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1 Introduction

Determination of the various fundamental parameters of hadrons from experiments requires
information about physics at large distance. Unfortunately such information can not be
achieved from the first principles of a fundamental theory of strong interactions because
at large distance perturbation theory is invalid. For this reason, to determine proper-
ties of hadrons a reliable nonperturbative approach is needed. Among all nonperturbative
approaches, QCD sum rules [1] method is an especially powerful one in studying the prop-
erties low–lying hadrons. In this method, deep connection between hadron parameters and
QCD vacuum structure is established via a few condensates. This method is adopted and
extended in many works (see for example [2, 3, 4] and references therein). One of the impor-
tant characteristics of hadrons is their magnetic moment. The nucleon magnetic moment
and the Σ0Λ transition magnetic moment were calculated using the external field technique
in framework of the QCD sum rules method, in [5, 6] and [7], respectively.

The aim of this letter is to calculate the Σ0Λ transition magnetic moment in framework
of an alternative approach to the traditional sum rules method, i.e., light cone QCD sum
rules (LCQSR) (more about LCQSR method and its applications can be found in [8, 9] and
references therein). Note that magnetic moment of the nucleons and decuplet baryons were
studied in the LCQSR approach in [10] and [11, 12] respectively. The paper is organized
as follows: In Sect. 2, the LCQSR for the Σ0Λ magnetic moment is derived. Sect. 3 is
devoted to our numerical analysis and conclusion.

2 Sum Rules for the Σ
0
Λ Transition Magnetic Moment

For the determination of the Σ0Λ transition magnetic moment in LCQSR, we consider the
following two point correlation function:

ΠΣ0Λ = i
∫

d4xeipx〈0|T{ηΣ0(x)η̄Λ(0)}|0〉γ , (1)

where T is the time ordering operator, γ means external electromagnetic field and ηΣ0 ,
ηΛ are the interpolating currents with Σ0 and Λ quantum numbers,respectively. It is well
known that there is a continuum of choices for the baryon interpolating current. The general
form of the Σ0 and Λ currents can be written as [4, 13]:

ηΣ0 = 2 (ηΣ1
+ t′ηΣ2

) ,

ηΛ0 = 2 (ηΛ1
+ tηΛ2

) , (2)

where t and t′ are arbitrary parameters and

ηΣ1
=

1√
2
ǫabc

[

(uTaCsb)γ5dc + (dTaCsb)γ5uc
]

, (3)

ηΣ2
=

1√
2
ǫabc

[

(uTaCγ5sb)dc + (dTaCγ5sb)uc
]

, (4)

ηΛ1
=

1√
6
ǫabc

[

2(uTaCdb)γ5sc + (uTaCsb)γ5dc − (dTaCsb)γ5uc
]

, (5)

1



ηΛ2
=

1√
6
ǫabc

[

2(uTaCγ5db)sc + (uTaCγ5sb)dc − (dTaCγ5sb)uc
]

, (6)

where a, b, and c are color indices. Ioffe current corresponds to the choice t = t′ = −1.
Firstly, let us discuss the hadronic representation for the correlator. This can be done

by inserting a complete set of one hadron states into the correlator:

ΠΣ0Λ =
∑ 〈0|ηΣ0|B1(p1)〉

p21 −M2
1

〈B1(p1)|B2(p2)〉γ
〈B2(p2)|η̄Λ|0〉
p22 −M2

1

, (7)

where p2 = p1 + q, q is the photon momentum, Bi form a complete set of baryons having
the same quantum numbers as B with masses Mi.

The interpolating current couples to the baryon states with the overlap amplitudes λ
defined by:

〈0|ηΣ0|Σ0〉 = λΣ0uΣ0(p) ,

〈0|ηΛ|Λ〉 = λΛuΛ(p) . (8)

It follows from Eq. (7) that in order to write down the phenomenological part of the
correlator, an expression for the matrix element 〈Σ0(p1)|Λ(p2)〉γ is needed. This matrix
element can be written as:

〈Σ0(p1)|Λ(p2)〉γ = ū(p1)
[

f1γµ + i
σµαq

α

mΣ0 +mΛ

f2

]

u(p2)ε
µ ,

= ū(p1)

[

(f1 + f2)γµ +
(p1 + p2)µ
mΣ0 +mΛ

f2

]

u(p2)ε
µ , (9)

where the form factors fi are in general functions of q2 = (p2−p1)2 and εµ is the polarization
four vector of the photon. In our case, in order to evaluate the transition magnetic moment,
only the value of the form factors at q2 = 0 are needed.

