), most of the 
vocalizations with the category angry is classified as the category happy (finding 2). 
This result indicates that the information in the 5000-8000 hertz range carries essential 
information for the model to differentiate between the category angry and category 
happy. 
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The model tends to classify the emotions as angry in the 500-8000 hertz band (finding 
3). The category happy has the lowest misclassification as the category angry in the 
500-8000 hertz band (finding 3). It can be assumed that the features that separate the 
category calm and sad reside in the 0-500 hertz range, whereas the category happy has 
some other informative features in higher frequencies. 

The category calm has mostly low classification scores and has an accuracy of 11% 
for the 500-8000 hertz range (finding 4). It can be assumed that the features that define 
calm are not as strong as other emotions, and they reside within the 0-500 hertz range. 

 

4.3 Results of the Judges 

In this section, we present the results of the judges and then we asses these results. The 
results are presented under two main topics; the classification reports and the 
contingency tables. 

 

4.3.1 Results of the Classifications for the Judges in Classification Reports 

In this section, we present the classification scores of the judges in terms of precision, 
recall, and the F1. We present these scores for three different frequency bands; 0-8000 
hertz band, 0-5000 hertz band, and 500-8000 hertz band. 

 

4.3.1.1 0-8000 Hertz Band (Full Spectrum) 

The results presented below in Table 11 and Figure 12 indicate that the category angry 
has the strongest and most stable results in the classification metrics precision, recall, 
and the F1. The categories happy and sad followed the trend of high precision and low 
recall scores; therefore, committing less false positive errors but more false negative 
errors. 

 

Table 11: Classification Metrics for the 0-8000 hertz Frequency Band 
 

Emotional 
Category 

Classification Metric 
Precision Recall F1 

Angry .74 .80 .77 
Calm .43 .68 .53 

Happy .80 .56 .66 
Sad .83 .54 .65 
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Figure 12: Classification metrics for the 0-8000 hertz frequency band 

 

4.3.1.2 0-5000 Hertz Band (Formant Only Spectrum) 

The results presented below in Table 12 and Figure 13Figure 13 indicate that the category 
angry has the highest precision and F1 classification scores. The category calm, on the 
other hand, has the lowest ratings in all three classification scores; precision, recall, 
and F1. 

 

Table 12: Classification metrics for the 0-5000 hertz frequency 
band 
 

Emotional 
Category 

Classification Metric 

Precision Recall F1 

Angry .90 .63 .74 

Calm .38 .60 .46 

Happy .84 .61 .70 

Sad .69 .71 .70 

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Angry Calm Happy Sad

Sc
o

re

Emotion Category
Precision Recall F1



 

42 
 

 
Figure 13: Classification metrics for the 0-5000 hertz frequency band 

 

4.3.1.3 500-8000 Hertz Band (Spectrum That Lacks Fundamental Frequency) 

The results presented below in Table 13 and Figure 14 indicate that the category happy 
has the highest precision score; however, it also has the lowest recall score. This 
pattern indicates a high false negative error rate. The category calm keeps the trends 
of having the lowest scores in all of the classification metrics. 

 

Table 13: Classification metrics for 500-8000 hertz frequency band 
 

Emotional 
Category 

Classification Metric 

Precision Recall F1 

Angry .71 .79 .74 

Calm .41 .57 .48 

Happy .92 .49 .64 

Sad .74 .67 .70 
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Figure 14: Classification metrics for 500-8000 hertz frequency band 

 

 

4.3.2 Results of the Classifications for The Judges in Contingency Tables 

In this section, we present the classification results in contingency tables. The 
contingency tables presented below will offer the number of matches between the 
emotional categories and present the percentile results of how much of the column is 
represented at the column-row intersection. 

 

4.3.2.1 Contingency Tables for 0-8000 Hertz Band 

The results presented below in Table 14 indicate that the category sad is misclassified 
42.3% of the time as the category calm. 
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Table 14: Contingency tables for the 0-8000 hertz band 
 

 True Category 
Judge’s 

Prediction 
Angry Calm Happy Sad 

Angry  
Count  78.00  11.00  12.00  4.00  

Percent  79.6 %  13.4 %  16.7 %  4.1 %  

Calm  Count  16.00  56.00  18.00  41.00  

Percent  16.3 %  68.3 %  25.0 %  42.3 %  

Happy  
Count  4.00  6.00  40.00  0.00  

Percent  4.1 %  7.3 %  55.6 %  0.0 %  

Sad  Count  0.00  9.00  2.00  52.00  

Percent  0.0 %  11.0 %  2.8 %  53.6 %  

 

4.3.2.2 Contingency Tables for 0-5000 Hertz Band 

The results presented below in Table 15 indicate that the emotional category sad 
follows the trend of misclassification into the category calm with 40.2% of 
misclassification rate. Other notable misclassifications are: the emotional category 
calm is misclassified as the category angry (18.3%) and the emotional category angry 
is misclassified as the category calm (22.4%). 

 

Table 15: Contingency tables for the 0-5000 hertz band 
 

 True Category 
Judge’s 

Prediction 
Angry Calm Happy Sad 

Angry  
Count  73.00  15.00  15.00  6.00  

Percent  74.5 %  18.3 %  20.8 %  6.2 %  

Calm  Count  22.00  48.00  28.00  39.00  

Percent  22.4 %  58.5 %  38.9 %  40.2 %  

Happy  
Count  1.00  3.00  29.00  1.00  

Percent  1.0 %  3.7 %  40.3 %  1.0 %  

Sad  Count  2.00  16.00  0.00  51.00  

Percent  2.0 %  19.5 %  0.0 %  52.6 %  

 

 

 

 

 

 

 

 



 

45 
 

4.3.2.3 Contingency Tables for 500-8000 Hertz Band 

The results presented below in Table 16 indicate that although the majority of the 
misclassifications still exist, they are no longer notable. 

