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ABSTRACT

LEARNING DRAG COEFFICIENT OF BALLISTIC TARGETS USING
GAUSSIAN PROCESS MODELING

Kumru, Fırat
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. Emre Özkan

September 2019, 92 pages

Ballistic object tracking involves estimating an unknown ballistic coefficient which

directly affects the dynamics of the object. In most studies, the ballistic coefficient is

assumed to be constant throughout the object’s flight. In reality, the ballistic coeffi-

cient is a function of the speed of the object and depends on the object’s aerodynamic

properties. In the literature, the impact point prediction is defined as predicting the

position that the object is expected to hit on the ground while the object is still on the

fly. The accuracy of the impact point prediction highly depends on the treatment of

the ballistic coefficient in the prediction model. In this thesis, we propose a method to

learn the unknown function that describes the relationship between the speed and the

ballistic coefficient of the object from the observations. Then, the function is used to

predict the impact point of the ballistic object. The unknown function is learned via

Gaussian process in the Bayesian framework. The proposed and conventional meth-

ods are comparatively studied in a realistic simulation environment. Extensive simu-

lation studies are conducted to characterize the performance of the proposed method
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and it is shown that the method has a better impact point prediction performance than

the conventional ones in terms of the root mean square error.

Keywords: Ballistic Target Tracking, Ballistic Coefficient, Gaussian Process
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ÖZ

BALİSTİK HEDEFLERİN SÜRTÜNME KATSAYISININ GAUSSİAN
SÜREÇ MODELİYLE ÖĞRENİLMESİ

Kumru, Fırat
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Dr. Öğretim Üyesi Emre Özkan

Eylül 2019, 92 sayfa

Balistik obje takibi, obje dinamiğini doğrudan etkileyen balistik katsayının kestiri-

mini içermektedir. Çoğu çalışmada, bu balistik katsayı obje uçuşu boyunca sabit ka-

bul edilmektedir. Gerçekte, balistik katsayı obje süratinin bir fonksiyonudur ve obje-

nin aerodinamik özelliklerine bağlıdır. Literatürde düşme noktası öngörümü, balistik

obje havadayken objenin satıh ile buluşacağı konumun öngörüm problemidir. Öngö-

rüm doğruluğu, balistik katsayının öngörüm modelinde nasıl ele alındığına bağlıdır.

Bu tezde, obje sürati ve balistik katsayı arasındaki ilişkiyi tanımlayan fonksiyonu

gözlemlere dayalı olarak öğrenmek için bir metot önerilmektedir. Bu öğrenilen fonk-

siyon daha sonra düşme noktası öngörümü boyunca kullanılır. Bilinmeyen bu fonk-

siyon Bayesçi yaklaşım altında Gauss süreci vasıtasıyla öğrenilmektedir. Önerilen

yöntem ve geleneksel metotlar gerçekçi bir benzetim ortamında karşılaştırmalı olarak

çalışılmıştır. Önerilen yöntemi karakterize etmek amacıyla geniş çaplı analizler yü-

rütülmüş, yöntemin karekök ortalama hata ölçütü açısından geleneksel metotlardan
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daha iyi bir düşme noktası öngörüm performansı olduğu gösterilmiştir.

Anahtar Kelimeler: Balistik Hedef Takibi, Balistik Katsayı, Gauss Süreci
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CHAPTER 1

INTRODUCTION

Ballistic target tracking (BTT) involves estimating the kinematics of a ballistic object

(BO) in a surveillance region based on a set of measurements collected by a sensor.

A BO is a body with momentum which is free to move and subjected to forces such

as propulsion, gravity or air drag. The term ballistic is used to describe that there is

no guidance which steers the object during its �ight (or at least, during most of the

�ight) [21].

A wide range of objects can be categorized as BO including bullets, unguided bombs,

rockets, mortars, and even ballistic missiles. Some BTT methods in the literature

propose a generic solution which is applicable to any type of BOs [17], [12] whereas

some provide dedicated solutions to a speci�c type of BOs to improve accuracy [28],

[29].

BOs can be broadly categorized into two types; with propulsion, without propulsion.