Using Eqs. (7), (8), and (9), for the phenomenological part of the LCQSR we get:

ΠΣ0Λ = −λΣ0λΛε
µ 6p1 +mΣ0

p21 −m2
Σ0

[

(f1 + f2)γµ +
(p1 + p2)µ
mΛ +mΣ0

f2

]

6p2 +mΛ

p22 −m2
Λ

. (10)

Obviously, it follows from this expression that the correlator function contains a number
of different structures. Among all possible structures, we choose the one ∼6 p1 6 ε 6 q that
contains the transition magnetic form factor f1 + f2, which when evaluated at q2 = 0 gives
the transition magnetic moment in units of eh̄/(mΛ+mΣ0). Isolating the structure ∼6p16ε6p2
from the phenomenological part of the correlator, which describes the Σ0Λ transition form
factor, we get

ΠΣ0Λ = −λΣ0λΛ
1

p21 −M2
Σ0

µΣ0Λ

1

p22 −m2
Λ

, (11)

where µΣ0Λ = (f1 + f2)|q2=0.
Calculation of the correlator function ΠΣ0Λ from the QCD side leads to the following

result:
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ΠΣ0Λ(p
2
1, p

2
2) = − 2√

3
ǫabcǫdef

∫

d4xeipx

〈

γ
∣

∣

∣

{

2γ5S
cf
d S

′ad
u Sbe

s γ5 + 2tγ5S
cf
d γ5S

′ad
u Sbe

s

+2t′Scf
d S

′ad
u γ5S

be
s γ5 + 2tt′Scf

d γ5S
′ad
u γ5S

be
s

+γ5S
cf
d γ5TrS

ad
u S

′be
s + tγ5S

cf
d TrSad

u γ5S
′be
s

+t′Scf
d γ5TrS

ad
u S

′be
s γ5 + tt′Scf

d TrSad
u γ5S

′be
s γ5

−γ5Scf
d S

′be
s Sad

u γ5 − tγ5S
cf
d γ5S

′be
s Sad

u

−t′Scf
d S

′be
s γ5S

ad
u γ5 − tt′Scf

d γ5S
′be
s γ5S

ad
u (12)

−2γ5S
ad
u S

′cf
d Sbe

s γ5 − 2tγ5S
ad
u γ5S

′cf
d Sbe

s

−2t′Sad
u S

′cf
d γ5S

be
s γ5 − 2tt′Sad

u γ5S
′cf
d γ5S

be
s

+γ5S
ad
u S

′be
s Scf

d γ5 + tγ5S
ad
u γ5S

′be
s Scf

d

+t′Sad
u S

′be
s γ5S

cf
d γ5 + tt′Sad

u γ5S
′be
s γ5S

cf
d

−γ5Sad
u γ5TrS

′cf
d Sbe

s − tγ5S
ad
u Trγ5S

′cf
d Sbe

s

−t′Sad
u γ5TrS

′cf
d γ5S

be
s − tt′Sad

u Trγ5S
′cf
d γ5S

be
s

}∣

∣

∣ 0
〉

,

where S
′

= CSTC. Here C is the charge conjugation operator and T denotes transpose of
the operator.

In order to obtain the perturbative contribution (i.e., photon is radiated from the freely
propagating quarks) it is enough to make the following substitution in one of the propagators
in Eq. (12)

Sq
ab
αβ

→ 2
(
∫

dyF µνyνSq
free(x− y)γµSq

free(y)
)ab

αβ

, (13)

where the Fock–Schwinger gauge xµA
µ(x) = 0 is used and Sfree

q is the free quark propagator,
i.e.

