
DOES ESTIMATED DEPTH HELP OBJECT DETECTION?

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BEDRETTİN ÇETİNKAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

AUGUST 2019

Approval of the thesis:

DOES ESTIMATED DEPTH HELP OBJECT DETECTION?

submitted by BEDRETTİN ÇETİNKAYA in partial fulfillment of the requirements
for the degree of Master of Science in Computer Engineering Department, Mid-
dle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oguztüzün
Head of Department, Computer Engineering

Assist. Prof. Dr. Emre Akbaş
Supervisor, Computer Engineering, METU

Assoc. Prof. Dr. Sinan Kalkan
Co-supervisor, Computer Engineering, METU

Examining Committee Members:

Assist. Prof. Dr. Gökberk Cinbiş
Computer Engineering, METU

Assist. Prof. Dr. Emre Akbaş
Computer Engineering, METU

Assist. Prof. Dr. Hacer Yalım Keleş
Computer Engineering, Ankara University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Bedrettin Çetinkaya

Signature :

iv

ABSTRACT

DOES ESTIMATED DEPTH HELP OBJECT DETECTION?

Çetinkaya, Bedrettin

M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Emre Akbaş

Co-Supervisor : Assoc. Prof. Dr. Sinan Kalkan

August 2019, 74 pages

With the widespread use of RGB-D cameras, depth information has improved so-

lutions of many computer vision problems including object detection. Object de-

tection can exploit depth information and different encodings obtained from the

depth map. Although previous works proved that depth information can be used

to improve object detection results, this thesis investigates the effects of depth map

to object detection from different aspects in detailed experiments. To clarify these

effects, we examine the following three questions: (i) Should depth be used in its

raw form or should it be processed to obtain different encodings and color spaces?

(ii) How and when should the depth information be integrated into the object de-

tection pipeline? (iii) how does estimated depth affect object detection results? In

addition, we propose a novel method to integrate depth features into the process-

ing pipeline of a modern two-stage object detector. Compared to previous meth-

ods, our method produces better results and uses fewer parameters. In this thesis,

we also explore new loss functions to better handle the consistency between RGB

and depth discontinuities. We proposed both hand-crafted and learning-based

loss functions which we call the" bound loss”. Using the bound loss, we were able

v

to improve the mean average and absolute errors for depth estimation.

Keywords: Deep Learning, Convolutional Neural Network, RGB-D Object Detec-

tion, Depth Estimation

vi

ÖZ

TAHMİNİ DERİNLİK HARİTALARI NESNE TANIMLAMAYA YARDIMCI OLUR
MU?

Çetinkaya, Bedrettin

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi Emre Akbaş

Ortak Tez Yöneticisi : Doç. Dr. Sinan Kalkan

Ağustos 2019, 74 sayfa

RGB-D kameraların kullanımının yaygınlaşmasıyla birlikte, derinlik bilgisi nesne

tanımlama da dahil olmak üzere birçok bilgisayarlı görü problemlerinin çözümle-

rini iyileştirmektedir. Nesne tanımlama, derinlik bilgisinden ve derinlik bilgisinden

elde edilen farklı kodlamalardan yararlanabilir. Her ne kadar önceki çalışmalar, de-

rinlik bilgisinin nesne tanımlama sonuçlarını iyileştirmek için kullanılabileceğini

kanıtlasa da, bu tez derinlik haritalarının nesne tanımlaya etkilerini farklı açılardan

detaylı deneylerde inceler. Bu etkileri açığa kavuşturmak için, aşağıdaki üç soruyu

çalıştık: (i) Derinlik bilgisi ham haliyle mi kullanılmalıdır ya da farklı kodlamaları

ve renk alanlarını elde edecek şekilde işlenmeli midir? (ii) Derinlik bilgisi nesne ta-

nımlama hattına ne zaman ve nasıl entegre edilmelidir? (iii) Tahmin edilen derin-

lik haritaları, nesne tanımlama sonuçlarını nasıl etkiler? Bunun yanında, derinlik

bilgisini modern iki aşamalı nesne dedektör yapısına entegre eden yeni bir metot

öneriyoruz. Önceki çalışmalarla kıyaslandığında, bizim yöntemimiz daha iyi so-

nuçlar vermektedir ve daha az sayıda parametre kullanmaktadır. Bu tezde ayrıca

RGB ve derinlik kesikliklerininin tutarlılığını daha iyi işleyen yeni bir yitim fonk-

vii

siyonu keşfettik. Sınır yitimi adını verdiğimiz el yapımı ve öğrenme tabanlı yitim

fonksiyonları önerdik. Sınır yitimini kullanarak genel ortalama ve kesin hatalarını

derinlik tahmin etme için iyileştirebildik.

Anahtar Kelimeler: Derin Öğrenme, Evrişimsel Sinir Ağları, RGB-D Nesne Tanım-

lama, Derinlik Tahmin Etme

viii

Dedicated to my wife, family and friends.

ix

ACKNOWLEDGMENTS

First of all, I would like to thank my supervisors, Prof. Dr. Emre Akbaş and Prof. Dr.

Sinan Kalkan for their great interest and supports.

I am also grateful to my wife Dilan, my mother Suna, my father Fırat and my sister

Rumeysa for their support.

This work is partially supported by the Scientific and Technological Research Coun-

cil of Turkey under Grant No. 117E054.

The numerical calculations reported in this paper were fully/partially performed

at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA

resources).

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xx

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition . 2

1.2 Proposed Methods and Models . 3

1.3 Contributions and Novelties . 5

1.4 The Outline of the Thesis . 5

2 RELATED WORK AND BACKGROUND . 7

2.1 Introduction . 7

2.2 Depth Map Generation . 9

2.2.1 Depth Sensors . 9

2.2.2 Estimation From a Single RGB Image 9

xi

2.2.2.1 Unsupervised Learning Methods 9

2.2.2.2 Supervised Learning Methods 13

2.3 RGB Object Detection . 15

2.3.1 Classical Approaches . 15

2.3.2 Neural Approaches . 16

2.3.2.1 Two-Stage Detectors . 17

2.3.2.2 Single-Stage Detectors . 18

2.4 RGB-D Object Detection . 20

2.4.1 Summary of the Literature and Our Contributions 22

3 METHOD & MODEL . 25

3.1 Overview . 25

3.2 Encoding Depth . 26

3.2.1 Gray-scale Encoding . 26

3.2.2 Jet Color Space Encoding . 26

3.2.3 Disparity Height Angle (DHA) Encoding 27

3.2.4 Extracting and Fusing Features from RGB and Depth Data . . . 28

3.2.5 Object Detection from Fused RGB-Depth Features 28

3.2.6 Preprocessing and Postprocessing 29

3.2.7 Alternative Architectures . 30

3.3 Depth Estimation Network (DEN) . 30

4 EXPERIMENTS . 45

4.1 Depth Estimation Loss Function Experiments 46

4.2 Architecture Experiments . 48

xii

4.3 Depth Estimator Network Experiments 49

4.4 Depth Estimator Training Set Experiments 51

4.5 Datasets Experiments for Object Detection 54

4.6 Implementation Details . 62

5 SUMMARY & DISCUSSION . 65

REFERENCES . 69

xiii

LIST OF TABLES

TABLES

Table 1.1 Bound loss penalizing logic. 7 means non-penalizing, X means

penalizing. ↑ means a large pixel value and ↓ means a small pixel value. . 3

Table 2.1 Method Comparison. x in Number of Model Parameters row rep-

resents the number of parameters in the base network. NA means "not

applicable". D, H, A mean each channel of HHA encoding respectively,

horizontal Disparity, Height Above Ground and Angle With Gravity. UCM

means Ultrametric Contour Map. (+) means separate network input. Early

in Concatenation Type column means concatenation before the RPN mod-

ule. Late in Concatenation Type column means concatenation after the

RPN module. 23

Table 3.1 Selected variable pair for β and θ parameters. 40

Table 4.1 DEN depth metrics results with different coefficients. Result in the

first row is taken from [21]. Our training results of [21] is in the second

row. Other rows show results of the network trained with the proposed

novel loss function. 47

Table 4.2 Object detection results in NYUD2 Dataset for Architecture Experi-

ments. The first coloumn shows only RGB input results of Faster R-CNN.

The next four coloumn show ground truth depth map as additional in-

put. NYUD2 datasets are taken from [17]. Training and test set are same

with official splits. 54

xiv

Table 4.3 Object detection results in NYUD2 Dataset. (*) means ground-

truth inputs. The First row shows only RGB input results of Faster R-CNN.

The next three rows show additional ground truth input types result. The

next six rows show additional estimated input types result. (‘) means that

proposed bound loss is used for generating estimated input types. GDep

means the depth map in grayscale and JDep means the depth map in the

jet color map. Training and test set are same with the official split. 55

Table 4.4 Object detection results in SUN RGB-D Dataset. (*) means ground-

truth inputs. The First row shows only RGB input results of Faster R-CNN.

The next three rows show additional ground truth input types result. The

next six rows show additional estimated input types result. (‘) means that

proposed bound loss is used for generating estimated input types. GDep

means the depth map in grayscale and JDep means the depth map in the

jet color map. 56

Table 4.5 Pascal VOC 2007 Indoor Categories Results. The training set is VOC

2007 official trainval and test set is VOC 2007 official test set. The first

row shows RGB results for Faster R-CNN. Other rows show additional es-

timated input types result. JDep means the depth image in the jet color

space. GDep means the gray-scale depth map. 57

Table 4.6 Pascal VOC 2007 Results. The training set is VOC 2007 official train-

val and test set is VOC 2007 official test set. The first row shows RGB re-

sults for Faster R-CNN. Other rows show additional estimated input types

result. JDep means the depth image in the jet color space. GDep means

the gray-scale depth map. (‘) means that proposed bound loss is used for

generating estimated input types . 58

Table 4.7 Pascal VOC 2007 Results for depth map output of Depth estimation

network training with different datasets. The backbone is VGG-16 and

the additional input type is the gray-scale depth map. The training set is

VOC 2007 the official trainval and test set is VOC 2007 official test set. . . 59

xv

Table 4.8 Number of parameter comparison between Faster R-CNN, Proposed

Architecture, and Previous Works’ Architecture. 61

Table 4.9 Mean Average Precision Comparison between Faster R-CNN, Pro-

posed Architecture and Previous Works’ architecture for the case of us-

ing HHA representation as additional input. * means ground-truth input

type. 61

Table 4.10Mean Average Precision Comparison between Faster R-CNN. Pro-

posed Architecture and Previous Works’ architecture for the case of using

the gray-scale depth map as additional input. * means ground-truth in-

put type. 61

xvi

LIST OF FIGURES

FIGURES

Figure 1.1 Case a shows overview of the Faster R-CNN and case b shows an

overview of our proposed architecture. 3

Figure 2.1 The two tasks in object detection. Image is taken from Pascal

VOC 2007. 8

Figure 2.2 Taxonomy of object detection approaches. 8

Figure 2.3 Garg et al. method’s pipeline. Image is taken from [12]. 10

Figure 2.4 Godard et al. loss functions combination. Image is taken from

[15]. 11

Figure 2.5 MonoGan pipelines. Image is taken from [2]. 12

Figure 2.6 Zhou et al. method pipeline. Image is taken from [52]. 13

Figure 2.7 Kendall et al. method pipeline. Image is taken from [25]. 13

Figure 2.8 Eigen et al. method pipeline. Image is taken from [7]. 14

Figure 2.9 Liu et al. method pipeline. Image is taken from [33]. 15

Figure 2.10 Li et al. method pipeline. E shows encoder module, D shows de-

coder module, MFF shows multi-scale feature fusion module, R shows

refinement module. Image is taken from [21]. 16

Figure 2.11 R-CNN pipeline. 17

Figure 2.12 Fast R-CNN pipeline. 18

xvii

Figure 2.13 Faster R-CNN pipeline. 19

Figure 2.14 YOLO pipeline. 19

Figure 2.15 RetinaNet pipeline [31]. 20

Figure 3.1 Case a shows overview of the Faster R-CNN and case b shows an

overview of the proposed architecture. 25

Figure 3.2 Example colormaps [22]. 27

Figure 3.3 The encoding schemes considered in this paper. Images and

ground truth depth maps are taken from the NYUD2 dataset [42]. . . . 29

Figure 3.4 All architectures skeleton used in experiments. Case a shows

raw depth map joining at Backbone Network Classifier output. Case b

shows extracted depth features from small network joining with Back-

bone Network Classifier output. Case c shows extracted depth fea-

ture from small network joining with Roi Align Module output. Case d

shows extracted depth extracted from Backbone Network joining with

extracted RGB features from separate Backbone Network. 32

Figure 3.5 Visuzalition of bound loss function parts. 33

Figure 3.6 Visualization of Our Loss Function Part 1. 36

Figure 3.7 Visualization of Our Loss Function Part 2. 37

Figure 3.8 Visualization of Our Loss Function Part 1. 38

Figure 3.9 Visualization of Our Loss Function Part 2. 39

Figure 3.10 Loss variable graph vs epoches . 40

Figure 3.11 Patch Depth module pipeline. 43

Figure 4.1 Depth estimation network outputs for images example from Pas-

cal VOC 2007. 50

xviii

Figure 4.2 Depth estimation network outputs for images example from SUN

RGB-D test set. 51

Figure 4.3 Depth estimation network trained with different datasets out-

put results. Images are taken from Pascal VOC 2007. 53

Figure 4.4 Previous works’ model architecture on Faster R-CNN. Case a

represents, late on concatenation on Faster R-CNN. Case b represents

a combination of our architecture and proposed HHA encoding pro-

cessing method in [19] on Faster R-CNN. 60

Figure 4.5 Results visualization examples for improved cases. Images are

taken from SUN RGB-D test split. 62

Figure 4.6 Results visualization examples for failure cases. Images are taken

from SUN-RGBD test split. 62

xix

LIST OF ABBREVIATIONS

SIFT Scale-Invariant Feature Transform

DoG Difference of Gaussian

HOG Histogram of Oriented Gradients

HHA Horizontal Disparity, Height, Angle

DHA Depth, Height, Angle

SVM Support Vector Machine

CNN Convolutional Neural Network

RGB Red, Green, Blue

RGB-D Red, Green, Blue, Depth

mAP mean Average Precision

MS-COCO Microsoft COCO Object Datasets

YOLO You Look Only Once

ROI Region of İnterest

SSD Single Shot Detection

MVS Multi-view Stereo

YOLO You Look Only Once

GAN Generative Adverserial Network

CRF Conditional Random Field

FPN Feature Pyramid Network

ReLU Rectified Linear Unit

UCM Ultrametric Contour Map

DEN Depth Estimation Network

RPN Region Proposal Network

GPU Graphics Processing Unit

xx

CPU Central Processing Unit

RAM Random Access Memory

xxi

xxii

CHAPTER 1

INTRODUCTION

With technological advances, computers have been able to do many tasks that hu-

mans could do. Ordinary tasks that seem simple to humans such as object classifi-

