
HYPERSPECTRAL DATA CLASSIFICATION VIA CAPSULE NETWORKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ELMAS SOYAK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2019

Approval of the thesis:

HYPERSPECTRAL DATA CLASSIFICATION VIA CAPSULE NETWORKS

submitted by ELMAS SOYAK in partial fulfillment of the requirements for the de-
gree of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Gözde Bozdağı Akar
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Kemal Leblebicioğlu
Electrical and Electronics Engineering, METU

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Cüneyt Bazlamaçcı
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Seniha Esen Yüksel
Electrical and Electronics Engineering, Hacettepe University

Assist. Prof. Dr. Elif Vural
Electrical and Electronics Engineering, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Elmas Soyak

Signature :

iv

ABSTRACT

HYPERSPECTRAL DATA CLASSIFICATION VIA CAPSULE NETWORKS

Soyak, Elmas

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Gözde Bozdağı Akar

September 2019, 64 pages

In this thesis, a novel deep architecture capsule networks are investigated for hy-

perspectral data classification purposes. Even though this algorithm resembles con-

volutional neural networks (CNN), which is one of the most successful methods in

classification, capsule networks have been developed to overcome the limitations of

it. CNN applies convolution operation to extract features in the samples and uses

these features to classify them. However, it fails to measure the relationship between

these features. Moreover, pooling operation that is used in CNN to reduce the number

of parameters results in loss of position information and thus decreases the success of

classifier. With the novelties proposed in capsule networks, it is intended to resolve

the shortcomings of CNN mentioned above. Instantiation parameters such as posi-

tion, orientation, scale of each feature are kept in a capsule, and both the presence of

the relevant feature and the instantiation parameters of the feature are utilized in the

classification step. In the experiments performed on hyperspectral data, the efficiency

of capsule networks is evaluated by using different number and structure of training

samples. A CNN algorithm with a similar structure is constructed and compared with

capsule networks. Although the presented method yields successful results, it has

v

been observed that iteration is exhausting in terms of memory and processing time.

Keywords: capsule networks, hyperspectral data, machine learning, remote sensing,

deep learning

vi

ÖZ

KAPSÜL AĞLARI İLE HİPERSPEKTRAL VERİLERİN
SINIFLANDIRILMASI

Soyak, Elmas

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar

Eylül 2019 , 64 sayfa

Bu tez kapsamında, yeni bir derin mimari olan kapsül ağlarının hiperspektral veri

sınıflandırma üzerindeki başarısı incelenmiştir. Bu yöntem, günümüzde sınıflandır-

mada kullanılan en başarılı yöntemlerden biri olan evrişimsel sinir ağlarına benze-

mekle beraber, yöntemin kısıtlarını gidermek ve başarımını artırmak amacıyla ge-

liştirilmiştir. Evrişimsel sinir ağları, evrişim operasyonunu kullanarak özniteliklerin

ortaya çıkarılmasını sağlamaktadır. Daha sonra bu öznitelikleri kullanarak bir sınıf-

landırma gerçekleştirmektedir. Ancak, bu özniteliklerin kendi aralarındaki ilişkiyi

ölçmekte yetersiz kalmaktadır. Ayrıca, evrişimsel sinir ağlarında parametre sayısını

azaltmak amacıyla kullanılan havuzlama işlemi, özniteliğin konum bilgisinin kaybol-

masına sebep olmakta ve yöntemin başarımını düşürmektedir. Kapsül ağlarında sunu-

lan yeniliklerle, evrişimsel sinir ağlarının bahsedilen eksiklerinin giderilmesi amaç-

lanmıştır. Her bir özniteliğe ait konum, yönelim, ölçek gibi somutlaştırma paramet-

releri bir kapsül içinde tutulmakta ve sınıflandırma aşamasında hem ilgili özniteliğin

varlığına hem de özniteliğin bahsedilen somutlaştırma parametrelerindan yararlanıl-

maktadır. Hiperspektral veriler üzerinde yapılan deneylerde, farklı sayıda ve ve yapı-

vii

daki eğitim kümeleri kullanılarak, kapsül ağlarının verimi değerlendirilmiştir. Ayrıca,

benzer yapıda bir CNN modeli oluşturulmuş ve performans açısından kapsül ağlarıyla

karşılaştırılması yapılmıştır. Sunulan yöntemin başarılı sonuçlar verdiği görülmekle

beraber, yineleme işleminin bellek ve işlem süresi açısından yorucu olduğu gözlem-

lenmiştir.

Anahtar Kelimeler: kapsül ağları, hiperspektral veri, makine öğrenmesi, uzaktan al-

gılama, derin öğrenme

viii

This thesis is dedicated to my family.

ix

ACKNOWLEDGMENTS

I want to thank to my supervisor Prof. Dr. Gözde Bozdağı Akar for her supports.

Moreover, I am also grateful to my previous thesis supervisor Assoc. Prof. Dr.

Mehmet Mete Bulut for his assistance.

Lastly, I want to thank to my family, my friends and my fiance Kemal Gürkan Toker

for their endless supports.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiii

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvi

CHAPTERS

1 INTRODUCTION . 1

2 LITERATURE IN HYPERSPECTRAL IMAGE CLASSIFICATION US-
ING DEEP LEARNING . 7

3 CAPSULE NETWORKS . 23

3.1 Artificial Neural Networks . 23

3.2 Convolutional Neural Networks . 26

3.2.1 Drawbacks of CNN . 28

3.3 Capsule Networks: A Novel Deep Learning Algorithm 29

3.3.1 What is a Capsule? . 30

3.3.1.1 Computing the magnitude of a capsule 30

xi

3.3.1.2 Affine transformation of input vectors 31

3.3.2 Dynamic routing . 32

3.3.3 Loss function . 33

3.3.3.1 Margin loss . 33

3.3.3.2 Reconstruction loss 34

3.3.4 Capsule Networks vs. CNN 34

4 EXPERIMENTS . 37

4.1 Datasets . 37

4.2 Preprocessing The Datasets . 39

4.3 Architecture of the Proposed Method 42

4.4 Results and Comparison . 45

4.4.1 Effect of Filter Number . 46

4.4.2 Effect of Kernel Size . 46

4.4.3 Effect of Number of Routing Iterations 47

4.4.4 Effect of Number of Training Samples 48

4.4.5 Effect of Window Size . 50

4.4.6 Effect of Number of PCs . 50

4.4.7 Effect of Data Augmentation 50

4.4.8 Comparing with CNN . 53

5 CONCLUSION . 57

REFERENCES . 59

xii

LIST OF TABLES

TABLES

Table 2.1 Brief explanation of the studies . 9

Table 2.2 Brief explanation of the studies . 10

Table 2.3 Performance of the studies on Pavia University dataset 12

Table 2.4 Performance of the studies on Pavia Centre dataset 14

Table 2.5 Performance of the studies on Indian Pines dataset 16

Table 2.6 Performance of the studies on Salinas dataset 18

Table 4.1 Size of Classes for Hyperspectral Datasets 38

Table 4.2 Spectral Information Preserved at Each Principal Component 42

Table 4.3 Results for CapsNet with varying number of filters, PaviaU, 200

samples . 47

Table 4.4 Results for CapsNet with varying kernel sizes, 200 samples 47

Table 4.5 Results for CapsNet with varying number of iterations in dynamic

routing, PaviaC, 400 samples . 48

Table 4.6 Results for CapsNet with varying number of training data and win-

dow size . 49

Table 4.7 Effect of PC Numbers on Classification Accuracy for All Datasets

(window size = 7x7) . 51

xiii

Table 4.8 Effect of data augmentation on classification Accuracy for all datasets,

window size =7x7 . 52

Table 4.9 Confusion matrix of experiments using augmented data (x50) on

Pavia University dataset . 52

Table 4.10 Confusion matrix of experiments using augmented data (x50) on

Pavia Centre dataset . 53

Table 4.11 Comparison with CNN using 400 training samples each class (win-

dow size = 7x7) . 54

Table 4.12 Comparison with CNN using data augmentation (window size = 7x7) 54

Table 4.13 Confusion matrix of experiments with CNN using augmented data

(x50) on Pavia University dataset . 55

Table 4.14 Confusion matrix of experiments with CNN using augmented data

(x50) on Pavia Centre dataset . 56

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 Signatures of surface materials taken by AVIRIS sensor [1] . . . 2

