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ABSTRACT

LEARNING DRAG COEFFICIENT OF BALLISTIC TARGETS USING
GAUSSIAN PROCESS MODELING

Kumru, Fırat
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. Emre Özkan

September 2019, 92 pages

Ballistic object tracking involves estimating an unknown ballistic coefficient which

directly affects the dynamics of the object. In most studies, the ballistic coefficient is

assumed to be constant throughout the object’s flight. In reality, the ballistic coeffi-

cient is a function of the speed of the object and depends on the object’s aerodynamic

properties. In the literature, the impact point prediction is defined as predicting the

position that the object is expected to hit on the ground while the object is still on the

fly. The accuracy of the impact point prediction highly depends on the treatment of

the ballistic coefficient in the prediction model. In this thesis, we propose a method to

learn the unknown function that describes the relationship between the speed and the

ballistic coefficient of the object from the observations. Then, the function is used to

predict the impact point of the ballistic object. The unknown function is learned via

Gaussian process in the Bayesian framework. The proposed and conventional meth-

ods are comparatively studied in a realistic simulation environment. Extensive simu-

lation studies are conducted to characterize the performance of the proposed method

v



and it is shown that the method has a better impact point prediction performance than

the conventional ones in terms of the root mean square error.

Keywords: Ballistic Target Tracking, Ballistic Coefficient, Gaussian Process
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ÖZ

BALİSTİK HEDEFLERİN SÜRTÜNME KATSAYISININ GAUSSİAN
SÜREÇ MODELİYLE ÖĞRENİLMESİ

Kumru, Fırat
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Dr. Öğretim Üyesi Emre Özkan

Eylül 2019, 92 sayfa

Balistik obje takibi, obje dinamiğini doğrudan etkileyen balistik katsayının kestiri-

mini içermektedir. Çoğu çalışmada, bu balistik katsayı obje uçuşu boyunca sabit ka-

bul edilmektedir. Gerçekte, balistik katsayı obje süratinin bir fonksiyonudur ve obje-

nin aerodinamik özelliklerine bağlıdır. Literatürde düşme noktası öngörümü, balistik

obje havadayken objenin satıh ile buluşacağı konumun öngörüm problemidir. Öngö-

rüm doğruluğu, balistik katsayının öngörüm modelinde nasıl ele alındığına bağlıdır.

Bu tezde, obje sürati ve balistik katsayı arasındaki ilişkiyi tanımlayan fonksiyonu

gözlemlere dayalı olarak öğrenmek için bir metot önerilmektedir. Bu öğrenilen fonk-

siyon daha sonra düşme noktası öngörümü boyunca kullanılır. Bilinmeyen bu fonk-

siyon Bayesçi yaklaşım altında Gauss süreci vasıtasıyla öğrenilmektedir. Önerilen

yöntem ve geleneksel metotlar gerçekçi bir benzetim ortamında karşılaştırmalı olarak

çalışılmıştır. Önerilen yöntemi karakterize etmek amacıyla geniş çaplı analizler yü-

rütülmüş, yöntemin karekök ortalama hata ölçütü açısından geleneksel metotlardan
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daha iyi bir düşme noktası öngörüm performansı olduğu gösterilmiştir.

Anahtar Kelimeler: Balistik Hedef Takibi, Balistik Katsayı, Gauss Süreci
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study. I also thank TÜBİTAK (Scientific and Technological Research Council of

Turkey) for their financial support (2210-A) during my study.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Proposed Work and Contributions . . . . . . . . . . . . . . . 4

2 BALLISTIC OBJECTS AND DYNAMICS . . . . . . . . . . . . . . 7

2.1 Ballistic Objects . . . . . . . . . . . . . . . . . . . . . . . . 7

xi



2.1.1 Trajectory of Ballistic Objects . . . . . . . . . . . 7

2.1.2 Stability of Ballistic Objects . . . . . . . . . . . . 9

2.2 Dynamics of Ballistic Objects . . . . . . . . . . . . . . . . . 12

2.2.1 Aerodynamic Forces . . . . . . . . . . . . . . . . 12

2.2.1.1 Atmospheric Drag Force . . . . . . . 12

2.2.1.2 Lift Force . . . . . . . . . . . . . . . 15

2.2.1.3 Magnus Force . . . . . . . . . . . . . 16

2.2.2 Aerodynamic Moments . . . . . . . . . . . . . . . 17

2.2.2.1 Overturning Moment . . . . . . . . . 17

2.2.2.2 Magnus Moment . . . . . . . . . . . 18

3 GAUSSIAN PROCESSES . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Kernel Functions . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Exponentiated Quadratic Kernel . . . . . . . . . . 23

3.1.2 Exponential Kernel . . . . . . . . . . . . . . . . . 24

3.1.3 Matern Kernel . . . . . . . . . . . . . . . . . . . . 24

3.1.4 Periodic Kernel . . . . . . . . . . . . . . . . . . . 26

3.1.5 Linear Kernel . . . . . . . . . . . . . . . . . . . . 27

3.1.6 Combining Different Kernels . . . . . . . . . . . . 30

xii



3.2 Gaussian Process Regression . . . . . . . . . . . . . . . . . 33

3.3 Further Discussions on Gaussian Processes . . . . . . . . . . 34

3.3.1 Kernel Selection and Hyperparameter Optimization 34

3.3.1.1 Calculation of Marginal Likelihood . . 35

3.3.1.2 Maximum Likelihood Estimation . . . 37

3.3.2 Some Approximations of GP . . . . . . . . . . . . 37

3.3.2.1 Sparse Pseudo-input Gaussian Processes 38

4 TRACKING AND SMOOTHING FOR BALLISTIC OBJECTS . . . 41

4.1 Ballistic Target Tracking Method . . . . . . . . . . . . . . . 41

4.1.1 Motion Model . . . . . . . . . . . . . . . . . . . . 42

4.1.2 Measurement Model . . . . . . . . . . . . . . . . 46

4.1.3 Inference via Extended Kalman Filter (EKF) . . . 47

4.1.3.1 Time Update . . . . . . . . . . . . . . 47

4.1.3.2 Measurement Update . . . . . . . . . 48

4.2 Smoothing Method . . . . . . . . . . . . . . . . . . . . . . 48

5 BALLISTIC PARAMETER LEARNING VIA GAUSSIAN PROCESS

AND IMPACT POINT PREDICTION . . . . . . . . . . . . . . . . . 51

5.1 Modifications on Standard GP Model for Ballistic Parameter

Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xiii



5.1.1 Cross-correlation Among GP Observations . . . . 51

5.1.2 Construction of GP Input and Observation Sets . . 52

5.1.3 Regression with Noisy Input . . . . . . . . . . . . 56

5.1.4 Cross-correlation Among Input-Observation Pairs . 58

5.1.5 Modified Gaussian Process Regression . . . . . . . 58

5.2 Modified Motion Model . . . . . . . . . . . . . . . . . . . . 59

5.3 Impact Point Prediction . . . . . . . . . . . . . . . . . . . . 60

6 SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . 63

6.1 Simulation Scenarios . . . . . . . . . . . . . . . . . . . . . 63

6.2 Ballistic Parameter Estimation . . . . . . . . . . . . . . . . 64

6.3 Performance of GP Regression . . . . . . . . . . . . . . . . 66

6.3.1 Effect of Cross-correlation Among GP Observations 68

6.4 IPP Performance using GP Model . . . . . . . . . . . . . . . 68

6.5 Further Discussions on Gaussian Processes . . . . . . . . . . 72

6.5.1 Performance of Kernel Selection and Hyperparam-

eter Optimization . . . . . . . . . . . . . . . . . . 72

6.5.2 Performance of SPGP Regression . . . . . . . . . 78

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xiv



REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xv



LIST OF TABLES

TABLES

Table 3.1 {σ, l} pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 6.1 RMS IPP errors of different models (m) . . . . . . . . . . . . . . . 72

Table 6.2 Optimization results of different kernels . . . . . . . . . . . . . . . 74

Table 6.3 RMS IPP errors of GPs with fixed and optimized hyperparameters

(m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 6.4 Optimization results of the different initializations of pseudo-inputs . 81

xvi



LIST OF FIGURES

FIGURES

Figure 1.1 Drag coefficients for different projectiles [2] . . . . . . . . . . . . 2

Figure 1.2 Sample projectile speeds vs time . . . . . . . . . . . . . . . . . . . 5

Figure 1.3 Phases of the proposed method on a sample trajectory . . . . . . . 5

Figure 2.1 Phases of a ballistic trajectory . . . . . . . . . . . . . . . . . . . . 8

Figure 2.2 (Top) Stability, (Middle) Neutral stability, (Bottom) Instability con-

ditions under fin stabilization. . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.3 (Top) Stable, (Middle) Unstable, (Bottom) Over stable flight tra-

jectories under spin stabilization. . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.4 Generic epicyclic motion of a spin stabilized projectile . . . . . . . 12

Figure 2.5 Drag coefficients vs Mach number . . . . . . . . . . . . . . . . . . 13

Figure 2.6 Drag force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.7 Lift force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.8 Magnus force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2.9 Overturning moment . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 3.1 EQ, Exponential and Matern Kernels (σ=2, l=2) . . . . . . . . . . 25

Figure 3.2 Matern-3 Kernel with various {σ, l} pairs . . . . . . . . . . . . . . 26

xvii



Figure 3.3 Sample functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.4 Functions sampled from a linear kernel (σd = 0) . . . . . . . . . . 28

Figure 3.5 Functions sampled from a linear kernel (σd = 1) . . . . . . . . . . 29

Figure 3.6 A linear + a periodic kernel and sample functions . . . . . . . . . 31

Figure 3.7 A periodic × EQ kernel and sample functions . . . . . . . . . . . . 32

Figure 3.8 A linear × a periodic kernel and sample functions . . . . . . . . . 33

Figure 3.9 Log marginal likelihood and its constituent terms . . . . . . . . . . 36

Figure 5.1 Probability density function for a Mach number estimate . . . . . . 54

Figure 5.2 Construction of PMs . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 6.1 Projectile trajectories . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 6.2 Projectile speed profiles . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 6.3 Ballistic parameter estimates for Projectile-I . . . . . . . . . . . . 66

Figure 6.4 Learned ballistic parameter-Mach number for different projectiles . 67

Figure 6.5 Effect of considering cross correlation among observations on GP

regression for Projectile-I . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 6.6 Ballistic parameter-time . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 6.7 Impact point predictions . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 6.8 Contour plots of minus log likelihood function . . . . . . . . . . . 75

Figure 6.9 Predictive distributions with several kernels . . . . . . . . . . . . . 76

Figure 6.10 Optimization of pseudo-inputs . . . . . . . . . . . . . . . . . . . . 79

Figure 6.11 Predictive distribution of SPGP . . . . . . . . . . . . . . . . . . . 79

xviii



Figure 6.12 Predictive distributions of SPGP under various initializations . . . . 80

Figure 6.13 Predictive distributions of SPGP and full GP . . . . . . . . . . . . 82

Figure 6.14 Effect of the number of pseudo-inputs on SPGP regression . . . . . 83

xix



LIST OF ALGORITHMS

ALGORITHMS

Algorithm 4.1 Summary of Filtering and Smoothing Phases . . . . . . . . . . 49

Algorithm 5.1 Filtering and Smoothing in the Extended Form . . . . . . . . . 53

Algorithm 5.2 Summary of IPP using GP . . . . . . . . . . . . . . . . . . . . 61

xx



LIST OF ABBREVIATIONS

ABBREVIATIONS

BTT Ballistic Target Tracking

BO Ballistic Object

BC Ballistic Coefficient

BP Ballistic Parameter

EKF Extended Kalman Filter

IPP Impact Point Prediction

GP Gaussian Process

RMS Root Mean Square

WGS-84 World Geodetic System of 1984

MLE Maximum Likelihood Estimation

2D 2-Dimensional

3D 3-Dimensional

CC Cross-covariance

MC Monte Carlo

NED North-East-Down

DoF Degrees of Freedom

xxi



xxii



CHAPTER 1

INTRODUCTION

Ballistic target tracking (BTT) involves estimating the kinematics of a ballistic object

(BO) in a surveillance region based on a set of measurements collected by a sensor.

A BO is a body with momentum which is free to move and subjected to forces such

as propulsion, gravity or air drag. The term ballistic is used to describe that there is

no guidance which steers the object during its flight (or at least, during most of the

flight) [21].

A wide range of objects can be categorized as BO including bullets, unguided bombs,

rockets, mortars, and even ballistic missiles. Some BTT methods in the literature

propose a generic solution which is applicable to any type of BOs [17], [12] whereas

some provide dedicated solutions to a specific type of BOs to improve accuracy [28],

[29].

BOs can be broadly categorized into two types; with propulsion, without propulsion.

Flight of a BO with propulsion has two phases. In the former, there exists a thrust

force which accelerates the BO from launch to the end of propulsion. The latter is

called the ballistic phase, and there only exist gravitational and aerodynamic forces

on the BO. Some methods focus on the motion of BOs in the ballistic phase only [17],

[28], whereas other methods consider both phases [39], [8], [19]. In this study, we

consider the ballistic phases of BOs which stay within atmosphere throughout their

entire flight.

In BTT literature, various filtering techniques such as Extended Kalman Filter (EKF)

[12], Unscented Kalman Filter, Particle Filter [5] are used for estimating object’s
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state. The performance of these filters are compared in several studies [17], [13],

[30], [40]. In this work, we use an EKF for inference.

Atmospheric drag force is one of the forces that are dominant in determining the

trajectory of a BO traveling in the atmosphere. Therefore, a realistic modeling of the

drag force is essential for tracking accuracy. The drag force depends on the velocity

of the object, air pressure at the object’s altitude, the cross-sectional area of the object

along the wind and the ballistic coefficient (BC) of the object. The BC of a body,

which is a measure of its ability to overcome the air resistance during flight, depends

on the speed of the body. In general, BC-speed characteristics of BOs are highly

non-linear (see Fig. 1.1). BC directly affects the magnitude of the drag force acting

on a BO; hence, the estimation accuracy of the BC has a significant impact on the

performance of a tracking system.