Flight of a BO with propulsion has two phases. In the former, there exists a thrust

force which accelerates the BO from launch to the end of propulsion. The latter is

called the ballistic phase, and there only exist gravitational and aerodynamic forces

on the BO. Some methods focus on the motion of BOs in the ballistic phase only [17],

[28], whereas other methods consider both phases [39], [8], [19]. In this study, we

consider the ballistic phases of BOs which stay within atmosphere throughout their

entire �ight.

In BTT literature, various �ltering techniques such as Extended Kalman Filter (EKF)

[12], Unscented Kalman Filter, Particle Filter [5] are used for estimating object's
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state. The performance of these �lters are compared in several studies [17], [13],

[30], [40]. In this work, we use an EKF for inference.

Atmospheric drag force is one of the forces that are dominant in determining the

trajectory of a BO traveling in the atmosphere. Therefore, a realistic modeling of the

drag force is essential for tracking accuracy. The drag force depends on the velocity

of the object, air pressure at the object's altitude, the cross-sectional area of the object

along the wind and the ballistic coef�cient (BC) of the object. The BC of a body,

which is a measure of its ability to overcome the air resistance during �ight, depends

on the speed of the body. In general, BC-speed characteristics of BOs are highly

non-linear (see Fig. 1.1). BC directly affects the magnitude of the drag force acting

on a BO; hence, the estimation accuracy of the BC has a signi�cant impact on the

performance of a tracking system.

Figure 1.1: Drag coef�cients for different projectiles [2]

There exist several studies in the literature which propose different methods of includ-

ing BC in their models and perform estimation. The methods presented in Farina [13]

and Benavoli [3] assume that BC is either known or there exists prior information in
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the form of lower and upper bounds on the BC value depending on the object type.

If BC is assumed to be unknown, a standard approach is to augment the state vector

with the BC and estimate them concurrently using the aforementioned �lters. In most

models, the dynamics of the BC is assumed to exhibit an arti�cial random walk [17],

[28], [8].

In some applications, the impact point of a BO is the main interest of tracking. In

these applications, an impact point prediction (IPP) is performed while the BO is still

in �ight. As a simple solution, BC can be assumed to be constant throughout the IPP.

This assumption might hold for the BOs which stay in subsonic speed regime. Fur-

thermore, it is critical to correctly estimate the constant but unknown BC to achieve

prediction accuracy.

Contrary to the aforementioned assumption, BC is not constant throughout the predic-

tion phase, in general. In such cases, drag templates can be used from a library of drag

curves to aid IPP [8]. These methods require the construction of aerodynamic models

regarding prospective projectile types and generation of the drag curve database be-

forehand. Furthermore, the projectile type must be correctly identi�ed online so that

an appropriate drag curve can be used. Using an improper drag template may cause

signi�cant IPP errors [8].

To aid BTT and IPP, Yuan et al. [39] suggest exploiting the dependency of the BC

on the speed of the object. They assume that the BC characteristics of the object is

a scaled version of a generic BC-Speed function which is considered to be known

in advance. Then, the scale factor is estimated by augmenting it into the state vec-

tor. Brie�y, this approach is a means of decoupling the projectile speci�c parameters

(mass and cross-sectional area) from speed dependency of the BC. Then, a function of

the projectile speci�c parameters can be treated as the scale factor. This scale factor

is estimated concurrently with the kinematic state of the BO.
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1.1 Proposed Work and Contributions

In this study, instead of utilizing a drag curve database, BC-Speed characteristic of

the target is learned in a Bayesian framework. This learning is performed based on

the BC and the velocity estimates of the tracking �lter. Then, this learned function is

used to determine the value of the BC during the IPP. For learning the characteristic,

a Gaussian Process (GP) model [27] is utilized. GP is a modeling tool which has

been widely used by the machine learning, statistics, and signal processing commu-

nities for identi�cation [37], classi�cation [24] and regression problems [35] due to

its tractable posterior computation and attractive analytical properties. With Gaussian

Process model, it is convenient to embed any a priori information about shape and

smoothness of the BC characteristic of the target in the learning model by using vari-

ous kernel functions. Furthermore, incorporating the uncertainty of the training data

into the regression is possible with GP model [22] .