cation/detection/tracking, event detection, modeling objects, etc. are much more

challenging for computers, because humans have a complex neurological system

that contains millions of specialized neurons and almost never-ending learning

process. On the other hand, computers have limited physical such as rams, GPUs

and CPUs and virtual resources like algorithms than humans. Despite all these

challenges, the computer vision field adapts to the tasks that human beings can

do to computers. When these tasks are automated by computers, life becomes

easier and the standard of living can increase enormously. Self-driving cars and

detecting medical diagnosis are some of the examples that increase the quality of

life. Both examples require object detection systems that can directly affect hu-

mans’ life. In other words, improving object detection systems and creating more

accurate object detectors can be vital, when human life is concerned. Even though

other object detection systems don’t have a vital effect on human life, unlike the

previous examples, they have a large impact on daily life. For example, plant/ani-

mal diagnosis and face detection systems can ease the humans’ life. Therefore, the

problem of object detection has been gained the attention of researchers for many

years.

While the pioneer solutions for object detections relied on hand-crafted algorithms,

machine/deep learning-based solutions have become more dominant on this prob-

lem. Convolutional neural networks are one of most used machine learning ap-

proaches for object detection. CNN has an excellent learning capability and what

1

it learns is strongly related to provided inputs. This means that different types of

input can generate more powerful neural networks. In this thesis, we investigate

the CNN-based object detection solutions for different input types such as RGB,

depth map and HHA encoding.

1.1 Motivation and Problem Definition

Over the past few years, RGB-D cameras that are able to capture the color and

depth information simultaneously have become more affordable and available.

These cameras have enabled researchers to use both sources of information for

various problems such as scene labeling [38], object recognition [29], odometry

estimation [26], depth and surface normal estimation [6] and etc. Object detec-

tion is one of the problems that can use depth information and it is well-known

that the depth information, when combined with the color information, helps im-

prove detection accuracy over baseline models that use the only color [19, 17, 3].

What is lesser known is whether depth, as estimated from the color image itself

would improve accuracy and how to integrate it into the detection pipeline. This

question becomes more important as ground-truth depth information is not al-

ways available in object detection datasets, e.g. widely used PASCAL VOC 2007 [9],

2012 [10], MS-COCO [32] datasets do not have it. With the recent developments of

very successful single-image depth estimation methods [15, 30, 21, 51], the use of

estimated depth for object detection has become more interesting. In this thesis,

we explore different aspects of adding estimated depth information into the object

detection pipeline. Specifically, we study the following questions: (i) should depth

be used as it is or is it more useful when transformed into various other modali-

ties such as horizontal disparity, height above ground, surface normal, etc. (ii) how

and when should the depth information be integrated into the object detection

pipeline? Also, we try to enhance the estimated depth map using a new gradient-

based loss function. This loss function checks relations between the RGB image

gradient and the estimated depth map gradient and prevents large differences in

the estimated depth map. Table 1.1 explains penalized and non-penalized cases.

2

Table 1.1: Bound loss penalizing logic. 7 means non-penalizing, X means penaliz-

ing. ↑ means a large pixel value and ↓ means a small pixel value.

Pixels on RGB Gradient Pixels on Depth Gradient Penalizing

↑ ↑ 7

↑ ↓ 7

↓ ↑ X

↓ ↓ 7

1.2 Proposed Methods and Models

Depth Est�mat�on
Network

Depth
Encod�ng

Backbone Network

FEATURE EXTRACTION AND FUSION
DEPTH

ESTIMATION*
OBJECT

DETECTION

Backbone Network

Reg�on Proposal
+ BBox

Class�f�cat�on &
Regress�on

Backbone Network

(a)

(b)

Reg�on Proposal
+ BBox

Class�f�cat�on &
Regress�on

FEATURE EXTRACTION
OBJECT

DETECTION

Figure 1.1: Case a shows overview of the Faster R-CNN and case b shows an

overview of our proposed architecture.

Our work is not the first to integrate estimated/ground-truth depth into object de-

tection. However, to the best of our knowledge, ours presents the most compre-

hensive exploration of the problem. Previous work studied the problem in a lim-

ited way, i.e. they integrated depth only at a later stage and they increased the

number of base object detector parameters at least twice. In contrast, our model

3

(see Figure 1.1 case b) which we obtained after thorough experimentation, com-

bines RGB and depth/HHA features at an early stage (i.e. right after the backbone

network) which yields better detection accuracy with a smaller number of param-

eter compared to previous works. To explore the architecture in figure 1.1 case b,

we detected potential concatenation points that allow integrating the depth map

to RGB images and we carried out experiments for each point. After choosing the

best architecture, we examine how depth map types, which are ground-truth and

estimated, and different depth encodings affect object detection results. These en-

codings include depth map in gray-scale and jet color space and HHA representa-

tion which encodes horizontal disparity, height from the ground and angle of the

surface normal with the direction of gravity by using depth map. We additionally

show that even if camera parameters are unknown, HHA representation can be

obtained from the estimated depth and that it improves detection accuracy. Af-

ter all of these experiments, we evaluate our method on different object detection

datasets including PASCAL VOC 2007, NYU-D2 and SUN RGB-D. Also, we test dif-

ferent DENs and choose the best one, because the estimated depth map strongly

influences HHA encoding quality. For chosen DEN, we also train it with different

combination of indoor and outdoor scenes.

Also, the gradient-based loss function was used in previous depth estimation works

[21, 6, 46]. However, they did not consider a relation between RGB and depth

map gradient changes. By considering this relation, we propose a new loss func-

tion which we call the" bound loss". Bound loss penalizes discrepancies between

RGB and depth map gradients. If a pixel on RGB gradients has large value and

its matching pixel on depth gradients has small value, then bound loss penalizes

this inconsistency based on their differences. The main purpose is to make RGB

and depth compatible. Theoretically, pixels on RGB and depth gradients should be

matches. However, depth sensors such as Kinect v2 and Real Sense 1 may gener-

ate depth maps that have pixels with small shifting errors on object boundaries. In

other words, generated depth maps may have alignment problems with RGB im-

ages and this problem decreases the effectiveness of bound loss.For this reason, the

contribution of bound loss was limited. To overcome this problem, we designed a

learning-based depth estimation module. Similar to bound loss, this module aims

4

to estimate a compatible depth map with RGB image. While bound loss penalizes

estimated depth maps at a pixel level, the proposed learning-based module penal-

izes them at a patch level. We train this model on a set of matched and unmatched

pairs of RGB and depth maps. Specifically, a matched-pair means that RGB patch

and the depth patch come from the same spatial location. An unmatched-pair

means that they come from random, unmatched (different) spatial locations. In

this way, we expected to solve the alignment problem. However, the neural net-

work architecture that we used were not as successful as we expected in discrimi-

nating matched and unmatched patches.

1.3 Contributions and Novelties

Our contributions are as follows:

• We experiment with several state-of-the-art single image depth estimation

methods and investigate which estimator helps object detection the most.

• We propose a simple way of integrating depth into a two-stage object detec-

tion pipeline, which outperforms the previous methods while using a fewer

number of parameters.

• We provide thorough experimentation on whether/how to process and in-

tegrate depth into the object detection pipeline. From our experiments, we

conclude that depth should be concatenated at just before the RPN layer or

the bounding box and classification layers.

• We propose novel loss functions to train the depth estimator, which improves

the results both qualitatively and quantitatively.

1.4 The Outline of the Thesis

In chapter 2, we provide related work and necessary background on object detec-

tion and depth estimation problems.

5

Chapter 3 presents the details of the proposed object detection method/architec-

ture and bound loss. It includes the architecture of our method, depth estimation

network used in this work, different types of depth encoding, details of bound loss

and its integration to other loss functions.

Chapter 4 presents the results of experiments These experiments composed of four

parts: Architecture experiments, depth estimator network experiments, depth es-

timator training set experiments and datasets experiments for mAP performance.

Chapter 5 provides a summary of our work and discussion.

6

CHAPTER 2

RELATED WORK AND BACKGROUND

In this chapter, we provide the necessary information and review related work

about the object detection and depth map estimation problems.

2.1 Introduction

Even if RGB-D cameras are widely used in many tasks such as depth map genera-

tion [21, 6, 2], ground-plane detection [49], human pose estimation [41, 53], object

tracking [35] and etc., there are only a small number of datasets that published

with RGB images and depth map together. Collecting RGB images and depth maps

requires great effort and in case of a missing depth map of RGB images can restrict

training data for the above-mentioned topics. Due to these reasons, depth map es-

timation from a single RGB image is one of the most important problems in com-

puter vision. With the advance of deep learning, the depth map can be estimated

from single RGB images successfully.

Also, object detection is one of the widely studied problems in computer vision

and one of the central problems that need to be addressed in a wide spectrum

of applications. It requires to overcome many challenges like object occlusions,

different scene light conditions, different types of noises and blur. Also, it incor-

porates many tasks like localization, classification, scalability, etc. that are shared

across many different problems in Computer Vision.

The object detection problem is composed of two tasks: localization and classi-

fication. The localization task requires tightly covering all pixels of each object a

7

bounding box. Classification task requires estimating which class these bounding

boxes belong to. Figure 2.1 illustrates these tasks.

Localization

CAT

CAT

Classification

+ =

Object Detection

CAT
CAT

Figure 2.1: The two tasks in object detection. Image is taken from Pascal VOC 2007.

There are different approaches for object detection and we can divide it into two

main groups which are RGB and RGB-D object detection. Most of the object de-

tectors try to detect objects on RGB images, only a few of them use depth/HHA

information together with RGB images. RGB detectors can be divided into two ap-

proaches, which are "classical" that rely on hand-crafted features and "neural" that

employ convolutional neural networks. Also, neural approaches can be divided

into two groups which are two-stage and single-stage detectors. This taxonomy

can be shown in Figure 2.2. We review RGB detection methods in Section 2.3 and

RGB-D methods in Section .

OBJECT DETECTION
 APPROACHES

Classical Neural

Two-Stage Single-stage

RGB Detectors RGB-D Detectors

Figure 2.2: Taxonomy of object detection approaches.

8

2.2 Depth Map Generation

2.2.1 Depth Sensors

Different types of depth sensors are available for different tasks. Even though each

sensor has different characteristics, most popular sensors are as follows:

• Microsoft Kinect [50]

• Intel RealSense [27]

• Asus Xtion

Different versions of these sensors are also available, such as v1, v2 for Microsoft

Kinect and D400, T265 for Intel RealSense. Even if each sensor uses its own method

for generating the depth map, we divided algorithms which are used to generate

depth map in sensors into two groups. The first one is that using IR pattern to

project each pixel to a 2D environment, then applying stereo matching algorithms.

The second method is using time-of-flight (ToF). It aims to find the distance be-

tween the camera and each pixel of the scene using round trip time of the light sig-

nal. These methods provide raw depth and a raw depth map can contain holes or

missing depth pixels because of shadowing or occlusions. To enhance raw depth,

post-processing methods like edge/boundary preserving, hole filling are applied.

Song et al. [42] provides a detailed comparison between these sensors.

2.2.2 Estimation From a Single RGB Image

We can review depth estimation methods in two groups: (i) Unsupervised and (ii)

Supervised learning methods.

2.2.2.1 Unsupervised Learning Methods

Unsupervised learning-based depth estimation models use stereo pair images or

monocular video frames. Each method uses a different combination of objective

9

functions.The following methods are an example of the state-of-the-art unsuper-

vised depth estimation models.

Gard et al. [12] proposed a type of auto-encoder architecture. Their method takes

stereo image pairs. The left image is used for encoding the predicted inverse depth

map and the right image is used for decoding warped RGB image output. Then,

using the left image and warped RGB image, it calculates a reconstruction error.

Figure 2.3: Garg et al. method’s pipeline. Image is taken from [12].

Figure 2.3 shows their methods pipeline.

Godard et al. [15] uses epipolar geometry constraints and enforces the neural

network for producing consistent disparity map from left and right images. For

this purpose, they combine three different loss functions, respectively, appearance

matching loss, disparity smoothness loss, left-right disparity consistency loss. Fol-

lowing formulas show their loss functions:

Final Loss:

C l
d s =

1

N

∑
i , j

∣∣∣∂xd l
i j

∣∣∣e
−

∥∥∥∂x I l
i j

∥∥∥+ ∣∣∣∂y d l
i j

∣∣∣e
−

∥∥∥∂y I l
i j

∥∥∥ (1)

where l is a left image, r is a right image and α is a coefficent.