 

Table 16: Contingency tables for the 500-8000 hertz band 
 

 True Category 
Judge’s 

Prediction 
Angry Calm Happy Sad 

Angry  
Count  77.00  16.00  12.00  4.00  

Percent  78.6 %  19.5 %  16.7 %  4.1 %  

Calm  Count  17.00  47.00  22.00  28.00  

Percent  17.3 %  57.3 %  30.6 %  28.9 %  

Happy  
Count  1.00  2.00  35.00  0.00  

Percent  1.0 %  2.4 %  48.6 %  0.0 %  

Sad  Count  3.00  17.00  3.00  65.00  

Percent  3.1 %  20.7 %  4.2 %  67.0 %  

 

4.3.3 Assessment of the Judges’ Results 

So far, we have mainly concluded that; 

1. The category angry has the most stable, and relatively high categorization 
results for the 0-8000 hertz band. 

2. The categories happy and sad have high precision scores (80%, 83% 
respectively) and low recall scores (56%, 54% respectively) for the 0-8000 
hertz band. 

3. The category sad has been misclassified as the category calm for 42.3% in 0-
8000 hertz band. 

4. The category sad has been misclassified as the category calm 40.2% in the 0-
5000 hertz band. 

5. The category angry has been misclassified as the category calm for 22.4% in 
0-5000 hertz band. 

6. The category calm has the lowest F1 scores (53%, 46%, and 48%) for the 
frequency bands 0-8000, 0-5000, and 500-8000 hertz, respectively. 

Moreover, the other conclusions are; 

• The category angry has the highest precision score (90%), but it has a relatively 
lower recall score (63%) for the 0-5000 hertz band. 

• The category happy has the highest precision score (92%), but it has the lowest 
recall score (49%) for the 500-8000 hertz band. 

• The category angry and calm has relatively close precision and recall scores 
for the 500-8000 hertz band. 

 
According to the findings, we can assume that the category angry is stable when all of 
the frequencies between 0 and 8000 hertz is presented to the judge (finding 1). 
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The judges have high false negatives (they have high precision scores and low recall 
scores) for the category happy and sad in 0-8000 hertz band (finding 2). 

The judges misclassify the category of sad as calm at 42.3% in 0-8000 hertz band 
(finding 2) and 40.2% for 0-5000 hertz band (finding 3). It can be assumed that without 
external cues (i.e, visual cues), the judges rate vocalizations with low energy and low 
variability as the category calm. Energy and variation of a sound signal is explained 
at 2.4.1. 

The category angry is misclassified as the category calm at 22.4% in the 0-5000 hertz 
band (finding 5), this misclassification was on the direction of the category happy for 
27.6% in the same frequency band (4.2.2.2) for the model. It can be assumed that 
human judges used the frequency band 5000-8000 for the emotion of different energy 
profile (2.2.1) whereas the model used the same band to differentiate the emotion of 
the same energy profile.  

The category calm has the lowest F1 ratings for all frequency ranges (finding 6). It can 
be assumed that the judges were classifying low-energy, low-variance vocalizations 
in the category calm as sad and vice-versa. 

 

4.4 Comparative Results 

In this section, we compare the results of the model with the judges. Comparisons will 
be presented in terms of accuracy, precision, and recall values. Also, contingency 
tables that compare the model and the judges will be presented. This section aims to 
investigate the parallelisms and the deviations between the model and the judges. 
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4.4.1 Comparative Results in Classification Reports 

4.4.1.1 The Accuracy Rating 

The results presented below in Table 17 and Figure 15 indicate that the accuracy rating 
of the judges is lower than the models on the 0-8000 hertz the 0-5000 hertz bands. 
However, the accuracy rating of the judges is higher than the model at the 500-8000 
hertz band. Importantly, the accuracy rating of the judges is robust throughout the 
bands, whereas the model experiences a sharp drop at the 500-8000 hertz band. 

 

Table 17: Accuracy rating for the model and the judges 
 

 Frequency Bands 

 0-8000 
0-5000 
hertz 

500-8000 
hertz 

 

The 
Judges 

0.65 0.64 0.64 
Accruacy 

Rating The 
Model 

0.76 0.72 0.48 

 

 
Figure 15: Accuracy rating for the model and the judges 

 

 

4.4.1.2 Precision Scores of the Model and the Judges for Emotional Category 
Angry 

The results presented below in Table 18 and Figure 16 indicate that the model and the 
judges follow the same trend in the 0-8000 hertz the 0-5000 hertz bands. However, the 
judges did not get effected as much as the model at the 500-8000 hertz band and 
managed to stay over 70% accuracy. 
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Table 18: Precision scores of the model and the judges for the category angry 
 

 Frequency Bands 

 0-8000 
0-5000 
hertz 

500-8000 
hertz 

 

The Judges 0.74 0.90 0.71 Precision 
Score The Model 0.84 0.93 0.46 

 

 

 
Figure 16: Precision scores of the model and the judges for the category angry 

 

4.4.1.3 The Recall Scores of the Model and the Judges for Emotional Category 
Angry 

The results presented below in Table 19 and Figure 17 and 4.4.1.2 in Table 18 and 
Figure 16 indicate that the discrepancy of the model’s scores at 0-5000 hertz band and 
500-8000 hertz band between the precision scores and the recall scores suggest a high 
level of false negatives. 