The proposed method has several advantages. It requires neither any preliminary

work on aerodynamic modeling of the targets nor classi�cation of the projectile on

the �y. Therefore, it makes IPP against an unexpected target type possible with higher

accuracy compared to the traditional methods. Moreover, it has a reasonably low

computational load while providing a signi�cant improvement in the IPP performance

when compared with conventional methods which do not utilize any learning proce-

dure on the BC-Speed characteristic.

The method presented here has its basis on manipulating the information extracted

from the BC and velocity estimates of the �lter while predicting the impact point. The

phenomenon that makes our method applicable is that a projectile attains the same

speed values on both ascending and descending phases, especially when it follows a

lofted trajectory. As observed in Fig.1.2, the BOs of interest decelerate at ascending

phase and accelerate at descending phase under the effect of gravity. The behaviour

that is deduced at the ascending phase can be readily used at the descending phase by

the model. To achieve the transfer of the information from one phase to the other, the

GP regression model provides the BC characteristic of the target based on the BC and

4



Figure 1.2: Sample projectile speeds vs time

speed estimates of the �lter. This characteristic is then used in the system model to

enhance the IPP performance. Furthermore, by using an appropriate kernel function,

adequate information about the BC characteristic at non-visited speed values can also

be inferred based on the BC-speed estimates at visited speeds. The whole method

described here is brie�y illustrated on a sample trajectory of a projectile in Fig. 1.3.

Figure 1.3: Phases of the proposed method on a sample trajectory
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CHAPTER 2

BALLISTIC OBJECTS AND DYNAMICS

In this chapter, types of ballistic objects and effective forces acting on them are pre-

sented with the intention of informing the reader about the targets of interest.

2.1 Ballistic Objects

A �ying object is called BO if there is no self-guidance mechanism to steer the object

to a speci�ed target. During the �ight, a BO is affected by different forces and mo-

ments according to the �ight conditions. Furthermore, the stability mechanism of the

object is another factor that can initiate additional forces and moments on the object.

The trajectory of a BO is divided into multiple phases considering the effective forces

on the object. These phases and the stability mechanisms are discussed in more detail

in the following subsections.

2.1.1 Trajectory of Ballistic Objects

Trajectory of a BO is divided into multiple phases mainly according to forces acting

on the object:

� Boost Phase:In the boost phase, there exists a thrust force which accelerates

the object starting from the launch till the end of propulsion. This phase usually

takes short period of time compared to the time of �ight. Among the ballistic

object family, only rockets and ballistic missiles use the propulsion, since they
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Figure 2.1: Phases of a ballistic trajectory

intend to reach longer distances. In this phase, besides gaining momentum, bal-

listic missiles may also use a control mechanism such as thrust vector control to

steer themselves into prede�ned trajectory towards their desired impact point.

� Mid-course (Ballistic) Phase: The mid-course phase commences when the

propulsion expires. This phase is also called ballistic phase to show that there

is neither a thrust force to accelerate the object nor a mechanism to control and

steer the object. In this phase, long range ballistic missiles are mostly outside

the atmosphere. Hence, there is no aerodynamic forces acting on these ballistic

missiles. This type of �ight is called exo-atmospheric �ight.

� Terminal (Re-entry) Phase:The terminal phase commences when the ballistic

object re-enters the Earth's atmosphere and terminates when the BO hits the

ground. The objects which exhibit endo-atmospheric �ight do not have the

terminal phase since they are in the atmosphere throughout their whole �ight.
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2.1.2 Stability of Ballistic Objects

To enhance the �ring range and targeting accuracy, ballistic objects need to be stabi-

lized throughout the �ight. The stabilization means that the object's longitudinal axis

tends to point towards the direction of movement [25]. The main factor determining

the stabilization of a ballistic object is the placement of center of gravity (cg) and

center of pressure (cp) along the object's longitudinal axis.cg is a hypothetical point

where whole distribution of mass of an object can be assumed to concentrate on.cp of

an object traveling through the atmosphere can be de�ned as the point where all of the

aerodynamic pressure may be represented by a single force vector with no moment

[7].

This stabilization can be achieved by applying one of the two techniques described

below.

� Fin Stabilization:

The instability problem mainly arises whencp is located in front ofcg along the

object's longitudinal axis. In that circumstance, a small deviation of the direc-

tion of the projectile's nose from the velocity vector results in an overturning

moment on the object which increases the deviation. As a result, the object be-

comes unstable and it eventually tumbles. Fin stabilization aims to stabilize the

object by forcingcp to be located behindcg by using tail surfaces (�ns) so that

any yawing in the object's orientation is opposed by the introduced moment.