Figure 1.2 Electromagnetic spectrum [2] 3

Figure 1.3 Atmospheric transmission with respect to wavelengths [6] 3

Figure 1.4 Spectral reflectance of vegetation showing the contributing ma-

terials [1] . 5

Figure 3.6 The signatures of land types in Pavia University dataset. 31

Figure 4.1 False color maps and groundtruths of Pavia University, Pavia

Centre, and Salinas datasets [48] . 39

Figure 4.2 The signatures of land types in Pavia Centre dataset. 40

Figure 4.3 The signatures of land types in Salinas dataset. 41

Figure 4.4 Proposed capsule network architecture 43

Figure 4.5 Parameters at each layer of the proposed network 44

Figure 4.6 Capsule output of experiments on Pavia Uni. dataset. 45

Figure 4.7 Classification map for Pavia Centre with 400 training samples. . 48

xv

LIST OF ABBREVIATIONS

1D 1-Dimensional

2D 2-Dimensional

3D 3-Dimensional

AA Average Accuracy

ANN Artifical Neural Networks

AVIRIS Airborne Visible/Infrared Imaging Spectrometer

BLDE Balanced Local Discriminant Embedding

CCD Charge Couple Device

CNN Convolutional Neural Networks

DBN Deep Belief Nets

DR Dimension Reduction

FE Feature Extraction

FOV Field of View

GPU Graphical Processing Unit

HRS Hyperspectral Remote Sensing

IFOV Instantenous Field of View

KSC Kennedy Space Center

LR Logistic Regression

MLP Multilayer Perceptron

NIR Near Infrared

OA Overall Accuracy

PC Principal Component

PCA Principal Component Analysis

RBF Radial Basis Function

xvi

RBM Restricted Boltzmann Machine

ReLU Rectifying Linear Unit

ROSIS Reflective Optics System Imaging Spectrometer

SAE Stacked Auto-Encoders

SDA Stacked Denoising Auto-Encoders

SLIC Simple Linear Iterative Clustering

SNR Signal-Noise-Ratio

SPP Spatial Pyramid Pooling

SVM Support Vector Machines

VS Vector Stacking

xvii

xviii

CHAPTER 1

INTRODUCTION

Remote sensing is defined as sensing objects at a distance without making pyhsical

contact in order to gather information about them. Aircrafts or satellites are deployed

for remotely monitoring the objects on the Earth. Sensors on these devices moni-

tor the earth’s surface and collect necessary data. They operate in various spectral

bands of electromagnetic spectrum from NIR to visible region (Figure 1.2). Remote

sensing can be divided into 2 categories as active and passive. Active systems emit

signals and measure the signals reflecting from the objects. Passive systems only

gather radiation from other sources. The solar radiation is highly exposed to atmo-

spheric emission at certain wavelengths. The bands outside these regions are called

atmospheric windows and the solar energy passes through the atmosphere to the earth

surface in these regions. Atmospheric transmission as a function of wavelength can

be seen in Figure 1.3, . The molecules in the atmosphere such as H2O and CO2 are

the main contributors of these windows [1].

In this thesis, we are interested in hyperspectral imaging which is a subclass of remote

sensing. In recent years, due to the advances in technology, hyperspectral remote

sensing systems have become an essential tool in monitoring the earth surface [3] [4].

Hyperspectral images contain hundreds of spectral bands (in infrared (IR) band of

electromagnetic spectrum, 0.4-2.4µm) that help observe the spectral characteristics

of the scene. The prefix "hyper-" comes from including large number (more than

100) of narrow spectral bands (10-20 nm wide). Solar energy at these spectral bands

is reflected by the earth objects and the reflectivity value is used to discriminate the

materials. Hyperspectral images can be represented as three-dimensional data cubes

(hypercube) as shown in Figure 1.1. The hypercube contain spatial data including

1

Figure 1.1: Signatures of surface materials taken by AVIRIS sensor [1]

pixels. And each pixel has spectral information [5].

Hyperspectral images are gathered by hyperspectral sensor systems. This sensor sys-

tems are divided into 2 groups depending on the data acquisition system: whiskbroom

and pushbroom systems[1]. Whiskbroom imaging system usually consists of a sin-

gle sensor and this sensor scans each line through a rotating scan mirror. Pushbroom

imaging system consists of an array of detectors sweeping one line at a time. It scans

the area in the direction of motion of aircraft. The presence of multiple sensors brings

the necessity of calibration which is very complicated and time consuming. However,

sensor dwell time (IT) of data could be longer in pushbroom systems and this helps to

get a data with higher signal-to-noise-ratio (SNR). There are several sensor systems

manufactured for hyperspectral imaging. The Pavia University, Pavia Centre, Salinas

datasets that we use in this thesis are taken by the sensors listed below:

• AVIRIS (Airborne Visible/Infrared Imaging Spectrometer): was developed to

gather data on an aircraft in 1989. The sensor operates in 224 bands in spectral

2

Figure 1.2: Electromagnetic spectrum [2]

Figure 1.3: Atmospheric transmission with respect to wavelengths [6]

band of 0.35-2.5 µm with a spectral resolution of 10nm. This sensor system

acquires image using whiskbroom scanning mode. Data obtained from this

sensor has a dimension of 614*512*224. Each sensor has an IFOV of 0.05°.

Total field of view (FOV) of the system is 30°.

• ROSIS (Reflective Optics System Imaging Spectrometer): was developed as a

compact airborne imaging spectrometer for research purposes. The sensor op-

erates in 115 bands in spectral band of 0.43-0.86 µm with a spectral resolution

of 4nm. This sensor system acquires image using a 2D CCD array. Each sensor

has an IFOV of 0.03°. Total field of view of the system is 32°.

Hyperspectral imaging technology provides rich spectral information about the land

types. This information is utilized in a broad range of application areas[3] [4]. Some

3

of the application areas of this technology are:

• Military surveillance: Human or vehicle detection/classification.

• Agriculture and crop analysis: Monitoring the status of plants on the field or

controlling the area whether forbidden crops such as cannabis are planted.

• Resource exploration: Geographical mapping of minerals, oil

• Environmental monitoring: Detecting forest fires or predicting weather by sens-

ing clouds can be accomplished with remote sensing technology. Atmospheric

ozone depletion, deforestation, global warming, urban growth are among the

areas remote sensing can be used.

Variety of research fields are studied in these application areas. Some of those are un-

mixing [7][8], target detection [9], classification [10], anomally detection [11] etc.

In this thesis, we focus on hyperspectral image classification. Each material has

a unique reflectance behaviours in 0.4-2.5µm solar-reflective spectral region due to

the molecular geometry and elements of the object. and this uniqueness provides

discriminating power for classification. This spectral behaviour originates from the

chemicals constituting the material. For instance, transition metals (e.g. Fe, Ti, Cr)

contribute to the charge transfer and so determines the absorption feature. Besides,

vibrational processes in H20 and OH- associated with water, hydroxyl, carbonate and

sulfate define the absorption property ([1]). The parameters characterizing the diag-

nostic absorption features can be directly correlated with the chemistry and structure

of the sample. For example, vegetation indices of hyperspectral bands are detected

which are mainly NIR, red and blue bands. In Figure 1.4, impact of pigments such as

chlorophyll-a (Chla), chlorophyll-b (Chlb), carotenoids (Cars), anthocyanins (Anths),

water, and ligno-cellulose on the reflectance can be observed.

Some of the challenges that researchers encounter during classification are;

• Spectral variability during data acquisition: Atmospheric conditions have a big

impact on the spectral variability. Atmospheric attenuation and scattering di-

rectly affect the signal reaching the sensor. The major molecules contributing

4

Figure 1.4: Spectral reflectance of vegetation showing the contributing materials [1]

to attenuation are water vapor, carbon dioxide, and oxygen. Aerosols in the air

result in scattering of reflecting signals.

• Spectral mixing: One pixel may cover multiple objects. Signature of pixel area

is a combination of signatures of multiple objects. This fact complicates the ob-

ject categorization. Unmixing algorithms are needed to reveal the components

in this unit pixel.

• Similarity between different class signatures. For instance, the chemical struc-

ture of vegetation may lead similar spectral behaviours.

• high dimensionality,

• limited training samples.

Feature extraction plays a key role to deal with these problems. The performance of

classification is highly dependent on the learned features. That is why different meth-

ods have been proposed to extract effective features. Recently, deep methods such as

CNN, autoencoders have been gaining a large amount of interest in hyperspectral im-

age applications as feature extractor and classifier, due to the fact that (i) multi-layer

5

architecture of deep methods is able to extract more abstract and robust features than

shallow methods and (ii) nonlinear activation functions at the end of each layer help

to reveal nonlinear properties exhibited in the data. In this thesis, capsule network

which is one of the popular deep architecture, is proposed for hyperspectral image

classification. The efficiency of capsule networks were evaluated by using different

number and structure of training samples in the experiments.

The rest of the thesis is organized as follows. In Chapter 2, studies that propose deep

architectures for hyperspectral image classification are reviewed. In Chapter 3 theory

of capsule network is depicted and it is compared with CNN. Experimental results

with three hyperspectral data sets and discussions are provided in Chapter 4. Finally,

Chapter 4 summarizes the observations and concludes the thesis.

6

CHAPTER 2

LITERATURE IN HYPERSPECTRAL IMAGE CLASSIFICATION USING

DEEP LEARNING

Due to the fact that gathering/accessing data is becoming easy and computing power

of the computers is becoming high, deep architectures have become useful and popu-

lar in machine learning field in recent years. And, deep methods have proven its effec-

tiveness in many classification areas such as scene labeling [12], digit classification

[13], character classification [14], face recognition [15], natural language processing

[16]. Besides these fields, remote sensing field also utilized the effectiveness of the

deep methods for feature extraction and classification. In this section, the studies that

propose deep architectures for hyperspectral image classification will be discussed.