Apperance Matching Loss:

C l
ap = 1

N

∑
i , j
α

1−SSIM
(
I l

i j , Ĩ l
i j

)
2

+ (1−α)
∥∥∥I l

i j − Ĩ l
i j

∥∥∥ (1.1)

,where SSI M is Stuructural Similarity Index proposed by Wang et al. [47],I l
i j is

10

input image pixel and Ĩ l
i j is its reconstruction.

Disparity Smoothness Loss:

C l
d s =

1

N

∑
i , j

∣∣∣∂xd l
i j

∣∣∣e
−

∥∥∥∂x I l
i j

∥∥∥+ ∣∣∣∂y d l
i j

∣∣∣e
−

∥∥∥∂y I l
i j

∥∥∥ (1.2)

,where ∂x and ∂y are image gradients, d l
i j is depth map pixel.

Left-Right Disparity Consistency Loss:

C l
l r =

1

N

∑
i , j

∣∣∣∣d l
i j −d r

i j+d l
i j

∣∣∣∣ (1.3)

,where d l
i j is disparity map pixel.

Figure 2.4: Godard et al. loss functions combination. Image is taken from [15].

Figure 2.4 shows used loss functions and their combinations as a loss module.This

same module is repeated at each of the four different output scales. C: Convolu-

tion, UC: Up-Convolution, S: Bilinear Sampling, US: Up-Sampling, SC: Skip Con-

nection Image is taken from [15].

11

Aleotti et al. [2] propose a generative adversarial network (GAN) to estimate the

depth map. MonoGan consists of two modules, generator, and discriminator. While

a generator produces depth maps and warps images, discriminator classify images

as real or fake. In this way, the generator tries to fool the discriminator by learning a

better-produced depth map and discriminator learns to improve its ability. Figure

2.5 shows the MonoGan pipeline.

Figure 2.5: MonoGan pipelines. Image is taken from [2].

Zhou et al. [52] propose a joint training method for depth map and camera pose

estimation from unstructured monocular video sequences. Even if they trained

both tasks together, at the inference each task can be run separately. Their network

takes three inputs frame I(x−1), Ix and I(x+1). Depth network only uses Ix frame and

pose networks uses all three frame. Then, outputs of the two networks are used to

reconstruct the target view by employed photometric reconstruction loss. Figure

2.6 shows this method of overview.

Kendall et al. [25] proposes an architecture that process stereo pair images and

aims to learn 3d cost volume. Their network can learn context information using

3-D convolutions and deconvolutions operation applied to the produced cost vol-

ume. They used the soft argmin cost function, which is differentiable and enables

regressing sub-pixel disparity values from 3d cost volume. Figure 2.7 shows their

method overview.

12

Figure 2.6: Zhou et al. method pipeline. Image is taken from [52].

Figure 2.7: Kendall et al. method pipeline. Image is taken from [25].

2.2.2.2 Supervised Learning Methods

Eigen et al. [7] propose an architecture that composes two modules. The first mod-

ule predicts the depth map at the global level and the second module is used to

refine the first module output at the local level. Their method is based on regres-

sion of depth map and they used a scale-invariant loss to prevent scale-depended

errors. Figure 2.8 shows their method of architecture.

Liu et al. [33] treated the depth estimation problem as a continuous conditional

random field (CRF) learning problem. Their method composes of two parts which

are unary and pairwise, respectively. After images are segmented into superpix-

els, the unary network takes these resized superpixels.Then, the neighborhood of

superpixel which is the input of unary network are determined and similarities be-

13

Figure 2.8: Eigen et al. method pipeline. Image is taken from [7].

tween neighborhood superpixels and selected superpixels are found. These simi-

larities are an input of the pairwise network. Finally, negative log-likelihood is cal-

culated by using outputs of two networks. Figure 2.9 shows their method overview.

Li et al. [30] propose a method to create virtual unlimited depth datasets. They use

state-of-the-art structure from motion (Sfm) and multi-view stereo methods (MVS)

to create depth dataset which is called MegaDepth dataset. Also, using semantic

segmentation produced depth datasets are enhanced. After these steps, they train

the depth estimation network using huge depth data.

Junjie Hu et al. [21] propose a network that focuses on object boundaries. Their

network consists of four parts: encoder, decoder, multi-scale feature fusion, and

refinement module. Also, they use a combination of three different loss functions.

The first one is called depth loss that penalizes the difference between ground truth

and estimated depth data. The second one is called gradient losses that penalize

error around edges. The final loss is called normal loss that penalizes difference

normals to scene surface between ground-truth and estimated depth map. Figure

2.10 shows their architecture overview.

14

Figure 2.9: Liu et al. method pipeline. Image is taken from [33].

2.3 RGB Object Detection

2.3.1 Classical Approaches

Classical approaches to object detection [34, 5] included two stages: (i) Region se-

lection or proposal, and (ii) Object classification. For region selection, a window is

slid over the image, or “interesting regions” are identified in the image. These win-

dows or regions are assumed to be likely to include an object or objects in them.

For object classification, classical approaches used hand-designed features extracted

from the selected region and mapped those features to one of the object categories.

As features, many alternatives such as SIFT [34], HOG [5] and for classification,

methods like SVM [4], AdaBoost [11] have been used successfully.

SIFT: Scale-Invariant Feature Transform (SIFT) tries to find feature points of im-

ages, then computes its descriptor using these points. It composes of following

four main parts: (i) Feature point detections, (ii) Feature points localization, (iii)

Orientation assignment and (iv) Feature descriptor generation.

By using the Difference of Gaussian (DoG) detector, subpixels local maxima or

minima are detected and these extrema points are localized by using Taylor series

15

Figure 2.10: Li et al. method pipeline. E shows encoder module, D shows decoder

module, MFF shows multi-scale feature fusion module, R shows refinement mod-

ule. Image is taken from [21].

expansion. Then, directions and magnitudes are assigned to each extrema points

by taking gradients of the region that cover the neighborhood of these points. Fi-

nally, the descriptor is generated from key-points neighborhood orientation his-

togram.

HOG: Histogram of Oriented Gradients(HOG), provides key-points and descriptors

to detect objects. It divides images to the grid and computes the direction of the

gradients of each grid cell. In this way, pixels that have smaller orientation, are

eliminated and pixels that have greater orientation become dominant.

The above-mentioned algorithms, SIFT and HOG, only generate images key-points.

To determine which key-points represent which categories/classes, classifiers are

needed. Support Vector Machine (SVM) [1] is one of the successful classifiers. It

provides separation of features by determining the best hyperplane with maximum

margin.

2.3.2 Neural Approaches

With advances in deep learning, neural approaches have been applied to object

detection with superior performances. It can be divided into two categories, 2.3.2.1

and 2.3.2.2 according to using region proposal network.

16

2.3.2.1 Two-Stage Detectors

This approach consists of two stages which are region proposal and classifying

selected region into objects, respectively. The following models are examples of

state-of-the-art two-stage object detectors.

• R - CNN

• Fast R-CNN

• Faster R-CNN

R-CNN: R- CNN [14] is a pioneer of this two-stage approach. To propose regions, it

uses a selective search algorithm [45] that generates a region which has the highest

probability of containing the object. Selective Search uses bottom-up approaches

which means merging small regions to obtain larger regions. It defines initial re-

gions, then calculates similarities between each region in terms of color, texture,

size, and filling. Using this similarity information, it iteratively merges most sim-

ilar regions. When images become a single region, iteration halts. This region is

called the region of interests, ROI, and the typical number of ROI is 2k. After gen-

erating ROI, backbone network, AlexNet [28] extract features from this ROI. To clas-

sify each ROI, class-specific SVMs are trained and scores these extracted features.

Figure 2.11 shows R-CNN pipelines.

Class1 :Yes/No
Class2 :Yes/No
Class3 :Yes/No
.
.
.
ClassN : Yes/No

ALEX-NET Class Specific SVMSelective SearchInput Image

: Convolutional
 Layer

: Fully Connected
 Layer

Figure 2.11: R-CNN pipeline.

Even if R-CNN performed a great revolution for object detection, It has the follow-

ing disadvantages:

• Complex training procedures

17

• Expensive training and test times

• Non-trainable object proposal algorithm

Fast R-CNN: To overcome some of these disadvantages, Fast R-CNN [13] was pro-

posed. Unlike R-CNN, Fast R- CNN extracted features from an input image and

then each ROI is identified on these extracted features. In other words, ROIs share

a convolutional features map and this operation speeds whole training procedure.

Another change in Fast R-CNN is the ROI pooling layer. It performs a max-pooling

operation to obtain fixes sized feature vector. As a final step, it has two outputs,

respectively class score obtained from softmax function and bounding box coordi-

nate obtained from the related fully connected layer. With all of these changes, Fast

R-CNN simplified training procedure, decreased training and testing times and in-

creased mean average precision. Figure 2.12 shows the Fast R-CNN pipelines.

VGG-16

Selective SearchInput Image

 FCs

Feature Map

ROI
Pooling
Layer ROI

Feautre
Vector

Softmax
Bbox
Regressor

 FCs

For Each
 Roi

Figure 2.12: Fast R-CNN pipeline.

Faster R-CNN: Although Fast R- CNN partially solved the speed problem of R-CNN,

the region proposal algorithm, selective search, still slowed down training and test-

ing speeds. Faster R-CNN [37] solved this problem by replacing selective search

with CNN based region proposals which means that ROI is the output of a train-

able process. The remaining parts of Faster R-CNN are the same as Fast R-CNN.

Figure 2.13 shows Faster R-CNN pipelines.

2.3.2.2 Single-Stage Detectors

Unlike two-stage detectors, they try to detect objects without the object proposal

step. The following models are examples of the state-of-the-art one stage detec-

18

Input Image

. .
.

BackBone Network

. . .

Region Proposal Network

ROI
Pooling
Layer

Backbone
Network
Classifier

Softmax
Bbox
Regressor

 FCs

For Each
ROI

Figure 2.13: Faster R-CNN pipeline.

tors.

• YOLO

• RetinaNet

• SSD

YOLO: YOLO [36] divides an image into square grids and tries to detect the object

by using these grid cells. Each grid cell can detect only one object. This rule can

lead to undetectable objects for specific cases such as more than one object in

one grid, overlapping and too close to each other objects, etc. Also, grid cells are

responsible for predicting a fixed number of bounding boxes and probabilities for

each class. In light of all this information, YOLO is more appropriate for a real-time

object detection task because of its inference speed and simple pipeline. Figure

2.14 shows the YOLO pipeline.

Input Image
(N x N Grid)

Grid Cell

. .
.

 Detection Network
(24 Convolution layers and
 2 Fully-Connetcted layers)

N

N
5B+C

B:# of Predicted
Bounding Box

C: Class Probabilities

Figure 2.14: YOLO pipeline.

19

RetinaNet: RetinaNet [31] is a simple network that contains two main parts, back-

bone, and subnets. Unlike other object detection models, the backbone network

is Feature Pyramid Networks [?]lin2017feature), called as FPN. FPN includes fea-

tures at different scales and combines these features into the pyramid shape. In

this way, low-level features are not only responsible for generating high-level fea-

tures, but also contribute directly classification and bounding box regression task.

It is shown in case b of Figure 2.15. Also, there two subnets for classification and

bounding box regression tasks. Classification and Bounding Box Subnet contains

four convolution layers followed by RELU, separately. Focal loss is used for clas-

sification and L1 loss is used for bounding box regression. Figure 2.15 shows the

RetinaNet pipeline.

Figure 2.15: RetinaNet pipeline [31].

SSD: Single Shot Detection (SSD) is designed for real-time object detection. It con-

sists of two parts: (i) Feature Extraction and (ii) Object Detection using the ex-

tracted feature. For extracting features from images, it uses the VGG-16 network

as a backbone. Then, these features pass through five convolutional layers. The

output of each layer directly connected to the final layer of the SSD network. This

means it uses multi-scale feature maps. While SSD decreases inference time, it

performs worse than the two-stage object detector for small scale objects.

2.4 RGB-D Object Detection

By definition and owing to perspective projection, compared to RGB images, depth

information can provide more cues about the local surface structure of the objects

20

as well as the layout of the scene. An object detector can utilize both cues for both

determining the regions likely to contain objects as well as in classifying regions

into objects. This has been demonstrated by many studies.

With the introduction of R-CNN [14], many studies attempted integrating depth

into deep object detectors [3, 17, 19]. The work by Gupta et al. [17] was one of the

first to do so. They utilized the depth information for extending both the region

proposal stage as well as the classification stage. To be specific, they used RGB-

D images to compute 2.5D contours from which they estimated regions that are

likely to contain objects. For the object classification stage, they first trained two

CNN models for feature extraction; one for extracting features from the RGB in-

formation and one from the depth information. Then, they trained a linear SVM

for classifying these features into objects. Another crucial contribution of Gupta

et al. was to use horizontal disparity (D), height from the ground (H) and angle of

the surface normal with the direction of gravity (A) as the input to the feature ex-

tracting CNN model. They demonstrated that this performs better than providing

depth directly.

It has also been demonstrated by Cao et al. [3] that depth estimated from an RGB

image can be used to improve object detection from that RGB image, without re-

lying on any depth detector. They used Conditional Random Field to estimate the

depth of the scene from the RGB image and train two independent CNN networks

to classify the regions using the RGB inputs and the estimated depth input. For

encoding the depth information, they directly provided the logarithm of the esti-

mated depth and refrained from using surface normals or D, H and A encoding

used by [17], claiming that such cues are not informative since (i) the estimated

depth is approximate and noisy, and (ii) information about the camera is required

for some of these cues.