Figure 1.1: Drag coefficients for different projectiles [2]

There exist several studies in the literature which propose different methods of includ-

ing BC in their models and perform estimation. The methods presented in Farina [13]

and Benavoli [3] assume that BC is either known or there exists prior information in
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the form of lower and upper bounds on the BC value depending on the object type.

If BC is assumed to be unknown, a standard approach is to augment the state vector

with the BC and estimate them concurrently using the aforementioned filters. In most

models, the dynamics of the BC is assumed to exhibit an artificial random walk [17],

[28], [8].

In some applications, the impact point of a BO is the main interest of tracking. In

these applications, an impact point prediction (IPP) is performed while the BO is still

in flight. As a simple solution, BC can be assumed to be constant throughout the IPP.

This assumption might hold for the BOs which stay in subsonic speed regime. Fur-

thermore, it is critical to correctly estimate the constant but unknown BC to achieve

prediction accuracy.

Contrary to the aforementioned assumption, BC is not constant throughout the predic-

tion phase, in general. In such cases, drag templates can be used from a library of drag

curves to aid IPP [8]. These methods require the construction of aerodynamic models

regarding prospective projectile types and generation of the drag curve database be-

forehand. Furthermore, the projectile type must be correctly identified online so that

an appropriate drag curve can be used. Using an improper drag template may cause

significant IPP errors [8].

To aid BTT and IPP, Yuan et al. [39] suggest exploiting the dependency of the BC

on the speed of the object. They assume that the BC characteristics of the object is

a scaled version of a generic BC-Speed function which is considered to be known

in advance. Then, the scale factor is estimated by augmenting it into the state vec-

tor. Briefly, this approach is a means of decoupling the projectile specific parameters

(mass and cross-sectional area) from speed dependency of the BC. Then, a function of

the projectile specific parameters can be treated as the scale factor. This scale factor

is estimated concurrently with the kinematic state of the BO.
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1.1 Proposed Work and Contributions

In this study, instead of utilizing a drag curve database, BC-Speed characteristic of

the target is learned in a Bayesian framework. This learning is performed based on

the BC and the velocity estimates of the tracking filter. Then, this learned function is

used to determine the value of the BC during the IPP. For learning the characteristic,

a Gaussian Process (GP) model [27] is utilized. GP is a modeling tool which has

been widely used by the machine learning, statistics, and signal processing commu-

nities for identification [37], classification [24] and regression problems [35] due to

its tractable posterior computation and attractive analytical properties. With Gaussian

Process model, it is convenient to embed any a priori information about shape and

smoothness of the BC characteristic of the target in the learning model by using vari-

ous kernel functions. Furthermore, incorporating the uncertainty of the training data

into the regression is possible with GP model [22] .

The proposed method has several advantages. It requires neither any preliminary

work on aerodynamic modeling of the targets nor classification of the projectile on

the fly. Therefore, it makes IPP against an unexpected target type possible with higher

accuracy compared to the traditional methods. Moreover, it has a reasonably low

computational load while providing a significant improvement in the IPP performance

when compared with conventional methods which do not utilize any learning proce-

dure on the BC-Speed characteristic.

The method presented here has its basis on manipulating the information extracted

from the BC and velocity estimates of the filter while predicting the impact point. The

phenomenon that makes our method applicable is that a projectile attains the same

speed values on both ascending and descending phases, especially when it follows a

lofted trajectory. As observed in Fig.1.2, the BOs of interest decelerate at ascending

phase and accelerate at descending phase under the effect of gravity. The behaviour

that is deduced at the ascending phase can be readily used at the descending phase by

the model. To achieve the transfer of the information from one phase to the other, the

GP regression model provides the BC characteristic of the target based on the BC and

4



Figure 1.2: Sample projectile speeds vs time

speed estimates of the filter. This characteristic is then used in the system model to

enhance the IPP performance. Furthermore, by using an appropriate kernel function,

adequate information about the BC characteristic at non-visited speed values can also

be inferred based on the BC-speed estimates at visited speeds. The whole method

described here is briefly illustrated on a sample trajectory of a projectile in Fig. 1.3.

Figure 1.3: Phases of the proposed method on a sample trajectory
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CHAPTER 2

BALLISTIC OBJECTS AND DYNAMICS

In this chapter, types of ballistic objects and effective forces acting on them are pre-

sented with the intention of informing the reader about the targets of interest.

2.1 Ballistic Objects

A flying object is called BO if there is no self-guidance mechanism to steer the object

to a specified target. During the flight, a BO is affected by different forces and mo-

ments according to the flight conditions. Furthermore, the stability mechanism of the

object is another factor that can initiate additional forces and moments on the object.

The trajectory of a BO is divided into multiple phases considering the effective forces

on the object. These phases and the stability mechanisms are discussed in more detail

in the following subsections.

2.1.1 Trajectory of Ballistic Objects

Trajectory of a BO is divided into multiple phases mainly according to forces acting

on the object:

• Boost Phase: In the boost phase, there exists a thrust force which accelerates

the object starting from the launch till the end of propulsion. This phase usually

takes short period of time compared to the time of flight. Among the ballistic

object family, only rockets and ballistic missiles use the propulsion, since they

7



Figure 2.1: Phases of a ballistic trajectory

intend to reach longer distances. In this phase, besides gaining momentum, bal-

listic missiles may also use a control mechanism such as thrust vector control to

steer themselves into predefined trajectory towards their desired impact point.

• Mid-course (Ballistic) Phase: The mid-course phase commences when the

propulsion expires. This phase is also called ballistic phase to show that there

is neither a thrust force to accelerate the object nor a mechanism to control and

steer the object. In this phase, long range ballistic missiles are mostly outside

the atmosphere. Hence, there is no aerodynamic forces acting on these ballistic

missiles. This type of flight is called exo-atmospheric flight.

• Terminal (Re-entry) Phase: The terminal phase commences when the ballistic

object re-enters the Earth’s atmosphere and terminates when the BO hits the

ground. The objects which exhibit endo-atmospheric flight do not have the

terminal phase since they are in the atmosphere throughout their whole flight.
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2.1.2 Stability of Ballistic Objects

To enhance the firing range and targeting accuracy, ballistic objects need to be stabi-

lized throughout the flight. The stabilization means that the object’s longitudinal axis

tends to point towards the direction of movement [25]. The main factor determining

the stabilization of a ballistic object is the placement of center of gravity (cg) and

center of pressure (cp) along the object’s longitudinal axis. cg is a hypothetical point

where whole distribution of mass of an object can be assumed to concentrate on. cp of

an object traveling through the atmosphere can be defined as the point where all of the

aerodynamic pressure may be represented by a single force vector with no moment

[7].

This stabilization can be achieved by applying one of the two techniques described

below.

• Fin Stabilization:

The instability problem mainly arises when cp is located in front of cg along the

object’s longitudinal axis. In that circumstance, a small deviation of the direc-

tion of the projectile’s nose from the velocity vector results in an overturning

moment on the object which increases the deviation. As a result, the object be-

comes unstable and it eventually tumbles. Fin stabilization aims to stabilize the

object by forcing cp to be located behind cg by using tail surfaces (fins) so that

any yawing in the object’s orientation is opposed by the introduced moment.

Most projectiles such as mortars, sabots, rockets and missiles use this stability

mechanism because of their large size [21].

Translocation of cp with translocation of the fins are illustrated in Figure 2.2. In

the top figure, the rocket is stable since cg is in front of cp. The rocket will return

to its stable orientation when any deviation of the orientation occurs. In the

middle figure, cg and cp are very close to each other. Such a condition is called

neutral stability. The rocket may have a stable or unstable flight depending on

the forces acting on it. Lastly, in the bottom figure of Figure 2.2, cp is in front

of cg and the rocket is unstable.
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Figure 2.2: (Top) Stability, (Middle) Neutral stability, (Bottom) Instability conditions

under fin stabilization.

• Spin Stabilization:

Other types of projectiles such as small arms and artillery shells must deal

with the instability in a different way. These projectiles take advantage of the

gyroscopic effect to stabilize themselves by spinning around their longitudinal

axes. The spin is created by rifling within barrel. Gyroscopic forces exerted

on the spinning object give resistance to the object against the destabilizing

moment. In this mechanism, the amount of introduced spin rate is significant.

Too little spin may result in unstable projectile flight, whereas too much spin
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may result in failure in following the curvature of the trajectory [15]. Moreover,

the projectile encounters significantly high drag force and it becomes unable to

reach the intended range. The projectile trajectories under sufficient spin (stable

flight), insufficient spin (unstable flight) and over spin (over stable flight) are

illustrated in Figure 2.3.

Figure 2.3: (Top) Stable, (Middle) Unstable, (Bottom) Over stable flight trajectories

under spin stabilization.

Moreover, spin stabilized projectiles exhibit epicyclic motion which is depicted

in Figure 2.4 from head-on view (at top) and side view (at bottom) [15]. As the

projectile proceeds, this motion diminishes but does not vanish completely.

The utilized stabilization technique affects the trajectory significantly because addi-

tional forces and moments may be introduced depending on the employed technique.

Such phenomena will be explained in details in the following subsections.
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Figure 2.4: Generic epicyclic motion of a spin stabilized projectile

2.2 Dynamics of Ballistic Objects

Due to unguided and non-maneuvering nature of ballistic objects, estimating a ballis-

tic trajectory can be considered to be a trivial task. However, there are various forces

and moments acting on the object and estimating them by a filter can be a tedious

or even infeasible task without the knowledge of the object type and its behaviour.

These forces and moments are introduced in the following subsections.

2.2.1 Aerodynamic Forces

Aerodynamic forces are exerted on a body by the air in which the body is immersed.

These are caused by the relative motion between the body and air [7]. In the following

subsections, drag, lift and Magnus forces are introduced in details.

2.2.1.1 Atmospheric Drag Force

In fluid dynamics, drag is basically the air resistance; more formally, it is a force

acting opposite to the relative velocity of an object with respect to the surrounding
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fluid [1].

Fdrag = −1

2
ρscd(M,αt, ζ) ‖v‖v. (2.1)

In (2.1), ρ is the air density, s is the cross-sectional area of the projectile, cd is the drag

coefficient which is a function of object’s Mach Number (M ) and total yaw angle (αt),

v is the object’s velocity relative to the air and ‖·‖ stands for the Euclidean norm of

its argument. M is a dimensionless quantity that represents the ratio of object’s speed

with respect to the local speed of sound [38] and formulated as

M =
‖v‖
c
. (2.2)

In the equation, c is the local speed of sound which is subject to change with the

altitude of interest, temperature, density and pressure of the environment. cd also

depends on the object’s shape and ζ is included in 2.1 to emphasize this dependency.

In order to show this dependency, the drag coefficient against Mach number of three

projectiles with different shapes are illustrated in Figure 2.5.

Figure 2.5: Drag coefficients vs Mach number
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A closer look to cd profiles given in Figure 2.5 can reveal significant information

about the common characteristics of most BOs’ drag coefficient profiles. The outlier

profiles given in the figure belong to the projectiles which have the extreme projectile

shapes: perfectly spherical and extremely pointy. In fact, a projectile with a different

shape has a drag coefficient characteristic in between these extreme profiles. Further-

more, for the majority of the projectiles, the drag coefficient is almost constant below

0.8 Mach and shows a highly nonlinear characteristic around 1 Mach. The charac-

teristic around 1 Mach mainly stems from the formation of shock waves around the

object. cd generally begins to decrease linearly around 1.2 Mach [34]. In general,

the Mach number’s range is divided into three regions according to different wave

formations induced around the objects: below 0.8 Mach is called the subsonic speed

regime, above 1.2 Mach is called the supersonic speed regime, and the region between

these regimes is called the transonic speed regime.

Another term which affects the drag coefficient is the total yaw angle of the projectile.

The term is used to describe any angular motion of the projectile’s axis of rotational

symmetry relative to the trajectory. In other words, it is a combination of angle of

attack (vertical angle) and angle of sideslip (horizontal angle). The total yaw angle

(αt) can be seen in Figure 2.6 with the drag force which is in the opposite direction

of the velocity.

cd’s dependency on the total yaw angle can be well approximated by the following

equation:

cd = cd0 + cdδ2δ
2, (2.3)

where δ = sinαt, cd0 is zero-yaw drag coefficient and cdδ2 is δ-yaw drag coefficient.

Both of these coefficients change with Mach number. In addition to that, αt changes

during the flight due to the epicyclic motion of a spin-stabilized projectile (see Figure

2.4). As a result, cd also varies during the flight since M and αt vary.

14



Figure 2.6: Drag force

2.2.1.2 Lift Force

Aerodynamic lift force is defined as the force perpendicular to the tangent of the

trajectory (or to the velocity vector). It tends to pull the projectile towards its longi-

tudinal axis [21]. Lift force can be stated in vectorial form as

Flift =
1

2
ρscLα ‖v‖

2 (i× (x× i)
)
, (2.4)

where cLα is the lift force coefficient, i is the unit vector in the direction of the velocity,

x is the unit vector in the direction of the projectile’s axis of rotational symmetry and

× represents the cross product of two vectors.