Summary information about these studies is given in Table 2.1 and 2.2. Also, per-

formances of the studies on Pavia University, Salinas, Pavia Centre and Indian Pines

datasets are given separately in Table 2.3, 2.4, 2.5 and 2.6.

In [17], a 5-layer CNN is adopted to extract features and classify the data. Layers in

the structure are input, convolution, max pooling, fully-connected and output layers,

respectively. This simple structure is adopted since typical CNNs with many convo-

lutional layers are not applicable for hyperspectral data. The algorithm is applied to

3 datasets: Indian Pines, Salinas and University of Pavia.

In [18], a joint spectral-spatial framework is proposed for hyperspectral image clas-

sification. In this paper, principal component alaysis (PCA) is utilized for dimension

reduction purpose. The first several PCs of a neighborhood region are extracted and

fed into CNN. Three PCs are transformed from the 103 channels by PCA, and the size

of neighborhood region and the spectral feature map in pixels is 42x42. Deep CNN

structure consists of 3 convolutional and 2 subsampling layers. The spectral feature

7

maps are generated by dividing the spectral vector into 42 subvectors and taking the

square root of dot product of each subvector. At the classification step, LR is chosen.

In [19], a 3D CNN model is introduced which combines spectral and spatial features.

Instead of one pixel, the neighborhood region of each pixel is provided as input to the

system. By doing this, both spectral and spatial information is taken into account and

better performance is observed. During training, dropout and L2 normalization are

applied to increase robustness of the classifier. Moreover, virtual sample enhancement

is developed to overcome the small training set problem. There exists 2 ways of

creating virtual samples. One way is to multiply the data with a factor and adding

random noise. The other way is to linearly combine two samples with varying ratios

and adding noise. The algorithm achieves by far the best results on the experiments.

In [20], the model has 2 channels of CNN, designed for spectral and spatial features.

The spectral channel takes 1D pixel as the input and applies convolution and pooling

operations on this data. On the other way, for the spatial channel, the images over

spectral bands are averaged in order to fuse the information from all bands and sup-

press the noise. The spatial neighboring patch of each pixel is extracted as input of

the spatial channel and fed to CNN. These features are simultaneously fed to fully

connected layers. After that, a softmax regression layer takes this joint feature as

input and classifies the data. In this paper, transfer learning method is applied to the

model. According to transfer learning theory, in order to improve performance in

limited training sample case, the network is trained using samples from other remote

sensed scenes. The bottom and mid layers are carried to the network of the current

scene. Indian Pines dataset is used for tests whereas Salinas dataset is employed for

purpose of transfer learning.

In [21], an efficient CNN architecture is improved to boost its discriminative capabil-

ity for hyperspectral image classification. Parameter optimization is achieved using

a small training set and 1*1 kernels are applied. The network structure consists of 3

convolutional layers, 2 normalization, 2 dropout and a global average pooling layer.

1*1 convolutional kernels can only extract features among the different bands instead

of spatial features. Normalization layers and global average pooling layer can extract

features in the spatial domain. In this paper, small training set is focused, so 3 to 15

8

Table 2.1: Brief explanation of the studies

Index Method Year
Dimension

Reduction Method
Novelty of Proposed Method Data Aug.

[17] CNN 2015 - simple CNN with 1-layer convolution -

[18] CNN 2015 PCA (3 PCs)
dividing data into 42 sub-vector and

taking dot product of each sub-vector
-

[19] CNN 2016 -

CNN with 3D kernels applied; data

augmentation, regularization and dropout

investigated

applied

[20] CNN 2016
averaging images

over spectral bands

spectral and spatial features in 2 channels,

and transfer learning
-

[21] CNN 2017 -

1*1 kernels applied to prevent over-fitting

with 3*3 kernels; small training

sets used

applied

[22] CNN 2017 -
center pixel paired with each neighbor pixel

to increase number of training data
-

[23] CNN 2017 - 3D CNN with 3D kernel -

[24] CNN 2017 -

multi-scale CNN with kernels 1*1,3*3 and

5*5, residual learning and

data augmentation

applied

[25] CNN 2016 BLDE &PCA

PCA-applied spatial data is fed to CNN,

the outputs of BLDE and CNN are stacked

and sent to LR

-

[26] CNN 2018 -

convolutional layer outputs reshaped to

make a matrix, 2D image obtained to feed

CNN, 3D kernels used

-

[27] CNN 2018 -
very large kernel sizes, border mirroring,

5-layer CNN with 3D kernels
-

[28] ANN 2017 -
distance to each class center is calculated

and added to the soft-max loss
applied

[29] SAE 2014 PCA
spectral vector and PCA-applied spatial

features are stacked and fed to a SAE
-

[30] SAE 2015 PCA (3 PCs)

multi-scale features are extracted using SAE

from 3 images corresponding to 3 PCs

and fed to CNN

-

[31] SAE 2015
PCA (replacing Lab

color space with PCs)

super-pixels generated and majority vote

applied to each super-pixel to

fine-tune the classification of SAE

-

[32]
SAE-

CNN
2016 SAE

Features are extracted using SAE and sent to

CNN, spatial pyramid pooling is applied

to overcome scale variance

-

9

Table 2.2: Brief explanation of the studies

Index Method Year
Dimension

Reduction Method
Novelty of Proposed Method Data Aug.

[33] SAE 2016 -
unsupervised training of each layer via

SAE with no spatial information
-

[34] SAE 2015 -

weighted average of features of neighbor

pixels are added using an update layer,

features of each test sample are described

as linear combinations of training

features (collaborative representation)

-

[35] DBN 2015

DBN for spectral data,

PCA for spatial data

(5 PCs)

spectral features extracted using DBN

and spatial features using PCA,

then concatenated for classification

using LR

-

[36] RBM 2014 -

data smoothed via nonlinear diffusion,

then features extracted with a 3-layer

RBM and classified with OMP or

SP algorithms

-

[37] RBM 2014 PCA (3 PCs)

a conventional 2-layer DBN with

spectral and spatial features

concatenated as input

-

[38] DBN 2017 -
weights are diversified to make hidden

units behave uncorrelated and active
-

[39] CAP 2018 -
conventional CapsNet with 3D kernels,

spatial information added
-

[40] CAP 2018 -
capsule network with 3D convolutional layer

corporating 11*11 window region and all spectral bands
-

10

samples are chosen for each class. The datasets utilized to observe the performance of

the algorithm are Indian Pines, Salinas and Pavia University. The proposed method

is compared with the version where 3x3 kernels are selected for convolution. It is

observed that overfitting problem occurs with 3x3 kernels whereas it does not occur

with 1x1 kernels. Moreover, the effect of dropout is measured by setting dropout rate

to 0 and 0.6, respectively. It is seen that both training and test losses are lower when

dropout is applied.

In [22], a novel method is proposed which increases the number of training samples to

ensure that the advantage of CNN can be actually offered. For each pixel, pixel-pairs,

constructed by combining the center pixel and each one of the surrounding pixels, are

classified by the trained CNN, and the final label is then determined by a majority

voting strategy. Pair of samples belonging to the same class is labeled with their

class number whereas that of samples from different classes is labeled as 0. In doing

so, the amount of input data for training exhibits quadratic growth and the internal

correlation of neighbors is utilized.

In [23], a 3D-CNN framework is proposed that takes full advantage of both spectral

and spatial information contained within hyperspectral data. Without any preprocess-

ing and post-processing operations, the method directly applies 3D kernels on the

input image. The architecture consists of 2 convolutional layers and a fully connected

layer, no pooling operation is applied. The size of kernels are determined by exper-

iments. The algorithm is applied to 3 different datasets: Pavia University, Botswana

and Indian Pines.

In [24], a multi-scale fully-convolutional neural network is proposed that can opti-

mize both spectral and spatial information. It is one of the first works to utilize a

very deep fully CNN with for hyperspectral image classification. The input data is

convolved with 3 different sizes of filters 1 ∗ 1 ∗ d, 3 ∗ 3 ∗ d, and 5 ∗ 5 ∗ d, where the

parameter d corresponds to the number of spectral bands. The output of each filter is

combined together to be fed into the network. The concept of "residual learning" is

also introduced to handle sub-optimality caused by limited number of training data.