 

Table 19: Recall scores of the model and the judges for the category angry 
 

 Frequency Bands 

 
0-8000 
hertz 

0-5000 
hertz 

500-8000 
hertz 

 

The 
Judges 

0.80 0.63 0.79 
Recall 
Score The 

Model 
0.76 0.51 0.84 
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Figure 17: Recall scores of the model and the judges for the category angry 

 

4.4.2 Results of the Classifications for The Comparative Analysis in Contingency 
Tables 

In this section, we present the classification results in contingency tables.The 
contingency tables presented below will offer the number of the matches between the 
emotional categories and present the percentile results of how much of the column is 
represented at the column-row intersection. 

 

4.4.2.1 Contingency Tables for 0-8000 Hertz Band 

The results presented below in Table 21 and Table 20 indicate that the judges have 
agreed with the model more than half of the time (53.6%), the chance agreement is 
25%. The judges have assessed single-word vocalizations more into the category 
angry than the model. For the category angry the model has a higher precision score 
of 84% (4.2.2.1) than the judges 74% (4.3.1.1) moreover the model has lower recall 
score (76%) than the judges (80%). The F1 scores indicate that the model with 80% 
F1 score is more successful in the classification of the category angry than the judges 
with 76% F1 score. 
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Table 20: Contingency tables for 0-8000 hertz band with the judges as the key 
 

 Judge’s Prediction 
Model’s 

Prediction  
Angry Calm Happy Sad 

Angry  
Count  65.00  14.00  5.00  4.00  

Percent  61.9 %  10.7 %  10.0 %  6.3 %  

Calm  Count  20.00  50.00  7.00  12.00  

Percent  19.0 %  38.2 %  14.0 %  19.0 %  

Happy  
Count  15.00  22.00  34.00  9.00  

Percent  14.3 %  16.8 %  68.0 %  14.3 %  

Sad  Count  5.00  45.00  4.00  38.00  

Percent  4.8 %  34.4 %  8.0 %  60.3 %  

 

Table 21: Contingency tables for 0-8000 hertz band with the model as the key 
 

 Model’s Prediction 
Judge’s 

Prediction  
Angry Calm Happy Sad 

Angry  
Count  65.00  20.00  15.00  5.00  

Percent  73.9 %  22.5 %  18.8 %  5.4 %  

Calm  Count  14.00  50.00  22.00  45.00  

Percent  15.9 %  56.2 %  27.5 %  48.9 %  

Happy  
Count  5.00  7.00  34.00  4.00  

Percent  5.7 %  7.9 %  42.5 %  4.3 %  

Sad  Count  4.00  12.00  9.00  38.00  

Percent  4.5 %  13.5 %  11.3 %  41.3 %  

 

 

4.4.2.2 Contingency Tables for 0-5000 Hertz Band 

The results presented below in Table 22 and Table 23 indicate that the judges have 
agreed with the model less than half of the time (45.8%), the chance agreement is 25%. 
The classification trend of the category angry observed in 0-8000 hertz band is still 
existent, however in this frequency band the recall score of the category angry for the 
model (51%) is much lower than the judges’ (63%) whereas their precision scores are 
very similar to the 93% for the model and 90% for the judges (the information can be 
found at 4.2.2.2 and 4.3.1.2). Majority of the model’s predictions of the category 
happy are assessed as the category calm by the judges (40.6%) whereas the agreement 
on calm by the model is 48.9% and for the judges it is 32.1%. The majority of the 
judges’ assessments of the emotional state calm is also predicted as the emotional state 
happy (29.9%) by the model. The agreement on the judges’ assessments of the 

category calm is 32.1%, and the model’s prediction of happy is 25.7%. 
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Table 22: Contingency tables for 0-5000 hertz band with the model as the key 
 

 Model’s Prediction  
Judge’s 

Prediction  
Angry Calm Happy Sad 

Angry  
Count  44.00  25.00  29.00  11.00  

Percent  81.5 %  27.8 %  28.7 %  10.6 %  

Calm  Count  7.00  44.00  41.00  45.00  

Percent  13.0 %  48.9 %  40.6 %  43.3 %  

Happy  
Count  1.00  5.00  26.00  2.00  

Percent  1.9 %  5.6 %  25.7 %  1.9 %  

Sad  Count  2.00  16.00  5.00  46.00  

Percent  3.7 %  17.8 %  5.0 %  44.2 %  

 

 

Table 23: Contingency tables for 0-5000 hertz band with the judges as the key 
 

 Judge’s Prediction 
Model’s 

Prediction  
Angry Calm Happy Sad 

Angry  
Count  44.00  7.00  1.00  2.00  

Percent  40.4 %  5.1 %  2.9 %  2.9 %  

Calm  Count  25.00  44.00  5.00  16.00  

Percent  22.9 %  32.1 %  14.7 %  23.2 %  

Happy  
Count  29.00  41.00  26.00  5.00  

Percent  26.6 %  29.9 %  76.5 %  7.2 %  

Sad  Count  11.00  45.00  2.00  46.00  

Percent  10.1 %  32.8 %  5.9 %  66.7 %  

 