Lift force is perpendicular to the velocity vector and lies in the plane spanned by

the velocity vector and the projectile’s longitudinal axis. Contrary to what its name

implies, lift force may affect in arbitrary directions depending on the velocity vector

and the longitudinal axis of the projectile. If the total yaw angle becomes zero, in

other words, if the velocity vector and the projectile’s longitudinal axis are aligned,

lift force vanishes.
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Figure 2.7: Lift force

2.2.1.3 Magnus Force

Magnus force is a side force that affects a spinning object having non-zero total yaw

angle. It stems from unequal pressure on vicinity of the spinning object and lies in a

direction perpendicular to the plane spanned by the velocity vector and the projectile’s

longitudinal axis. It can be formulated in vectorial form as

Fmagnus =
1

2
ρ ‖v‖2 s pd

‖v‖
cNPα (i× x), (2.5)

where p is the axial spin rate, d is the projectile’s reference diameter and cNPα is the

Magnus force coefficient which is a small negative quantity. Magnus force vanishes

only if spin rate or total yaw angle becomes zero. Figure 2.8 illustrates the Magnus

force.
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Figure 2.8: Magnus force

2.2.2 Aerodynamic Moments

The aerodynamic forces mentioned in Section 2.2.1 also generate a moment which

rotates the object along a direction depending on the positions of its cp and cg.

2.2.2.1 Overturning Moment

The overturning moment is induced by the lift force discussed in Section 2.2.1.2. For

the majority of spin stabilized projectiles, the overturning moment raises the total yaw

angle since cp is located in front of cg which may cause instability. The projectiles

should spin at sufficient spin rates to overcome this phenomenon. The vectorial form

of the moment is

Moverturning =
1

2
ρsdcMα ‖v‖

2 (i× x), (2.6)

where cMα is the overturning moment coefficient. The moment is shown in Figure

2.9.
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Figure 2.9: Overturning moment

2.2.2.2 Magnus Moment

Magnus force introduced in Section 2.2.1.3 generates a moment which is perpendic-

ular to the projectile’s longitudinal axis and lies in the plane spanned by the velocity

vector and the longitudinal axis. Its vectorial form is defined as

Mmagnus =
1

2
ρd ‖v‖2 s pd

‖v‖
cMPα

(
x× (i× x)

)
, (2.7)

where cMPα
is the Magnus moment coefficient. This coefficient can either be positive

or negative depending on the position of cg, the projectile’s shape, the total yaw angle

and the value of Mach number.

Magnus moment is the primary moment which determines the stability of the object.

Hence, it must be always considered and well represented in calculations.

Besides aforementioned forces and moments, there are other forces and moments

acting on the ballistic object, such as pitch damping force, pitch damping moment,

spin damping moment, rolling moment (for canted projectiles), Magnus cross force

and Magnus cross moment. However, they usually produce such insignificant effects
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on the trajectory of the projectile that they can be neglected in most circumstances.

Therefore, they are not given in this document.
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CHAPTER 3

GAUSSIAN PROCESSES

Gaussian process is a non-parametric stochastic model which specifies a prior over

an infinite-dimensional space of functions. It can also be interpreted as a collection of

random variables, any finite number of which have a joint Gaussian distribution [14].

An unknown function f(·) which has a GP prior is denoted as

f(x) ∼ GP(µ(x), k(x, x′)),

where µ(x) and k(x, x′) are its mean and covariance functions, respectively and x is

the argument of the function. A Gaussian process is uniquely defined by its mean and

covariance functions. These functions are defined as

µ(x) = E[f(x)], (3.1a)

k(x, x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))T ]. (3.1b)

By GP definition, function values evaluated at a finite number of inputs, x1, . . . , xL,

are normally distributed,


f(x1)

...

f(xL)

 ∼ N (µ, K), (3.2a)

21



where

µ =


µ(x1)

...

µ(xL)

 , K =


k(x1, x1) . . . k(x1, xL)

... . . . ...

k(xL, x1) . . . k(xL, xL)

 . (3.2b)

3.1 Kernel Functions

Constructing a correlation structure between the data points is crucial in the con-

text of supervised learning, since the output of a test point is predicted based on the

"closeness" of training data to the test point. This closeness can be defined in several

ways, e.g., based on the distance of two input points, x and x′, in the input space.

Kernel function specifies the correlation between data points in GP models. Before

examining the common forms of kernel functions, let us first define the stationary

and isotropic kernel functions: A kernel function is called stationary if it is a function

of x − x′. In that case, the kernel function is invariant to translations in the input

space. Secondly, a kernel function is called isotropic if it is a function of ‖x− x′‖,
which is the norm distance of two input points. In that case, the direction of the vec-

tor difference of the inputs has no importance. For example, in a 2-D input space,

the correlation between f([1, 0]) and f([2, 0]) is the same as the correlation between

f([0, 1]) and f([0, 2]). Stationarity is a more general class of kernels than isotropy,

i.e., every isotropic kernel is stationary, but not vice versa.

For the function f(·), it is stated that the function values, evaluated at any number of

inputs, are jointly Gaussian and this joint distribution has a covariance matrix which

is given in (3.2b). Kernel functions, k(·, ·), are used to construct this covariance

matrix which specifies the correlation between the function values. Please note that

the correlations between the function values are determined by their input values.

In order to understand the significant role of the kernel (and its hyperparameters) on

GP modeling, different kernel functions are introduced and discussed in the following

subsections.
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3.1.1 Exponentiated Quadratic Kernel

Exponentiated Quadratic (EQ) Kernel, which is also called Squared Exponential, is

one of the most preferred kernels in GP models. It forms infinitely differentiable func-

tions, i.e., at highest possible smoothness. EQ Kernel is specified with the following

expression

k(x,x′) = σ2 exp

(
−(x− x′)>Σ−1(x− x′)

2

)
, (3.3a)

Σ = diag(l21, ..., l
2
N), (3.3b)

where the dimension of the input space is N and diag(·) stands for a function which

places the given inputs diagonally on a square matrix. The kernel has two types of hy-

perparameters which determine its characteristic: σ2 is the variance and it determines

the amount of variation in function values. It is also called the scaling parameter

since it is a multiplier of the exponential function. Correlation between two points

specified by EQ decreases as the distance between the points increases. l1, ..., lN are

length scale parameters and they specify how fast this correlation decreases with the

distance at each corresponding dimension. In that sense, length scale parameters de-

scribe the smoothness of the function. A small value of l enables the function to

change its values rapidly, whereas a high value results in a smoother function. In the

regression framework, the value of the parameter specifies how well the training data

is extrapolated on test points.

In its general form, the kernel is stationary but not isotropic. The isotropic form,

which is used more frequently, is

k(x,x′) = σ2 exp

(
−(x− x′)>(x− x′)

2l2

)
. (3.4)

The isotropic form has only two hyperparameters the length scale parameter for all

dimensions of the input and the scaling parameter. Using the same length scale at
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all dimensions is a reasonable assumption, since the correlation of data at different

dimensions is the same in most regression problems.

3.1.2 Exponential Kernel

Exponential kernel generates continuous but non-differentiable functions. It is for-

mulated as

k(r) = σ2 exp
(
−r
l

)
, (3.5)

where r =
√

(x− x′)>(x− x′) is the Euclidean distance between the input points,

σ2 is the scaling parameter and l is the characteristic length scale.

3.1.3 Matern Kernel

Matern Kernel is a broad class of kernels whose members are distinguished by a

parameter ν. For p = ν−1/2, the kernel can be written as a product of an exponential

and a polynomial of order p. Most popular choices of ν are 3/2 and 5/2 which

correspond to Matern-3 and Matern-5, respectively. The expressions for these kernels

are given below:

k3/2(r) = σ2

(
1 +

√
3r

l

)
exp

(
−
√

3r

l

)
, (3.6a)

k5/2(r) = σ2

(
1 +

√
5r

l
+

5r2

3l2

)
exp

(
−
√

5r

l

)
. (3.6b)

A Gaussian process with Matern kernel generates sample functions that are p times

differentiable. Matern-3 and Matern-5 generates one time and two times differen-

tiable functions. Furthermore, as ν approaches to∞, Matern kernel converges to EQ

kernel given in (3.4). For ν = 1/2, Matern kernel becomes Exponential kernel given

in (3.5). Stein [33] states that infinitely differentiable kernel functions are unrealistic

for physical processes and proposes to use Matern function with finite values of ν.
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In Figure 3.1, aforementioned kernels are depicted by keeping the hyperparameters

at the same values.

Figure 3.1: EQ, Exponential and Matern Kernels (σ=2, l=2)

To better understand the effect of hyperparameters, functions are sampled from GP

priors which have covariance matrices constructed by Matern-3 kernel having differ-

ent values of hyperparameters which are given in Table 3.1.

Table 3.1: {σ, l} pairs

{2 , 0.5}, {2 , 2}, {2 , 15}
{5 , 0.5}, {5 , 2}, {5 , 15}

For an explicit illustration, the dimension of the input space is selected as 1. Finite

number of inputs are generated with equal distance in the input space. Then, the co-

variance matrix in (3.2b) is constructed by calculating the value of the kernel k(xi, xj)

for i = 1, ..., L and j = 1, ..., L. Then, the multivariate normal distribution having

zero mean and the covariance matrix is sampled for multiple Monte Carlo runs. The

Matern-3 kernels having these values of hyperparameters are shown in Figure 3.2.
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Figure 3.2: Matern-3 Kernel with various {σ, l} pairs

In Figure 3.3, sample functions are shown. By comparing the figures from top to bot-

tom, the effect of scaling parameter, σ2, can be examined. With an increase in σ, the

amplitude of the fluctuation in sample functions increases. Similarly, by comparing

the figures from left to right, the effect of length scale, l, can be understood. With

an increase in l, cross-correlation among function values increases and sample func-

tions become smoother. With a small value of length scale (l=0.5), sample functions

change rapidly; at the other extreme, with an excessively high value of length scale

(l=15), functions become almost constant.

3.1.4 Periodic Kernel

A periodic kernel specifies the correlation based on a period of distance in addition

to the closeness of input points with each other. By means of this kernel, functions
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Figure 3.3: Sample functions

which repeat themselves can be generated. A periodic kernel can be defined as

k(r) = σ2 exp

(
− 2

l2
sin2

(
πr

p

))
, (3.7)

where p is the period. Being able to represent periodic functions makes GP a very

powerful tool. For instance, Wahlström and Özkan [35] utilize this functionality for

learning the radial extent (which is periodic) of symmetric vehicles.

3.1.5 Linear Kernel

A linear kernel is used to model linear functions. In fact, it corresponds to Bayesian

linear regression in a less efficient way [10]. However, this kernel is favorable es-

pecially when it is combined with other kernels such as EQ or a periodic which is
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explained in Section 3.1.6. Linear kernel is defined as

k(x, x′) = σ2(x− c)(x′ − c), (3.8)

where c is an input offset. The offset determines the point on x coordinate that all

sample functions go through. Linear kernel is not stationary and the value of the ker-

nel is determined by input points rather than the relative positions. Sample functions

are generated for different values of σ by setting the value of c to 2 and illustrated

in Figure 3.4. Notice that all sample functions exactly pass through the point (2,0).

Furthermore, it is seen that an increase in σ results in more scattered sample functions.

Figure 3.4: Functions sampled from a linear kernel (σd = 0)

Linear kernels are so strict that functions are compelled to pass through the point (c,

0). To bring flexibility to this model, this kernel is used with an additional constant
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variance term, σ2
d, which determines how much the model differs from linear model

by specifying a prior on it [10]. In that case, the kernel becomes

k(x, x′) = σ2
d + σ2(x− c)(x′ − c). (3.9)

Sample functions, generated with the new form of the kernel by taking σd as 1, are

shown in Figure 3.5.

Figure 3.5: Functions sampled from a linear kernel (σd = 1)
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3.1.6 Combining Different Kernels

Completely new kernels can be built by combining different classes of kernels. By

doing so, the model can utilize the features of different kernels at the same time and

more complex systems can be conveniently modeled by means of this combination.

Most preferred methods of combining the kernels are summation and multiplication

of two or more. These methods will be explained in details with some examples:

• Summation:

The summation of two kernels ka(x, x′) and kb(x, x′) results in a valid kernel

ks(x, x
′). In general, any number of kernels can be summed in this way to com-

bine their features. The kernels which are summed can be at different forms or

at the same form with different hyperparameters. As an example, the sum of a

linear and a periodic kernel and sample functions, drawn from a GP prior hav-

ing a covariance matrix constructed by this new kernel, are depicted in Figure

3.6.

The periodic kernel’s hyperparameters are chosen as σ=1, l=2, p=2 while the

linear kernel’s ones are σ=0.5, σd=0.5, c=2. Please note that the sample func-

tions are locally periodic with a linear rate of change in general.

• Multiplication:

Similar to summation, multiplication of two or more kernels yields a valid ker-

nel km(x, x′).

One of the functionalities of multiplication is to restrict the support of a ker-

nel by multiplying with a kernel whose support is narrower. For instance, EQ,

Exponential or Matern kernels are all local kernels which specify the correla-

tion based on closeness of two input points; whereas periodic kernel specifies

periodicity all over the input space. Multiplying a periodic kernel by a local

kernel produces local periodic characteristic. Moreover, characteristic of a ker-

nel can be leveraged as input points move away from input offset c. This can be

achieved by multiplication of a kernel by linear kernel function, since absolute
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Figure 3.6: A linear + a periodic kernel and sample functions

value of linear kernel grows away from the point c. These applications of kernel

multiplication are illustrated in Figures 3.7 and 3.8, respectively.

Figure 3.7 is produced with kernel parameters of σ=5, l=2 and p=0.5 for pe-

riodic kernel and σ=5 and l=2 for EQ. The kernel form implies that the cor-

relation decreases as the distance between input points increases with the help

of EQ and locally periodic by means of a periodic kernel. Besides, sample

functions are locally periodic and their characteristics slowly changes thanks to

EQ.

Figure 3.8 is produced with kernel parameters of σ=1, l=2 and p=0.5 for pe-

riodic kernel and σ=1, σd=0.5 and c=2 for linear kernel. As the input moves

away from point c, the amplitude of the periodicity in sample functions grows.

It should be noted that there are numerous kernel forms and plenty of hyper-

parameters to be set especially if the input dimension is high and the kernel is

non-isotropic. Although some of these kernels can be considered similar with
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Figure 3.7: A periodic × EQ kernel and sample functions

respect to their functional forms (3.1), their effects on GP prior substantially

differ. Furthermore, the characteristic of the modeled function, varies signif-

icantly with the different values of the hyperparameters of the same kernel.