Sfree
q =

i 6x
2π2x4

, (14)

and the remaining two propagators are the full quark propagators (see below).
The expression for nonperturbative contributions can be obtained from Eq. (12) by the

following trick: In one of the propagators, we made the replacement

Sq
ab
αβ

→ −1

4
q̄aAjq

b(Aj)αβ , (15)

where Aj =
{

1, γ5, γα, iγ5γα, σαβ/
√
2
}

and sum over Aj is implied. For the other two
propagators, we substitute the full propagator with both perturbative and nonperturbative
contributions.

The complete light cone expansion of the light quark propagator in external field is
calculated in [14]. It gets contributions from the q̄Gq, q̄GGq, q̄qq̄q nonlocal operators
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(where Gµν is the gluon field strength tensor). In the present work we consider operators
with only one gluon field and neglect components with two gluon and four quark fields.
Formally, neglect of the q̄GGq and q̄qq̄q terms can be justified on the basis of an expansion
in conformal spin [15]. In this approximation full light quark propagator is

Sq =
i 6x

2π2x4
− 〈q̄q〉

12
− mq

4π2x2
+
imq〈q̄q〉

48
6x− x2

192
m2

0〈q̄q〉 −
im2

0mq

2732
x2 6x〈q̄q〉

− igs

∫ 1

0

dv

[

6x
16π2x2

Gµν(vx)σµν − vxµG
µν(vx)γν

i

4π2x2

]

. (16)

In the local part of the propagator, we neglect operators with dimension d > 5, since they
give negligible contribution.

It follows from Eqs. (12)–(16) that in order to calculate QCD part of the sum rules we
need matrix elements of nonlocal operators between photon and vacuum state, 〈γ(q)|q̄Aiq|0〉.
Up to twist–4, the nonzero matrix elements given in terms of the photon wave function are
[15, 16, 17]:

〈γ(q)|q̄γαγ5q|0〉 =
f

4
eqǫαβρσε

βqρxσ
∫ 1

0

dueiuqxψ(u) ,

〈γ(q)|q̄σαβq|0〉 = ieq〈q̄q〉
∫ 1

0

dueiuqx
{

(εαqβ − εβqα)
[

χφ(u) + x2
(

g1(u)− g2(u)
)]

+
[

qx(εαxβ − εβxα) + εx(xαqβ − xβqα)
]

g2(u)

}

, (17)

where χ is the magnetic susceptibility of the quark condensate, eq is the quark charge,
the functions φ(u) and ψ(u) are the leading twist–2 photon wave functions, while g1(u)
and g2(u) are the twist–4 functions. Note that in the calculations, the masses of the u
and d quarks are neglected and only the terms linear in the strange quark mass are taken
into account. Therefore, under SU(2) symmetry u and d quark propagators and their
condensates are identical, i.e., 〈ūu〉 = 〈d̄d〉 (the difference in the wave functions are due to
their charges only).

Substituting the photon wave functions and the expression for the quark propagator
into Eq. (12), we can calculate the theoretical part, i.e., OPE part of the correlator (1).
The sum rules is obtained by equating the phenomenological and theoretical parts of the
correlator. In order to suppress the contributions of the higher states and the continuum,
we perform double Borel transformations on the variables p21 = p2 and p22 = (p + q)2 (for
more details see [11, 12, 18, 19]), and we get the following result for the transition magnetic
moment

√
3λΛλΣ0 µΣ0Λ e

−

(

M
2

Λ

M2
1

+
M

2

Σ0

M2
2

)

= (ed − eu)

{

− ms

16π2
〈q̄q〉

[

t′ + t(−3 + 2t′)
]

M4E1(x)χϕ(u0)

+
1

16π2
(2 + t + t′ + 2tt′)M4E1(x)fψ(u0) +

+
ms

2π2
〈q̄q〉

[

t′ + t(−3 + 2t′)
][

g1(u0)− g2(u0)
]

M2E0(x)
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+
1

6
〈q̄q〉

[

(−3t+ t′ + 2tt′)〈s̄s〉+ 2(−1 + t− t′ + tt′)〈q̄q〉
]