4.4.2.3 Contingency Tables for 500-8000 Hertz Band 

The results presented below in Table 24 and Table 25 indicate that the judges have 
agreed with the model less than half of the time (44.4%), the chance agreement is 25%. 
The pattern of a discrepancy between the judge’s assessment of happy and model’s 

prediction of calm remains in 0-5000 hertz band (4.4.2.2). The judges’ assessment of 
the emotional state calm is predicted as the emotional state happy for 36.0% by the 
model. However, the judge no longer assesses the model’s prediction of the emotional 

state calm as the emotional state happy. 
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Table 24: Contingency tables for 500-8000 hertz band with the model as the key 
 

 Model’s Prediction 
Judge’s 

Prediction 
Angry Calm Happy Sad 

Angry  
Count  82.00  2.00  18.00  7.00  

Percent  46.3 %  11.8 %  16.1 %  16.3 %  

Calm  Count  49.00  11.00  41.00  13.00  

Percent  27.7 %  64.7 %  36.6 %  30.2 %  

Happy  
Count  8.00  1.00  27.00  2.00  

Percent  4.5 %  5.9 %  24.1 %  4.7 %  

Sad  Count  38.00  3.00  26.00  21.00  

Percent  21.5 %  17.6 %  23.2 %  48.8 %  

 

 

Table 25: Contingency tables for 5000-8000 hertz band with the judges as the key 
 

 Judge’s Prediction 
Model’s 

Prediction 
Angry Calm Happy Sad 

Angry  
Count  82.00  49.00  8.00  38.00  

Percent  75.2 %  43.0 %  21.1 %  43.2 %  

Calm  Count  2.00  11.00  1.00  3.00  

Percent  1.8 %  9.6 %  2.6 %  3.4 %  

Happy  
Count  18.00  41.00  27.00  26.00  

Percent  16.5 %  36.0 %  71.1 %  29.5 %  

Sad  Count  7.00  13.00  2.00  21.00  

Percent  6.4 %  11.4 %  5.3 %  23.9 %  

 

4.4.3 Assessment of Comparative Results 

So far, we mainly concluded that; 

1. The accuracy rating for the model is higher for the 0-8000 hertz and the 0-5000 
hertz band (76%, and 71% respectively). However, the accuracy rating sharply 
drops for the model at 500-8000 hertz band to 48% whereas the accuracy rating 
for the judges stays at 65%, 64%, and 64% respectively for 0-8000 hertz, 0-
5000 hertz, and 500-8000 hertz band. 

2. The agreement between the model and the judges is 53.6%, 45.8% and 44.4% 
for frequency bands 0-8000 hertz, 0-5000 hertz, and 500-8000 hertz bands, 
respectively. The chance agreement is 25%. 

3. The judges displayed more false positives than the model for the category 
angry for 0-8000 hertz band. 

4. The model displayed more false negatives than the model for the category 
angry for 0-5000 hertz band. 

5. The model has high recall ratings for the categories happy (85%) and calm 
(73%) for 0-5000 hertz band. 
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6. The majority of the model’s predictions of the category happy are assessed as 
the category calm at 40.6% by the judges for 0-5000 hertz band. 

7. The judges’ assessment of the category calm is predicted as the category happy 
at 36.0% by the model for 500-8000 hertz band. 

Moreover, other conclusions are; 

• The precision score for the category angry for the model and the judges have 
a weak correlation between different bands. However, the judges are more 
robust in this regard. 

• The majority of the judges’ predictions of the emotional state calm are assessed 

as the emotional state happy at 29.9% by the model for 0-5000 hertz band. 
 

 
According to the findings, we can assume that although the model has stronger 
accuracy for the 0-8000 hertz and 0-5000 hertz bands, human judges are more robust 
to the changes in 500-8000 hertz (finding 1). 

The agreement between the model and the judges is much higher than the chance 
agreement (finding 2). However, the model’s and the judges’ predictive power also 
affect this agreement lowering its significance. 

The judges are more prone to making false positive errors for the category angry at 0-
8000 hertz band (finding 3). The model has very high precision but very low recall for 
the emotional category angry at the 0-5000 hertz band (finding 4); therefore, the model 
is prone to making false negative errors at this frequency band. Although the model 
has high recall rating for the emotional states happy (85%) and calm (73%) (finding 
5), the judges have assessed the category happy as the category calm for 40.6% for 0-
5000 hertz band (finding 6). This can be assumed to be caused by the vocalizations 
lacking high pitched sounds that reside at 5000-8000 Hertz. This can be evidenced by 
this phenomenon disappearing at 500-8000 hertz band (finding 7). 

 

4.5 Summary 

In this chapter, we presented and investigated the results of the analysis. The results 
were derived from the model, the judges, and the comparison of both. The results were 
presented in terms of training results, classification reports, and contingency tables. 

The main results of the study can be summarized as follows:   

• The model uses the 5000-8000 hertz frequency band to differentiate between 
angry and happy, which are both high arousal emotions with high energy. 

• The judges use the 5000-8000 hertz frequency band to differentiate between 
angry and calm, which shares neither valence nor arousal. 

• The calm and sad have the lowest classification scores, it is probably because 
they both have low energy. 



 

54 
 

• The model has higher score than the judges at all frequency bands except the 
500-8000 hertz. 

• The model loses much of its predictive power at 500-8000 hertz band, i.e. the 
band that lacks F0. This result confirms the importance of F0 and shows why 
the contemporary literature uses F0 to recognize different emotion categories. 