Moreover, more complex and specialized kernels can be developed as intro-

duced at Section 3.1.6 and there are also other methods of combining different

kernels which are not mentioned in this thesis, such as defining different ker-

nels for different pieces of input space known as combination by changepoints

method [10]. Because of this diversity, determining the most appropriate ker-

nel and designating its hyperparameters is an essential but challenging task in

Gaussian process modeling. Later, this task will be discussed in details at Sec-

tion 3.3.1.
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Figure 3.8: A linear × a periodic kernel and sample functions

3.2 Gaussian Process Regression

An observation y can be formulated as a deviation from a GP model with an additive

noise such that

y = f(x) + e, e ∼ N (0, σ2
r). (3.10)

The primary objective of a GP model is to estimate the function values evaluated

at some inputs considering the observations. Let’s denote the values of the latent

function, which are intended to be estimated, as f , [f(xf
1) . . . f(xf

T )]> at the test

inputs xf , [xf
1 . . . x

f
T ]> . For that purpose, a set of measurements represented by

y , [y1 . . . yL]> are collected from the latent function with corresponding inputs

x , [x1 . . . xL]>. By using (3.2) and (3.10), the joint distribution of the measure-
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ments and the function values at the test points can be written as y

f

 ∼ N
0,

 K(x, x) +R K(x, xf)

K(xf, x) K(xf, xf)

 , (3.11a)

where R is L× L diagonal matrix whose diagonal elements are σ2
rs and

K(x, xf) =


k(x1, x

f
1) . . . k(x1, x

f
T )

...
...

k(xL, x1
f) . . . k(xL, x

f
T )

 . (3.11b)

Notice that, the underlying GP model given in (3.11) is selected to have a zero-valued

mean function.

From the joint distribution, p(y, f), the conditional distribution p(f|y) can be com-

puted as

p(f|y) ∼ N (Sy, P ), (3.12a)

S = K(xf, x)Ky
−1, (3.12b)

P = K(xf, xf)− SK(x, xf), (3.12c)

Ky = K(x, x) +R. (3.12d)

In the study, smoothed ballistic parameter and Mach number estimates are used as

observation and input to GP, respectively. It enables the estimation of the BP value

by using predicted Mach number as a test point on impact point prediction phase.

3.3 Further Discussions on Gaussian Processes

3.3.1 Kernel Selection and Hyperparameter Optimization

Broad set of kernels used in Gaussian Process models are introduced in Section 3.1. In

this section, determination of the form and hyperparameters of kernel function based

on a training data set is discussed in details. In most of the real world applications,

choosing the most appropriate kernel for the phenomena and determining its hyper-

parameters are challenging problems. The challenge stems from the fact that there are
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numerous kernels and plenty of hyperparameters that need to be set. Whereas some

parameters of a kernel are easy to specify based on the characteristics of the modeled

phenomenon, some parameters are hard to be set since these parameters cannot be

easily associated with the modeled function. For example, stationarity of the kernel

function can be easily determined by considering the phenomenon; however, deter-

mining the values of the length scale parameters is troublesome, especially when the

input dimension is high.

In the literature, approaches to the kernel selection problem can be categorized in

three classes and they are based on one of the followings: the probability of the model

given the training data, the prediction error and bounding the prediction error [27].

In this study, evaluation and comparison of different kernels and their hyperparame-

ters are done in a Bayesian framework. The probability of the model given the data is

computed in Section 3.3.1.1 and Maximum Likelihood Estimation (MLE) is utilized

to determine the optimal kernel and its hyperparameters in Section 3.3.1.2.

3.3.1.1 Calculation of Marginal Likelihood

For an observation set y and the corresponding input set x, the marginal likelihood of

the observations can be formulated in logarithmic form as

log(p(y|x,Θ)) = −1

2
y>K−1y y − 1

2
log(|Ky|)−

N

2
log(2π), (3.13)

where | · | stands for the determinant of its input argument, Ky is the covariance

matrix of the observation set calculated in 3.12d, N is the input dimension and Θ is

the set of hyperparameters. The terms in the log likelihood given in (3.13) can be

interpretable as follows: The first term, −1
2
y>K−1y y, is the only term which involves

observations and it qualifies how well the observations fit the model. The second

term, −1
2
log(|Ky|), depends on the inputs and the kernel of the model and it is the

negative of the complexity penalty. The last term is a normalization constant and

depends only on the dimension of the problem. Evolution of the first two terms as the
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length scale of the kernel changes is depicted in Figure 3.9 to understand the terms

more clearly.

Figure 3.9: Log marginal likelihood and its constituent terms

Log marginal likelihood given in Figure 3.9 belongs to the data sampled from a GP

having a covariance matrix constructed by EQ kernel with the hyperparameters of

σ = 2 and l = 0.5 with an additive observation noise having a standard deviation of

σd = 0.2. While generating Figure 3.9, σ and σd are kept at their reference values.

In the figure, the marginal likelihood reaches its maximum at lopt = 0.497 which is

very close to the reference value. The data fit term decreases with increasing length

scale because the model loses its flexibility to fit the data. Moreover, the negative

of the complexity penalty increases with the length scale, since the model loses its

complexity as the length scale increases. For the values of the length scale greater

than the optimal value, the marginal likelihood decays rapidly, because as the length

scale grows, the model becomes so strict that it loses its ability to model the data.
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3.3.1.2 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a technique used for estimating the pa-

rameters of a given distribution via maximizing the likelihood function, so that under

the assumed statistical model the observed data is most probable. To use a gradient-

based optimization technique, the partial derivative of the log marginal likelihood

with respect to any hyperparameter Θj is obtained as

∂

∂Θj

log(p(y|x,Θ)) =
1

2
y>K−1y

∂Ky

∂Θj

K−1y y − 1

2
tr
(
K−1y

∂Ky

∂Θj

)
, (3.14a)

=
1

2
tr
(

(γγ> −K−1y )
∂Ky

∂Θj

)
, (3.14b)

where tr(·) stands for the trace of its input argument and γ = K−1y y [27].

Rasmussen and Williams state that the marginal likelihood may suffer from multiple

local optima. However, in practice, with large data sets, the global optimum is of the

orders of magnitude more probable than any other local optima. In general, using a

local optimum may result in an undesired representation of the data, hence it should

be avoided [27].

3.3.2 Some Approximations of GP

As mentioned earlier, GP provides an elegant way of realizing Bayesian nonparamet-

ric regression. However, its non-parametric nature gives rise to significant compu-

tational problems especially for large training sets. More specifically, the training

procedure scales with N3 where N is the number of the data points. This is simply

due to the inversion of the covariance function performed to determine the hyper-

parameters maximizing the marginal likelihood. Besides, the predictive distribution

for a single test input has O(N2) computational complexity which is dominated by

the calculation of the predictive variance. The storage demands of prediction, on the

other hand, scale with O(N2) which might hinder the utilization of GP models with

large data sets.
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To ease these unfavourable computational aspects of GP regression, there has been

developed a great body of literature tackling with the issues from various angles.

The first branch of the studies suggests algebraic improvements to the conventional

settings and investigates approximations to the matrix inversion included in the pre-

dictive covariance [27]. Another approach suggests to partition the complete data set

into subsets and then to learn local models for each subset [26]. The outputs of the

local models are combined to obtain the whole resulting prediction. An alternative

line of algorithms relies on the selection of a subset of the complete training set [31],

[6], [18]. These, however, generally lack a systematic solution to reliably determine

the hyper-parameters as the selection of the data set interferes with the correct values

for these parameters [31]. Considering the difficulties engaged with the mentioned

approaches, we prefer to employ a pseudo-input method named Sparse Pseudo-input

Gaussian Processes (SPGP) which was first proposed in [32].

3.3.2.1 Sparse Pseudo-input Gaussian Processes

SPGP essentially provides an efficient approximate GP regression based on the joint

optimization of the active input point locations and the hyper-parameters by a gradient

based optimization scheme. The complexity of regression with SPGP for each test

case is O(M2) where M is the number of pseudo data points. Before proceeding to

the details of the sparse model, let us rewrite the predictive density with a slightly

modified notation then the one utilized in Section 3.2.

p(y|x,D,θ) = N
(
y|k>x

(
KN + σ2I

)−1
y, Kxx − k>x

(
KN + σ2I

)−1
kx + σ2

)
(3.15)

D is the data set with input vectors X = {xn}Nn=1 and corresponding measurements

y = {yn}Nn=1. The covariance matrices are defined as follows: [kx]n = K (xn,x)

and Kxx = K(x,x) where K(·, ·) is the kernel or covariance function.

Notice that the likelihood given in (3.15) has mean and variance which are both func-

tions of the test point, x. Additionally, these functions could be interpreted to be pa-

rameterized by the training data set, X and y. SPGP proposes a probabilistic model

38



considering this likelihood to be parameterized by a pseudo data set, D̄. As the num-

ber of points included in the pseudo data set, M , is selected to be smaller than that of

the original data set, it provides an effective way of regression. X = {xm}Mm=1 and

f =
{
fm
}M
m=1

indicate the input and output pairs in the pseudo data set, respectively.

Regarding this new set, one can write the predictive distribution as

p(y|x,X, f) = N
(
y|k>x K−1M f , Kxx − k>x K−1M kx + σ2

)
(3.16)

where [KM ]mm′ = K (xm,xm′) and [kx]m = K (xm,x), for m = 1, ...,M .

Subsequently, the likelihood of the observed data set can be written as

p(y|X,X, f) =
N∏
n=1

p
(
yn|xn,X, f

)
= N

(
y|KNMK−1M f ,Λ + σ2I

)
(3.17)

where Λ = diag(λ), λn = Knn − k>nK−1M kn, and [KNM ]nm = K (xn,xm)

By selecting a Gaussian prior on the pseudo targets, i.e., p(f |X) = N
(
f |0,KM

)
, the

posterior distribution is obtained as

p(f |D,X) = N
(
f |KMQ−1M KMN

(
Λ + σ2I

)−1
y,KMQ−1M KM

)
(3.18)

where QM = KM + KMN (Λ + σ2I)
−1

KNM .

Hence for a new test point the predictive distribution can be attained as

p
(
y∗|x∗,D,X

)
=

∫
dfp

(
y∗|x∗,X, f

)
p(f |D,X) = N

(
y∗|µ∗, σ2

∗
)

(3.19)

where µ∗ = k>∗Q−1M KMN (Λ + σ2I)
−1

y and σ2
∗ = K∗∗− k>∗

(
K−1M −Q−1M

)
k∗+ σ2.

Notice that the inversion of (Λ + σ2I) does not impose a computational problem as

it is a diagonal matrix. By this formulation, the complexity of a prediction is set to be

O(M2) (by utilizing some precomputations), [32].

Finally, the last step is to find the pseudo-input locations, X, and the hyper-parameters,

Θ = {θ, σ2}. To this end, the following form of marginal likelihood is maximized

with respect to X and Θ using a gradient-based optimization scheme.

p(y|X,X,Θ) =

∫
dfp(y|X,X, f)p(f |X)

= N
(
y|0,KNMK−1M KMN + Λ + σ2I

) (3.20)
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CHAPTER 4

TRACKING AND SMOOTHING FOR BALLISTIC OBJECTS

This chapter provides detailed information about the ballistic target tracking (BTT)

and construction of smoothed state estimates and covariance matrices. It begins with

the motion and measurement models utilized in BTT with the emphasize on ballistic

coefficient. Effective forces captured by the motion model are discussed and utilized

Earth and gravity models are introduced by discussing the alternatives. Then, the

state estimation is described. We conclude this chapter by introducing smoothed state

estimates and their covariance matrices which are obtained by a Rauch, Tung and

Striebel (RTS) Smoother.

4.1 Ballistic Target Tracking Method

A tracking algorithm aims to extract the maximum information about the target state

from available observations. To achieve this purpose, mathematical models of target’s

kinematics and sensor are utilized. A tracking algorithm is responsible for jointly

using the target motion and sensor models to provide accurate state estimates.
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4.1.1 Motion Model

A motion model of a ballistic object is to be derived first to utilize in the tracking

algorithm. Let the state vector be

xk ,


pk

vk

αk

 , (4.1a)

pk =


pxk

pyk

pzk

 , vk =


vxk

vyk

vzk

 , (4.1b)

where the position pk and the velocity vk at time k are expressed in 3D local Cartesian

coordinates which its origin is at the sensor location and αk denotes the ballistic

parameter (BP) at time k that is inversely proportional to the BC. BP is a slowly

changing parameter and its exact dynamics cannot be expressed in a closed form.

In most studies, a crude approximation is made by assuming BP to be a random

walk throughout the entire flight. In that sense, the state space model (SSM) can be

formulated in discrete form as

xk+1 = Fxk +Gak(xk) +Bwk, wk ∼N (0, Qk), (4.2a)

F ,


I3×3 TI3×3 03×1

03×3 I3×3 03×1

01×3 01×3 1

 , G ,


T 2

2
I3×3

T3×3

01×3

 , B ,

 06×1
G

1

 , (4.2b)

where T is the update period, ak(xk) is the acceleration at time k and wk is white-

Gaussian process noise with covariance matrix Qk. This model can be interpreted as

a variant of the well-known constant velocity model when the acceleration is regarded

to be an input to the system.

In the motion model described in (4.2), acceleration at time k can be computed by
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considering the net effective force acting on the object as

ak =
F net
k

m
(4.3)

where m is the mass of the object. The effective forces on the ballistic objects are

discussed in Section 2.2.1 in details. BTT introduced here is intended to be appli-

cable against ballistic targets which stay within atmosphere throughout their entire

flight. Consequently, the aerodynamic drag force is effective throughout the whole

BTT. Furthermore, the prospective projectiles have small total yaw angle along most

of their trajectories; as a result, assuming the total yaw angle to be zero is feasible.