Most projectiles such as mortars, sabots, rockets and missiles use this stability

mechanism because of their large size [21].

Translocation ofcp with translocation of the �ns are illustrated in Figure 2.2. In

the top �gure, the rocket is stable sincecg is in front ofcp. The rocket will return

to its stable orientation when any deviation of the orientation occurs. In the

middle �gure, cg andcp are very close to each other. Such a condition is called

neutral stability. The rocket may have a stable or unstable �ight depending on

the forces acting on it. Lastly, in the bottom �gure of Figure 2.2,cp is in front

of cg and the rocket is unstable.
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Figure 2.2: (Top) Stability, (Middle) Neutral stability, (Bottom) Instability conditions

under �n stabilization.

� Spin Stabilization:

Other types of projectiles such as small arms and artillery shells must deal

with the instability in a different way. These projectiles take advantage of the

gyroscopic effect to stabilize themselves by spinning around their longitudinal

axes. The spin is created by ri�ing within barrel. Gyroscopic forces exerted

on the spinning object give resistance to the object against the destabilizing

moment. In this mechanism, the amount of introduced spin rate is signi�cant.

Too little spin may result in unstable projectile �ight, whereas too much spin
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may result in failure in following the curvature of the trajectory [15]. Moreover,

the projectile encounters signi�cantly high drag force and it becomes unable to

reach the intended range. The projectile trajectories under suf�cient spin (stable

�ight), insuf�cient spin (unstable �ight) and over spin (over stable �ight) are

illustrated in Figure 2.3.

Figure 2.3: (Top) Stable, (Middle) Unstable, (Bottom) Over stable �ight trajectories

under spin stabilization.

Moreover, spin stabilized projectiles exhibit epicyclic motion which is depicted

in Figure 2.4 from head-on view (at top) and side view (at bottom) [15]. As the

projectile proceeds, this motion diminishes but does not vanish completely.

The utilized stabilization technique affects the trajectory signi�cantly because addi-

tional forces and moments may be introduced depending on the employed technique.

Such phenomena will be explained in details in the following subsections.

11



Figure 2.4: Generic epicyclic motion of a spin stabilized projectile

2.2 Dynamics of Ballistic Objects

Due to unguided and non-maneuvering nature of ballistic objects, estimating a ballis-

tic trajectory can be considered to be a trivial task. However, there are various forces

and moments acting on the object and estimating them by a �lter can be a tedious

or even infeasible task without the knowledge of the object type and its behaviour.

These forces and moments are introduced in the following subsections.

2.2.1 Aerodynamic Forces

Aerodynamic forces are exerted on a body by the air in which the body is immersed.

These are caused by the relative motion between the body and air [7]. In the following

subsections, drag, lift and Magnus forces are introduced in details.

2.2.1.1 Atmospheric Drag Force

In �uid dynamics, drag is basically the air resistance; more formally, it is a force

acting opposite to the relative velocity of an object with respect to the surrounding

12



�uid [1].

Fdrag = �
1
2

�sc d(M; � t ; � ) kvk v: (2.1)

In (2.1),� is the air density,s is the cross-sectional area of the projectile,cd is the drag

coef�cient which is a function of object's Mach Number (M ) and total yaw angle (� t ),

v is the object's velocity relative to the air andk�k stands for the Euclidean norm of

its argument.M is a dimensionless quantity that represents the ratio of object's speed

with respect to the local speed of sound [38] and formulated as

M =
kvk

c
: (2.2)

In the equation,c is the local speed of sound which is subject to change with the

altitude of interest, temperature, density and pressure of the environment.cd also

depends on the object's shape and� is included in 2.1 to emphasize this dependency.

In order to show this dependency, the drag coef�cient against Mach number of three

projectiles with different shapes are illustrated in Figure 2.5.