Hou et al. [19] provided a very informative analysis of the different mechanisms

for integrating depth information into a deep object detector. Namely, they inves-

tigated the importance of the different visual inputs (RGB, depth, angle, height,

contour, etc.) as well as the different levels (input-level vs. feature-level) for com-

bining RGB and depth information for object detection. They argued and demon-

21

strated that (i) color and depth should not be combined at the input level since

they carry different types of information, and (ii) processing D, H and A separately

with separate networks perform better than processing DHA together with a single

network.

2.4.1 Summary of the Literature and Our Contributions

Looking at the existing studies, we see that all previous works increase the number

of parameters at least twice to integrate depth/HHA encoding. Also, their base

object detection network is not the state-of-the-art method.

Table 2.1 shows the common properties of RGB-D object detector networks.

22

Table 2.1: Method Comparison. x in Number of Model Parameters row represents

the number of parameters in the base network. NA means "not applicable". D, H,

A mean each channel of HHA encoding respectively, horizontal Disparity, Height

Above Ground and Angle With Gravity. UCM means Ultrametric Contour Map.

(+) means separate network input. Early in Concatenation Type column means

concatenation before the RPN module. Late in Concatenation Type column means

concatenation after the RPN module.

[3] [17] [19] [19] Ours

Base

Network

Fast

R-CNN
R-CNN R-CNN

Fast

R-CNN

Faster

R-CNN

Backbone

Network
VGG-16 VGG-16 AlexNet VGG-16

VGG-16

or

ResNet-101

Number of

Model

Parameters

2x 2x ≥ 5x ≥ 4x ≤ 2x

Model

Input Type

RGB

+

Gray-scale DepthMap

RGB

+

DHA

RGB

+

D + H + A + UCM

RGB

+

D + H + A

RGB

+

(Depth or DHA)

Concatenation

Type
Late Late Early Early Early

Tested RGB

Datasets
VOC 2007 None None None VOC 2007

RGB Datasets

mAP Improvement
X NA NA NA 7

Tested RGB-D

Datasets

NYUD2

B3DO
NYUD2

NYUD2

SUN RGB-D
NYUD2

NYUD2

SUN RGB-D

RGB Datasets

mAP Improvement
X X X X X

24

CHAPTER 3

METHOD & MODEL

In this chapter, we first describe our proposal on how to integrate depth into the

common object detection pipeline. Then, we present, bound losses, our novel loss

functions for training single-image depth estimation models.

3.1 Overview

...

Depth Estimation
Network

Depth
Encoding

CONV2D

Trainable

Fixed

W1

H1

3

(W
2,

 H
2,

 N
2)

(W
2,

 H
2,

 N
2)

(W2, H2, 2N2) (W2, H2, N2)

W1

H1

...

Backbone Network

...

Backbone Network

FEATURE EXTRACTION AND FUSION*
DEPTH

ESTIMATION*
OBJECT

DETECTION

Region Proposal
+ BBox

Classification &
Regression

...

Backbone Network

(a)

(b)

Region Proposal
+ BBox

Classification &
Regression

FEATURE EXTRACTION
OBJECT

DETECTION

Figure 3.1: Case a shows overview of the Faster R-CNN and case b shows an

overview of the proposed architecture.

As illustrated in Figure 3.1, our method is composed of three main steps:

• Depth estimation (Section 3.3).

25

• Extracting and fusing features from the RGB image and estimated depth (Sec-

tion 3.2.4).

• Object detection from fused RGB and depth features (Section 3.2.5).

3.2 Encoding Depth

Similar to color, depth can be encoded in different ways, which significantly affect

the overall performance when they are used (see, e.g. [17]). In this section, we

describe the widely used depth encoding schemes which we investigated in the

paper – see also Figure 3.3 for how these encodings reflect different aspects of the

3D structure.

3.2.1 Gray-scale Encoding

In this encoding, the depth values are converted to gray-scale intensity values lin-

early as follows:

g (d) = d −dmi n

dmax −dmi n
×255, (31)

where dmi n , dmax refer to the minimum and maximum depth values of all the

scenes in the dataset.

3.2.2 Jet Color Space Encoding

People perceive colorful images better than gray-scale images, so there are many

different colormaps as seen in figure 3.2. Each colormap has different character-

istics and is used for different purposes. Also, it is known that encoding depth in

the jet color space yields better performance for many 3D object recognition tasks

[8, 44]. This is expected since the jet color space provides a bigger range for the

depth values and makes changes in the depth more distinctive (see also Figure 3.3).

For conversion into the jet color space, the grayscale encoding values are used as

indices for a jet colormap with 256 entries.

26

Sequential colormaps
Greys

Purples
Blues

Greens
Oranges

Reds
YlOrBr
YlOrRd

OrRd
PuRd
RdPu
BuPu
GnBu
PuBu

YlGnBu
PuBuGn

BuGn
YlGn

Diverging colormaps
PiYG

PRGn

BrBG

PuOr

RdGy

RdBu

RdYlBu

RdYlGn

Spectral

coolwarm

bwr

seismic

Qualitative colormaps
Pastel1

Pastel2

Paired

Accent

Dark2

Set1

Set2

Set3

tab10

tab20

tab20b

tab20c

Miscellaneous colormaps
flag

prism
ocean

gist_earth
terrain

gist_stern
gnuplot

gnuplot2
CMRmap

cubehelix
brg
hsv

gist_rainbow
rainbow

jet
nipy_spectral

gist_ncar

Figure 3.2: Example colormaps [22].

3.2.3 Disparity Height Angle (DHA) Encoding

Recently, it has been shown that explicitly encoding horizontal disparity (D), height

(with respect to the ground – denoted with H) and angle with the vertical direction

(A) yields better depth representations [17]. DHA encoding, also called HHA in the

literature, can be formally defined as follows:

D = px −pc
x , (32)

where px is the x coordinate of pixel p, and pc is the corresponding pixel in camera

c.

As for H (the height from the ground), since it is tricky to obtain the knowledge

about the ground, the height from the lowest point in the scene is usually taken

[16].

To compute angle with gravity (A), an iterative procedure is used as in[16]: An ini-

tial estimate for the gravity direction is taken as the vertical axis, with respect to

which all surface normals are clustered into surfaces that are approximately paral-

27

lel or orthogonal to the gravity direction. After clustering, a new gravity direction

estimated with respect to the parallel and orthogonal clusters. These steps are iter-

ated to minimize so that the gravity direction is as parallel as possible to the parallel

surfaces and as orthogonal as possible to the orthogonal surfaces.

Before calculating the DHA encoding, the grayscale depth encoding is zero-centered

and normalized with a standard deviation.

3.2.4 Extracting and Fusing Features from RGB and Depth Data

The RGB input (I) and the estimated depth encoding (D) are separately fed to a

backbone network (X to be specific), yielding two sets of features,φ(I) ∈RW2×H2×N2

and φ(D) ∈ RW2×H2×N2 . The concatenation φ(I)⊕φ(D) is passed through a convo-

lutional layer to reduce dimensionality to W2 ×H2 ×N2.

3.2.5 Object Detection from Fused RGB-Depth Features

In this work, we use Faster R-CNN, which is one of the state-of-the-art two-stage

object detectors; however, our contributions are not specific to Faster R-CNN and

they can be integrated into any object detector that is based on features extracted

from a backbone network. We use the region proposal network and the bounding

box regression & classification stages as they are (except for the alternative archi-

tectures in the ablation experiments), and therefore, we only briefly remind these

stages here.

In Faster R-CNN, the first stage, Region Proposal Network, estimates possible ob-

ject regions with respect to a fixed set of bounding box configurations (called an-

chor boxes). The regions passing this first stage are then classified into object cat-

egories and their bounding boxes are fine-tuned with respect to the region-pooled

features.

28

3.2.6 Preprocessing and Postprocessing

After the pre-processing step, we made small changes in the original implemen-

tation. Point cloud’s z value is equal to the thresholded ground-truth depth map:

Zi , j =

T, if

h∑
i=0

w∑
j=0

Di , j < T

Di , j , otherwise

(33)

where T is threshold value and equal to 100 in the original implementation, D is

depth map, Z is point cloud’s z value, h is depth map height and w is depth map

width. We set this threshold T value to 200 for creating meaningful images visually.

Also, height above ground channel is normalized with its maximum pixel value and

then scaled 0-255 range. To create HHA encoding from estimated depth maps, if

the camera parameter is unknown for RGB input image, Microsoft Kinect camera

parameters are used in point cloud estimation step of HHA algorithm.

Example images for this encoding are shown in the last row of figure 3.3.

Input

Grayscale (GT)

Grayscale
(Estimated)

Jet-scale (GT)

Jet-scale
(Estimated)

DHA (GT)

DHA
(Estimated)

Figure 3.3: The encoding schemes considered in this paper. Images and ground

truth depth maps are taken from the NYUD2 dataset [42].

29

3.2.7 Alternative Architectures

In addition to the architecture outlined in Section 3.1, we also considered and ex-

tensively evaluated alternative architectures (see Figure 3.4). The alternative archi-

tectures include:

• Integrating depth information just before the bounding box classification &

regression networks (Figures 3.4(a) and (b)). We tested this in two ways:

1. Directly providing depth encoding as it is, without any feature extrac-

tion (Figure 3.4(a)). To match the sizes, we first resize depth map to

64×64.

2. Providing extracted features from depth (Figure 3.4(b)). This is achieved

by three convolutional layers, each followed by ReLU non-linearity and

batch normalization [23]. To arrange the sizes, the activations after

these operations are resized using linear interpolation.

• Integrating depth information before the backbone network classifier (Fig-

ure 3.4(c)). This is achieved by three convolutional layers, each followed by

ReLU non-linearity and batch normalization [23]. To arrange the sizes, the

activations after these operations are resized using linear interpolation.

3.3 Depth Estimation Network (DEN)

In this thesis, the proposed depth estimation method by Hu et al. [21] was used and

object detection experiments were done with this network outputs. Besides, we

proposed the novel loss function, called bound loss, to enhance estimated depth.

Similar to the approach of Cao et al. [3], we estimate depth from the RGB images

and aim to improve object detection with the estimated depth. For estimating the

depth map from a single RGB image, we adapt and extend the deep network pro-

posed by Hu et al. [21]. They used a combination of three different loss functions

mentioned in section 2.2.2.2. For proposed loss function,bound loss, the formula

30

is as follows:

Lb =α×|h(D)|×σ(−
√

h(R)2 +h(B)2 +h(G)2)

β
−θ) (34)

where function h() is gradient operation, σ() is sigmoid function, D is estimated

depth map, R,G,B are image channels and α, β, θ are fine-tune parameters. We

used Sobel operator for extracting image gradients. dx and dy are outputs of Sobel

operator, so we have two loss functions for horizontal and vertical gradients.

First of all, to understand how proposed loss function works, ground-truth depth

images were used instead of estimated depth and fine-tune parameters are chosen

a small number, α = 1, β = 0.125, and θ = 1. Figure 3.5 shows a visualization of

bound loss with corresponding depth and RGB images.

31

RPN
Module

Base
Feature

Proposal
Target
Module

Roi
Roi
Align
Module

Roi

Backbone
Network
Classifier

Pooled
Feature

Pooled
Feature

Bbox
Prediction

Classification

Bbox
Coordinate

Classification
Score

FASTER R-CNN

Backbone
Network

C : Conv2D
R : Relu
B : Batch Normalization
M : Max-Pooling2D

: Trainable

: Non-Trainable

(a)

RPN
ModuleBase

Feature

Proposal
Target
Module

Roi
Roi
Align
Module

Roi

Backbone
Network
Classifier

Pooled
Feature

Pooled
Feature

Bbox
Prediction

Classification

Bbox
Coordinate

Classification
Score

FASTER R-CNN

Backbone
Network

C R B BC RR BC
Flatten

(b)

RPN
Module

Base
Feature

Proposal
Target
Module

Roi
Roi
Align
Module

Roi

Backbone
Network
Classifier

Pooled
Feature

Pooled
Feature

Bbox
Prediction

Classification

Bbox
Coordinate

Classification
Score

Backbone
Network

Backbone
Network

Base
Feature

Conv2D

Resize Flatten

1 x 4096
64 x 64

Resize

600 x 600

Inter
polation

1 x 300 x 300
1 x 150 x 150

1 x 75 x 75 1 x 64 x 64
1 x 4096

RPN
ModuleBase

Feature

Proposal
Target
Module

Roi
Roi
Align
Module

Roi

Backbone
Network
Classifier

Pooled
Feature

Pooled
Feature

Bbox
Prediction

Classification

Bbox
Coordinate

Classification
Score

Backbone
Network

C R B BC RR BC

Resize

600 x 600

Inter
Polation

128 x 300 x 300

256 x 150 x 150 512 x 75 x 75

M

512 x 15 x 15

512 x 7 x 7

CONV2D

(c)

: Possible Concatenation Poınt

(d)

Figure 3.4: All architectures skeleton used in experiments. Case a shows raw depth

map joining at Backbone Network Classifier output. Case b shows extracted depth

features from small network joining with Backbone Network Classifier output.

Case c shows extracted depth feature from small network joining with Roi Align

Module output. Case d shows extracted depth extracted from Backbone Network

joining with extracted RGB features from separate Backbone Network.

32

Depth

Depth
gradient

in x

RGB

RGB
gradient

in x

Bound Loss
in x

Figure 3.5: Visuzalition of bound loss function parts.