This module sums the values of input and output layers which has been proved to bet-

ter optimize the weight of each layer. Multi-scale filtering bank and residual learning

11

Table 2.3: Performance of the studies on Pavia University dataset

Index Method
Training

Data Size

Data

Aug.
OA AA κ

[17] CNN 200x9 - 92.56 - -

[18] CNN 3,921 - 95.18 93.51 93.64

[19] CNN 3,930 applied 0.9954 99.66 99.4

[20] CNN - - - - -

[21] CNN 3x9 applied 67.85 - 60.4

[22] CNN 200x9 - 96.48 - -

[23] CNN 20,925 - 99.39 98.85 99.2

[24] CNN 200x9x4 applied 96.73 - -

[25] CNN 50x9 - 96.98 - -

[26] CNN 34,220 (80%) - 99.52 - -

[27] CNN 200x9 - 98.06 98.61 97.44

[28] ANN 200x9x400 applied 98.55 97.42 98.05

[29] SAE 25,550 - 98.52 97.82 0.9807

[30] SAE 3,921 - 96.37 95.06 95.0

[31] SAE 21,388 - 96.7 95.4 95.0

[32] SAE-CNN 3,921 - 96.28 96.31 95.1

[33] SAE 21,388 - 95.97 - -

[34] SAE - - - - -

[35] DBN 21,900 - 99.05 98.48 98.75

[36] RBM - - - - -

[37] RBM - - - - -

[38] DBN - - 93.11 93.92 90.82

[39] CAP 60x9 - 95.9 96.2 94.56

[40] CAP 8129 (15%) - 99.95 99.9 99.93

12

contribute to the learning of the network with a small amount of training data. More-

over, data augmentation is performed via mirroring the training samples across the

horizontal, vertical and diagonal axes. In order to verify the effectiveness of residual

learning, a similar network without residual learning module is trained and it failed

to converge in training due to the small size of training data.

In [25], a deep CNN model is proposed with balanced local discriminant embedding

(BLDE) algorithm for dimension reduction. Since hyperspectral samples exhibit in-

traclass variation and similarity between different classes, the selection of dimension

reduction method has a vital role on the classification success. It is known that su-

pervised dimension reduction (DR) methods are more successful than unsupervised

methods since they aim to separate each class. BLDE algorithm estimates a linear

mapping that simultaneously maximizes the local margin between different classes

and keeps the samples within-class stay close. On the other hand, CNN is applied

to extract spatial-related deep features. Before applying CNN, the principal compo-

nents of input data is extracted using PCA. Then, BLDE-based features are stacked

with CNN-based features and fed into an LR classifier. The method is tested on

Pavia Center and Pavia University datasets. Although DR operation takes consider-

able amount of time, the results are satisfying.

In [26], a 3D CNN algorithm is proposed. The structure consists of 2 convolutional

layers, 1 reshape layer, 1 pooling layer and 3 fully connected layers where the last

layer is softmax layer. It takes 3x3 neighborhood region with all spectral bands and

feeds to the network. The vectors obtained after convolution are stitched into a matrix

whose width is equal to the number of convolution filters. By doing this, a 2D data

is obtained at the output of convolution. After that, the network behaves like a 2D

image classifier. At the output layer, XGBoost is implemented instead of softmax

layer in order to prevent overfitting. During experiments, 80% of all samples are used

for training. Moreover, a capsule networks is implemented, however it does not give

expected benefits.

In [27], a 5-layer CNN model which uses spectral-spatial information is introduced.

3D kernels are applied at convolutional layers to get discriminative properties. Very

large patch sizes, like 9, 19 and 29, are adopted believing that it defines the sample

13

Table 2.4: Performance of the studies on Pavia Centre dataset

Index Method
Training

Data Size

Data

Aug.
OA AA κ

[17] CNN - - - - -

[18] CNN - - - - -

[19] CNN - applied - - -

[20] CNN - - - - -

[21] CNN - applied - - -

[22] CNN - - - - -

[23] CNN - - - - -

[24] CNN - applied - - -

[25] CNN 50x9 - 99.87 - -

[26] CNN - - - - -

[27] CNN - - - - -

[28] ANN 200x9x400 applied 99.73 99.25 0.996

[29] SAE - - - - -

[30] SAE - - - - -

[31] SAE 74,076 - 99.8 99.4 0.991

[32] SAE-CNN - - - - -

[33] SAE - - - - -

[34] SAE 2,138 - 99.9 99.73 0.998

[35] DBN - - - - -

[36] RBM - - - - -

[37] RBM - - - - -

[38] DBN - - - - -

[39] CAP - - - - -

[40] CAP - - - - -

14

better. During the experiments, the algorithm reaches a classification error with 1500

iterations when 9x9 neighborhood is extracted, on the other hand, it takes 1000 itera-

tion to reach the same error value with 19x19 window size. While dividing the image

into n ∗ n patches, pixels around the borders cannot be extracted. This algorithm

replicates border pixels with mirroring and includes these pixels into classification.

Varying training samples (50, 100 and 200) are used during the tests to observe its

effect. Best results are obtained with 200 training samples and 29x29 patches.

In [28], an artificial neural network-based framework is introduced. In this paper, the

center loss parameter is generated to enhance the separability of the deep features. To

this end, it is obtained by averaging the distances between each input feature and the

corresponding center of each class. Center of each class is determined by averaging

the features of the corresponding class. The loss function of the proposed architecture

is computed by adding center loss to the softmax loss. Another contribution of this

paper is the center classifier approach, which assigns label to a given sample accord-

ing to its nearest class center. Differing from other models which are trained using

patch-based samples, this method feeds only spectral features at the training stage. At

the testing stage, the neighborhood area is taken into consideration. Distance of the

given sample to each class center is calculated for 8 scales of neighborhoods (3x3,

5x5, ..., 17x17). After gathering the neighborhoods with same label, the weight of

each class is computed and the sample is assigned to the class with maximum weight.

There are several methods which make use of stacked auto-encoders (SAE) for hy-

perspectral image classification. In [29], a joint spectral-spatial multi-layer stacked

auto-encoder structure is proposed. This method applies PCA in the preprocessing

step in order to reduce the dimension of input data and first n principal components

are taken. In order to include the spatial information, a neighborhood region of size

a ∗ a is cropped from the n-dimensional data for each pixel. That matrix with size

a ∗ a ∗ n is flattened to size a2n ∗ 1 and concatenated to the raw pixel data which is

not transformed with PCA. This vector provides input to the deep architecture. At

the classification step, logistic regression is preferred. This algorithm is tested on

Pavia and KSC datasets. For KSC dataset, the overall accuracy, average accuracy

and Kappa coefficient values are 98.76%, 97.9% and 0.9862, respectively. For Pavia

University dataset, these values are 98.52%, 97.82%, and 0.9807.

15

Table 2.5: Performance of the studies on Indian Pines dataset

Reference Method
Training

Data Size

Data

Aug.
OA AA κ

[17] CNN 200x8 - 90.16 - -

[18] CNN - - - - -

[19] CNN 1,765 applied 97.56 99.23 97.0

[20] CNN 200x8 - 95.58 - -

[21] CNN 3x8 applied 64.19 - 59.9

[22] CNN 200x8 - 94.34 - -

[23] CNN 5,043 - 99.07 98.66 -

[24] CNN 200x8x4 applied 94.24 - -

[25] CNN - - - - -

[26] CNN 8,199 (80%) - 99.09 - -

[27] CNN 200x16 - 98.37 99.27 98.15

[28] ANN - applied - - -

[29] SAE - - - - -

[30] SAE - - - - -

[31] SAE 5,124 - 91.9 - -

[32] SAE-CNN - - - - -

[33] SAE 5,124 - 92.06 - -

[34] SAE 1,036 - 99.22 98.57 99.11

[35] DBN 5,100 - 95.95 95.45 95.39

[36] RBM - - 81.3 85.33 -

[37] DBN - - - - -

[38] DBN 200x8 - 91.03 93.54 89.07

[39] CAP - - - - -

[40] CAP 1537 (15%) - 99.45 99.34 99.37

16

In [30], a multiscale convolutional auto-encoder (MCAE) is developed to extract deep

features. The structure is divided into 2 main components: feature extraction and clas-

sification. In the initial step, 2 kinds of features are extracted: spectral and MCAE

features. Spectral features are obtained by applying PCA and taking 3 principal com-

ponents (PC). MCAE operation is applied after spectral features are obtained. For 3

images corresponding to each PC, pyramid pooling is applied by downsampling the

images at 3 scales. The resulting images are normalized and then trained in CNN.

The CNN consists of 2 layers with filter size 7*7. Sigmoid functions and 2*2 max

pooling operations are applied to each layer. At the output, 315 feature maps are ob-

tained. This corresponds to 315 dimensions for each pixel. Then, a logistic regression

classifier is employed to label each sample using these features.

In [31], a deep model based on stacked denoising autoencoders (SDA) is introduced to

learn spectral feature representations of the data. Moreover, superpixels are deployed

to generate the spatial constraints for the refinement of spectral classification results.

The structure of SDA consists of 5 layers: one input layer, 3 hidden SDA layers, and

one output layer. The pixels are fed directly to the network as input layer. Then,

PCA is applied to the output of the network. After replacing Lab color space with

principal components, superpixels are generated using SLIC algorithm. For pixels

in the boundary of each superpixel, classification is performed individually. Finally,

class labels are assigned by majority vote in each superpixel.

In [32], proposed framework serves as an engine for merging the spatial and spectral

features via SAE and CNN followed by a LR classifier. SAE is aimed to get high level

features by reducing the dimension of data. Since traditional CNN is intolerant to the

scale variance of the objects, SPP is introduced to hyperspectral image classification

for the first time by pooling the spatial feature maps of the top convolutional layers

into a fixed-length feature. The algorithm includes 4 steps: generating the deep spec-

tral features via SAE, training a CNN model and pooling the top convolutional layers,

determining the spectral-spatial feature adjustment parameter and concatenating the

spectral-spatial features in order to feed into LR classifier. The adjustment parameter

is determined through experiments and arranges the ratio of weight of features.