Figure 2.5: Drag coef�cients vs Mach number
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A closer look tocd pro�les given in Figure 2.5 can reveal signi�cant information

about the common characteristics of most BOs' drag coef�cient pro�les. The outlier

pro�les given in the �gure belong to the projectiles which have the extreme projectile

shapes: perfectly spherical and extremely pointy. In fact, a projectile with a different

shape has a drag coef�cient characteristic in between these extreme pro�les. Further-

more, for the majority of the projectiles, the drag coef�cient is almost constant below

0.8 Mach and shows a highly nonlinear characteristic around 1 Mach. The charac-

teristic around 1 Mach mainly stems from the formation of shock waves around the

object. cd generally begins to decrease linearly around 1.2 Mach [34]. In general,

the Mach number's range is divided into three regions according to different wave

formations induced around the objects: below 0.8 Mach is called the subsonic speed

regime, above 1.2 Mach is called the supersonic speed regime, and the region between

these regimes is called the transonic speed regime.

Another term which affects the drag coef�cient is the total yaw angle of the projectile.

The term is used to describe any angular motion of the projectile's axis of rotational

symmetry relative to the trajectory. In other words, it is a combination of angle of

attack (vertical angle) and angle of sideslip (horizontal angle). The total yaw angle

(� t ) can be seen in Figure 2.6 with the drag force which is in the opposite direction

of the velocity.

cd's dependency on the total yaw angle can be well approximated by the following

equation:

cd = cd0 + cd� 2 � 2; (2.3)

where� = sin � t , cd0 is zero-yaw drag coef�cient andcd� 2 is � -yaw drag coef�cient.

Both of these coef�cients change with Mach number. In addition to that,� t changes

during the �ight due to the epicyclic motion of a spin-stabilized projectile (see Figure

2.4). As a result,cd also varies during the �ight sinceM and� t vary.
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Figure 2.6: Drag force

2.2.1.2 Lift Force

Aerodynamic lift force is de�ned as the force perpendicular to the tangent of the

trajectory (or to the velocity vector). It tends to pull the projectile towards its longi-

tudinal axis [21]. Lift force can be stated in vectorial form as

Flif t =
1
2

�sc L � kvk2 �
i � (x � i)

�
; (2.4)

wherecL � is the lift force coef�cient,i is the unit vector in the direction of the velocity,

x is the unit vector in the direction of the projectile's axis of rotational symmetry and

� represents the cross product of two vectors.

Lift force is perpendicular to the velocity vector and lies in the plane spanned by

the velocity vector and the projectile's longitudinal axis. Contrary to what its name

implies, lift force may affect in arbitrary directions depending on the velocity vector

and the longitudinal axis of the projectile. If the total yaw angle becomes zero, in

other words, if the velocity vector and the projectile's longitudinal axis are aligned,

lift force vanishes.
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Figure 2.7: Lift force

2.2.1.3 Magnus Force

Magnus force is a side force that affects a spinning object having non-zero total yaw

angle. It stems from unequal pressure on vicinity of the spinning object and lies in a

direction perpendicular to the plane spanned by the velocity vector and the projectile's

longitudinal axis. It can be formulated in vectorial form as

Fmagnus =
1
2

� kvk2 s
pd

kvk
cNP�

(i � x); (2.5)

wherep is the axial spin rate,d is the projectile's reference diameter andcNP�
is the

Magnus force coef�cient which is a small negative quantity. Magnus force vanishes

only if spin rate or total yaw angle becomes zero. Figure 2.8 illustrates the Magnus

force.
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Figure 2.8: Magnus force

2.2.2 Aerodynamic Moments

The aerodynamic forces mentioned in Section 2.2.1 also generate a moment which

rotates the object along a direction depending on the positions of itscp andcg.

2.2.2.1 Overturning Moment

The overturning moment is induced by the lift force discussed in Section 2.2.1.2. For

the majority of spin stabilized projectiles, the overturning moment raises the total yaw

angle sincecp is located in front ofcg which may cause instability. The projectiles

should spin at suf�cient spin rates to overcome this phenomenon. The vectorial form

of the moment is

M overturning=
1
2

�sdcM � kvk2 (i � x); (2.6)

wherecM � is the overturning moment coef�cient. The moment is shown in Figure

2.9.
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Figure 2.9: Overturning moment

2.2.2.2 Magnus Moment

Magnus force introduced in Section 2.2.1.3 generates a moment which is perpendic-

ular to the projectile's longitudinal axis and lies in the plane spanned by the velocity

vector and the longitudinal axis. Its vectorial form is de�ned as

Mmagnus =
1
2

�d kvk2 s
pd

kvk
cM P�

�
x � (i � x)

�
; (2.7)

wherecM P�
is the Magnus moment coef�cient. This coef�cient can either be positive

or negative depending on the position ofcg, the projectile's shape, the total yaw angle

and the value of Mach number.