33

Ld = Lb =α×|h(D)|×σ(−
√

h(R)2 +h(B)2 +h(G)2)

β
−θ) (35)

As shown in figure 3.5, bound loss aims to penalize pixels where depth and RGB

gradient do not overlap. Theoretically, the expected behavior is that depth and

RGB gradients overlap. However, they may not overlap, because used depth data is

saved with Kinect v-2 and this depth sensor is not very sensitive especially in case

of objects’ border pixels. Therefore, bound loss enhances the estimated depth map

less than expected. Also, another issue is the thickness of gradient pixels. Gradient

pixels in depth and RGB images can be in different thickness and this can leads to

penalizing of truly estimated pixels. That is why we added to fine-tune parameters

and tried to get non-penalized loss visualization of ground-truth depth data which

means loss function visualization consists of only black pixels.

Optimizing β and θ parameters require a lot of time if we try to optimize by hand.

Instead of this, we trained differentiable parameters to find the best value of these

parameters. In other words, we assigned our loss function value to a differentiable

variable and tried to minimize it using the Adam optimizer. We have chosen an

initial value of these parameters as 0.5 for both variables, and calculated our loss

function value without α parameters. α parameter is only important when this

loss function is integrated to other loss functions. Also, the optimizer could choose

α parameter as zero to minimize our loss functions value. To avoid this, we elim-

inated this parameter to optimize our loss function parameters. For this training

process, we tried to select the same settings with the actual depth estimator net-

work. We used 5 epoch using Adam optimizer with a learning rate of 0.001. After

this optimization of parameters, bound loss slightly improved the depth metrics.

The results are presented in section 4.1.

Figure 3.10 shows the loss value vs epoch graph. As shown in this figure, we can

minimize loss value by training differentiable parameters. Only one epoch is enough,

more thane one epochs increase loss value. As shown in formula 311, the min-

imum value of our loss is zero and optimizing variable can reach the minimum

value of our loss function at the end of the first epoch. We choose two different

pairs of parameters that proximate to zero. These variables are shown in table 3.1.

34

There is no easy way to choose α parameter, so we tried different values. Related

results are presented experiment section 4.1.

35

RGB Images

Depth Images

Depth
Gradient

dx

RGB
Gradient

dx

Figure 3.6: Visualization of Our Loss Function Part 1.

36

Our Loss dx
with parameter

β= 0.5
θ = 0.5

Our Loss dx
with parameter

β= 0.007
θ =−0.183

Our Loss dx
with parameter
β= 0.0019
θ = 0.1481

Figure 3.7: Visualization of Our Loss Function Part 2.

37

RGB Images

Depth Images

Depth
Gradient

dy

RGB
Gradient

dy

Figure 3.8: Visualization of Our Loss Function Part 1.

38

Our Loss dy
with parameter

β= 0.5
θ = 0.5

Our Loss dy
with parameter
β= 0.0015
θ =−0.1115

Our Loss dx
with parameter
β= 0.0021
θ = 0.1468

Figure 3.9: Visualization of Our Loss Function Part 2.

39

Table 3.1: Selected variable pair for β and θ parameters.

β dx θ dx β dy θ dy

0.0007 - 0.183 0.0015 - 0.1115

0.0019 0.1481 0.0021 0.1468

Figures 3.6,3.7,3.8 and 3.9 show a visualization of our loss function parts. The first

row of part 1 figures shows our loss function without fine-tuneβ and θ parameters.

Without fine-tuning, our loss function tends to penalize some of the edges of the

scene. To prevent this, we choose different values for β and θ parameters where

loss function mean value is near to zero.

Figure 3.10: Loss variable graph vs epoches

Together with proposed the novel loss function, bound loss, used loss functions

are as follows:

l depth = 1

n

n∑
i=1

F (ei) (36)

40

ei =
∥∥di − gi

∥∥
1 (37)

where d is estimated depth map, g is ground-truth depth map.

F (x) = ln(x +α) (38)

l normal =
1

n

n∑
i=1

1−
〈

nd
i ,ng

i

)√〈
nd

i ,nd
i

〉√(
ng

i ,ng
i

)
 , (39)

where h<·,·> denotes the inner product of vectors.

lgrad = 1

n

n∑
i=1

(
F (∇x (ei))+F

(∇y (ei)
))

, (310)

where ∇x is the derivative of ei computed at the i th pixel.

lboundx =
1

n

n∑
i=1

|∇x(ei)|×σ(−
√
∇x(ri)2 +∇x(bi)2 +∇x(gi)2)

β
−θ) (311)

lboundy =
1

n

n∑
i=1

|∇y (ei)|×σ(−
√
∇y (ri)2 +∇y (bi)2 +∇y (gi)2)

β
−θ) (312)

L = l depth +λl grad +µl normal +α(lboundx + lboundy) (313)

We train DEN with a dataset composed of indoor and outdoor scenes. The NYU-

D2 dataset [42] is used as the indoor scenes and Make3D-2 [39] and KITTI datasets

as the outdoor scenes.

As the backbone, we use the Sequence and Excitation Network (SeNet-154) [20].

The network is trained using Adam optimizer for 20 epochs with a learning rate of

0.0001.

41

In addition to this depth estimation network, we also tried the learning-based depth

estimation module. The main purpose of this depth module is replacing all auxil-

iary loss function with a learning-based approach. The module run as follows:

• Divide RGB and depth images into 10×10 patches.

• Calculate the gradient of both RGB and depth images.

• Each gradient is the input of the two fully connected layers contains 120 and

60 neurons respectively, ReLU and Batch Normalization.

• Concatenate output of each stream.

• The final layer is passed through one fully connected layer which has only

one neuron for binary classification and the sigmoid function.

For this module, we created the same number of positive and negative examples.

Positive examples mean 10× 10 matched patches on the depth and RGB images

gradient. Negative examples mean 10 × 10 non-matched patches on the depth

and RGB images gradient. For creating negative examples, the 10 × 10 patch is

randomly selected on the RGB image gradient, then any patches that don’t have

the same coordinates with the patch on RGB images gradient and have pixel-wise

difference between the match case patch greater than a chosen threshold can be

selected. However, module loss couldn’t converge and it didn’t learn match and

non-matched cases together. Figure 3.11 shows this module’s pipeline.

42

Depth Patch

 Gradient

RGB Patch

 Gradient

FC Layers

ReLU
BatchNorm

ReLU
BatchNorm

ReLU
BatchNorm

ReLU
BatchNorm

sigmoid

Figure 3.11: Patch Depth module pipeline.

43

44

CHAPTER 4

EXPERIMENTS

In this section, we present our experimental results organized in the following five

parts:

a-) Depth Estimation Loss Function Experiments: We tried different coeffi-

cient for combining our loss function with existing loss functions mentioned

in 3.3. We proposed result of each tested coefficient with different depth es-

timation metrics.

b-) Architecture Experiments: In this set of experiments, we explored several

different ways of integrating the depth map into the object detection pipeline.

Specifically, we tried adding the raw depth information in an early or late

stage; and processing the depth information before integrating it into the

pipeline.

c-) Depth Estimator Network Experiments: We tried different state-of-the-art

depth estimator models to explore best-estimated depth map and HHA en-

coding for object detection and observe how these networks would affect the

results.

d-) Depth Estimator Training Set: We trained chosen depth estimator network

with different combinations of different indoor and outdoor depth datasets

and observed how training set affects object detection results.

e-) Datasets Experiments for Object Detection: Based on the best settings we

obtained in the first three parts (a,b and c), we evaluated object detection

results for different datasets.

45

4.1 Depth Estimation Loss Function Experiments

In this section, we tried different values for the α to find its optimal value.

46

Table 4.1: DEN depth metrics results with different coefficients. Result in the first row is taken from [21]. Our training results of [21] is in

the second row. Other rows show results of the network trained with the proposed novel loss function.

Network δ1 δ2 δ3 ABSREL MAE RMSE MSE LOG10 P R F1

[21]1 0.866 0.975 0.993 0.115 - 0.530 0.281 0.050 0.644 0.508 0.562

[21]2 0.866 0.973 0.992 0.116 0.312 0.530 0.281 0.050 0.656 0.502 0.562

α = 20000 0.371 0.665 0.839 0.377 0.995 142.9 204.4 0.163 1 0.114 0.198

α = 200 0.848 0.971 0.992 0.121 0.332 0.559 0.313 0.053 0.661 0.462 0.538

α = 100 0.860 0.973 0.992 0.119 0.322 0.545 0.297 0.051 0.660 0.488 0.554

α = 10 0.8654 0.973 0.992 0.115 0.314 0.538 0.289 0.050 0.661 0.492 0.558

α = 8.5 0.866 0.972 0.991 0.115 0.310 0.530 0.281 0.05 0.657 0.502 0.563

α = 7.5 0.865 0.973 0.993 0.117 0.312 0.528 0.278 0.050 0.654 0.500 0.562

α = 6.5 0.8633 0.972 0.992 0.116 0.315 0.539 0.291 0.050 0.659 0.495 0.559

α = 5 0.865 0.972 0.991 0.116 0.312 0.538 0.289 0.050 0.659 0.499 0.562

α = 2 0.864 0.973 0.992 0.117 0.315 0.536 0.287 0.050 0.659 0.495 0.560

α = 1 0.865 0.972 0.992 0.115 0.310 0.532 0.283 0.498 0.658 0.500 0.562

47

α is the proposed loss function coefficient of integration to others loss functions.

Therefore larger and smaller values harm the network and prevent learning mean-

ingful depth information. However, when it is chosen proper values such as 8.5

or 7.5, it improves some depth estimation metrics such as absolute relative error,

mean average error, root mean square error.

From these experiments, we have chosen alpha as 7.5 and this network was used

for next object detection experiments in section 4.5.

4.2 Architecture Experiments

Here we tried to find out the best of the way of using the depth information to im-

prove the end result (i.e. object detection). Also, we wanted to see how depth map

with and without extracted features affect the performance of Faster R-CNN. For

this purpose, we identified potential concatenation points, shown in Figure 3.4 as

red circles. These points are respectively, the output of the backbone network, the

output of ROI Align Module and output of backbone network classifier. Then, we

tried to combine pooled RGB image feature, size of N x 4096 where N is a number

of predicted objects, with ground truth depth maps which are resized to 64 x 64

and flatten to 1 x 4096, without any feature extraction step. Each predicted object

shares the same resized and flattened depth vector, so the final feature vector size is

N x 8192. This case is shown in figure 3.4 case a. For this case, mAP of Faster R-CNN

is equal to 0, shown in the second row of Table 4.2. Therefore, we concluded that

concatenation of depth map without feature extraction harms the performance of

Faster R-CNN dramatically.

Then, we tried to extract depth maps’ features with a small network and these ex-

tracted features are concatenated at the same point as in case a. This small network

consists of three Conv2D - Relu - Batch Normalization blocks. Conv2D layers’ the

number of filters is set to 1 for comparing the effect of feature extraction. Like in

case a, extracted features are interpolated to size 64 x 64, flattened to 1 x 4096 and

concatenated with the pooled feature of RGB images. The final concatenated vec-

tor size is N x 8192. This case is shown in figure 3.4 case b. For this case, depth

map doesn’t improve the performance of Faster R-CNN and Faster R-CNN per-

48

forms nearly the same as when input is consist of an only RGB image, shown in

the third row of Table 4.2

Then, we changed the feature extracted network used in case a and b and concate-

nation point. We increased the Conv2D layers’ number of filters to 128,256 and

512, respectively and adding the max-pooling layer. The output of this network is

interpolated to 7 x 7 for matching with the size of pooled RGB image features. Also,

we tried to concatenate features at the output of Roi Align Module. Concatenated

features have 1024 x 7 x 7 and they reduced to size 512 x 7 x 7 for matching with size

of pre-trained backbone network classifier. This case is shown in figure 3.4 case c.

In this case, mAP of Faster R-CNN dropped by nearly 9%, shown in the fourth row

of Table 4.2

By considering these experiments and previous works [3, 17, 19], we concluded

that (i) the depth information should be integrated early into the network, and (ii) it

should be processed like RGB images. Therefore, we tried to extract depth features

using the VGG-16 network. We have two separate VGG-16 networks as a backbone

and features obtained from these two networks are concatenated. We chose early

concatenation because we wanted to minimize the number of parameters. Then,

we add the Conv2D layer for matching the pre-trained backbone network classifier

size. This case is shown in figure 3.4 case d. In this case, the depth map improves

Faster R-CNN performance, shown in the last row of Table 4.2.

4.3 Depth Estimator Network Experiments

Widely used Pascal VOC and MS-COCO provided do not provide ground-truth depth.

Therefore, if the depth is to be used, it should be estimated from single RGB images.

For this purpose, we tested the performance of different state-of-the-art depth es-

timation networks for depth map estimation and creating HHA encoding from the

estimated depth map. Tested methods are respectively [30], [15], [21], [51]. Figure 4

shows the input image, ground truth depth map and estimated depth map of each

network. For all networks, official pre-trained models are used. For [15], case d, we

tested indoor the pre-trained model.

49

Input

MonoDepth [15]

MegaDepth [30]

Boundary
Depth [21]

T2Net [51]

Figure 4.1: Depth estimation network outputs for images example from Pascal VOC

2007.

Also, we tried to generate HHA images from the gray-scale depth map by train-

ing "Image-to-Image Translation with Conditional Adversarial Networks", [24]. We

used NYUD2 RGB-D dataset as the training set and tested results with Pascal Voc

2007 images. We observed that generated HHA images have great noises and arti-

facts. Although we enlarged training sets, these noises and artifacts did not disap-

pear.

Reference [21] produces the best results as seen in Figure 4, case e. It has loss func-

tion related to object boundaries and this is crucial for generating HHA encod-

ing. When generating HHA encoding from all other networks, outputs are visually

senseless.