Under this assumption, lift and magnus forces mentioned in Section 2.2.1 as well

as overturning and magnus moments mentioned in Section 2.2.2 become negligible.

Moreover, the prospective projectiles are assumed not to have any propellant which

accelerates the projectile during the boost phase of their flight. For thrusting projec-

tiles, on the other hand, it is assumed that the burn-out occurs before the BTT begins.

This is a feasible assumption, since the boost phase of the thrusting projectiles gen-

erally lasts in a short period of time. Thus, thrust force is assumed to be zero. Under

these assumptions, the net force acting on the projectile is determined by the drag and

gravitational forces only. By using (2.1), the net force can be written at time k as

F net
k = F drag

k + F gravity
k , (4.4a)

= −1

2
ρScd(vk) ‖vk‖ vk +mg, (4.4b)

where g is gravitational acceleration.

Gravitational force can be modeled in different ways depending on the Earth model

which induces gravity. Most common alternatives of earth models are summarized

below.

• Flat Earth Model: Flat Earth model considers the Earth as flat and non-

rotating [11]. In the flat Earth model, gravity is always in the direction of a

down component of a local frame. Depending on the application, it may vary

43



with the height of the object or can be assumed to be constant if the height of

the object is not too high.

• Spherical Earth Model: Spherical Earth model considers the Earth as a sphere

by neglecting the oblateness of the Earth. The model is usually used to take the

curvature of the Earth into account without increasing the model complexity

too much. In spherical Earth model, gravity always directs towards the center

of the Earth and usually varies with the altitude of the object of interest. The

variation with the altitude is usually performed by Newton’s law of universal

gravitation which is

g = − µ

‖r‖3
r, (4.5)

where µ is the standard gravitational parameter of the Earth and r is the vector

from the center of the Earth to the object of interest.

• Ellipsoidal Earth Model: Ellipsoidal Earth model considers the Earth as an

oblate spheroid which is an ellipsoid with two equal semi-diameters and it is

wider at its equatorial plane than along its axis of rotational symmetry. The

ellipsoid exhibits rotational symmetry about the axis passing through its poles

and mirror symmetry over the equatorial plane [16]. The direction of the grav-

ity does not point to the center of the Earth; instead, it directs perpendicular to

the ellipsoid at any point. Its magnitude varies with the altitude of the object

as well as the latitude of the object due to the oblateness of the Earth. There

are standard ellipsoid models which defines a standard on the geometry of the

Earth, gravity and the rotation of the Earth. World Geodetic System of 1984

(WGS-84) is the most commonly used model among many [23]. For air appli-

cations, it is standard practice to use an empirical model of the surface gravity

and apply a simple scaling law to calculate the variation with altitude [16]. The

WGS-84 provides a simple model of the gravity at the ellipsoid as a function of

latitude.

• A Geoid Model: Unlike the ellipsoidal Earth model’s assumption, the real

world is not homogeneous. There are mass differences between lands and
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oceans. Moreover, even under the surface, there is inhomogeneous material

distribution. This mass differences and inhomogeneities result in variations in

the gravity field. To account for these variations, a constant gravity potential

surface is defined around the physical surface of the Earth. On the defined

surface, magnitude of the gravity is equal and gravity is perpendicular to the

surface at all points. This definition of the Earth surface is called the geoid. As

the Earth’s gravity field varies with location, the geoid can differ from the ellip-

soid by up to 100 m. The geoid also represents mean sea level and the gravity

is calculated according the height from mean sea level.

There are standard geoid models as well, where the most common and up to

date is Earth Gravitational Model 2008 (EGM 08) which defines the geoid

height (from the surface of the ellipsoid) and gravitational potential as a spher-

ical harmonic function of latitude and longitude.

Within the context of this thesis, ballistic targets which exhibit endo-atmospheric

flight are the main concern. Maximum range of endo-atmospheric ballistic targets

are approximately less than 50 km. For a spherical Earth model, height of an object

changes around 200 m at range of 50 km due to the curvature of the Earth. At these

ranges, curvature of the Earth can be neglected. Furthermore, variation in the magni-

tude of the gravity with the altitude can be neglected for an endo-atmospheric flight.

The objects in endo-atmospheric flight reach up to 30 km of altitude. When the mag-

nitude of gravity is assumed to be 9.81 m/s2 at the surface of the Earth and the radius

of the Earth is assumed to be 6400 km, the magnitude of gravity at altitude of 30 km

is around 9.72 m/s2 according to (4.5). Under these assumptions, flat Earth model is

utilized and gravity is modeled as constant throughout the trajectory such that

g =


0

0

9.81

m/s2 (4.6)

in a North-East-Down (NED) local frame.

While modeling the drag force, BC which is a measure of an object’s ability to over-
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come air resistance in flight is defined as

β(vk) =

(
scd(vk)

m

)−1
, (4.7)

where β stands for BC. In this work, we introduce a new parameter, called ballistic

parameter (BP), so that the resulting state-space representation will easily lend itself

to the filtering techniques based on linearization of the system dynamics such as EKF.

The definition of the BP is

αk(vk) =
1

Aβ(vk)
. (4.8)

where αk denotes the BP at time k. In this equation, A is called the numerical sta-

bilizer and it ensures that the values of BP is at the same order of magnitude with

other state variables since it is augmented into the state vector to be estimated. The

dynamic of BP is modeled as a random walk in state-space representation as given in

(4.2).

By combining (4.4) with (4.6)-(4.8), acceleration of the projectile at time k can be

obtained as

ak(xk) = −1

2
ρ(pzk)Aαk(vk) ‖vk‖vk + g. (4.9)

We further model the air density, ρ(pzk), as exponentially decreasing with altitude of

the projectile such that

ρ(pzk) = 1.227e1.0931× 10−4pzk , (4.10)

where pzk is the negative of the altitude of the projectile. By plugging ak(xk) into

(4.2a), the dynamical model can be finally obtained as

xk+1 = Fxk +G
(
− 1

2
ρ(pzk)Aαk(vk) ‖vk‖vk

)
+Gg︸ ︷︷ ︸

f(xk)

+Bwk. (4.11)

4.1.2 Measurement Model

The measurement equation of our state space model is given by

zk = h(xk) + νk, νk ∼ N (0, Rk), (4.12)
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where νk is white-Gaussian measurement noise with covariance matrix Rk. As a

common practice, the measurement sensor is assumed to be a 3D radar which acquires

the position of the target in spherical coordinates. Hence, the measurement vector, zk

is comprised of range, azimuth and elevation of the target,


zRk

zθk

zφk

 =


√
pxk

2 + pyk
2 + pzk

2

tan−1
(
pyk
pxk

)
sin−1

(
pzk√

pxk
2+pyk

2

)
+ νk. (4.13)

As a result, both the motion and measurement equations are non-linear and they must

be handled properly at inference.

4.1.3 Inference via Extended Kalman Filter (EKF)

Considering the nonlinearities included in both process and measurement equations,

we employed an EKF. EKF basically computes the posterior distribution by propa-

gating its mean estimate x̂k|k and covariance matrix Pk|k.

4.1.3.1 Time Update

In the prediction step, predicted state estimate x̂k+1|k and predicted covariance matrix

Pk+1|k are calculated as follows [4]:

x̂k+1|k = f(x̂k|k), (4.14a)

Jk =
∂f

∂x

∣∣∣∣
x̂k|k

, (4.14b)

Pk+1|k = JkPk|kJ
>
k +BQB> (4.14c)

where Jk is the Jacobian of the state transition function f(·) evaluated at the latest

state estimate x̂k|k.
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4.1.3.2 Measurement Update

In measurement update step; first, innovation z̃, innovation covariance matrix S and

Kalman gain K are computed; then, updated state estimate x̂k+1|k+1 and covariance

matrix Pk+1|k+1 are calculated as

z̃k+1 = zk+1 − h(x̂k+1|k), (4.15a)

Hk+1 =
∂h

∂x

∣∣∣∣
x̂k+1|k

, (4.15b)

Sk+1 = Hk+1Pk+1|kH
>
k+1 +R, (4.15c)

Kk+1 = Pk+1|kH
>
k+1S

−1
k+1, (4.15d)

x̂k+1|k+1 = x̂k+1|k +Kk+1z̃k+1, (4.15e)

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k. (4.15f)

Time and measurement updates are repeated recursively throughout tracking.

4.2 Smoothing Method

Before starting to construct the GP model based on the estimates of the tracking filter,

a smoothing operation needs to take place. This is due to the low observability of the

ballistic parameters by position measurements at low/medium update rates (0.1-10

Hz). In particular, BP estimates of the tracking filter tend to be significantly noisy

and time delayed; therefore, they are to be pre-processed before being fed as input to

GP training. For this purpose, a smoother which uses all available measurements to

obtain a state estimate at an arbitrary time instant k is used.

Smoothed state estimate x̂k|1:N and covariance matrix Pk|1:N are calculated by the

following set of equations
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x̂k|1:N = x̂k|k + Ck[x̂k+1|1:N − x̂k+1|k], (4.16a)

Pk|1:N = Pk|k + Ck[Pk+1|1:N − Pk+1|k]C
>
k , (4.16b)

Ck = Pk|kJ
>
k P

−1
k+1|k (4.16c)

for k = N − 1, . . . , 1 where the final time instant is denoted by N . In (4.16), updated

and predicted state estimates are denoted by x̂k|k and x̂k+1|k, respectively while cor-

responding covariance matrices are represented by Pk|k and Pk+1|k. A Rauch, Tung

and Striebel (RTS) smoother is preferred due to its lower requirements in terms of

memory storage and computational power [9]. In RTS smoother, forward Kalman

filter is executed as standard tracking filter up to current time. Throughout forward

filtering, smoother gain, Ck, is calculated as given in (4.16c). Note that the smoother

is initialized from the latest estimate of the forward filter at time N ; then, smoothed

estimates are iterated backwards in time as revealed in (4.16).

Filtering and smoothing phases are summarized in 4.1.

Algorithm 4.1 Summary of Filtering and Smoothing Phases
1: Filtering Phase:

2: Initialize the state x̂0, the covariance matrix P0, process noise covariance matrix

Q and measurement noise covariance matrix R

3: for time k = 1, . . . , N do

4: Calculate x̂k|k−1 and Pk|k−1 (time update)

5: Calculate x̂k|k and Pk|k (measurement update)

6: Calculate smoother gain Ck

7: end for

8: Smoothing Phase:

9: Initialize the smoothed state x̂k|1:N and the smoothed cov. matrix Pk|1:N at k = N

10: for time k = N − 1, . . . , 1 do

11: Calculate x̂k|1:N and Pk|1:N

12: end for
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CHAPTER 5

BALLISTIC PARAMETER LEARNING VIA GAUSSIAN PROCESS AND

IMPACT POINT PREDICTION

The proposed method includes a GP regression step which uses smoothed Mach num-

ber and ballistic parameter estimates. In this chapter, we first describe non-standard

cases in GP regression including noisy inputs, and correlated input-output pairs.

Then, we introduce the modified form of GP regression. Later, how BP predictions

of GP are utilized in motion model is described. Lastly, the impact point prediction

problem is defined and how the modified motion model is employed in the solution

to IPP problem is introduced.

5.1 Modifications on Standard GP Model for Ballistic Parameter Estimation

5.1.1 Cross-correlation Among GP Observations

In a standard GP regression framework, observation noise is commonly modeled as

independent and identically distributed. However in our problem, GP observations are

smoothed estimates of the same filter and they are not independent in time. Hence,

their cross-correlation must be considered to prevent double counting of the same

information. To calculate the correlation among state estimates of Nc = 3 recent time
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instants, state vector and state space model are extended as

xck ,


xk−2

xk−1

xk

 , xck+1 = F cxck +Gcak(xk) +Bcwk, (5.1a)

F c ,


07×7 I7×7 07×7

07×7 07×7 I7×7

07×7 07×7 F

Gc ,


07×3

07×3

G

Bc ,


07×4

07×4

B

 . (5.1b)

where F , G and B matrices are defined in (4.2b). By augmenting state vectors of

consecutive time instants, the temporal correlation among estimates can be computed

throughout filtering and smoothing procedures. The extended form in (5.1) is given

for three recent time instants; however, Nc can be increased at the expense of an

increase in computational load.

As a result, tracking and smoothing are done with this extended form of the state

vector to calculate the temporal correlation among the estimates and Algorithm 5.1

summarizes these procedures.

5.1.2 Construction of GP Input and Observation Sets

The proposed GP model aims to represent the BP-Mach number profile of the target

based on the smoothed estimates. To this end, first, Mach number estimates must be

obtained from the velocity estimates. Mach number at time k can be defined as

Mk =
‖vk‖
c

, (5.2)

where c is the speed of sound which is approximately 340 m/s. The magnitude of

a vector whose components are uncorrelated, normally distributed with zero mean

and equal variance is characterized by a Rayleigh distribution [20]. In our problem,

on the other hand, the velocity estimates are always nonzero and the corresponding

uncertainties are two orders of magnitude smaller than the estimates. This situation
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Algorithm 5.1 Filtering and Smoothing in the Extended Form
1: Filtering Phase:

2: Initialize the state x̂0, the covariance matrix P0, process noise covariance matrix

Q and measurement noise covariance matrix R

3: for time k = 1, . . . , Nc do

4: Calculate x̂k|k−1 and Pk|k−1 (time update)

5: Calculate x̂k|k and Pk|k (measurement update)

6: end for

7: Initialize the extended state x̂ck and the extended cov. matrix P c
k at k = Nc

8: for time k = Nc + 1, . . . , N do

9: Calculate x̂ck|k−1 and P c
k|k−1

10: Calculate x̂ck|k and P c
k|k

11: Calculate smoother gain Cc
k

12: end for

13: Smoothing Phase:

14: Initialize the extended smoothed state x̂ck|1:N and cov. matrix P c
k|1:N at k = N

15: for time k = N − 1, . . . , 1 do

16: Calculate x̂ck|1:N and P c
k|1:N

17: end for
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enables Mach number to be well approximated by a normal distribution such that

Mk ∼ N (M̂k|1:N , PMk|1:N ), (5.3a)

M̂k|1:N ≈
∥∥v̂k|1:N∥∥

c
. (5.3b)

This approximation can be validated by examining the probability density function for

a Mach estimate at an arbitrary time given in Figure 5.1. In the figure, the histogram

is generated for the samples of a mach number estimate which are calculated from the

samples of a velocity estimate. As it can be seen, the normal distribution completely

covers the empirical Mach number samples.