Magnus moment is the primary moment which determines the stability of the object.

Hence, it must be always considered and well represented in calculations.

Besides aforementioned forces and moments, there are other forces and moments

acting on the ballistic object, such as pitch damping force, pitch damping moment,

spin damping moment, rolling moment (for canted projectiles), Magnus cross force

and Magnus cross moment. However, they usually produce such insigni�cant effects
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on the trajectory of the projectile that they can be neglected in most circumstances.

Therefore, they are not given in this document.
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CHAPTER 3

GAUSSIAN PROCESSES

Gaussian process is a non-parametric stochastic model which speci�es a prior over

an in�nite-dimensional space of functions. It can also be interpreted as a collection of

random variables, any �nite number of which have a joint Gaussian distribution [14].

An unknown functionf (�) which has a GP prior is denoted as

f (x) � GP (� (x); k(x; x0)) ;

where� (x) andk(x; x0) are its mean and covariance functions, respectively andx is

the argument of the function. A Gaussian process is uniquely de�ned by its mean and

covariance functions. These functions are de�ned as

� (x) = E[f (x)]; (3.1a)

k(x; x0) = E[(f (x) � � (x))( f (x0) � � (x0))T ]: (3.1b)

By GP de�nition, function values evaluated at a �nite number of inputs,x1; : : : ; xL ,

are normally distributed,

2

6
6
4

f (x1)
...

f (xL )

3

7
7
5 � N (� ; K ); (3.2a)
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where

� =

2

6
6
4

� (x1)
...

� (xL )

3

7
7
5 ; K =

2

6
6
4

k(x1; x1) : : : k(x1; xL )
...

...
...

k(xL ; x1) : : : k(xL ; xL )

3

7
7
5 : (3.2b)

3.1 Kernel Functions

Constructing a correlation structure between the data points is crucial in the con-

text of supervised learning, since the output of a test point is predicted based on the

"closeness" of training data to the test point. This closeness can be de�ned in several

ways, e.g., based on the distance of two input points,x andx0, in the input space.

Kernel function speci�es the correlation between data points in GP models. Before

examining the common forms of kernel functions, let us �rst de�ne the stationary

and isotropic kernel functions: A kernel function is called stationary if it is a function

of x � x0. In that case, the kernel function is invariant to translations in the input

space. Secondly, a kernel function is called isotropic if it is a function ofkx � x0k,

which is the norm distance of two input points. In that case, the direction of the vec-

tor difference of the inputs has no importance. For example, in a 2-D input space,

the correlation betweenf ([1; 0]) andf ([2; 0]) is the same as the correlation between

f ([0; 1]) andf ([0; 2]). Stationarity is a more general class of kernels than isotropy,

i.e., every isotropic kernel is stationary, but not vice versa.

For the functionf (�), it is stated that the function values, evaluated at any number of

inputs, are jointly Gaussian and this joint distribution has a covariance matrix which

is given in (3.2b). Kernel functions,k(�; �), are used to construct this covariance

matrix which speci�es the correlation between the function values. Please note that

the correlations between the function values are determined by their input values.

In order to understand the signi�cant role of the kernel (and its hyperparameters) on

GP modeling, different kernel functions are introduced and discussed in the following

subsections.
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3.1.1 Exponentiated Quadratic Kernel

Exponentiated Quadratic (EQ) Kernel, which is also called Squared Exponential, is

one of the most preferred kernels in GP models. It forms in�nitely differentiable func-

tions, i.e., at highest possible smoothness. EQ Kernel is speci�ed with the following

expression

k(x; x0) = � 2 exp
�

�
(x � x0)> � � 1(x � x0)

2

�
; (3.3a)

� = diag(l2
1; :::; l2N ); (3.3b)

where the dimension of the input space isN anddiag(�) stands for a function which

places the given inputs diagonally on a square matrix. The kernel has two types of hy-

perparameters which determine its characteristic:� 2 is the variance and it determines

the amount of variation in function values. It is also called the scaling parameter

since it is a multiplier of the exponential function. Correlation between two points

speci�ed by EQ decreases as the distance between the points increases.l1; :::; lN are

length scale parameters and they specify how fast this correlation decreases with the

distance at each corresponding dimension. In that sense, length scale parameters de-

scribe the smoothness of the function. A small value ofl enables the function to

change its values rapidly, whereas a high value results in a smoother function. In the

regression framework, the value of the parameter speci�es how well the training data

is extrapolated on test points.