50

Input

Ground-Truth
Depth

MonoDepth [15]

MegaDepth [30]

Boundary
Depth [21]

T2Net [51]

Figure 4.2: Depth estimation network outputs for images example from SUN RGB-

D test set.

4.4 Depth Estimator Training Set Experiments

After choosing the best depth estimator network, we observed the estimated depth

map effect on Faster R-CNN’s performance. Even if they contribute Faster R-CNN’s

mAP on SUN RGB-D, NYU-D2 and Pascal VOC 2007 Indoor Categories, shown

in table 4.3, 4.4, 4.5, they drop mAP of Faster R-CNN on whole Pascal VOC 2007

dataset, shown in table 4.6. this could be related to the training set of chosen depth

estimator network, because of the official pre-trained model trained with Nyu-d2

datasets which consist of an only indoor scene. Therefore, we trained it with dif-

ferent indoor and outdoor datasets to see how training datasets affect Pascal VOC

2007 object detection result. Used datasets are respectively, NYUD2 for indoor

scenes, Make3D [39],[40] and KITTI for outdoor scenes. By using these datasets,

we trained 4 different combinations and they are as follows:

1. NYUD2 official training split:

• It includes 249 different scenes and 45k RGB-D indoor images from

51

NYUD2 dataset

2. NYUD2 official training split + Make3D-2 training and test split

• It includes 249 different scenes and 498 RGB-D indoor images from

NYUD2 dataset and 374 different scenes and outdoor images from Make3D-

2 datasets. To maintain a balance of indoor-outdoor data distribution,

we chose two random images for each NYUD2 scene.

3. KITTI raw dataset

• It includes 24k RGB-D outdoor images from KITTI raw dataset.

4. KITTI raw dataset + NYUD2 official training split

• It includes 24k RGB-D outdoor images from KITTI raw dataset and 45k

indoor images from NYUD2 datasets.

Visual results are shown in Figure 4.3 and object detection results are shown in

Table 4.7. Even if training set of depth estimator network enlarged with different

outdoor datasets, estimated depth maps couldn’t improve Pascal VOC 2007 object

detection result.

52

Input Case 1 Case 2 Case 3 Case 4

Figure 4.3: Depth estimation network trained with different datasets output re-

sults. Images are taken from Pascal VOC 2007.

53

4.5 Datasets Experiments for Object Detection

After choosing the best architecture and depth estimator network, different datasets

with different ground-truth and estimated input types, gray-scale depth map, depth

map in the jet color space, HHA encoding, are used for observing the performance

of RGB-D object detection. Figure 3.3 shows these input types. We choose VGG-16

[43] and ResNet-101 [[18] as the backbone, and faster-R CNN as the base object

detector. NYUD2, SUN RGB-D, and PASCAL VOC 2007 datasets are used.

Table 4.2: Object detection results in NYUD2 Dataset for Architecture Experiments.

The first coloumn shows only RGB input results of Faster R-CNN. The next four

coloumn show ground truth depth map as additional input. NYUD2 datasets are

taken from [17]. Training and test set are same with official splits.

Base Network Case a Case b Case c Case d

bathtub 30.0 0.0 27.2 18.5 28.8

bed 60.0 0.0 58.9 56.1 65.6

b.shelf 41.8 0.0 41.0 37.1 37.1

box 2.7 0.0 2.4 1.8 3.1

chair 41.1 0.0 43.9 38.3 44.6

counter 40.0 0.0 37.9 30.9 42.3

desk 11.6 0.0 13.0 11.6 15.7

door 23.3 0.0 22.3 20.4 22.4

dresser 36.1 0.0 38.4 36.2 41.8

g.bin 27.8 0.0 23.7 23.5 24.9

lamp 29.7 0.0 31.3 28.2 33.9

monitor 53.6 0.0 50.6 51.7 49.8

n.stand 27.0 0.0 32.4 30.8 35.9

pillow 28.8 0.0 30.0 28.1 29.2

sink 30.3 0.0 28.3 28.1 33.7

sofa 48.0 0.0 49.6 41.0 51.3

table 25.1 0.0 27.8 22.0 31.5

t.vision 42.9 0.0 39.5 33.5 39.2

toilet 56.0 0.0 56.4 55.3 55.5

mean 34.5 0.0 34.4 31.2 36.1

54

Table 4.3: Object detection results in NYUD2 Dataset. (*) means ground-truth inputs. The First row shows only RGB input results of

Faster R-CNN. The next three rows show additional ground truth input types result. The next six rows show additional estimated input

types result. (‘) means that proposed bound loss is used for generating estimated input types. GDep means the depth map in grayscale

and JDep means the depth map in the jet color map. Training and test set are same with the official split.
b.

b
o

n
e

b
at

h
tu

b

b
ed

b.
sh

el
f

b
ox

ch
ai

r

co
u

n
te

r

d
es

k

d
o

o
r

d
re

ss
er

g.
b

in

la
m

p

m
o

n
it

o
r

n
.s

ta
n

d

p
ill

ow

si
n

k

so
fa

ta
b

le

t.
vi

si
o

n

to
il

et

m
ea

n

RGB VGG-16 30.0 60.0 41.8 2.7 41.1 40.0 11.6 23.3 36.1 27.8 29.7 53.6 27.0 28.8 30.3 48.0 25.1 42.9 56.0 34.5

RGB+HHA* VGG-16 32.5 71.7 41.4 2.7 47.2 43.9 15.8 23.7 40.1 37.0 35.7 48.6 38.5 30.0 41.1 51.0 27.5 37.5 60.6 38.2

RGB+GDep* VGG-16 28.8 65.6 37.1 3.1 44.6 42.3 15.7 22.4 41.8 24.9 33.9 49.8 35.9 29.2 33.7 51.3 31.5 39.2 55.5 36.1

RGB+JDep* VGG-16 36.3 71.3 45.7 4.4 46.0 38.3 10.6 23.9 43.1 28.9 31.7 52.5 38.7 27.9 33.2 49.4 28.9 28.3 54.0 36.5

RGB+HHA VGG-16 37.5 65.7 42.3 3.2 45.6 42.9 11.3 26.5 49.5 31.4 33.7 47.6 41.2 29.7 35.0 51.3 27.3 33.4 63.8 37.8

RGB+HHA ‘ VGG-16 37.3 65.4 42.7 2.7 45.3 42.8 11.0 26.2 49.3 31.1 33.3 47.8 40.9 30.0 34.5 50.9 26.8 33.1 63.3 37.6

RGB+GDep VGG-16 29.6 71.8 44.2 3.2 46.5 43.8 19.7 24.8 49.7 30.9 31.8 48.8 32.1 29.9 33.0 45.6 26.9 36.4 62.0 37.4

RGB+GDep ‘ VGG-16 28.3 70.2 46.1 2.4 39.7 41.1 18.3 25.3 47.6 28.7 32.3 51.2 29.0 27.1 30.3 42.5 22.4 32.9 58.3 35.5

RGB+JDep VGG-16 35.4 71.2 35.7 3.0 44.3 43.7 12.6 23.9 45.4 28.5 33.4 50.0 37.0 27.3 31.4 49.0 29.7 31.2 53.0 36.1

RGB+JDep ‘ VGG-16 24.4 63.5 40.6 2.8 40.0 44.5 13.0 23.7 44.9 31.8 32.3 53.9 39.0 28.6 35.3 46.4 27.1 32.1 58.7 35.9

RGB Res-101 30.2 68.2 44.0 4.4 48.2 44.7 16.0 26.5 46.2 38.8 38.4 60.9 53.0 29.4 41.1 53.9 28.4 40.3 58.1 40.6

RGB+HHA* Res-101 43.6 75.6 45.4 5.4 54.1 50.4 18.2 29.9 51.2 39.0 39.9 48.0 49.1 41.1 48. 62.1 29.9 37.4 63.9 43.8

RGB+GDep* Res-101 26.4 72.6 45.0 4.8 49.4 50.7 16.6 31.2 53.8 41.0 35.9 52.1 49.0 34.3 46.3 60.0 27.1 28.3 60.5 41.3

RGB +JDep* Res-101 28.0 76.3 46.7 6.0 52.8 50.3 22.5 32.0 50.6 40.7 41.6 52.1 51.1 35.2 45.7 61.0 30.6 40.9 61.3 43.4

RGB + HHA Res-101 26.8 68.8 47.5 5.0 50.6 53.7 18.3 28.9 46.2 41.4 38.2 38.7 48.0 33.8 38.0 60.0 30.3 31.8 58.8 40.2

RGB + HHA ‘ Res-101 26.1 67.7 48.8 4.9 47.4 49.8 14.0 28.2 44 29.9 38.5 52.4 48.3 34.5 43.0 58.0 27.7 40.5 57.2 40.1

RGB + GDep Res-101 24.4 73.7 44.08 4.1 49.1 47.6 19.7 30.6 52.5 41.9 37.3 54.4 51.5 34.8 40.6 62.8 27.9 31.2 58.6 41.4

RGB + GDep ‘ Res-101 25.0 70.2 48.0 4.8 46.4 49.2 20.6 27.5 47.0 38.5 35.7 53.4 42.5 34.8 42.2 62.7 23.0 34.7 57.0 40.2

RGB + JDep Res-101 24.5 74.2 41.8 5.2 51.4 46.4 17.4 27.7 50.2 33.1 36.5 49.4 47.1 34.8 42.3 60.9 27.2 32.8 61.5 40.2

RGB + JDep ‘ Res-101 36.2 73.0 45.4 4.9 47.1 49.8 14.3 28.7 44.6 37.4 38.2 47.3 48.5 33.4 37.8 56.2 24.2 29.7 67.2 40.2

55

Table 4.4: Object detection results in SUN RGB-D Dataset. (*) means ground-truth inputs. The First row shows only RGB input results of

Faster R-CNN. The next three rows show additional ground truth input types result. The next six rows show additional estimated input

types result. (‘) means that proposed bound loss is used for generating estimated input types. GDep means the depth map in grayscale

and JDep means the depth map in the jet color map.

B
.b

o
n

e

b
at

h
tu

b

b
ed

b.
sh

el
f

b
ox

ch
ai

r

co
u

n
te

r

d
es

k

d
o

o
r

d
re

ss
er

g.
b

in

la
m

p

m
o

n
it

o
r

n
.s

ta
n

d

p
il

lo
w

si
n

k

so
fa

ta
b

le

t.
vi

si
o

n

to
il

et

m
ea

n

RGB VGG-16 55.2 72.6 45.6 14.3 59.8 48.3 26.7 52.8 40.9 56.4 58.6 47.4 56.6 48.8 62.0 52.9 42.9 39.0 84.8 50.8

RGB+HHA* VGG-16 64.6 82.0 46.7 16.3 63.3 50.7 30.0 53.5 43.0 60.3 59.1 49.8 60.3 56.7 65.2 53.1 47.1 42.4 86.9 54.3

RGB+GDep* VGG-16 64.3 80.3 49.8 17.1 62.9 49.5 29.7 53.7 43.6 59.9 61.1 45.8 59.5 55.5 65.4 57.6 47.6 45.0 88.8 54.5

RGB +JDep* VGG-16 69.8 81.8 45.5 15.1 63.4 50.7 29.0 50.0 42.9 60.1 61.4 48.9 61.5 54.6 63.9 55.1 46.8 40.8 87.5 54.2

RGB + HHA VGG-16 55.9 78.4 45.9 14.6 60.5 50.4 28.4 53.4 42.2 57.1 59.3 48.6 59.7 48.9 62.2 55.8 43.5 39.7 89.6 52.3

RGB + HHA ‘ VGG-16 55.0 75.1 47.6 14.0 59.7 48.5 27.1 50.2 39.5 56.8 58.9 44.2 56.4 49.3 61.5 51.8 45.6 34.5 84.0 50.5

RGB + GDep VGG-16 56.0 78.9 47.4 14.0 61.2 48.3 26.6 52.8 42.8 55.7 59.0 47.0 57.6 48.6 61.4 53.0 45.4 37.5 86.5 51.6

RGB + GDep ‘ VGG-16 53.1 72.5 46.6 13.1 59.1 45.6 25.4 50.7 37.8 54.2 56.3 45.5 56.5 48.4 60.0 50.1 42.6 36.2 86.6 49.5

RGB + JDep VGG-16 59.25 78.7 49.5 15.1 61.0 49.5 26.6 52.8 42.2 57.6 59.2 45.0 60.1 49.7 63.6 55.6 43.9 39.7 87.4 52.4

RGB + JDep ‘ VGG-16 53.8 75.5 44.0 14.6 59.1 47.0 25.4 52.0 38.6 56.2 57.2 44.7 57.6 47.9 60.7 52.6 43.7 33.3 86.0 50.0

RGB Res-101 65.5 80.0 50.8 16.4 63.5 52.4 30.4 56.7 43.7 60.3 61.1 50.2 57.0 54.3 72.9 58.8 47.0 45.7 88.9 55.5

RGB+HHA* Res-101 72.7 84.2 51.4 17.8 66.3 51.0 32.3 56.3 43.7 60.1 64.3 49.2 60.9 60.1 75.1 60.3 47.8 45.1 88.6 57.2

RGB+GDep* Res-101 65.4 84.1 49.9 19.7 66.8 54.7 32.6 57.7 46.3 61.4 63.8 50.1 60.0 60.7 74.2 61.7 47.0 49.9 59.2 57.6

RGB +JDep* Res-101 71.1 84.2 52.8 18.0 65.8 51.0 32.2 57.2 44.3 61.2 62.7 46.9 58.5 56.9 73.4 60.6 47.3 42.1 88.5 56.7

RGB + HHA Res-101 62.2 80.8 54.6 15.7 63.7 52.0 29.8 56.5 44.7 57.3 62.6 47.7 59.0 54.7 70.4 57.9 45.2 40.5 88.9 55.0

RGB + HHA ‘ Res-101 63.9 81.0 49.3 16.9 63.7 52.9 30.1 55.2 42.2 57.2 61.1 45.5 55.1 53.7 73.0 59.2 47.4 40.6 90.5 54.6

RGB + GDep Res-101 55.8 80.5 51.8 16.3 64.1 51.6 29.6 57.5 45.3 59.7 61.2 52.4 60.6 56.1 70.5 60.0 43.5 43.1 88.9 55.2

RGB + GDep ‘ Res-101 58.7 80.8 51.0 14.5 64.6 51.3 31.8 56.6 43.2 59.3 62.5 47.7 59.4 55.1 70.1 59.2 47.1 40.3 88.8 53.8

RGB + JDep Res-101 55.8 81.7 51.6 15.8 64.7 50.5 30.9 57.7 43.5 58.9 60.0 47.0 56.1 55.1 69.3 57.2 46.0 41.5 89.9 54.4

RGB + JDep ‘ Res-101 53.8 79.7 50.8 14.5 64.2 51.1 29.2 55.1 42.8 59.1 58.3 46.7 58.2 55.8 68.9 58.8 46.1 34.7 88.3 53.4

56

Table 4.5: Pascal VOC 2007 Indoor Categories Results. The training set is VOC 2007

official trainval and test set is VOC 2007 official test set. The first row shows RGB

results for Faster R-CNN. Other rows show additional estimated input types result.