In [33], a SDAE based deep method is proposed where unsupervised training is

17

Table 2.6: Performance of the studies on Salinas dataset

Reference Method
Training

Data Size

Data

Aug.
OA AA κ

[17] CNN 200x16 - 92.6 - -

[18] CNN - - - - -

[19] CNN - applied - - -

[20] CNN - - - - -

[21] CNN 3x16 applied 85.24 - 83.6

[22] CNN 200x8 - 94.8 - -

[23] CNN - - - - -

[24] CNN 200x16x4 applied 95.42 - -

[25] CNN - - - - -

[26] CNN 43,303 (80%) - 98.95 - -

[27] CNN - - - - -

[28] ANN 200x9x400 applied 96.98 98.81 96.62

[29] SAE - - - - -

[30] SAE - - - - -

[31] SAE 27,064 - 95.5 - -

[32] SAE-CNN - - - - -

[33] SAE - - - - -

[34] SAE - - - - -

[35] DBN - - - - -

[36] RBM - - - - -

[37] DBN - - - - -

[38] DBN - - - - -

[39] CAP 60x6 - 99.94 99.95 99.92

[40] CAP 8200 (15%) - 99.81 99.92 99.79

18

achieved via stacked denoising auto-encoders and supervised finetuning via logis-

tic regression (LR). ReLU is chosen as the activation function since it increases the

separability of the features. Each DAE layer is trained independently and decoding

layers are removed after training. At the output layer, logistic regression is added

for classification. The spatial information of the hyperspectral image is not utilized

in the paper. Three datasets are used in experiments: Indian Pines, Botswana and

Pavia University. Three networks parameters, number of layers, number of units in

each layer and the standard deviation of Gaussian noise are determined according to

the optimal classification results on the validation data. The computation time of the

algorithm is compared with linear-kernel SVM and RBF-kernel SVM methods. It is

observed that the proposed method is much faster than RBF-kernel SVM and slightly

slower than linear-kernel SVM.

In [34], a spectral-spatial classification method is proposed which deploys spatial

updated deep auto-encoder (SDAE) and a collaborative representation-based classifi-

cation. The algorithm consists of 3 parts: feature representation, classification, and

spatial regularization. In the feature extraction step, both spectral and spatial features

are obtained. While extracting spectral features, correlation between each sample is

calculated and this similarity regularization term is added to the energy function of

the auto-encoder. By doing so, it is aimed to keep the correlation between the sim-

ilar samples during encoding operation. In order to take the spatial information into

consideration, an update layer is inserted after the hidden layer. In the update layer,

each feature is replaced with the weighted average of the features computed from the

surrounding samples. The weight of each sample exponentially varies with respect

to its Euclidean distance from the center. After pre-training all the layers, multino-

mial logistic regression (MLR) is added to the output layer in order to supervise the

training. At the classification step, collaborative representation-based classification

is applied. Here, the features of each test sample is described as linear combinations

of training features. Using a classical sparse representation-based classification, class

label of each test sample is determined. The framework is designed as to succeed

when the samples are limited, so the experiments are carried out with small training

sets.

Deep belief net is another deep network which is preferred for hyperspectral image

19

classification. In [35], a DBN-based architecture is proposed, which combines the

spectral-spatial FE and classification together to get high accuracy. The framework

is a hybrid of PCA, hierarchical learning-based FE and logistic regression (LR). In

spectral feature extraction step, the raw data of all the spectral channels are used

and several layers of DBN are applied to extract robust features. In parallel, PCA

is applied along the spectral dimension for dimension reduction and first few PCs

are taken only. Then, for each pixel, a w ∗ w neighborhood region is extracted and

flattened. The size of flattened data is w2 ∗ n, where n is the number of PCs. Spectral

and spatial features are combined using a vector stacking (VS) approach. The 1-D

vector obtained in spatial classification part is added to the end of spectral vector. LR

layer produces the class labels using these hybrid features.

In [36], Restricted Boltzmann Machine (RBM) is utilized to construct a deep model.

At the preprocessing step, nonlinear diffusion is applied to smoothen the data without

losing edge information. The diffusion type used is Perona malik diffusion. The out-

put of diffusion is fed as input to a 3-layer RBM network and features are extracted.

The 1st layer of the network is trained according to contrastive divergence (CD). The

number of neurons for each unit is 200, 60, 60 and 200, respectively. After that, sam-

ples are labeled via Orthogonal Matching Point (OMP) and Subspace Pursuit (SP)

classification algorithms. The experiments are conducted on Indian Pines dataset.

In [37], restricted Boltzmann machine (RBM) model and its deep structure deep be-

lief networks (DBN) are constructed for feature extraction and classification of hy-

perspectral images. The aim of using these structures is to avoid the loss of detailed

information due to the dimension reduction operations. In this method, PCA is ap-

plied as dimension reduction step and first 3 principal components are preserved. For

each pixel in this new 3-channel image, 7 ∗ 7 neighborhood area is extracted. Then,

it is reshaped into a 147 ∗ 1 column vector and stacked in series behind the spectral

curve. This spectral-spatial feature provides input to the DBN which consists of 2

layers of RBM. In the experiments, the hyperspectral image acquired in 2012 over

the University of Houston and the neighboring urban area is used.

In [38], a deep diversified DBN-based classification algorithm is proposed. Train-

ing of conventional DBNs make many hidden units behave similarly or perform as

20

’dead’ or ’over-tolerant’. Diversifying operation is introduced to encourage neurons

to be uncorrelated and prevent these drawbacks. Typical DBN consists of unsuper-

vised pretraining where spectral features are determined and supervised fine-tuning

where class information is used for fine-tuning of parameters. Diversifying operation

is applied to both steps for better performance. A diversity promoting prior p(wl)

is incorporated into training equation and the weights are updated according to that

equation. For each layer, diversifying is performed separately. Experiments are con-

ducted on the proposed method for various numbers of training data. It is concluded

that the accuracy proportionally increases with number of training samples. More-

over, effect of the depth of algorithm is also analyzed. It is found that best depths are

2 and 4 for Indian Pines and University of Pavia data sets.

In [39], a modified capsule network is proposed. In this work, a 2-layer network is

thought to be sufficient to classify data. A 7x7 neighborhood region with all spectral

bands included constitutes the input of the architecture. 2 datasets Pavia University

and Salinas are taken as the benchmark dataset. However, only largest 6 classes of

Salinas are employed. To show the efficiency of the proposed method, 60 samples

from each class are used for training, and satisfying results are obtained. The method

is compared with a CNN algorithm that is very similar to the capsule networks in

terms of structure. Although it takes longer time to train CapsNet, it outclasses CNN

algorithm.

In [40], a 3D capsule network is constructed. A patch of 11*11 is taken along with

all spectral bands and fed to the 1st convolutional layer. 15% of dataset is used for

training. Here, capsule units are specialized as to cover both spectral and spatial

information. Proposed network consists of a 3D convolutional layer, primary capsule

layer, dense capsule layer, and fully connected layers. In this structure, first 3 layers

act as encoder and fully connected layers act as decoder.

After analyzing these articles, some key points are extracted on using deep methods

for hyperspectral data classification. One and most important finding is the effect of

number of training samples. These papers can be divided into 2 groups. One group

takes equal number of samples from each class like 50, 200, etc. The other group uses

particular percentage of whole data just as 60% or 80%. Comparing methods with the

21

ones using same amount of training data will give a better idea about the classifier. For

hyperspectral datasets, there are large differences in number of samples of each class.

When equal number of samples are taken from each class, this corresponds to a small

proportion of whole data. On the other hand, when this restriction is ignored and a

vast proportion of data is used for training, classifier better generalizes the input data.

It is observed that second group commonly gets a better performance ([26]). Several

papers aimed to solve this by creating virtual data using augmentation and obtained

satisfying results as in [28]. Moreover, some papers intend to exhibit remarkable

performance with very limited training data as in [21]. Various data representations

employed in these papers have a decisive impact on the results. Most methods extract

several PCs and then utilize n ∗ n window region to feed the network. However, best

results are obtained by including all spectral bands along with spatial information as

in [23]. Utilizing this representation comes with a price on computational complexity

and execution time. In [31], employing SLIC as an alternative technique to get spatial

information brings outstanding success in classification. Unlike other areas that use

deep networks, using very deep networks does not give the best results as in [24]. To

sum up, training data number, data representation, and data augmentation are among

the most critical factors affecting the classifier performance.

Deep methods used in classification of hyperspectral images are mainly based on

CNN, due to the fact that this architecture gives the most satisfying classification

performance. However, it has several limitations. It fails to measure the relationship

between the features. Moreover, pooling operation that is used in CNN to reduce the

number of parameters results in loss of position information and thus decreases the

success of classifier. In this thesis, capsule networks which are proposed to overcome

the shortcomings of CNN is investigated for hyperspectral data classification.