• The judges do not lose any classification power due to the changes in frequency 
band manipulations. 

We can safely conclude that the model follows a mechanical approach of following 
the high energy signal at various frequency bands and using fundamental frequency 
as its guideline. But the judges follow a holistic approach making use of all frequency 
bands to distinguish between the four emotional categories. In particular, humans can 
compensate loses in all three main frequency bands used in the thesis with little to no 
loss in predictive power. The model, on the other hand, fails completely upon losing 
0-500 hertz band and its features. 
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Chapter V 

5. The Turkish Emotional Voice Database (TurEV Database) 

 

5.1 Introduction 

In this chapter, we present The Turkish Emotional Voice Database or TurEV 
Database. We first present the database then investigate the fundamental frequency 
(F0) statistics of the tokens in the database. Lastly, we evaluate the corpus through 
different statistical methods. 

 

5.2 Database Coverage 

In this section, we describe the database components; that is, the corpus and the 
peripheries. We present the corpus coverage. Then we present the peripheral 
components, including the results of audio statistics by F0 values and the demographic 
statistics on the amateur actors. Finally, we perform reliability analysis of the judges. 

 

5.2.1 Corpus Coverage 

Number of Unique Words 

Eighty-two words have been selected from Türkçe’nin Ses Dizgesi (Ergenç & Bekar 

Uzun, 2017). As mentioned in section 3.1.2, these words were selected for their 
representativeness of the phonological properties of Turkish sounds. The list of 
selected words is presented at APPENDIX B. 

Emotional Categories 

Four emotional categories were chosen for the study; angry, calm, happy, and sad. 
These emotion categories were chosen because they are widely studied and they are 
easily distinguishable as well as producible (Busso et al., 2008; El Ayadi et al., 2011; 
Y. Kim et al., 2013; Liscombe et al., 2003; McGilloway et al., 2000). Moreover, these 
emotions reside in different axes of the arousal-valence space in which sad is negative 
and low arousal, calm is positive and low arousal, angry is negative and high arousal, 
and happy is positive and high arousal (Barrett, 1998). The position of emotions on 
the valence arousal axis is presented in Figure 18. 
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Figure 18: Position of the emotion categories on valence arousal axes 
 

Vocalizations 

Eighty-two words were voiced once for each emotional category for a total of four 
times by each one of the six amateur actors. Thus the corpus contains a total of 1735 
words. 20% of the vocalizations were randomly selected for the validation set, whereas 
80% of the vocalizations were randomly selected for the training set. Each vocalization 
is accompanied by a spectrogram. The vocalizations that belong to the validation set 
are accompanied by their versions in 0-8000 hertz band (the full spectrum), 0-5000 
hertz band, and 500-8000 hertz band. Additionally, they have heat maps for these 
versions. 

Table 26 presents the total number of vocalizations performed by actors, Table 27 
presents the number of vocalizations in the training set, and Table 28 presents the 
number of vocalizations in the validation set. 

 

Table 26: Total number of vocalizations performed by actors 
 

Emotion 
Actors 

Total 
7895 1984 1234 1358 1157 6783 

Angry 82 82 82 82 77 82 487 

Calm 80 82 82 82 0 82 408 

Happy 29 82 82 82 0 82 357 

Sad 82 82 82 82 73 82 483 

Total 273 328 328 328 150 328 1735 
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Table 27: Number of vocalizations in the training set 
 

Emotion 
Actors 

Total 
7895 1984 1234 1358 1157 6783 

Angry 66 62 67 64 58 72 389 

Calm 61 67 62 69 0 67 329 

Happy 25 64 64 65 0 67 285 

Sad 68 69 66 71 55 57 386 

Total 221 263 260 269 113 263 1389 
 

Table 28: Number of vocalizations in the test set 
 

Emotion 
Actors 

Total 
7895 1984 1234 1358 1157 6783 

Angry 16 20 15 18 19 10 98 

Calm 19 15 20 13 0 15 82 

Happy 4 18 18 17 0 15 72 

Sad 14 13 16 11 18 25 97 

Total 53 66 69 59 37 65 349 

 

5.2.2 Statistics for Peripheral Components 

We present the minimum, maximum, mean, standard deviation, and the range of the 
fundamental frequency (F0) for each gender and emotional category. We expect F0 
values to vary with respect to gender and emotion. Therefore, Bayesian ANOVA and 
Bayesian t-test are conducted in order to determine the separability of the fundamental 
frequency statistics in terms of gender and the emotional category. 

 

5.2.2.1 Fundamental Frequency Statistics in Terms of Gender 

According to the results of the Bayesian independent t-test analysis, it is found that 
only F0MIN yielded a significant difference (BF10=1.2e+6, Error=6.4e-10) showing 
strong evidence for the separability of male (M=188.1, STD=288.6) and female 
(M=115.7, STD=224.4) actors in the overall corpus. See Table 29 for a summary of the 
fundamental frequency statistics in terms of gender. 
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Table 29: F0 statistics in terms of gender 
 