JDep means the depth image in the jet color space. GDep means the gray-scale

depth map.

B
.B

o
n

e

B
o

tt
le

C
h

ai
r

D
.T

ab
le

P.
P

la
n

t

So
fa

T
v/

M
o

n
.

M
ea

n

RGB VGG-16 39.05 54.96 54.26 42.12 74.03 75.09 56.58

RGB+HHA VGG-16 41.41 51.76 61.42 40.07 76.91 76.49 58.01

RGB+JDep VGG-16 44.03 52.92 64.38 39.84 73.08 74.53 58.13

RGB+GDep VGG-16 46.17 51.38 56.44 41.88 77.26 75.19 58.05

RGB Res-101 49.3 57.3 63.4 46.4 77.5 78.6 62.1

RGB+HHA Res-101 47.8 58.1 68.5 45.8 80.0 78.9 63.1

RGB+JDep Res-101 47.8 58.3 62.1 45.8 77.9 79.1 61.8

RGB+GDep Res-101 46.4 57.1 60.0 44.0 77.6 78.1 60.5

57

Table 4.6: Pascal VOC 2007 Results. The training set is VOC 2007 official trainval and test set is VOC 2007 official test set. The first row

shows RGB results for Faster R-CNN. Other rows show additional estimated input types result. JDep means the depth image in the jet

color space. GDep means the gray-scale depth map. (‘) means that proposed bound loss is used for generating estimated input types
B

.B
o

n
e

A
.p

la
n

e

B
ic

yc
le

B
ir

d

B
o

at

B
o

tt
le

B
u

s

C
ar

C
at

C
h

ai
r

C
ow

D
.t

ab
le

D
o

g

H
o

rs
e

M
.b

ik
e

Pe
rs

o
n

P.
p

la
n

t

Sh
ee

p

So
fa

Tr
ai

n

T
v/

m
o

n
.

M
ea

n

RGB VGG-16 70.5 77.6 66.3 54.5 52.2 80.8 84.5 84.1 50.2 78.2 65.3 77.5 82.9 72.6 77.2 42.2 71.8 65.5 75.2 72.0 70.1

RGB-HHA VGG-16 73.7 76.4 67.1 52.7 51.3 78.1 82.8 79.5 50.5 78.5 62.9 78.5 81.9 75.6 77.4 42.7 70.0 66.4 75.6 70.5 69.6

RGB-HHA ‘ VGG-16 72.2 76.2 67.9 55.7 51.3 78.1 85.5 81.6 49.3 74.7 63.0 78.7 82.1 73.2 77.1 44.8 67.6 64.8 73.0 71.2 69.4

RGB-JDep VGG-16 72.7 78.0 67.7 53.1 51.1 79.1 84.2 81.2 58.4 77.8 64.1 79.2 80.3 75.8 76.8 42.9 72.4 66.3 73.4 71.4 69.8

RGB-JDep ‘ VGG-16 70.8 78.8 67.0 54.8 50.7 78.7 83.3 80.5 47.7 77.1 61.5 78.7 84.5 75.7 77.2 42.9 69.8 65.4 72.7 70.3 69.4

RGB-GDep VGG-16 69.8 79.3 66.1 54.24 51.8 74.2 83.2 82.1 46.9 76.9 56.9 77.8 82.5 74.1 76.6 42.5 67.3 66.8 73.3 71.2 68.7

RGB-GDep ‘ VGG-16 68.3 77.4 64.0 55.8 53.1 74.6 83.0 80.5 48.1 77.4 58.2 76.6 81.7 74.4 77.1 41.2 68.2 61.9 72.2 70.1 68.2

RGB Res-101 79.1 81.5 76.7 67.6 59.9 81.5 86.3 86.6 55.4 83.6 66.2 86.7 85.5 78.3 79.6 50.0 75.6 75.3 79.0 73.4 75.4

RGB+HHA Res-101 77.7 80.0 78.6 66.3 62.5 83. 86.1 86.8 56.7 81.4 67.8 85.7 83.1 79.7 78.6 48.9 74.2 74.5 79.1 74.1 75.3

RGB+HHA ‘ Res-101 77.6 79.5 76.6 64.7 59.3 83. 86.5 86.2 54.0 80.2 68.0 85.0 82.3 76.1 78.7 43.9 74.6 75.3 80.6 72.1 74.2

RGB+JDep Res-101 79.0 80.8 76.5 60.9 59.8 81.2 86.8 87.7 53.6 81.1 65.8 84.9 84.3 78.6 79.5 47.0 73.4 74.7 76.5 75.4 74.4

RGB+JDep ‘ Res-101 77.3 80.9 76.2 64.1 60.4 83.1 86.1 86.0 54.0 77.7 68.4 85.0 83.9 76.3 78.7 46.0 75.0 74.7 78.1 74.9 74.3

RGB+GDep Res-101 78.3 80.2 75.9 62.3 60.1 80.5 87.1 87.4 52.7 80.8 66.0 83.9 84.8 77.7 79.8 47.6 72.6 73.9 77.3 76.2 74.3

RGB+GDep ‘ Res-101 76.7 78.6 77.6 65.0 61.2 83.0 85.3 85.7 55.8 80.5 66.2 84.9 85.5 77.8 78.7 45.5 74.8 75.9 76.0 73.5 74.4

58

Table 4.7: Pascal VOC 2007 Results for depth map output of Depth estimation network training with different datasets. The backbone is

VGG-16 and the additional input type is the gray-scale depth map. The training set is VOC 2007 the official trainval and test set is VOC

2007 official test set.

Training Dataset

Number of

Training Data

A
.p

la
n

e

B
ic

yc
le

B
ir

d

B
o

at

B
o

tt
le

B
u

s

C
ar

C
at

C
h

ai
r

C
ow

D
.t

ab
le

D
o

g

H
o

rs
e

M
.b

ik
e

Pe
rs

o
n

P.
p

la
n

t

Sh
ee

p

So
fa

Tr
ai

n

T
v/

m
o

n
.

M
ea

n

NYUD2

45k
72.7 78.0 67.7 53.1 51.1 79.1 84.2 81.2 58.4 77.8 64.1 79.2 80.3 75.8 76.8 42.9 72.4 66.3 73.4 71.4 69.8

NYUD2 + Make3D

1k
71.9 78.2 66.6 55.7 49.9 80.2 84.9 80.8 46.8 76.8 65.4 81.1 80.4 76.4 77.2 42.5 70.1 67.1 73.8 72.2 69.9

KITTI

24k
69.3 78.0 65.7 55.6 50.5 80.4 84.4 82.2 47.1 76.2 63.0 78.8 81.5 74.1 77.0 42.5 69.6 66.4 69.5 70.7 69.1

KITTI+ NYUD2

70K
69.1 77.6 63.9 56.4 51.8 78.5 84.7 81.8 48.8 78.7 63.3 80.3 82.5 75.1 76.7 41.8 69.9 65.2 72.6 71.5 69.5

59

In previous works [3, 17], used base networks are respectively, R-CNN [14] and Fast

R-CNN [13], but the idea behind using additional input is the same with each other.

Additional input and RGB images pass through separate networks until reaching

the bounding box regression layer. Before passing through this layer, features ob-

tained from these two separate networks are concatenated. Bounding box regres-

sion and classification tasks are performed on these fused features. We imple-

mented this idea on Faster R-CNN. Figure 4.4, case a shows this architecture in

detail. Tables 4.8, 4.9 and 4.10 show comparisons in terms of mAP and number of

parameters. Our method outperforms the idea of late concatenation used in [3, 17]

for all test cases that use HHA encoding as additional input, except the only case

of ground-truth HHA, NYU-D2 dataset for VGG16 backbone, as shown in table 4.9.

Also, it again outperforms them for all test cases that use depth as additional input,

as shown in table 4.10.

Also, we tried to combine our architecture with an idea that separately processes

each channel of HHA encoding, proposed in [19]. Figure 4.4, case b shows this

combination pipelines and tables 4.8, 4.9 show comparisons in terms of mAP and

number of parameters. Although there is a huge difference between our method

and [19] in terms of the number of parameters, our method performs better than

[19] for NYU-D2 datasets. However, it outperforms our work for SUN RGB-D datasets.

Bounding Box
Prediction

Class
Score

Roi

Roi

R-CNN
Roi
Aling
Module

R-CNN
Roi
Aling
Module

BackBone
Network
Classifier

BackBone
Network
Classifier

R-CNN
Bbox

Prediction
Modle

R-CNN
Classification
Modle

R-CNN
RPN
Module

R-CNN
Proposal
Target
Module

R-CNN
Proposal
Target
Module

R-CNN
RPN
Module

base
feature

base
feature

pooled
feature

BackBone
Network

BackBone
Network

Figure 4.4: Previous works’ model architecture on Faster R-CNN. Case a represents,

late on concatenation on Faster R-CNN. Case b represents a combination of our

architecture and proposed HHA encoding processing method in [19] on Faster R-

CNN.

60

Table 4.8: Number of parameter comparison between Faster R-CNN, Proposed Ar-

chitecture, and Previous Works’ Architecture.

VGG-16 Res-101

Models Faster R-CNN Ours [3, 17] [19] Faster R-CNN Ours [3, 17] [19]

Trainable Parameters 137M 152M 273M 181M 47M 76M 94M 133M

Fixed Parameters 260K 520K 520K 1M 328K 632K 655K 1M

Total Parameters 137M 152M 274M 182M 47M 77M 95M 135M

Table 4.9: Mean Average Precision Comparison between Faster R-CNN, Proposed

Architecture and Previous Works’ architecture for the case of using HHA represen-

tation as additional input. * means ground-truth input type.

NYUD2 SUN RGB-D Pascal VOC 2007

VGG-16 Res-101 VGG-16 Res-101 VGG-16 Res-101

Faster R-CNN 34,5 40.6 50.8 55.5 70.1 75.4

*Ours 38.2 43.8 54.3 57.2 - -

*Previous’ [3, 17] 39.3 42.8 51.0 54.7 - -

*Previous’ [19] 38.2 43.5 55.0 57.9 - -

Ours 37.8 40.2 52.3 55.0 69.6 75.3

Previous’ [3, 17] 35.2 38.2 49.0 52.0 66.6 73.0

Previous’ [19] 35.9 40.5 51.6 54.9 69.8 73.8

Table 4.10: Mean Average Precision Comparison between Faster R-CNN. Proposed

Architecture and Previous Works’ architecture for the case of using the gray-scale

depth map as additional input. * means ground-truth input type.

NYUD2 SUN RGB-D Pascal VOC 2007

VGG-16 Res-101 VGG-16 Res-101 VGG-16 Res-101

Faster R-CNN 34.5 40.6 50.8 55.5 70.1 75.4

*Ours 36.1 41.3 54.5 57.6 - -

*[3, 17] 35.9 40.9 51.4 55.1 - -

Ours 37.4 41.4 51.6 55.2 69.8 74.4

[3, 17] 37.0 40.0 49.5 52.5 66.6 73.0

61

Faster
R-CNN

Our
Method

Figure 4.5: Results visualization examples for improved cases. Images are taken

from SUN RGB-D test split.

Faster
R-CNN

Our
Method

Figure 4.6: Results visualization examples for failure cases. Images are taken from

SUN-RGBD test split.

Figures 4.5 and 4.6 show examples of the visual results for improved and failure

cases.

4.6 Implementation Details

During experiments, faster R-CNN in [48] was used. For backbone VGG-16 and

Resnet-101, pre-trained models are used. For VGG-16, before the conv3 layers are

fixed. For Resnet-101, the first block and batch normalization layers are fixed. For

RGB and other selected input type, there are two separate backbone networks. All

input images’ shortest side is scaled 600 in the training and the testing stages. Dur-

ing training, the flip operation is used as data augmentation. After applying non-

maximum suppression (NMS), top 2000 scoring boxes are selected in training and

top 300 scoring boxes are selected in the testing stage. For all experiment batch

size equals to 1. Stochastic gradient descent with momentum is applied. The ini-

tial learning rate is 0.001 and momentum is 0.9. For every 5 epochs, the learning

rate is decreased by factor 0.1. For Pascal Voc 2007 and SUN-RGB datasets, the

RGB model is trained with 6 epochs, other models are trained with 7 epochs. For

62

NYUD2 dataset, all models are trained with 15 epoch. Tesla v100 is used in experi-

ments.