Figure 5.1: Probability density function for a Mach number estimate

The covariance matrix PMk|1:N can be approximately calculated by linearizing (5.2)

around the velocity estimate as follows.
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PMk|1:N ≈ LkPvk|1:NL
>
k , (5.4a)

Lk =
1

c

[
∂‖v‖
∂vx

∂‖v‖
∂vy

∂‖v‖
∂vz

] ∣∣∣∣
v̂k|1:N

, (5.4b)

=
1

c

v̂k|1:N∥∥v̂k|1:N∥∥ . (5.4c)

where Pvk|1:N is smoothed velocity covariance matrix at time k. Furthermore, to be

able to calculate the temporal correlation among Mach number estimates, PMk|1:N is

calculated in the extended form as

PMc
k|1:N

= LckPvc
k|1:N

Lck
>, (5.5a)

Lck = diag(Lk−2, Lk−1, Lk) (5.5b)

for k ≥ Nc which is chosen as 3 as an example.

The GP input set Ms comprises of target’s Mach number at all time instants such that

Ms =
[
M1 . . . MN

]>
. (5.6)

The input set can be written as a normal distribution

Ms ∼ N (M̂s, PMs), (5.7a)

M̂s =
[
M̂1|1:N . . . M̂N |1:N

]>
. (5.7b)

Construction of the covariance matrix PMs with the local covariance matrices PMc
k|1:N

for k = Nc, . . . , N is illustrated in Figure 5.2 for Nc = 3. Notice that the consecu-

tive local covariance matrices overlap with each other; nevertheless, the overlapped

elements have the same values at both matrices.

Equations (5.7) and Figure 5.2 completely define the input set of the GP model.

The observation set of the GP model, αs, is constituted in a similar manner. The set

is a collection of BP at all time instants such that

αs =
[
α1 . . . αN

]>
. (5.8)
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Figure 5.2: Construction of PMs

The observation set has a normal distribution of

αs ∼ N (α̂s, Pαs), (5.9a)

α̂s =
[
α̂1|1:N . . . α̂N |1:N

]>
. (5.9b)

Please note that the covariance matrix Pαs is constructed with the local covariance

matrices Pαc
k|1:N

in the same way of PMs as illustrated in Figure 5.2. Therefore,

the temporal correlations among BP estimates are preserved and will be taken into

consideration in GP regression.

5.1.3 Regression with Noisy Input

In most of the Gaussian Process applications, the input of the GP is modelled as noise-

less and the only noise is at observations as in (3.10). However, in our problem, the

input is smoothed Mach number estimate; in other words, it is a noisy measurement

of the true Mach number, M̃ , such that

M = M̃ + eM , eM ∼ N (0, PM). (5.10)
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By considering (5.10), (3.10) can be rewritten where true Mach number, M̃ , is the

input of GP and smoothed ballistic parameter estimate is the observation, as

α = f(M̃) + eα, eα ∼ N (0, Pα), (5.11a)

= f(M − eM) + eα. (5.11b)

In the equations, eM and eα stand for input and observation noises, respectively. The

posterior distribution based on (5.11) is intractable. To overcome the intractability,

Taylor expansion of the measurement equation about the observed input, M , can be

written as

f(M − eM) = f(M)− eTM
∂f(M)

∂M
+HOT, (5.12)

where HOT denotes higher order terms. In the equation, derivative of the GP is an-

other Gaussian Process, and distribution over Taylor expansion must be considered

as stated by McHutchon and Rasmussen [22]. It is also stated that analytical calcula-

tion of first and second moments of Taylor expansion of GP is tractable but requires

high computational load. However, it provides no significant improvement over the

quicker approximate method which is taking derivative of the predictive mean of the

GP function with respect to the input and evaluating it at an input point. Differenti-

ating the mean function corresponds to ignoring the uncertainty about the derivative.

In that case, (5.11) becomes

α = f(M) + eα + eTM∂f (5.13)

by expanding up to the first order terms, where ∂f is derivative of predictive mean

evaluated at the input point, M . The equation can be interpreted as treating the input

as deterministic and adding a corrective term to the output noise.

In GP regression, the covariance matrix of the observation set Ky in (3.12d) can be

rewritten with the input set of smoothed Mach number estimates M̂s, observation

noise covariance matrix Pαs , and the addition of the last term due to input noise (if

the input and observation noises are independent) such that

Ky = K(M̂s, M̂s) + Pαs + ∆MsPMs∆T
Ms (5.14)

where ∆Ms is an N × N matrix whose diagonal elements are ∂f evaluated at corre-

sponding input points and PMs is the input set covariance matrix.
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Taking the input noise into account is crucial especially when the uncertainty in target

speed estimates is high and the target is at transonic speed regime where BP rapidly

changes with Mach number. For instance, 20 m/s uncertainty in the target speed

estimate at transonic speed regime may correspond to 3 m2/kg uncertainty in the

ballistic parameter for a generic target.

5.1.4 Cross-correlation Among Input-Observation Pairs

In the calculation of covariance matrix of observations given in (5.14), the input and

observation noises are assumed to be independent; however, in our problem, the in-

put and output are smoothed Mach number and ballistic parameter estimates, and

their noises are correlated with each other since BP and target velocity are estimated

concurrently by the same filter. Due to the cross-correlation between input and obser-

vation noises, an additional term is added to the equation and it becomes

Ky = K(M̂s, M̂s) + Pαs + ∆MsPMs∆T
Ms + 2∆MsPMsαs (5.15)

where PMsαs is the cross-covariance (CC) matrix and it is constructed in the same

way as PMs and Pαs . First, the local CC matrix PMαck|1:N
is calculated in the extended

form as

PMαck|1:N
= LckPvαc

k|1:N
(5.16)

where Lck is defined in (5.5b) and Pvαc
k|1:N

stands for the cross-covariance matrix

between the velocity and BP. Then, the local CC matrices for k = Nc, . . . , N are

placed similar to PMs as illustrated in Figure 5.2 to form global CC matrix PMsαs .

5.1.5 Modified Gaussian Process Regression

For input-observation sets M̂s-α̂s, a test point M∗ and a GP prediction α∗; the mod-

ified GP regression is given in (5.17) by considering the input noise, the temporal

cross-correlation among inputs, the temporal cross-correlation among observations
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and cross-correlation between input-observation sets.

α∗ =S(M∗)α
s + e∗, e∗ ∼ N (0, E(M∗)), (5.17a)

S(M∗) =K(M∗, M̂
s)K−1y , (5.17b)

E(M∗) =k(M∗,M∗) + ∂2M∗PM∗ − S(M∗)K(M̂s,M∗) (5.17c)

where Ky is given in (5.15). In regression, a test input M∗ is assumed noisy as well.

As given in (5.13), the noise in the test input is conveyed to the observation, and

∂2M∗PM∗ is added to the test output covariance matrix in (5.17c) where the derivative

term ∂M∗ is scalar.

5.2 Modified Motion Model

While predicting the impact point of the target, BP is dropped from the state vector

and modeled with Gaussian process such that it is a function of Mach number of

the target rather than modeling with random walk. Modified GP Regression, which

uses smoothed ballistic parameter-Mach number pairs up to current time instant as

the training dataset, can be used to predict BP at time k. By replacing α∗ and M∗ in

(5.17) by αk and Mk respectively, and using GP predicted αk in (4.11), state space

model involving Gaussian process regression of ballistic parameter is obtained as

x̃k+1 =

fm(x̃k)︷ ︸︸ ︷
F̃ x̃k + G̃(−1

2
ρ(pzk)AS(Mk)α

s ‖vk‖vk) + G̃g +

G̃ (−1

2
ρ(pzk)Aek ‖vk‖vk + w̃k)︸ ︷︷ ︸

wk

,

(5.18a)

= fm(x̃k) + G̃wk, wk ∼ N (0, Qk), (5.18b)

where the process noise covariance matrix is

Qk = ζkE(Mk)ζ
T
k + Q̃, (5.19a)

ζk = −1

2
ρ(pzk)A ‖vk‖vk. (5.19b)
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Since the ballistic parameter is dropped from the state vector, the last row of the

state vector x, the process noise vector w and G matrix as well as the last row and

column of F and B matrices in state transition function (4.2) are wiped out. The

modified forms of these vectors and matrices are represented by tilde symbol over

them in (5.18). The same notation is valid for the process noise covariance matrix Q

in (5.19a) as well.

Using the modified state space model involving GP regression of the ballistic param-

eter given in (5.18)-(5.19) results in more accurate predictions of target state during

the impact point prediction phase.

5.3 Impact Point Prediction

The impact point prediction problem can be defined as predicting the position that the

target is expected to hit on the ground while the target is still on the fly.

On the IPP phase, EKF introduced in Section 4.1.3 is employed to compute the pre-

dictive distribution with modified state transition function fm(·). Note that only time

update in Section 4.1.3.1 is employed since there is no available measurement in the

IPP phase. This prediction step can be formulated as

x̃k+1|N = fm(x̃k|N), (5.20a)

Jmk =
∂fm

∂x̃

∣∣∣∣
x̃k|N

, (5.20b)

P̃k+1|N = Jmk P̃k|NJ
m
k
> + G̃QkG̃

> (5.20c)

for time k ≥ N . The prediction continues until the target hits the ground. The impact

point prediction using GP model is summarized in Algorithm 5.2.
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Algorithm 5.2 Summary of IPP using GP
1: Construction of GP Input Set:

2: for time k = 1, . . . , N do

3: Calculate smoothed Mach number estimate M̂k|1:N according to (5.3b)

4: Calculate smoothed cov. matrix PMc
k|1:N

according to (5.4b) and (5.5)

5: end for

6: Construct GP input set M̂s according to (5.7b)

7: Construct GP input noise covariance matrix PMs according to Figure 5.2

8: Construction of GP Observation Set:

9: Construct GP observation set α̂s according to (5.9b)

10: Construct GP observation noise cov. matrix Pαs according to Figure 5.2

11: Construction of Cross-covariance (CC) Matrix Between Input-Observation Sets:

12: Calculate CC between Mach number-BP estimates PMαck|1:N
according to (5.16)

13: Construct CC between GP input-observation sets PMsαs according to Figure 5.2

14: IPP Phase:

15: Initialize x̃N |N and P̃N |N

16: for time k = N, . . . ,∞ do

17: Predict αk at test point Mk according to (5.17)

18: Calculate x̃k+1|N and P̃k+1|N according to (5.20)

19: if p̂zk+1|N ≥ 0 then (Target hits the ground)

20: Return x̃k+1|N and P̃k+1|N

21: end if

22: end for
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CHAPTER 6

SIMULATION RESULTS

In this section, the performance of the proposed method is evaluated and compared

with the existing methods in the literature through simulations. In this context, target

models which generate the reference target data and scenarios are described in Sec-

tion 6.1. To emphasize the importance of smoothing, the characteristics of filtered

and smoothed estimates are studied in Section 6.2. Then to illustrate the learning per-

formance of the method, GP regressions for all targets are depicted and examined in

Section 6.3. To evaluate impact point prediction performance, change of the ballistic

parameter in time in the prediction phase is plotted for all scenarios and Root Mean

Square (RMS) impact point prediction error is given in Section 6.4. Lastly, hyper-

parameter optimization and SPGP which is an approximation of GP are discussed in

Section 6.5.

6.1 Simulation Scenarios

In the simulation environment, three different ballistic targets having different shapes

and ballistic characteristics are modeled and target trajectories having different ranges

are generated [2]. These projectiles are selected as 122 mm rocket, 155 mm ar-

tillery shell and 120 mm mortar. The rocket and mortar are fin-stabilized projectiles,

whereas the shell is spin-stabilized. To generate the trajectories of the projectiles, a

6-DoF model has been used, i.e., three axes translations in 3D space and three axes

orientations of the projectiles are calculated while generating the trajectories. Also,

the model consists of forces and moments which are not captured by the motion model
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of the filter completely. Simulated trajectories are depicted in Figure 6.1 with radar

detection and IPP instants. Corresponding speed profiles are also given in Figure 6.2.

Sensor model generates measurements in 3D polar coordinate composed of range,

bearing and elevation angles with 100 Hz update rate. Measurement error is assumed

to be unbiased and has a standard deviation of 20 m in range and 0.2◦ in angle mea-

surements. A measurement is sum of the reference target position in polar coordinates

and a measurement error.

The simulation is performed for 100 monte carlo runs with different realizations of the

measurement noise at each run. The presented results in this chapter are the average

of the Monte Carlo runs.

Figure 6.1: Projectile trajectories

6.2 Ballistic Parameter Estimation

Before examining Gaussian process regression and its contribution to impact point

prediction, tracking and smoothing phases must be studied first. A tracking filter
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Figure 6.2: Projectile speed profiles

is employed against Projectile-I with the state transition and measurement equations

defined in (4.2)-(4.12). BP estimates of the filter are depicted in Figure 6.3 as a

function of time for a specific Monte Carlo run. It is seen that BP estimates of the

filter pursue the reference ballistic parameter with some delay, and the estimates are

noisy.