In its general form, the kernel is stationary but not isotropic. The isotropic form,

which is used more frequently, is

k(x; x0) = � 2 exp
�

�
(x � x0)> (x � x0)

2l2

�
: (3.4)

The isotropic form has only two hyperparameters the length scale parameter for all

dimensions of the input and the scaling parameter. Using the same length scale at
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all dimensions is a reasonable assumption, since the correlation of data at different

dimensions is the same in most regression problems.

3.1.2 Exponential Kernel

Exponential kernel generates continuous but non-differentiable functions. It is for-

mulated as

k(r ) = � 2 exp
�

�
r
l

�
; (3.5)

wherer =
p

(x � x0)> (x � x0) is the Euclidean distance between the input points,

� 2 is the scaling parameter andl is the characteristic length scale.

3.1.3 Matern Kernel

Matern Kernel is a broad class of kernels whose members are distinguished by a

parameter� . Forp = � � 1=2, the kernel can be written as a product of an exponential

and a polynomial of orderp. Most popular choices of� are 3=2 and 5=2 which

correspond to Matern-3 and Matern-5, respectively. The expressions for these kernels

are given below:

k3=2(r ) = � 2

 

1 +

p
3r
l

!

exp

 

�

p
3r
l

!

; (3.6a)

k5=2(r ) = � 2

 

1 +

p
5r
l

+
5r 2

3l2

!

exp

 

�

p
5r
l

!

: (3.6b)

A Gaussian process with Matern kernel generates sample functions that arep times

differentiable. Matern-3 and Matern-5 generates one time and two times differen-

tiable functions. Furthermore, as� approaches to1 , Matern kernel converges to EQ

kernel given in (3.4). For� = 1=2, Matern kernel becomes Exponential kernel given

in (3.5). Stein [33] states that in�nitely differentiable kernel functions are unrealistic

for physical processes and proposes to use Matern function with �nite values of� .
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In Figure 3.1, aforementioned kernels are depicted by keeping the hyperparameters

at the same values.

Figure 3.1: EQ, Exponential and Matern Kernels (� =2, l=2)

To better understand the effect of hyperparameters, functions are sampled from GP

priors which have covariance matrices constructed by Matern-3 kernel having differ-

ent values of hyperparameters which are given in Table 3.1.

Table 3.1:f �; l g pairs

f 2 , 0.5g, f 2 , 2g, f 2 , 15g

f 5 , 0.5g, f 5 , 2g, f 5 , 15g

For an explicit illustration, the dimension of the input space is selected as 1. Finite

number of inputs are generated with equal distance in the input space. Then, the co-

variance matrix in (3.2b) is constructed by calculating the value of the kernelk(x i ; x j )

for i = 1; :::; L andj = 1; :::; L. Then, the multivariate normal distribution having

zero mean and the covariance matrix is sampled for multiple Monte Carlo runs. The

Matern-3 kernels having these values of hyperparameters are shown in Figure 3.2.
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Figure 3.2: Matern-3 Kernel with variousf �; l g pairs

In Figure 3.3, sample functions are shown. By comparing the �gures from top to bot-

tom, the effect of scaling parameter,� 2, can be examined. With an increase in� , the

amplitude of the �uctuation in sample functions increases. Similarly, by comparing

the �gures from left to right, the effect of length scale,l , can be understood. With

an increase inl, cross-correlation among function values increases and sample func-

tions become smoother. With a small value of length scale (l=0.5), sample functions

change rapidly; at the other extreme, with an excessively high value of length scale

(l=15), functions become almost constant.

3.1.4 Periodic Kernel

A periodic kernel speci�es the correlation based on a period of distance in addition

to the closeness of input points with each other. By means of this kernel, functions
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