63

64

CHAPTER 5

SUMMARY & DISCUSSION

In this thesis, we investigate depth maps effects on object detection problem from

different angles. Also, we propose a new model that combines RGB images and

depth maps features at the early layer and new loss functions that try to handle

consistency between RGB images and the depth map discontinuities.

Compared to existing RGB-D object detection works, our model has an advan-

tage of the fewer number of parameters, see table 4.8. Another advantage is that

our method outperforms previous works for most cases, see tables 4.9 and 4.10.

Besides our model, we explore new loss functions which are hand-crafted and

learning-based. Although our hand-crafted loss function improves mean average

and absolute errors for depth estimation, alignment problems between ground-

truth depth maps and RGB images decrease the effectiveness of it. The learning-

based loss function which is proposed to solve these alignment problems also fails

because the neural network architecture that we used was not as successful as we

expected in discriminating matched and unmatched patches.

In addition to the proposed RGB-D object detection model and loss functions for

depth estimation, we clarify the following issues after thorough experimentation:

• Effect of the depth map feature extraction on Faster R-CNN performance.

• Effect of the depth map/HHA encoding types which are ground-truth and

estimated on Faster R-CNN performance.

• Effect of different types of encoding such as HHA, depth map in grayscale

and jet color space on Faster R-CNN performance.

65

• Effect of depth/HHA encoding features integration point to RGB features on

Faster R-CNN performance.

For the first issue, we can say that the depth map should be processed like an RGB

image. The depth map features should be extracted by the backbone network and

these features should be used in the Faster R-CNN pipeline. Using the depth map

in the raw form drops the performance of Faster R-CNN dramatically.

For explaining the second and the third issue, we use different depth/HHA encod-

ings as an additional input to an RGB image. This additional input has two main

types. The first one is ground-truth depth images obtained from depth sensors and

HHA encoding obtained from these depth images. In this case, our method always

improves Faster R-CNN detection results without being affected by the backbone

network choice and datasets. The second one is using estimated depth images ob-

tained from the depth estimator network and HHA encoding obtained from these

depth images. In this case, the backbone network and used datasets affect pro-

posed method detection performance. While depth/HHA features improve object

detection results for the indoor scenes, our RGB-D object detection model harms

object detection results for the outdoor scenes, because state-of-the-art depth es-

timation networks generate indoor objects better than outdoor objects. Also, cur-

rent depth sensors which are v1,v2 version of Kinect and Real Sense 1 work well

in indoor scenes, so most of the RGB-D datasets published with the only indoor

scenes. This affects outdoor scene depth generalization negatively. Hence, using

estimated depth/HHA encoding provides improvement for only indoor scene ob-

ject detection results. Object detection datasets contain both indoor and outdoor

scenes such as Pascal VOC are affected negatively from our method due to poor

quality of outdoor scenes’ depth maps.

Like the depth map types, the depth map encoding has also effects on Faster R-

CNN performance. According to the results of our experiments, we say that HHA

encoding makes the most contribution to Faster R-CNN performance. The rea-

son for this is that it contains richer information than other encodings. While the

depth map contains only information about each pixel distance to a camera origin,

HHA representations encode a disparity map, height above ground and angle with

66

gravity direction. Hence, more information about scenes provides a more accurate

object detector.

Also, we conducted experiments to determine the best concatenation point for

depth/HHA features. There are two possible concatenation points that increase

Faster R-CNN performance. The first one is used in our method and Hou et al.

work [19]. This is called the early concatenation that joins additional encoding

features and RGB image features before the RPN layer. The other one is used at

Cao et al. [3] and Gupta et al. [17] works. This is also called the late concatenation

that joins additional features to RGB image features just before the bounding box

and the classification layers. For estimated depth data, early concatenation should

be chosen. Although there is not evident performance dominance between early

and late concatenations for ground-truth depth data, early concatenation has the

advantage of using fewer parameters than the late concatenation.

Finally, table 2.1 shows used backbone networks, datasets, mAp improvements for

our and previous RGB-D works. As can be seen from table 2.1, this thesis provides

more detailed research than previous works.

67

68

REFERENCES

[1] Shigeo Abe. Support vector machines for pattern classification, volume 2.

Springer, 2005.

[2] Filippo Aleotti, Fabio Tosi, Matteo Poggi, and Stefano Mattoccia. Generative

adversarial networks for unsupervised monocular depth prediction. In Pro-

ceedings of the European Conference on Computer Vision (ECCV), pages 0–0,

2018.

[3] Yuanzhouhan Cao, Chunhua Shen, and Heng Tao Shen. Exploiting depth

from single monocular images for object detection and semantic segmenta-

tion. IEEE Transactions on Image Processing, 26(2):836–846, 2017.

[4] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine

learning, 20(3):273–297, 1995.

[5] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human

detection. In international Conference on computer vision & Pattern Recogni-

tion (CVPR’05), volume 1, pages 886–893. IEEE Computer Society, 2005.

[6] David Eigen and Rob Fergus. Predicting depth, surface normals and semantic

labels with a common multi-scale convolutional architecture. In Proceedings

of the IEEE international conference on computer vision, pages 2650–2658,

2015.

[7] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction

from a single image using a multi-scale deep network. arXiv preprint

arXiv:1406.2283, 2014.

[8] Andreas Eitel, Jost Tobias Springenberg, Luciano Spinello, Martin Riedmiller,

and Wolfram Burgard. Multimodal deep learning for robust rgb-d object

recognition. In 2015 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 681–687. IEEE, 2015.

69

[9] Mark Everingham, L Van Gool, Christopher KI Williams, John Winn, and An-

drew Zisserman. The pascal visual object classes challenge 2007 (voc 2007)

results (2007), 2008.

[10] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and

Andrew Zisserman. The pascal visual object classes (voc) challenge. Interna-

tional journal of computer vision, 88(2):303–338, 2010.

[11] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algo-

rithm. In icml, volume 96, pages 148–156. Citeseer, 1996.

[12] Ravi Garg, BG Vijay Kumar, and Ian Reid. Unsupervised cnn for single view

depth estimation: Geometry to the rescue. arXiv preprint arXiv:1603.04992,

2016.

[13] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference

on computer vision, pages 1440–1448, 2015.

[14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition,

pages 580–587, 2014.

[15] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised

monocular depth estimation with left-right consistency. arXiv preprint

arXiv:1609.03677, 2016.

[16] Saurabh Gupta, Pablo Arbelaez, and Jitendra Malik. Perceptual organization

and recognition of indoor scenes from rgb-d images. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 564–571,

2013.

[17] Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra Malik. Learning

rich features from rgb-d images for object detection and segmentation. In

European Conference on Computer Vision, pages 345–360. Springer, 2014.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 770–778, 2016.

70

[19] Saihui Hou, Zilei Wang, and Feng Wu. Object detection via deeply exploiting

depth information. Neurocomputing, 286:58–66, 2018.

[20] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 7132–7141, 2018.

[21] Junjie Hu, Mete Ozay, Yan Zhang, and Takayuki Okatani. Revisiting single

image depth estimation: Toward higher resolution maps with accurate object

boundaries. arXiv preprint arXiv:1803.08673, 2018.

[22] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science &

Engineering, 9(3):90–95, 2007.

[23] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015.

[24] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image

translation with conditional adversarial networks. arXiv preprint, 2017.

[25] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan

Kennedy, Abraham Bachrach, and Adam Bry. End-to-end learning of geom-

etry and context for deep stereo regression. arXiv preprint arXiv:1703.04309,

2017.

[26] Christian Kerl, Jürgen Sturm, and Daniel Cremers. Robust odometry estima-

tion for rgb-d cameras. In 2013 IEEE International Conference on Robotics and

Automation, pages 3748–3754. IEEE, 2013.

[27] Leonid Keselman, John Iselin Woodfill, Anders Grunnet-Jepsen, and Achintya

Bhowmik. Intel realsense stereoscopic depth cameras. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition Workshops,

pages 1–10, 2017.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural infor-

mation processing systems, pages 1097–1105, 2012.

71

[29] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchi-

cal multi-view rgb-d object dataset. In 2011 IEEE international conference on

robotics and automation, pages 1817–1824. IEEE, 2011.

[30] Zhengqi Li and Noah Snavely. Megadepth: Learning single-view depth pre-

diction from internet photos. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 2041–2050, 2018.

[31] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal

loss for dense object detection. arXiv preprint arXiv:1708.02002, 2017.

[32] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common

objects in context. In European conference on computer vision, pages 740–

755. Springer, 2014.

[33] Fayao Liu, Chunhua Shen, and Guosheng Lin. Deep convolutional neu-

ral fields for depth estimation from a single image. arXiv preprint

arXiv:1411.6387, 2014.

[34] David G LOEW. Distinctive image features from scale-invariant keypoints.

International journal of computer vision, 2004.

[35] Ryuzo Okada, Yoshiaki Shirai, and Jun Miura. Object tracking based on opti-

cal flow and depth. In 1996 IEEE/SICE/RSJ International Conference on Mul-

tisensor Fusion and Integration for Intelligent Systems (Cat. No. 96TH8242),

pages 565–571. IEEE, 1996.

[36] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only

look once: Unified, real-time object detection. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages 779–788, 2016.

[37] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-

wards real-time object detection with region proposal networks. In Advances

in neural information processing systems, pages 91–99, 2015.

[38] Xiaofeng Ren, Liefeng Bo, and Dieter Fox. Rgb-(d) scene labeling: Features

and algorithms. In 2012 IEEE Conference on Computer Vision and Pattern

Recognition, pages 2759–2766. IEEE, 2012.

72

[39] Ashutosh Saxena, Sung H Chung, and Andrew Y Ng. Learning depth from sin-

gle monocular images. In Advances in neural information processing systems,

pages 1161–1168, 2006.

[40] Ashutosh Saxena, Min Sun, and Andrew Y Ng. Learning 3-d scene structure

from a single still image. In Computer Vision, 2007. ICCV 2007. IEEE 11th In-

ternational Conference on, pages 1–8. IEEE, 2007.

[41] Jamie Shotton, Ross Girshick, Andrew Fitzgibbon, Toby Sharp, Mat Cook,

Mark Finocchio, Richard Moore, Pushmeet Kohli, Antonio Criminisi, Alex

Kipman, et al. Efficient human pose estimation from single depth images.

IEEE transactions on pattern analysis and machine intelligence, 35(12):2821–

2840, 2012.

[42] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor

segmentation and support inference from rgbd images. In European Confer-

ence on Computer Vision, pages 746–760. Springer, 2012.

[43] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[44] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. Sun rgb-d: A rgb-d

scene understanding benchmark suite. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 567–576, 2015.

[45] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM

Smeulders. Selective search for object recognition. International journal of

computer vision, 104(2):154–171, 2013.

[46] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Nikolaus Mayer, Eddy

Ilg, Alexey Dosovitskiy, and Thomas Brox. Demon: Depth and motion net-

work for learning monocular stereo. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 5038–5047, 2017.

[47] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli, et al. Image

quality assessment: from error visibility to structural similarity. IEEE transac-

tions on image processing, 13(4):600–612, 2004.

73

[48] Jianwei Yang, Jiasen Lu, Dhruv Batra, and Devi Parikh. A faster pytorch im-

plementation of faster r-cnn. https://github.com/jwyang/faster-rcnn.pytorch,

2017.

[49] Hyun Woo Yoo, Woo Hyun Kim, Jeong Woo Park, Won Hyong Lee, and

Myung Jin Chung. Real-time plane detection based on depth map from

kinect. In IEEE ISR 2013, pages 1–4. IEEE, 2013.

[50] Zhengyou Zhang. Microsoft kinect sensor and its effect. IEEE multimedia,

19(2):4–10, 2012.

[51] Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. T2net: Synthetic-to-realistic

translation for solving single-image depth estimation tasks. In Proceedings of

the European Conference on Computer Vision (ECCV), pages 767–783, 2018.

[52] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe. Un-

supervised learning of depth and ego-motion from video. arXiv preprint

arXiv:1704.07813, 2017.

[53] Youding Zhu, Behzad Dariush, and Kikuo Fujimura. Controlled human pose

estimation from depth image streams. In 2008 IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition Workshops, pages 1–8.

IEEE, 2008.

74

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Proposed Methods and Models
	Contributions and Novelties
	The Outline of the Thesis

	RELATED WORK AND BACKGROUND
	Introduction
	Depth Map Generation
	Depth Sensors
	Estimation From a Single RGB Image
	Unsupervised Learning Methods
	Supervised Learning Methods

	RGB Object Detection
	Classical Approaches
	Neural Approaches
	Two-Stage Detectors
	Single-Stage Detectors

	RGB-D Object Detection
	Summary of the Literature and Our Contributions

	METHOD & MODEL
	Overview
	Encoding Depth
	Gray-scale Encoding
	Jet Color Space Encoding
	Disparity Height Angle (DHA) Encoding
	Extracting and Fusing Features from RGB and Depth Data
	Object Detection from Fused RGB-Depth Features
	Preprocessing and Postprocessing
	Alternative Architectures

	Depth Estimation Network (DEN)

	Experiments
	Depth Estimation Loss Function Experiments
	Architecture Experiments
	Depth Estimator Network Experiments
	Depth Estimator Training Set Experiments
	Datasets Experiments for Object Detection
	Implementation Details

	SUMMARY & DISCUSSION
	REFERENCES