At IPP instant, ballistic parameter, position and velocity estimates are smoothed by

RTS smoother as described in Section 4.2, smoothed ballistic parameter estimate is

shown in Figure 6.3 by the dashed line. By utilizing a smoother, the noise in the

estimate, as well as time delay, mostly vanish. Nonetheless, there is still some dis-

crepancy from the reference BP value, especially at the beginning and at the end of

the processing interval where filter and smoother have not converged yet, respectively.

Since this discrepancy is a common situation regardless of the target type, smoothed

BP estimates at these predefined time intervals are not used in GP regression to pre-

vent misleading GP learning.
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Figure 6.3: Ballistic parameter estimates for Projectile-I

6.3 Performance of GP Regression

To show the learning performance of the method, GP predictive mean and confidence

bound calculated by (5.17) are illustrated in Figure 6.4 with smoothed BP-Mach num-

ber pair estimates for three projectiles. It is seen that GP predictive means smoothly fit

to the estimates for all projectiles. In the figures, when a test point moves away from

the smoothed estimates, the uncertainty of the GP prediction enlarges. Furthermore,

predictive means for projectiles II and III may diverge from the reference at unob-

served Mach numbers; however, it has no significant effect since the targets do not

reach these speed values through their remaining trajectories. The values of hyperpa-

rameters are determined in a way that the predictions can be done without overfitting

the observations, and the reference BP-Mach number function mostly stays in the

confidence bound for all projectiles.
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(a) Projectile-I

(b) Projectile-II

(c) Projectile-III

Figure 6.4: Learned ballistic parameter-Mach number for different projectiles
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6.3.1 Effect of Cross-correlation Among GP Observations

As discussed in Section 5.1.1, the temporal cross-correlation among smoothed bal-

listic parameter estimates is calculated at a certain level by using concatenated state

vector and state space model defined in (5.1). To understand the effect of considering

cross-correlation among BP estimates, GP regressions for three cases are shown in

Figure 6.5: (a) without considering cross-correlation, (b) cross-correlation between 5

consecutive time instants and (c) cross-correlation between 25 consecutive time in-

stants are considered with the same GP hyperparameters. In case (a), it is seen that

the reference BP profile cannot be covered by the confidence bound, i.e., the bound is

over-confident. From case (a) to case (c), the uncertainty of GP predictions increases

with the number of time instants. The reason of this phenomenon is that ballistic

parameter estimates are highly correlated in time and taking cross-correlation into

account prevents double counting of the same information. In other words, from case

(a) to case (c), the estimates become more and more decorrelated. Hence, the con-

fidence bound of GP predictions enlarges. In case (c), the correlation coefficients

between estimates of different time instants change from 1 to 0.75 for Projectile-I at

an arbitrary time instant. These values of the correlation coefficient indicate the high

correlation among the estimates. To achieve full decorrelation, the number of time

instants should be increased up to 80. In our study, the number of time instants is

determined so that the decorrelation is sufficient while its computational cost is still

endurable.

6.4 IPP Performance using GP Model

At impact point prediction phase, BP predictions of GP are used in the state transition

function as described in (5.18) and (5.19). In the literature, conventional methods in

IPP use the most recent ballistic parameter estimate of the filter as a constant through-

out the prediction [28, 19].

In the analysis, the impact point predictions are done when the target speeds start

to increase for Projectile II and III (see Figure 6.2). For Projectile I, on the other
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(a) Cross correlation is ignored.

(b) Cross correlation between 5 time instants is considered.

(c) Cross correlation between 25 time instants is considered.

Figure 6.5: Effect of considering cross correlation among observations on GP regres-

sion for Projectile-I
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hand, the prediction is done at the same range with Projectile II (see Figure 6.1). The

IPP instants are 24.4, 29.2 and 20.8 s for the projectiles, respectively. In Figure 6.6,

filtered and smoothed BP estimates up to the IPP instants, BP predictions up to the

impact instants and the reference ballistic parameters are plotted for three projectiles.

When the modified motion model is invoked at the IPP instant, there is a discontinuity

in ballistic parameter since GP predicted BP could be different from the BP estimate.

Furthermore, for Projectile I and II, the reference BP quite varies in the prediction

phase and predicted BP is able to follow the reference ballistic parameter with an ac-

ceptable error. For Projectile III, predicting BP by Gaussian process just outperforms

the conventional approach which uses the recent BP estimate throughout the predic-

tion, since the reference ballistic parameter has already been constant throughout the

prediction phase. To be able to quantify the effectiveness of the proposed method on

the IPP problem, RMS IPP errors

εRMS
imp =

√
1

N
ΣN
i=1

∥∥∥p̂iimp − prefimp

∥∥∥2 (6.1)

where prefimp is true impact point, p̂iimp is predicted impact point at ith MC run and N

is the total run number, are calculated for all scenarios.

Furthermore, to be able to show the asymptotic performance of perfectly learning

ballistic parameter, the third model called True BP Model is constructed. For this

model, the reference ballistic parameter profile is known and true BP value at the

predicted Mach number is used in the IPP.

While comparing these methods, the conventional approach which uses constant bal-

listic parameter represents the primitive (since there is no learning at all) and True

BP Model represents the asymptotic cases for a method which aims to learn ballis-

tic parameter function. The IPP errors for these three models are given in Table-6.1.

When the table is examined, it is seen that the proposed BP-GP method outperforms

the constant BP method with regards to RMS IPP error against all projectiles. For

all methods, the RMS IPP error against projectile-II is much higher than other pro-

jectiles. The reason is that projectile-II is spin-stabilized and lateral Magnus force
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(a) Projectile-I

(b) Projectile-II

(c) Projectile-III

Figure 6.6: Ballistic parameter-time
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acting on this projectile has a significant effect on its impact point. However, this

force is not taking into account in the system model. This can be achieved by using

Multiple Model Kalman Filter as [28] suggests; however, it is not implemented in this

study, since the primary objective of this study is showing how to model the ballistic

parameter via Gaussian process and to utilize this model in the prediction phase.

Table 6.1: RMS IPP errors of different models (m)

Projectile Constant BP GP True BP

I 39.47 15.48 10.56

II 267.76 188.39 179.46

III 41.90 19.68 15.78

Predicted impact points of these models are shown in Figure 6.7 for different MC

runs with the true impact point. For constant BP model, BP estimates of the filter are

highly noisy and the BP estimate at the IPP instant has a large variance. As a result,

the impact point predictions are extremely scattered around the true impact point.

In the scenarios, the projectiles are launched from South to North and the impact

point predictions are mainly scattered in this direction since the drag force is aligned

with the target velocity. By using BP-GP model, the variance of the impact point

predictions decreases since the prediction of BP using a GP regression improves the

accuracy of BP predictions significantly. The error of the impact point predictions

of Projectile-II can be seen in Figure 6.7b. This lateral bias arises from excluding

the effective lateral force in the motion model as discussed earlier. Although BP-GP

method cannot handle this bias, as it does not intend to do so, it significantly enhances

the IPP performance for all projectiles.

6.5 Further Discussions on Gaussian Processes

6.5.1 Performance of Kernel Selection and Hyperparameter Optimization

As mentioned in Section 3.3.1, the model selection and hyperparameter optimization

comprise of choosing the most suitable kernel among different kernel families and

72



(a) Projectile-I (b) Projectile-II

(c) Projectile-III

Figure 6.7: Impact point predictions
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setting its hyperparameters. For that purpose, the log likelihood function given in

(3.13) is maximized by MLE described in Section 3.3.1.2. In a standard application,

the optimization is done over the hyperparameters of the kernel and the variance of the

observation noise. This variance is assumed to follow an independent and identically

distributed Gaussian distribution with zero mean. However, in this study, the obser-

vations are the smoothed estimates of the tracking filter and the observation noise can

be modeled as a Gaussian distribution with zero mean and variance of the smoothed

estimates as given in (5.11). In other words, the variance of the observation noise is

not a parameter to be optimized in our application.

MLE is performed by a constrained optimization which utilizes the interior point

algorithm [36] to maximize the log likelihood function. The constraints are defined

to limit the range of the hyperparameters at reasonable non-zero values. Figure 6.8

illustrates an example of contour plots showing the minus log likelihood as a function

of the length scale and the scale parameter for three kernels. The log likelihoods are

based on a realization of the smoothed BP estimates for Projectile-I. In the figure,

the randomly initialized, optimized and global minimum points are marked as well.

As seen in the figure, the optimized solutions are very close to the global minimum

points of the minus log likelihood function for all kernels. These results verify that

the optimization procedure can be done correctly.

The optimized values of the hyperparameters and the maximized values of the likeli-

hood functions are given in Table 6.2 for the kernels.

Table 6.2: Optimization results of different kernels

Kernel σ l Log Lik. Value

EQ 9.8644 0.2287 -1516.47

Exp. 13.7 118.7266 -1529.16

Matern-3 11.0424 1.2448 -1513.88

For kernel selection, the kernel which gives the highest likelihood value is preferred,

which is the Matern-3. The solution can be confirmed by looking at the GP predictive

distributions with the optimized hyperparameters in Figure 6.9.
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(a) Exponentiated Quadratic

(b) Exponential

(c) Matern-3

Figure 6.8: Contour plots of minus log likelihood function
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(a) Exponentiated Quadratic

(b) Exponential

(c) Matern-3

Figure 6.9: Predictive distributions with several kernels
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The predictive mean with EQ kernel given in Figure 6.9a, does not cover the nonlin-

ear characteristic of the smoothed BP estimates entirely. The predictive mean with

exponential kernel given in Figure 6.9b, on the other hand, is overfitting the estimates

and this is not a desired characteristic to have. Moreover, at the outside of the es-

timate range, the predictive mean stays constant without carrying any information

about the estimates and the confidence bound becomes unnecessarily large. Finally,

the predictive distribution with Matern-3 kernel given in Figure 6.9c shows the best

characteristic with respect to the mean and confidence bound among the discussed

kernels. In conclusion, the selection of the Matern-3 kernel is legitimate.

The optimization can be done as a part of the algorithm so that GP regression is done

with the hyperparameters which are optimized on-the-fly at the expense of an increase

in computation load of the algorithm. When 100 realizations of the smoothed BP es-

timates for all projectiles are considered, it is seen that the optimized values of the

hyperparameters are very close to each other. That is due to the fact that the char-

acteristics, e.g., the extent of nonlinearity, of the estimates do not vary significantly

among different realizations and projectiles. The IPP errors in case of the on-the-fly

optimization of hyperparameters are given in Table 6.3 for all projectiles. The table

also includes the IPP errors with constant hyperparameters which is given previously

in Table 6.1. Both models utilize Matern-3 kernel.

Table 6.3: RMS IPP errors of GPs with fixed and optimized hyperparameters (m)

Projectile GP with fixed hyp. GP with opt. hyp.

I 15.48 14.81

II 188.39 186.46

III 19.68 18.29

Table 6.3 shows that employing GP with on-the-fly optimization does not enhance the

IPP performance significantly.
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6.5.2 Performance of SPGP Regression

Figure 6.10 illustrates the initial and optimized pseudo-inputs based on a realization

of smoothed BP estimates for Projectile-I. The initial values of the pseudo-inputs are

generated randomly from a uniform distribution in the range of smoothed BP esti-

mates. As SPGP method suggests, the hyperparameters of Matern-3 kernel are opti-

mized in conjunction with the pseudo-inputs. As a constrained optimization method,

the interior point algorithm [36] is utilized to maximize logarithm of the likelihood

function given in (3.18). The optimization is done over 10 pseudo-inputs and 2 hy-

perparameters. In Figure 6.10, the initial pseudo-inputs which mostly gather in the

range of 1.3 and 1.5 Mach are presented at the top, and the optimized pseudo-inputs

are shown at the bottom as an illustration. The figure clearly reveals that the opti-

mized pseudo-inputs are scattered over the range of smoothed BP estimates at almost

equal distances. This is in fact, a general outcome which is independent of the initial

conditions and the number of pseudo-inputs for a continuous and smooth set of BP

estimates. From realization to realization, the positions of the pseudo-inputs may be

shifted by keeping the distance between each other almost equal. Besides, the value

of the likelihood function does not change significantly. The optimized hyperparam-

eters of the kernel are σopt = 11.0161 and lopt = 1.3088. For all realizations, the

optimized values of the hyperparameters are almost the same.

The predictive distribution of SPGP is illustrated in Figure 6.11, by plotting the pre-

dictive mean and 95% confidence bound around the mean. It is seen that hyperpa-

rameters and pseudo-inputs are optimized such that the predictive mean of the SPGP

exhibits the basic characteristics of the smoothed BP estimates without overfitting on

them. Furthermore, the confidence bound of SPGP completely covers the smoothed

BP estimates without being excessively large. It indicates that the GP predictions are

consistent with the estimates.

To show that the optimization is independent of the initial values of the pseudo-inputs

and hyperparameters, GP regressions under different initializations are plotted in Fig-

ure 6.12. In the figure, the pseudo-inputs are equally placed along the left and right

half sides of the range of smoothed BP estimates, respectively.
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Figure 6.10: Optimization of pseudo-inputs

Figure 6.11: Predictive distribution of SPGP
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(a) Equally placed along left half side

(b) Equally placed along right half side

Figure 6.12: Predictive distributions of SPGP under various initializations
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Figure 6.11-6.12 show that the pseudo-inputs are spread over the range of smoothed

BP estimates at almost equal distances regardless of their initial values. Moreover,

even though the positions of pseudo-inputs differ slightly in Figure 6.12b, GP regres-

sions under three different initializations are very similar. For these initializations,

the optimized values of the hyperparameters and the maximized value of the log like-

lihood are given in Table-6.4.

Table 6.4: Optimization results of the different initializations of pseudo-inputs

Initialization σ l Lik. function

from an uniform dist. 11.0161 1.3088 -1514.5

at left half side 11.0153 1.3087 -1514.5

at right half side 11.0093 1.3011 -1514.4

The table shows that the values of the optimized hyperparameters and the likelihood

functions at different initializations do not differ significantly. Hence, it is concluded

that the optimization can be satisfactorily performed without depending on the ini-

tialization.