22

CHAPTER 3

CAPSULE NETWORKS

In this thesis, we focus on capsule network which is a method based on artificial neu-

ral networks. Therefore, artificial neural networks will be mentioned firstly on the

purpose of setting up a substructure for capsule networks. And then, CNN architec-

ture which is widely used in hyperspectral image processing field, will be discussed

in Section 3.2. Furthermore, the limitations of CNN, differences between capsule net-

work and CNN, the benefits, drawbacks and theory of capsule networks are discussed

in the following sections.

3.1 Artificial Neural Networks

The idea of artificial neural networks is inspired from human’s central nervous sys-

tem, since human brain is good at cognitive science. The variations of artificial neural

networks (ANN) are extracting features from data automatically by experience like

human brain does. The network consists of nodes. The nodes in networks correspond

to human neuron cells and they perform small arithmetic operations. The output of

each layer is fed as input to the next layer [41] [42]. Thus layered structure is con-

structed with connected nodes to learn abstract representations. Some of the concepts

in artificial neural networks are given below:

Nodes: A neural network can be defined as connection of nodes. They behave like

neuron cells in brain. Each node takes input from many other nodes and computes its

own activation value (Figure 3.1). A node is activated only when sufficient input value

is obtained. Moreover, each node has its own bias added to the summation. From

Equation 3.1.1, it is seen that nodes have a simple working principle. In this equation,

23

Figure 3.1: Nodes in an ANN [43]

xi represents the signals from the input. If there is a layer before, it represents the

node output of previous layer. Here, m number corresponds to the number of signals

coming from the previous layer. wki describes the connection weight between nodes

i and k. Initially, random values are assigned to this parameter and it is tuned via

backpropagation. bk parameter in given equation represents the bias value for node

k. Calculation of bias is achieved in a similar fashion with weight parameter. Aim of

a neural network is to learn the weight and bias parameters in training phase and this

learnt parameters are utilized in class prediction of test samples.

uk =
m∑
1

xiwki + bk (3.1.1)

Activity functions are applied to the output of each node for normalization. Output of

this function equals to the probability of detection of a particular feature. In a biolog-

ical neuron, this corresponds to the firing of neuron. The motivation behind choosing

a nonlinear function is to transform samples into a linearly separable space so that

discriminability increases. Nonlinearity is necessary for linearly inseparable cases.

Hyperbolic tangent (tanh), rectified linear unit (ReLU) and logistic sigmoid functions

are the most commonly chosen activation functions. Since ReLU has less computa-

tional complexity, it is highly preferred. In Equation 3.1.2, yk value represents the

activation value of function Φ. Weighted summation (uk) of previous layer output is

put into an activation function and its output indicates the detection of a particular

feature.

yk = Φ(uk) (3.1.2)

24

Output Function: Output functions are employed to represent a probability distribu-

tion over a discrete variable [44].

Learning process: Learning is basically adjusting the connection weights in the net-

work. Cost functions are deployed to measure the classification error. Using back-

propagation algorithm, cost function is minimized iteratively by tuning the weights.

At each iteration, connection weights and bias are updated as to decrease the classi-

fication error. This decrease is achieved with gradient-descent algorithm. According

to this, cost function is represented as a function of training parameters. Derivative

of this function is computed and the parameters are updated in the opposite direction

of derivative. One problem with this algorithm is that the function can get stuck in

local minima while searching for minimum error. In Equation 3.1.3, calculation of

error value (e) at the last layer of a network can be seen. For a n-class problem, yi

corresponds to the expected output for class i. It equals to 1 for true class and to 0 for

all other classes. Sum of squares of differences between expected output and actual

output constitutes the error.

e =
n∑
1

(yi − f(xi))
2 (3.1.3)

Architecture Design: Architecture of the network has a role on the performance.

Number of layers, number of nodes, etc. must be selected according to the problem. A

larger network requires more training samples in order to tune the parameters and they

are harder to optimize. On the other hand, a smaller network can cause underfitting.

Since there are no exact rules for architecture design, an ideal one can be found by

trial and error. For the case of hyperspectral data classification, a small-size network

is usually adopted to avoid overfitting.

Dropout:Dropout is a technique generated to increase the classification performance.

Its theory stands on the belief that overtraining can degrade classification accuracy. To

solve this issue, several nodes in the network are canceled, i.e. zero output is attained

from these nodes. By the experiments, it is proved that dropout prevents memoriza-

tion with no computational cost. Even though training performance deteriorates with

dropout, test performance gets better. The nodes that dropout is applied are chosen

randomly at each layer.

25

Regularization: It is applied to prevent network from overfitting. This is the state

where training error is small and test error is large. This happens when the networks

learns the training data, but does not perform well on the new test data. A penalty

term is added to the cost function as regularization term.

Data Augmentation: Data augmentation term is referred to artificially increasing

the number of training data using available ones. When training data is limited, this

method is applied to better generalize the model. For the case of hyperspectral data,

this is achieved in several ways:

• adding random noise,

• combining 2 samples linearly with different ratios and then adding noise.

3.2 Convolutional Neural Networks

CNN is a specialized type of ANN which is developed for image classification. It

uses convolution operation instead of matrix multiplication in one or more layers

(Figure 3.2). The kernels used in convolution are determined via learning. These

learnt kernels are scanned through 2D data. By doing so, a high output occurs where

a feature appears in the input. If that feature is translated in the image, the same high

output occurs with the same amount of translation.

CNN has 3 principal layers: convolution, pooling and fully-connected layers:

• Convolution layer convolves image with 2D features. When a similar 2D fea-

ture is detected, a large output value is obtained. This output value is sent to a

nonlinear activation function such as ReLU.

• Pooling layer takes the output of activation function and downscales data by

using pooling operation such as max pooling or average pooling (Figure 3.5).

By doing so, only important information is transferred to the next layer and

computation time decreases. There are 3 parameters determining the output

size: filter size, stride and padding. Filter size specifies the block size that

pooling will be achieved. In Figure 3.3 and Figure 3.4, 3x3 filters are deployed.

26

Figure 3.2: Convolution operation [45]

Stride defines how many block will be shifted at successive pooling operations.

In these figures, stride values are 1 and 2 respectively. Stride directly affects

the output size. The last parameter is the padding. Input volume is padded with

numbers around the border in order to apply convolution to the edge pixels.

• Fully connected layer is no different than an ordinary artificial neural network

layer. Each neuron in this layer is connected to each neuron in the previous

layer.

Although CNN is invariant to translation, it is not invariant to rotation or scale change.

The solution to rotation change is to rotate the training data and feed it to the network.

One solution invented for scale changes is to apply pyramid pooling. This method

27

Figure 3.3: Convolution operation [46]

Figure 3.4: Convolution operation [46]

scales the training data in several ratios and feed all of them to the network so that

network learns features at each scale. Both these methods have a drawback. When a

feature at low scale and another at high scale occur at the same, the CNN accepts the

presence of both features and this might mislead the algorithm.

3.2.1 Drawbacks of CNN

CNN has been the state-of-the-art method in various classification tasks. However, it

has several drawbacks. Firstly, it works by collecting the features in the sample. It

only seeks for the existence of an entity in the image. It is not capable of preserving

properties of the entity. Other properties of an entity such as rotation, scale, etc. are

28

Figure 3.5: Max pooling operation [47]

discarded in CNN. To be more illustrative, for a face detection problem, it searches

for the existence of nose, mouth, and eyes. The problem is that presence of these

features does not mean that it is a face. The algorithm should consider the distance,

orientation and scale relationships between these entities. It does not take into account

the spatial and orientational relationships between these entities. Besides, CNN re-

quires excessive amount of training samples. This brings problems for datasets with

limited samples. Another drawback of CNN is utilization of max pooling operation

between layers. The motivation behind max pooling is to reduce parameter number

via downsampling. This brings translational invariance to the architecture. To be

more illustrative, when a low-level feature is moved in the data, same output will be

obtained in the high-level neurons due to translational invariance. Position informa-

tion is lost with max pooling. This has a negative effect on the classification success.

However, max pooling is widely used in convolutional neural networks.

3.3 Capsule Networks: A Novel Deep Learning Algorithm

Capsule network is a deep framework developed for classification purposes. It con-

sists of a convolutional layer, primary capsule layer, capsule layer, mask layer, and

decoder network. First layer is a convolutional layer and extracts the basic features

such as edges and color variations. After that, primary capsule layer produces cap-

sules from neuron outputs. This layer behaves like an inverse rendering operation.

Given an image or other data, it computes the internal parameters of features such

as rotation, scale, etc. Then, capsule layer extracts more abstract features in the

29

data. Here, dynamic routing is applied for determining weights between low-level

and high-level features. The last capsule layer has capsules with the same number of

classes. After applying softmax operation to the output of capsules, class probabili-

ties are obtained. Class predictions are achieved by selecting the class with highest

probability. The layers mentioned thus far are make up the encoder network. Ad-

ditionally, decoder network is constructed for regularization. The capsule output of

correct class is given to a 2-layer fully connected network to rebuild the original data.

Difference between original data and rebuilt data is provided as a regularization term

to the error function. Calculated error value is carried backwards using back propaga-

tion and learning is achieved. In the following parts, a detailed explanation of capsule

networks is given.