 F0MIN F0MAX F0MEAN F0STD F0RANGE 
 F M F M F M F M F M 

Valid  929  806  929  806  929  806  929  806  929  806  

Missing  0  0  0  0  0  0  0  0  0  0  

Mean  115.7  188.1  4787  4793  1737  1840  1498  1469  4671  4605  

Std. 
Deviation 

 224.4  288.6  2910  4257  1139  1688  885.
0 

 1375  2831  4181  

Minimum  
0.0880

7 
 0.178

6 
 139.7  393.3  47.7

3 
 118.4  0.00

0 
 119.8  0.000  373.9  

Maximu
m 

 2597  3228  1.508e+
4 

 3.078e+
4 

 7222  
1.167e+

4 
 4827  

1.034e+
4 

 1.467e+
4 

 3.077e+
4 

 

 

 

5.2.2.2 Fundamental Frequency Statistics in Terms of Emotions 

Maximum Fundamental Frequency (F0MAX) Statistics in Terms of Emotions 

According to the results of the Bayesian ANOVA test, when the random effects of 
gender and word type are controlled, F0MAX is separable (P(M)=.5, BF10=2.2e+87) 
in terms of emotions. According to the posthoc tests, it is found that emotional 
category pairs angry and happy are (BF10=4.342, Error=2.4e-5) mildly separable 
while rest of the emotional categories are (BF10>2.1e+24, Error<1.3e-10) strongly 
separable. Statistics are provided in Table 30. 

 

Table 30: Maximum fundamental frequency (F0MAX) statistics in terms of emotions 
 

 F0MAX 
 Angry Calm Happy Sad 

Valid  487  408  357  483  

Missing  0  0  0  0  

Mean  6113  3727  6872  2814  

Std. Deviation  2939  2824  4728  2185  

Minimum  1037  166.6  1236  139.7  

Maximum  2.175e+4  1.634e+4  3.078e+4  1.168e+4  

 

 

Minimum Fundamental Frequency (F0MIN) Statistics in Terms of Emotions 

According to the results of the Bayesian ANOVA test, when the random effects of 
gender and word type are controlled, F0MAX is separable (P(M)=.5, BF10=2.9e+14) 
in terms of emotions. According to the posthoc tests, it is found that only the emotion 
angry (BF10>5836, Error<2.3e-8) is strongly separable from other emotions in terms 
of F0MAX. Descriptive statistics of F0MIN are provided in Table 31. 
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Table 31: Minimum fundamental frequency (F0MIN) statistics in terms of emotions 
 

 F0MIN 
 Angry Calm Happy Sad 

Valid  487  408  357  483  

Missing  0  0  0  0  

Mean  231.4  128.1  129.6  99.15  

Std. Deviation  346.3  203.2  234.1  185.9  

Minimum  0.4317  0.08807  0.1786  0.1601  

Maximum  3228  1854  1735  1897  

 

Mean Fundamental Frequency (F0MEAN) Statistics in Terms of Emotions 

According to the results of the Bayesian ANOVA test, when the random effects of 
gender and word type are controlled, F0MEAN is separable (P(M)=.5, BF10=9.9e+79) 
in terms of emotions. According to the posthoc tests, it is found that emotional 
category pairs angry and happy are (BF10=.612, Error=1.5e-4) weakly separable while 
rest of the emotional categories are (BF10>4991, Error<2.5e-9) strongly separable.  
Detailed statistics are provided in Table 32. 

 

Table 32: Mean fundamental frequency (F0MEAN) statistics in terms of emotions 
 

 F0MEAN 
 Angry Calm Happy Sad 

Valid  487  408  357  483  

Missing  0  0  0  0  

Mean  2302  1375  2524  1063  

Std. Deviation  1182  1082  1941  865.5  

Minimum  399.8  47.73  544.3  49.37  

Maximum  7744  5874  1.167e+4  5482  

 

Standard Deviation of Fundamental Frequency (F0STD) Statistics in Terms of 
Emotions 

According to the results of the Bayesian ANOVA test, when the random effects of 
gender and word type are controlled, F0STD is separable (P(M)=.5, BF10=9.9e+88) in 
terms of emotions. According to the posthoc tests, it is found that emotional category 
pairs angry and happy are (BF10=13.39, Error=8.1e-6) moderately separable while rest 
of the emotional categories are (BF10>28e+3, Error<4.6e-10) strongly separable. 
Detailed statistics are provided in Table 33. 
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Table 33: STD of fundamental frequency (F0STD) statistics in terms of emotions 
 

 F0STD 
 Angry Calm Happy Sad 

Valid  487  408  357  483  

Missing  0  0  0  0  

Mean  1889  1126  2169  872.6  

Std. Deviation  908.7  804.3  1583  663.8  

Minimum  320.1  52.57  415.4  0.000  

Maximum  6353  4245  1.034e+4  3372  

 

Range of Fundamental Frequency (F0RANGE) Statistics in Terms of Emotions 

According to the results of the Bayesian ANOVA test, when the random effects of 
gender and word type are controlled, F0RANGE is separable (P(M)=.5, 
BF10=3.3e+87) in terms of emotions. According to the posthoc tests, it is found that 
emotional category pairs angry and happy are (BF10=6.62, Error=6.9e-6) moderately 
separable while rest of the emotional categories are (BF10>58e+3, Error<1.6e-10) 
strongly separable. Detailed statistical information is provided in Table 34. 