M2E0(x)χϕ(u0)

−2

3
〈q̄q〉

[

(−3t + t′ + 2tt′)〈s̄s〉+ 2(−1 + t− t′ + tt′)〈q̄q〉
][

g1(u0)− g2(u0)
]

+
ms

12

[

(2 + t+ t′ + 2tt′)〈s̄s〉+ (2 + t+ t′ − 4tt′)〈q̄q〉
]

fψ(u0)

− 1

144
m2

0〈q̄q〉
[

(−4− 11t+ 5t′ + 10tt′)〈s̄s〉+ 8(−1 + t− t′ + tt′)〈q̄q〉
]

χϕ(u0)

− 1

32π4
(2 + t+ t′ + 2tt′)M6E2(x) +

1

6
〈s̄s〉〈q̄q〉(2 + t+ t′ − 4tt′)

−ms

8π2
M2

[

(2 + t+ t′ + 2tt′)〈s̄s〉+ (2 + t+ t′ − 4tt′)〈q̄q〉
]

+
m2

0ms

96π2

[

2(2 + t + t′ + 2tt′)〈s̄s〉+ 3(2 + t+ t′ − 4tt′)〈q̄q〉
]

− 3m2
0

32π2
ms〈q̄q〉(1− tt′)

(

γE − ln
M2

Λ2

)}

−es
m2

0

96π2
ms〈q̄q〉(1− tt′)

(

γE − ln
M2

Λ2

)

, (18)

where

En(x) = 1− e−x
n
∑

0

1

k!
xk ,

are the functions used to subtract the continuum, x = s0/M
2, s0 is the continuum threshold

and

u0 =
M2

2

M2
1 +M2

2

, M2 =
M2

1M
2
2

M2
1 +M2

2

,

where M2
1 and M2

2 are the Borel parameters in Σ0 and Λ channels. Since masses of the
Σ0 and Λ are very close to each other, we will set M2

1 = M2
2 = 2M2, hence u0 = 1/2. It

follows from Eq. (18) that in determining the Σ0 Λ transition matrix moment one needs to
know the residues λΛ and λΣ0. These residues are determined from baryon mass sum rules
[4, 13].

MΛλ
2
Λe

−
M

2

λ

M2 =
ms

192π4
(−13 + 2t+ 11t2)M6E2(x)

+
1

48π2
(1− t) {(13 + 11t)〈s̄s〉+ 2(1 + 5t)〈q̄q〉}M4E1(x)

− m2
0

16π2
(1− t2)(2〈s̄s〉+ 〈q̄q〉)M2E0(x)

+
ms

18
〈q̄q〉

{

(1 + 4t− 5t2)〈s̄s〉+ 3(5 + 2t + 5t2)〈ūu〉
}

, (19)

λ2Λe
−

M
2

Λ

M2 =
1

256π4
(5 + 2t + 5t2)M6E2(x)
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+
1

72
(1− t)m2

0〈q̄q〉 {8(1 + 2t)〈s̄s〉+ (25 + 23t)〈q̄q〉} 1

M2

+
ms

96π2

{

3(5 + 2t + 5t2)〈s̄s〉+ 4(1 + 4t− 5t2)〈q̄q〉
}

M2E0(x)

+
ms

16π2
m2

0〈q̄q〉(1− t2)

{

γE − ln

(

M2

Λ2

)}

− 1

18
〈q̄q〉(1− t) {2(1 + 5t)〈s̄s〉+ (13 + 11t)〈q̄q〉}

− ms

96π2
m2

0

{

(5 + 2t + 5t2)〈s̄s〉+ (−5 + 4t+ t2)〈q̄q〉
}

, (20)

MΣ0λ2Σ0e
−

M
2

Λ

M2 =
ms

64π2
(1− t′)2M6E2(x)

+
1

16π2
(1− t′) {(−1 + t′)〈s̄s〉+ 6(1 + t′)〈q̄q〉)}M4E1(x)

− 3

16π2
m2

0〈q̄q〉(1− t′
2
)M2E0(x)