3.3.1 What is a Capsule?

A capsule corresponds to a set of neurons. Capsules encapsulate valuable information

about the state of the feature they are detecting. This information is stored in vector

form. Each neuron in a capsule seeks different instantiation parameters such as the

position, size and orientation. The magnitude of activity vector of each capsule rep-

resents the probability that the entity exists. Its orientation exposes the instantiation

parameters. If the detected feature changes its state, the probability stays still, but its

orientation changes. This instantiation parameters are determined by algorithm using

training data.

3.3.1.1 Computing the magnitude of a capsule

Activation of a single neuron is calculated using a nonlinear activation function which

limits the output value between 0 and 1. For the capsules, output is in a vector form,

therefore a "squashing" function is developed in order to downscale the vector without

changing its direction.

vj =
||sj||2

1 + ||sj||2
sj
||sj||

(3.3.1)

30

In Equation 3.3.1, sj refers to total input of the capsule j and vj refers to the output

of that capsule. The magnitude of the vector implies the probability of existence of

an entity and the orientation implies some internal state of that entity.

3.3.1.2 Affine transformation of input vectors

Figure 3.6: The signatures of land types in Pavia University dataset.

The output of capsules is multiplied with a weight matrix. This matrix encodes the

relationship between low-level and high-level capsules. States of low-level capsules

with respect to high-level capsules is contained in this affine transformation matrix. In

the case of face detection, this corresponds to the relation between a nose and a face.

The affine transformation matrix includes the information about the scale, position,

etc. of the nose with respect to the face. In the case of hyperspectral data, this might be

the location of a peak point in the signature. The form of a peak is detected on a lower

capsule and the properties of that peak such as the location, slope, etc. might be stored

in the weight matrix. Figure 3.6 shows the signature of land types in Pavia University

31

dataset. The location of peaks and curvatures defines the characteristic signature of

that land type. This operation has no analogue in traditional neural networks.

ûi = Wijui (3.3.2)

In Equation 3.3.2, ui and ûi refer to the output of lower-level capsule and the trans-

formed output, respectively. The variable Wij represents the weight matrix.

3.3.2 Dynamic routing

Capsules receive multi-dimensional prediction vectors from the lower-level capsules.

Dynamic routing algorithm measures the similarity between each lower-level and

upper-lower capsule and assigns weights accordingly. In Figure 3.7, pseudo code of

dynamic routing is given. Each capsule in lower level i is connected to each capsule

in higher level j. However, the weights of these connections are computed iteratively.

For each capsule at level j, it checks all the lower level capsules and assigns greater

weight to the more similar one in an iterative way. The resemblance of capsules is

determined via dot product of the capsule outputs.

Figure 3.7: Algorithm of dynamic routing [46]

In Equation 3.3.3, weight update operation can be seen. The weight between capsules

i and j is updated by adding the result of dot product to the capsule weight. Initially,

all weights from level i to the capsule j are equal. Step by step, the weights increase

for the lower-level capsules similar to the given high-level capsule to make sure that

the output is sent only to the appropriate parent capsules. These computed weights are

normalized at each iteration. The aim is to send the capsules only to the appropriate

32

parent capsule. In CNN, max pooling is the analogue of dynamic routing. Weights

determined via dynamic routing are not model parameters. At testing step, these

weights are recalculated using the procedure.

bij ← bij + ûj|i.vj (3.3.3)

In Equation 3.3.4, ûi symbolizes the output of lower-level capsule i. The term ci rep-

resents the scalar weight of the capsule i which is determined iteratively by dynamic

routing operation. Lastly, the variable uj stands for the output of higher-level capsule

j.

uj = squash(
∑

(ciûi)) (3.3.4)

3.3.3 Loss function

It is known that loss function (or error function) provides the necessary feedback

during the learning process. Capsule networks use weighted sum of margin loss and

reconstruction loss for a more efficient parameter adjustment. In Equation 3.3.5, total

loss equation is given. Here, Ltotal, Lmargin and LRecons represent total loss, margin

loss and reconstruction loss, respectively. α is taken as 0.0005 in the original paper.

Due to this, reconstruction loss has a minor contribution to the total loss calculation.

Ltotal = Lmargin + αLRecons (3.3.5)

3.3.3.1 Margin loss

At the last layer of capsule networks, number of capsules is equal to number of

classes. Softmax operation is applied after capsule layer gives the class probabil-

ity for each class. These computed probabilities are used for margin loss calculation.

The class probabilities are expected to satisfy 2 requirements defined below:

33

• the probability obtained at the last layer after softmax operation must be greater

than 0.9 for the corresponding class of the input,

• the probability must be less than 0.1 for other classes.

Margin loss equation given in Equation 3.3.6 checks whether these conditions are

met and computes an error with respect to this. In this equation, Lc represents the

margin loss for class c. Here, Tc equals 1 if the sample belongs to class c, otherwise

equals 0. m+, m− and λ constants are equal to 0.9, 0.1 and 0.5, respectively.

Lc = Tcmax(0,m+ − ||vc||)2 + λ(1− Tc)max(0, ||vc|| −m−)2 (3.3.6)

As can be seen in Equation 3.3.7, margin loss (Lmargin) is calculated by adding each

class loss (Lc) in an n-class dataset.

Lmargin =
n∑

c=1

Lc (3.3.7)

3.3.3.2 Reconstruction loss

Similar to traditional deep methods, capsule network uses regularization to prevent

the network from overfitting. Reconstruction loss is developed for this purpose. A

2-layer neural network, called decoder, is designed to reconstruct the input data using

the capsule outputs. To be more illustrative, reconstruction loss indicates how well

the input data is reconstructed using output of capsule network. Here, only the cap-

sule output corresponding to the class of input is utilized and the capsule outputs from

other classes are masked. Capsule network constitutes the "encoder" part and feedfor-

ward neural network constitutes the "decoder" part. Reconstruction loss is computed

as the squared difference between the reconstructed data and the input.

3.3.4 Capsule Networks vs. CNN

In this section, similarities and differences of CNN and capsule networks are sum-

marized. First of all, both methods apply convolution operation at the first layer to

34

extract basic features. These basic features include edges and color changes. After

the convolutional layer, these methods utilize the extracted features in different ways.

Capsule networks replace scalar neurons used in CNN with capsules which are in

vector form. While the value of neuron output indicates the existence of a feature

in CNN, the magnitude of capsule output vector indicates the same for capsule net-

works. Additionally, direction of the capsule stores pose parameters of that feature. It

is expected that low-level features belonging to a high-level feature have similar pose

parameters. Secondly, capsule networks take into account the existing hierarchies be-

tween simple and complex features by using affine transformation matrix. Output of

a capsule at a lower level is multiplied by this matrix so that the predicted state of the

high-level feature is obtained as encoded in the transformed capsule vector. Thirdly,

dynamic routing in capsule networks takes the place of pooling operation in CNN. By

dynamic routing, the lower level capsule sends its output to the higher level capsule

whose output is similar. This is achieved by updating weights iteratively between low-

level and high-level capsules. Here, the connection weight between capsules having

similar pose parameters gets higher. Low-level capsules with pose parameters similar

to the high-level capsule has more weight. Therefore, the pose parameters have a

significant effect on the learning (weight update) process. For both algorithms, model

parameters are updated via back-propagation.

Although there are several common structures in CNN and capsule networks, some

critical differences make CapsNet more preferable than CNN. With the novelties pro-

posed by capsule networks such as capsule structure and dynamic routing, features

are processed in a more intelligent way than CNN does. However, nested structure of

dynamic routing makes capsule network more costly.

35

36

CHAPTER 4

EXPERIMENTS

4.1 Datasets

Performance of the proposed capsule network is investigated on three public hyper-

spectral datasets: Salinas, Pavia University and Pavia Center [48].

Salinas: This data is collected by AVIRIS sensor over Salinas Valley, California.

The sensor operates in 0.4-2,5um band region. Although it consists of 224 spectral

bands, 24 water absorption bands are removed. The image size is 512x217. The

dataset includes 16 classes most of which are plants. It has 3.7m geometric resolution.

Spectral signatures of the classes in Salinas dataset are shown in Figure 4.3

Pavia Center: This data is taken by ROSIS sensor over Pavia, Italy. The sensor

operates in 0.43-0.86um band region. It has 102 spectral reflectance bands. The

image size is 1096x1096 pixels. Spatial resolution of a pixel is 1.3 meters. The

dataset includes 9 classes. Spectral signatures of the classes in Pavia Centre dataset

are shown in Figure 4.2

Pavia University: This data is taken by ROSIS sensor over Pavia, Italy. The sensor

operates in 0.43-0.86um band region. It has 103 spectral reflectance bands. The

image size is 610x610 pixels. Spatial resolution of a pixel is 1.3 meters. The dataset

includes 9 classes. Spectral signatures of the classes in Pavia University dataset are

shown in Figure 3.6

False color images and the groundtruths for the datasets that are used in experi-

ments are given in Figure 4.1 a), b), c) for Pavia University, Pavia Centre and Salinas

datasets, respectively. Only a small percentage of pixels in the image are used since

37

Table 4.1: Size of Classes for Hyperspectral Datasets

Class Salinas Pavia Center Pavia Uni.