 

Table 34: Range of fundamental frequency (F0RANGE) statistics in terms of emotions 
 

 F0RANGE 
 Angry Calm Happy Sad 

Valid  487  408  357  483  

Missing  0  0  0  0  

Mean  5881  3599  6742  2715  

Std. Deviation  2858  2704  4687  2128  

Minimum  991.8  164.5  1220  0.000  

Maximum  2.149e+4  1.531e+4  3.077e+4  1.139e+4  

 

 

5.2.3 Actor Statistics 

Within the corpus study, six actors volunteered to join the study; all of them were 
amateur actors with little to no prior acting experience. The actors were between the 
ages of 23 and 35 with a mean, and standard deviation of 26.83 and 4.35 respectively. 
Three of the actors were female, and three of the actors were male. The female actors 
were between the ages of 23 and 28 with a mean and standard deviation of 25.3 and 
2.5, respectively. The male actors were between the ages of 24 and 35 with a mean 
and standard deviation of 28.3 and 5.9, respectively (see Table 35). Actors were 
presented with the Amateur Actor Guidelines presented in the APPENDIX A. 
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Table 35: Actor Statistics 
 

Actor 
ID 

Gender Age 

7895 Female 28 
1984 Female 25 
1234 Female 23 
1358 Male 24 
1157 Male 35 
6783 Male 26 

 

 

5.3 Corpus Evaluation 

5.3.1 Sample-Population Evaluation 

As already mentioned, the population of the corpus consists of 1735 vocalizations. For 
a 95% confidence interval, the ideal sample size would be 315. In the study, we used 
349 samples as the validation set. In other words, the corpus can be assumed to have 
an adequate sample size for its validation set. 

 

5.3.2 The Reliability Study 

A reliability study was conducted to evaluate the consistency of the categorization of 
vocalizations into emotions. One judge rated each frequency band. The accuracy 
calculated by using the original categories as the key. According to the results of the 
reliability study; the judge of 0-8000 hertz frequency band attained 65% accuracy. The 
respective judges of 0-5000 and 500-8000 hertz bands achieved 64% accuracy. We 
consider results over 60% a feasible accuracy rating considering that the judges only 
listened to single-word-vocalizations rather than full sentences. 

 

5.4 Conclusion 

In this chapter, we investigated the TurEV database through different methods. The 
results of the earlier chapters indicate that the corpus has an adequate number of words 
and vocalizations to enable a machine learning experiment and further analysis. The 
fundamental frequency was adequate to separate most of the emotional categories. 
However, F0 yielded low confidence for the separation of the category happy and 
angry.  

 

5.5 Summary 

In this chapter, we have investigated the corpus through statistical and descriptive 
methods. In the next chapter, we will evaluate the previous chapters and conclude the 
study. 
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Chapter VI 

6. Conclusion 

 

The thesis aimed at developing a novel model for studying emotion in the speech 
signal. This novel model was intended to be robust to noise, and trained on Turkish 
words. Moreover, the model was inspected with techniques such as gradient 
visualizations. In the validation process of the model, our ablation study allowed us to 
contrast the model with the judges in different frequency bands and observe the 
parallelisms and differences. The observations we have made allowed us to gain 
insight into the cognitive processes of the human mind as opposed to the calculations 
of the model. To accomplish all these, we had to develop a Turkish emotion-voice 
database from the ground up. Lastly, we aim at making public not only the results of 
the study but also the TurEV database and the source codes used in the study.  

 

6.1 Contributions 

6.1.1 The Methodological Contributions 

The model developed through the study is one of its kind. The CNN models are 
developed for object detection. The results indicate it is feasible to use the CNN 
models in emotion-voice studies. The model is found to be robust to some changes in 
the speech signal. 

The Grad-CAM model was developed on top of the CNN model. Heat maps were 
successfully extracted. Heat maps themselves show that it is possible to extract visual 
information from the voice signal. 

Overall, the CNN model allows visual patterns to be incorporated into studies and 
engender new research methodologies.  

 

6.1.2 The Empirical Contributions 

A corpus of emotion in voice appeared as one of the gaps in Turkish emotion-voice 
studies. During the thesis study, we developed the Turkish Emotion Voice Database 
(TurEV). TurEV is a multipurpose database that integrates an emotion-voice corpus 
for four different emotional states, train and test sets, spectrograms, and statistics and 
heat maps for the test set. 

TurEV will be open to the public. It can be exploited by phonologists and emotion 
researchers, and future studies can use and improve the database. 
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6.1.3 The Cognitive Contributions 

The results we obtained from the model, the judges, and the comparative study allowed 
us to investigate the emotion in voice from multiple perspectives. Moreover, the 
ablation study allowed us to investigate the differences when certain frequency bands 
are removed from the sound signal. 

To sum up, the judges were robust to the changes in the speech signal, which implies 
the holistic processing of the sound signal in general, but the model lost most of its 
categorization power with the removal of low pitch frequencies. The most exciting 
discovery was that the model used the 5000-8000 hertz band to differentiate between 
happy and angry, whereas the judges used this same band to differentiate between 
angry and calm. This differentiation implies that the model is more focused on energy 
and differentiates high energy emotions (angry and happy) through the variance in the 
energy, whereas humans focus on any change such as subtle variations in the speech 
signal. 

 

6.2 Limitations 

One of the limitations of the study was related to data collection. The vocalizations 
were limited by the lack of proper hardware. The number of man-hours required for 
the collection and processing of the vocalizations was enormous. As a result, the 
number of vocalized emotion categories were limited to four. Yet, each category 
represented one main area of the arousal-valence space. Also, only single-word 
vocalizations were recorded instead of phrases or sentences. Finally, three judges were 
recruited, each of whom evaluated one frequency band to decide which vocalization 
fits which of the four emotion categories. 