+
ms

6
〈q̄q〉

{

−3(−1 + t′
2
)〈s̄s〉+ (5 + 2t′ + 5t′

2
)〈q̄q〉

}

, (21)

λ2Σ0e
−

M
2

Λ

M2 =
1

256π4
(5 + 2t′ + 5t′

2
)M6E2(x)

+
ms

32π2

{

(5 + 2t′ + 5t′
2
)〈s̄s〉 − 12(−1 + t′

2
)〈q̄q〉

}

M2E0(x)

+
1

24
m2

0〈q̄q〉(1− t′) {12(1 + t′)〈s̄s〉+ (−1 + t′)〈q̄q〉} 1

M2

+
3ms

16π2
m2

0〈q̄q〉(1− t′
2
)

{

γE − ln

(

M2

Λ2

)}

− ms

96π2
m2

0

{

(5 + 2t′ + 5t′
2
)〈s̄s〉 − 3(−1 + t′

2
)〈q̄q〉

}

− 1

6
〈q̄q〉(1− t′) {6(1 + t′)〈s̄s〉+ (−1 + t′)〈q̄q〉} , (22)

where Λ is the QCD scale parameter and it is chosen to be Λ = 0.5 GeV .
In this set of expressions, Eqs. (19), (21) and (20), (22) correspond to the structures

proportional to the unit operator and 6 p, respectively. In order to obtain the transition
magnetic moment µΣ0Λ, we substitute the values of λΛ and λΣ0 from Eqs. (20) and (22)
into Eq. (18).

3 Numerical analysis

In this section we present the numerical analysis of the sum rules for the Σ0 Λ transition
matrix element which has already been obtained in the previous section. As can obviously
be seen from Eq. (18) the main input parameters of the sum rules are photon wave functions.
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It was shown in [15, 16] that the leading photon wave functions receive only small corrections
from the higher conformal spin, so that their deviation from asymptotic form is inessential.
We shall use the following expressions for the photon wave functions [15, 17]:

φ(u) = 6u(1− u) , ψ(u) = 1 ,

g1(u) = −1

8
(1− u)(3− u) , g2(u) = −1

4
(1− u)2 .

The values of input parameters that are used in the numerical calculations are: f =
0.028 GeV 2, χ = −4.4 GeV −2 [21] (in [22] it is estimated to be χ = −3.3 GeV −2),
〈q̄q〉(1 GeV ) = −(0.243)3 GeV 3, and m2

0 = (0.8 ± 0.2) GeV 2 [23], ms(1 GeV ) = (150 ±
50)MeV , 〈s̄s〉(1 GeV ) = 0.8〈q̄q〉(1 GeV ).

In further numerical analysis we set t = t′. Since the transition magnetic moment is a
physical quantity it must be independent of the parameters t, continuum threshold s0 and
Borel mass M2. So the main problem is to find a region where the result of the transition
magnetic moment is practically independent of the parameters t, s0 and M2.

In Fig. (1) we present the dependence of the transition magnetic moment on the Borel
parameter M2. The continuum threshold s0 is determined from mass sum rules for Σ and
Λ baryons [3, 14] and from Σ0−Λ mass difference sum rules [20]. It follows from this figure
that the working region of Borel mass M2 is 1 GeV 2 ≤ M2 ≤ 1.5 GeV 2. Moreover we see
that for the choices s0 = 3 GeV 2 and s0 = 4 GeV 2, the variation in the results is about
10%, i.e., the transition magnetic moment can be said to be practically insensitive to the
value of the continuum threshold at t = −3, t = −2 and t = 3. The result also seems to be
practically independent of the choice of the value of the parameter t.