To evaluate the performance of SPGP method, predictive distributions of optimized

full GP and optimized SPGP are illustrated in Figure 6.13 for Projectile-I.

When compared with full GP regression, both predictive means and confidence bounds

are very close to each other. The minor inconsistency only exists at the points, outside

the estimate range.

In the SPGP method, the only parameter, which has to be designated before the ex-

ecution of the method, is the number of pseudo-inputs. This parameter should be

specified by taking the range of input space and the degree of the nonlinearity of the

smoothed α estimates into account. To show the effect of the number of pseudo-inputs

on the regression, predictive distributions with different numbers of pseudo-inputs are

illustrated in Figure 6.14, respectively. They are all initialized at the left half side of

the estimate range and optimized in the same manner.

In the case of 5 pseudo-inputs in Figure 6.14a, the predictive mean is underfitting
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Figure 6.13: Predictive distributions of SPGP and full GP

the estimates. Also, the confidence bound enlarges unnecessarily when the point

moves away from the pseudo-inputs. On the contrary to 5 pseudo-inputs, GP regres-

sions based on 10 and 20 pseudo-inputs better fits to the estimates without overfitting.

However, using 20 pseudo-inputs does not enable the regression to represent the char-

acteristics of the estimates better than the 10 pseudo-inputs. To conclude, using a few

pseudo-inputs may result in an inadequate representation of the estimates; whereas,

using too many pseudo-inputs yields an increase in the computational load without

providing any significant improvement on the performance at all.
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(a) 5 pseudo-inputs

(b) 10 pseudo-inputs

(c) 20 pseudo-inputs

Figure 6.14: Effect of the number of pseudo-inputs on SPGP regression
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CHAPTER 7

CONCLUSION

In this thesis, a novel approach for modeling ballistic parameter of ballistic targets in

the system model is proposed. This new model is then used in the prediction phase

of the IPP problem to enhance the prediction accuracy. The method utilizes Gaussian

process to model the relationship between the ballistic parameter and Mach number of

a target. In the method, GP conditions on the smoothed ballistic parameter and Mach

number estimates for regression of BP values in the prediction phase. This regression

enables the prediction of BP more accurately and the more accurate predictions result

in a significant enhancement in IPP accuracy as demonstrated by the simulations.

The main contribution of the method requires conditioning on the filter estimates

which is troublesome. For example, GP observations have correlations in time which

has to be taken into account for a proper regression. Also, GP inputs are all noisy

and they have correlations in time similar to the observations. There are also cross

correlations among the inputs and observations. These circumstances violate the fun-

damental assumptions of standard GP method and creates a special need to modify

it. In this study, these challenges are addressed and handled in elegant and efficient

ways.

In the simulation environment, firstly, characteristics of the filtered and smoothed bal-

listic parameter estimates are studied to have an insight. It appears that the smoother

eliminates most of the time delay and noise in the filtered estimates. Then, the afore-

mentioned modifications on standard GP model are discussed by examining their

effects on GP regression mostly. Later, ballistic parameter prediction performance
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of the proposed model is illustrated and the IPP performance is compared by con-

ventional and reference models for three projectiles. It has been concluded that the

proposed model outperforms the conventional one in terms of RMS IPP error and has

a slightly worse performance than the reference model.

After validating the method and demonstrating its performance on the IPP problem,

enhancements on the method to improve the accuracy and the efficiency are studied.

The online optimization of the hyperparameters of the kernel is performed to get more

accurate GP regression. In the analysis, it is shown that the online optimization makes

a limited contribution to the IPP performance whereas its computation is an exhaus-

tive task. It is demonstrated that using the same predetermined hyperparameters for

all projectiles shows a comparable performance with the optimized hyperparameters.

It is due to the fact that the characteristic of the ballistic parameter profiles of the

most projectiles are very similar; therefore, there is no need for the hyperparameters

to be optimized on-the-fly. Moreover, in order for the method to be more efficient, an

approximation to GP method, namely SPGP, is implemented on our problem. This

method requires the predetermining the number of the pseudo-inputs and the online

optimization of the positions of them. It is concluded that the optimization results

in pseudo-inputs at equal distances apart in the range of the estimates. It stems from

the fact that the estimates are continuous and have similar nonlinear characteristics

at every point in their range. Therefore, we could say that every portion of the func-

tion deserve to be represented with the same number of pseudo-inputs. Note that, a

function having a rapid change at a point requires to be represented with more pseudo-

inputs around that point to capture this rapid change [32]. As a result, in our problem,

it is advised to pass the optimization over and to position the pseudo-inputs in the

range of the estimates at equal distances apart.

Learning ballistic parameter-Mach number relationship based on estimates of the

tracker and using this information in the prediction phase is a novel approach at BTT

literature, and can have several areas of usage besides enhancing the IPP performance.

For instance, using this information not only at the prediction phase but also at filter-

ing can be possible. By doing so, tracking accuracy as well as the IPP accuracy can
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be improved. Moreover, this learned information is target specific and can be very

beneficial for the classification of the target type. Besides, the method can be easily

extendable to multiple targets such that GP regression can be based on BP and Mach

number estimates of multiple targets belonging to the same projectile type. Such a

method results in learning BP characteristic more accurately at the expense of clus-

tering data of different targets to gather the same type of target and taking the risk of

misclassification. These studies are planned as future work of the current study.

87



88



REFERENCES

[1] J. D. J. Anderson. Introduction to Flight. McGraw Hill Higher Education, 2000.

[2] Arrow Tech Associates Inc. PRODAS V3, Software Tool for the Ballistics Pro-

fessional. http://www.prodas.com. Accessed: 2019-23-09.

[3] A. Benavoli, L. Chisci, and A. Farina. Tracking of a ballistic missile with a-

priori information. IEEE Transactions on Aerospace and Electronic Systems,

43(3):1000–1016, 2007.

[4] S. Blackman and R. Popoli. Design and Analysis of Modern Tracking Systems.

Norwood, MA, USA: Artech House, 1999.

[5] M. G. S. Bruno and A. Pavlov. A density assisted particle filter algorithm for

target tracking with unknown ballistic coefficient. In Proc. IEEE Int. Conf.

Acoust., Speech Signal Process. (ICASSP), 2005.

[6] J. Q. Candela. Learning with uncertainty-Gaussian processes and relevance

vector machines. PhD thesis, Technical University of Denmark, 2004.

[7] L. Clancy. Aerodynamics. Pitman Aeronautical Engineering Series. Wiley,

1975.

[8] S. Conover, J. C. Kerce, G. Brown, L. Ehrman, and D. Hardiman. Impact point

prediction of small ballistic munitions with an interacting multiple model esti-

mator. In Proc. Acquisition, Tracking, Pointing, and Laser Systems Technolo-

gies XXI, 2007.

[9] J. L. Crassidis and J. L. Junkins. Optimal estimation of dynamic systems. Chap-

man & Hall/CRC, 2011.

[10] D. Duvenaud. Automatic model construction with Gaussian processes. PhD

thesis, University of Cambridge, 2014.

89

http://www.prodas.com


[11] B. Etkin. Dynamics of atmospheric flight. Courier Corporation, 2012.

[12] A. Farina, D. Benvenuti, and B. Ristic. Estimation accuracy of a landing point

of a ballistic target. In Proc. Int. Conf. Inf. Fusion (FUSION), 2002.

[13] A. Farina, B. Ristic, and D. Benvenuti. Tracking a ballistic target: Comparison

of several nonlinear filters. IEEE Transactions on Aerospace and Electronic

Systems, 38(3):854–867, 2002.

[14] R. Frigola-Alcade. Bayesian time series learning with Gaussian processes. Uni-

versity of Cambridge, 2015.

[15] H. Goyder. Lecture notes in fundamental of ballistics, October 2017.

[16] P. Groves. Principles of GNSS, Inertial, and Multisensor Integrated Navigation

Systems, Second Edition. Artech House, 2013.

[17] D. F. Hardiman, J. C. Kerce, and G. C. Brown. Nonlinear estimation techniques

for impact point prediction of ballistic targets. In Proc. Signal and Data Pro-

cess. of Small Targets, 2006.

[18] R. Herbrich, N. D. Lawrence, and M. Seeger. Fast sparse Gaussian process

methods: The informative vector machine. In Proc. Advances in Neural Infor-

mation Processing Systems (NeurIPS), 2003.

[19] J.-K. Jung and D.-H. Hwang. The novel impact point prediction of a ballistic

target with interacting multiple models. In Proc. IEEE Int. Conf. on Control,

Autom. and Syst. (ICCAS), 2013.

[20] K. Krishnamoorthy. Handbook of statistical distributions with applications.

Chapman and Hall/CRC, 2016.

[21] R. L. McCoy. Modern Exterior Ballistics : The Launch and Flight Dynamics of

Symmetric Projectiles. Schiffer Pub., 2012.

[22] A. McHutchon and C. E. Rasmussen. Gaussian process training with input

noise. In Proc. Advances in Neural Information Processing Systems (NeurIPS),

2011.

90



[23] National Geospatial-Intelligence Agency. World Geodetic System 1984 (WGS

84), 2019.

[24] R. M. Neal. Monte Carlo implementation of Gaussian process models for

Bayesian regression and classification. arXiv preprint physics/9701026, 1997.

[25] R. Nennstiel. How do bullets fly? AFTE Journal, 28(2):104–143, 1996.

[26] D. Nguyen-Tuong, J. R. Peters, and M. Seeger. Local Gaussian process regres-

sion for real time online model learning. In Proc. Advances in Neural Informa-

tion Processing Systems (NeurIPS), 2009.

[27] C. E. Rasmussen and C. K. Williams. Gaussian Processes for Machine Learn-

ing. Cambridge, MA, USA: MIT Press, 2006.

[28] V. C. Ravindra, Y. Bar-Shalom, and P. Willett. Projectile identification and im-

pact point prediction. IEEE Transactions on Aerospace and Electronic Systems,

46(4):2004–2021, 2010.

[29] F. Reali, G. Palmerini, A. Farina, A. Graziano, and L. Timmoneri. Tracking a

ballistic target by multiple model approach. In Proc. IEEE Aerospace Conf.,

2009.

[30] B. Saulson and K. C. Chang. Nonlinear estimation comparison for ballistic

missile tracking. Optical Engineering, 43(6):1424–1439, 2004.

[31] M. Seeger, C. Williams, and N. Lawrence. Fast forward selection to speed up

sparse Gaussian process regression. Technical report, 2003.

[32] E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs.

In Proc. Advances in Neural Information Processing Systems (NeurIPS), 2006.

[33] M. L. Stein. Interpolation of spatial data: some theory for kriging. Springer

Science & Business Media, 2012.

[34] T. A. Talay. Introduction to the Aerodynamics of Flight. National Aeronautics

and Space Administration, 1975.

91



[35] N. Wahlström and E. Özkan. Extended target tracking using Gaussian pro-

cesses. IEEE Transactions on Signal Processing, 63(16):4165–4178, 2015.

[36] R. Waltz, J. Morales, J. Nocedal, and D. Orban. An interior algorithm for non-

linear optimization that combines line search and trust region steps. Mathemat-

ical Programming, 107(3):391–408, 2006.

[37] J. M. Wang, D. J. Fleet, and A. Hertzmann. Gaussian process dynamical mod-

els for human motion. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 30(2):283–298, 2008.

[38] D. Young, B. Munson, T. Okiishi, and W. Huebsch. A Brief Introduction To

Fluid Mechanics. John Wiley & Sons, 2010.

[39] T. Yuan, Y. Bar-Shalom, P. Willett, E. Mozeson, S. Pollak, and D. Hardiman.

A multiple IMM estimation approach with unbiased mixing for thrusting pro-

jectiles. IEEE Transactions on Aerospace and Electronic Systems, 48(4):3250–

3267, 2012.

[40] Z. Zhao, H. Chen, G. Chen, C. Kwan, and X. R. Li. Comparison of several

ballistic target tracking filters. In Proc. IEEE American Control Conf., 2006.

92


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	introduction
	Proposed Work and Contributions

	Ballistic Objects and Dynamics
	Ballistic Objects
	Trajectory of Ballistic Objects
	Stability of Ballistic Objects

	Dynamics of Ballistic Objects
	Aerodynamic Forces
	Atmospheric Drag Force
	Lift Force
	Magnus Force

	Aerodynamic Moments
	Overturning Moment
	Magnus Moment



	Gaussian Processes
	Kernel Functions
	Exponentiated Quadratic Kernel
	Exponential Kernel
	Matern Kernel
	Periodic Kernel
	Linear Kernel
	Combining Different Kernels

	Gaussian Process Regression
	Further Discussions on Gaussian Processes
	Kernel Selection and Hyperparameter Optimization
	Calculation of Marginal Likelihood
	Maximum Likelihood Estimation

	Some Approximations of GP
	Sparse Pseudo-input Gaussian Processes



	Tracking and Smoothing for Ballistic Objects
	Ballistic Target Tracking Method
	Motion Model
	Measurement Model
	Inference via Extended Kalman Filter (EKF)
	Time Update
	Measurement Update


	Smoothing Method

	Ballistic Parameter Learning via Gaussian Process and Impact Point Prediction
	Modifications on Standard GP Model for Ballistic Parameter Estimation
	Cross-correlation Among GP Observations
	Construction of GP Input and Observation Sets
	Regression with Noisy Input
	Cross-correlation Among Input-Observation Pairs
	Modified Gaussian Process Regression

	Modified Motion Model
	Impact Point Prediction

	Simulation Results
	Simulation Scenarios
	Ballistic Parameter Estimation
	Performance of GP Regression
	Effect of Cross-correlation Among GP Observations

	IPP Performance using GP Model
	Further Discussions on Gaussian Processes
	Performance of Kernel Selection and Hyperparameter Optimization
	Performance of SPGP Regression


	Conclusion
	REFERENCES
	