The second limitation was that the CNN model could not be utilized to its full 
potential. The heat maps could only be briefly inspected, and intermediate activations 
could not be extracted due to various constraints. With more data and more rigorous 
training regime, the model could learn more features. However, it is important to note 
that This limitation was also a feature in the study; we needed to learn how the model 
failed. For our purposes, a model with a very high classification rate would defeat the 
aim of the study. 

 

6.3 Future Work 

The constraints and the findings of the thesis engender a wide variety of studies 
possible. For example, the database and the model developed through the study has 
many different unexplored aspects. The heat maps and intermediate activations will 
allow a much larger phonological study to be conducted. In particular, further study is 
needed to understand what exactly is present in the 500-8000 hertz band that allow 
humans to make the correct predictions to distinguish among the four emotion 
categories while the model loses much of its predictive power when it loses the 
information in the 0-500 hertz band. 
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A more comprehensive Turkish emotion-voice database can be built using 
professional actors, equipment, and a more comprehensive validation study. 
Nevertheless, we hope that the TurEV database is both a starting point for many 
different studies and a reference for future ones.  

The CNN architecture was found to be viable for sound-signal processing. The sound 
signal can be used for emotion recognition in various new ways. Moreover, the sound 
signal can be used for various linguistic tasks such as sentence segmentation, speech-
to-text processing, or to enable diagnosis in psychology.  
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APPENDICES 

 

APPENDIX A 

Amateur Actor Data Collection Manual 

 

Kelime Bazlı Duygu Verisi 
Amatör Aktör Klavuzu 

 

 Çalışma esnasında sizlere sunulan kelimeleri mutlu, hüzünlü, sakin, ve kızgın 

olmak üzere dört farklı duygu durumunda dile getirmeniz rica edilmektedir. Her bir 

kelimeyi, her bir duygu durumu için dile getirip ayrı ses dosyaları halinde 

kaydetmeniz gerekmektedir. 

 

 Dikkat Edilmesi Gereken Hususlar 

• Dört basamaklı Amatör Aktör Numaranız (AAN) size ayrıca verilecektir. 
• Seslendirilecek kelimeler size kelimeler.xls adlı bir dosya içerisinde size 

sunulacaktır. 
• Kayıt durumundan önce yankı bulunmayan ve sessiz bir ortamda 

olduğunuzdan emin olun. 
• Android cihazlarda yapacağınız kayıt için Sony Mobile Productions’dan 

Audio Recorder adlı programı kullanınız. 
• Aldığınız kayıtları mono olarak ve wav formatında alınız. 
• Kelimeleri her bir duygu durumu için seslendiriniz, her bir kelime için dört 

farklı ses dosyanız olacak. 
• Kelimeleri seslendirirken o duyguyu hissediyormuş gibi seslendirin. 
• Kelimeleri seslendirirken sesinizi yükseltmeden fakat duyguyu (sakin duygu 

durumu harici) yoğun şekilde hissediyormuş gibi seslendirin. 
• Tercihen bir oturumda tek bir duyu durumu üstünde çalışın, duygu durumları 

arasında sıkça geçiş yapmamaya dikkat edin. 
• Seslendirmeleri o duyguyu yoğun olarak hissediyormuşçasına yapın lakin ses 

tonunuzu normal tonda tutun. 

 

Kayıt Süreci 

• Ses kaydı için kullanacağınız cihazı (telefon, mikrofon, vb) ile aranızda 30cm 

yahut kayıt mikrofonları için cihazın tavsiye edilen uzaklığı kadar mesafe 

bırakın. 
• Kayıt düğmesine basın, 1 saniye bekleyin, sözcüğü ilgili duygu durumuna 

uygun olarak seslendirin, 1 saniye bekledin ve kaydı durdurun. 
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• Kaydı dinleyin, mümkün olduğu durumda üçüncü bir kişiye sunun. Kayıt 

ilgili duydu durumunu net olarak yansıtıyorsa aşağıda verilen adda kaydedin. 
Yansıtmıyorsa o kelime-duygu durumu çifti için süreci tekrarlayın. 

• Ses dosyalarını AAN_DK_KELIME.wav formatında kaydediniz. 
o AAN (Amatör Aktör Numarası) size sunulan dört basamaklı 

rakamdır. 
o DK (Duygu Kodu) Her bir duygu için belirtilen kod. 

▪ Mutlu: MT 
▪ Hüzünlü: HL 
▪ Kızgın: KZ 
▪ Sakin: SK 

o Kelime: Kelimenin kendisi. Size sunulan kelimeler.xls dosyası içinde 

yer almaktadır. 
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APPENDIX B 

 

LIST OF WORDS USED FOR VOCALIZATION 

 
 
açık demet fırıldak kağıt kulaç oğul şarap tahta  yığın 
algı demir gezi  karton kuşluk okul şarj tembel zeytin 
beste  deve gıcık kedi küstah ölçüt satır tırtıl  
buğu deyim göz kemik lokma ördek şenlik türev  
çay dil güneş kibir lüfer örgü sepet ünlü  
çekirge dizge gürbüz kiler melek pamuk serin utanç  
çene düğün hekim kırgın müjde pas sevgi vurgu  
ceren eğer iğde koku nasıl pıhtı simit yankı  
çilek elmacık ısırgan konuk niçin rıhtım soba yazım  
defne   eski japon köy ödenek saf sucuk yığılmak  

 
 
 