Before determining the transition magnetic moment, the next problem to be considered
is to find an appropriate region of t. For this purpose we have used the mass sum rules (see
Eqs. (19)-(21)). Two criteria should be met by the mass sum rules. First of all, each sum
rule must separately be positive. After an analysis of the mass sum rules, we found that
the region −0.6 ≤ t ≤ 0.9 is unphysical for Λ, and −0.4 ≤ t ≤ 0.9 is unphysical for Σ0. The
second criteria is that the predicted mass of the baryons, obtained by considering the ratio
of the chiral odd and the chiral even mass sum rule, should be stable in regard to variations
of the parameter t. In the early analysis of the mass sum rules, only the ratio is considered
and it was found that the ratio stabilizes at t = −0.2, but as we have already noted, this
value is not in the physical region. Our analysis shows that, the most appropriate value of
t is given by −0.5 ≤ cos θ ≤ 0.5 where θ is defined through the relation t = tan θ. This
region of θ corresponds to t ≥ 1.7 or t ≤ −1.7. One should also note that the Ioffe current,
which corresponds to the choice t = −1, is also not in the appropriate region.

In Fig. (2) the dependence of the transition magnetic moment on cos θ atM2 = 1 GeV 2,
s0 = 3 GeV 2 and s0 = 4 GeV 2 is depicted. A reasonable value for the transition magnetic
moment must be obtained far from the unphysical region. We observe from Fig. (2)
that µΣ0Λ is quite stable in the region −0.5 ≤ cos θ ≤ −0.5 and practically seems to be
independent of cos θ (or t) and continuum threshold s0. In this region of interest we obtain

|µΣ0Λ| = (1.6± 0.3)µN ,

for the transition magnetic moment, where the errors are mainly due to variations with
respect to the Borel mass M2, the continuum threshold s0, the value of the parameters χ,
and omitted higher twist photon wave-function contributions.
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Finally let us compare our result on µΣ0Λ with the results of the existing theoretical
calculations and experimental data. For the transition magnetic moment µΣ0Λ the tradi-
tional QCD sum rules predicts |µΣ0Λ| = 1.5 µN [7]. The constituent quark model predicts
that µΣ0Λ = (µd − µu)/

√
3, and with µd = −0.972 µN and µu = 1.852 µN , this result leads

to µΣ0Λ ≃ −1.65. The experimental result of the transition magnetic moment is measured
to be µΣ0Λ = −1.6 µN (see [24]). When we compare these results we see that our predic-
tion on the transition magnetic moment is in a good agreement with those predicted by
the traditional QCD sum rules and constituent quark model, as well as with the existing
experimental data.
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[12] T. M. Aliev, A. Özpineci, M. Savci, Phys. Rev. D62 (2000) 053012.

[13] H. G. Dosch, M. Jamin, and S. Narison, Phys. Lett. B220 (1989) 251.

[14] I. I. Balitsky, V. M. Braun, Nucl. Phys. B311 (1988) 541.

[15] V. M. Braun, I. E. Filyanov, Z. Phys. C48 (1990) 239.

[16] I. I. Balitsky, V. M. Braun, A. V. Kolesnichenko, Nucl. Phys. B312 (1989) 509.

[17] A. Ali, V. M. Braun, Phys. Lett. B359 (1995) 223.

[18] V. M. Belyaev, V. M. Braun, A. Khodjamirian and R. Rückl,
Phys. Rev. D51 (1995) 6177.

[19] T. M. Aliev, M. Savcı, Phys. Rev. D61 (2000) 0160008.

[20] W. Y. P. Hwang and K. C. Yang, Phys. Rev. D49 (1994) 460

[21] V. M. Belyaev, Ya. I. Kogan, Yad. Fiz. 40 (1984) 1035.

[22] I. I. Balitsky, A. V. Kolesnichenko, Yad. Fiz. 41 (1985) 282.

[23] V. M. Belyaev, B. L. Ioffe, JETP 56 (1982) 493.

[24] Particle Data Group, C. Caso et. al., Eur. Phys. Journal C15 (2000) 744.

9



Figure captions

Fig. (1) The dependence of the transition magnetic moment |µΣ0Λ| on the Borel mass
M2 at t = −3; t = −2.0; t = +3 and at the continuum threshold s0 = 3.0 GeV 2 and
s0 = 4.0 GeV 2.

Fig. (2) The dependence of the transition magnetic moment |µΣ0Λ| on cos θ at M2 =
1 GeV 2, s0 = 3 GeV 2 and s0 = 4 GeV 2.
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