1 2,009 65,971 6,631

2 3,726 7,598 18,649

3 1,976 3,090 2,099

4 1,394 2,685 3,064

5 2,678 6,584 1,345

6 3,959 9,248 5,029

7 3,579 7,287 1,330

8 11,271 42,826 3,682

9 6,203 2,863 947

10 3,278 - -

11 1,068 - -

12 1,927 - -

13 9,16 - -

14 1,070 - -

15 7,268 - -

16 1,807 - -

Total 54,129 148,152 42,776

38

Figure 4.1: False color maps and groundtruths of Pavia University, Pavia Centre, and

Salinas datasets [48]

most of them are unlabeled. In Table 4.1, the number of labeled samples in each class

is listed. It is seen that the class sample sizes are not well-balanced. For this reason,

equal number of training samples are taken from each class so that large classes will

not overwhelm the small ones during training. Cross-validation with 4 different data

is applied to obtain reliable results.

4.2 Preprocessing The Datasets

Hundreds of spectral bands in hyperspectral images provide significant information

about the scene. On the other hand, high dimensionality of the data may lead to

curse of dimensionality problem. Moreover, noisy and correlated bands exist in these

spectral bands. In order to deal with these problems, the studies in hyperspectral

39

Figure 4.2: The signatures of land types in Pavia Centre dataset.

image processing utilize dimension reduction techniques. One common approach is

to apply principal component analysis (PCA). It deploys orthogonal transformation to

convert correlated data into uncorrelated one in an unsupervised way. Although, PCA

does not guarantee to obtain separable classes, it is frequently used in hyperspectral

image classification with success.

In this thesis, we utilized PCA to reduce dimension of datasets. Let C be the covari-

ance matrix of the data. Here, the entire dataset (d dimensions) is projected onto a

new subspace (k dimensions where k < d). To obtain this subspace, firstly, eigenvec-

tors and eigenvalues of matrix C are computed as in Equation 4.2.1, 4.2.2 and 4.2.3.

C ∗ x = λ ∗ x (4.2.1)

(C − λI) ∗ x = 0 (4.2.2)

40

Figure 4.3: The signatures of land types in Salinas dataset.

det(C − λI) = 0 (4.2.3)

After that, eigenvalues are sorted in descending order and their corresponding eigen-

vectors are arranged in this order, too. First d eigenvectors constitute the bases of the

new subspace. For hyperspectral datasets, PCA is applied and spectral information

preserved at each principal component is computed as in Table 4.2. It is observed that

4 PCs contain more than 99% of information (variance).

As an alternative, Fisher’s linear discriminant analysis is also implemented as a su-

pervised dimension reduction method. However, it did not outperform PCA and not

included in this thesis.

After dimension reduction, a neighboring region of size n ∗ n is cropped from this

s-dimensional data for each point to deal with inter-class spectral similarities. Since

some classes have very similar spectral signatures, the spectral signatures of neighbor

pixels are also taken into account to handle this issue. It originates from the idea that

41

Table 4.2: Spectral Information Preserved at Each Principal Component

PCs
Spectral Info. Cumulative Spectral Info.

Pavia C. Salinas Pavia U. Pavia C. Salinas Pavia U.

1 0.702 0.745 0.583 0.702 0.745 0.583

2 0.260 0.235 0.361 0.963 0.98 0.944

3 0.028 0.011 0.044 0.991 0.991 0.988

4 0.003 0.005 0.003 0.994 0.997 0.991

adjacent pixels usually belong to the same class. After extracting an n ∗ n window

region, the sample size becomes (n, n, d). Then this 3-dimensional sample is flattened

to an array of size of (n∗n∗d, 1). Thus, dimension reduction is performed and spatial

data is taken into account in preprocessing step.

4.3 Architecture of the Proposed Method

The architecture is very similar to the one in the original paper ([49]). MNIST dataset

in the paper has a size of 28*28. However, our hyperspectral data is flattened to 1D.

For this reason, first layer is designed as a 1D convolutional layer instead of a 2D

layer. In Figure 4.4, visualization of proposed architecture can be seen. Layers of this

architecture are described below:

• Convolutional layer: For an input sample with 4 PCs and 7*7 neighborhood

region, the sample size becomes 7*7*4. After flattening, it becomes a 1D data

of size 196*1. After convolutional layer with 256 filters, kernel size and stride

being 9 and 2, the output data has a size of 94*256.

At this layer, number of convolution parameters are 2304, which equals multi-

plication of number of filters (256) with filter size (9). 256 bias parameters are

applied to each convolution. Total number of parameters at this layer is 2,560.

• Primary capsule layer: Primary capsule consists of 1D convolutional layer of

kernel size, filters and strides being 3, 256 and 2. The output data has a size

42

of 46*256. After that, a reshape layer is applied to make data fit into a 8-

dimensional capsule. The resulting data dimension is 1472*8.

Figure 4.4: Proposed capsule network architecture

At this layer, number of convolution parameters are 196,608, which equals mul-

tiplication of number of filters (256) with input data size (256) and with filter

size (3). 256 bias parameters are applied to each convolution. Total number of

parameters at this layer is 196,684.

• Capsule layer: Each capsule in this layer has 16 nodes, i.e. 16 dimensions.

The number of capsules is equal to the number of classes in the dataset. Each

capsule corresponds to a class. Therefore, for a 9-class dataset, the output is a

9*16 matrix. The length of each capsule is calculated and used for classification

error calculation. In Figure 4.6, outputs of capsule layer are displayed. Here,

4 samples belonging to meadows classes of Pavia University dataset are fed to

the network. In capsule layer, 9 capsules are employed each with 8 dimensions.

Each row in the matrix corresponds to the vector output of a capsule.

At this layer, number of trainable parameters are 1472*8*9*16 = 1,695,744;

which equals multiplication of input data size (1472, 8) and with output data

size (9,16). Number of coupling coefficients (cij) equal to 13,248 (= 1472*9).

Since these are iteratively computed with dynamic routing, they are not train-

able. Total number of parameters at this layer is 1,708,992.

43

Figure 4.5: Parameters at each layer of the proposed network

• Mask layer: The aim of adding mask layer is to feed only the output of the

capsule corresponding to the true class of the input sample. Capsule outputs

from other classes are masked at this layer.

• Decoder network: It consists of 3 dense layers. First 2 layers have size 512 and

1024, respectively. Last hidden layer has same size with input layer, which is

196.

First dense layer has 8192 weight parameters, which equals to multiplication in

input size (16) with size of layer (512). 512 bias parameters are applied to each

node in the layer. Total number of parameters at this layer is 8704. Second

dense layer has 524,288 weight parameters, which equals to multiplication in

input size (512) with size of layer (1024). 1024 bias parameters are applied to

each node in the layer. Total number of parameters at this layer is 525,312. Last

dense layer has 200,704 weight parameters, which equals to multiplication in

input size (1024) with size of layer (196). 196 bias parameters are applied to

each node in the layer. Total number of parameters at this layer is 200,900.

Total number of parameters in this network equals to 2,643,332. While 13,248 of

44

Figure 4.6: Capsule output of experiments on Pavia Uni. dataset.

them are calculated via dynamic routing, rest of them are updated with learning pro-

cess. For different input data size, these number change. For a 5*5 neighborhood

region, total number of parameters becomes 1,653,284. Parameters at each layer of

the proposed structure is given in Figure 4.5.

4.4 Results and Comparison

The performance of the proposed capsule networks is investigated with various val-

ues of training data size, window size, PCs and filter size in experiments. In addition

to these, data augmentation is performed and the impact of data augmentation is in-

vestigated. Proposed architecture is constructed using Keras library of Python which

runs Tensorflow at backend. This library is specialized for building neural network

models and can run tests on GPU effectively with parallel processing. The source

codes given in [50] are modified for the implementation of the proposed method on

Python. The tests are run on Nvidia GeForce GTX 960 graphics card. 500 epochs

In this study, classification success is measured with 3 metrics:

45

• Overall accuracy (OA) gives the percentage of correctly predicted test samples

from the total number of samples (Equation 4.4.1).

Overall Accuracy =
Number of Correct Predictions

Number of Total Predictions
(4.4.1)

• Average accuracy (AA) is the average of per class accuracy (Equation 4.4.2).

When the classes are evenly distributed, OA and AA give same results. How-

ever, hyperspectral data usually has very different class sizes and these metric

give information about the performance of the classifier on individual classes.

AverageAccuracy =
Sumof ClassAccuracies

Number of Classes
(4.4.2)

• Kappa coefficient (κ) measures the agreement between 2 different raters. In

Equation 4.4.3, po is observed level of agreement. It is equal to the sum of

probability of true predictions for each class. pe corresponds to expected agree-

ment of classifiers. It is equal to the sum of multiplied probability of each class

for each rater. Kappa metric is applied for multiple imbalanced classes. It takes

values in the interval [0, 1].

κ =
po − pe
1− pe

(4.4.3)

4.4.1 Effect of Filter Number

For the convolutional layer, the effect of number of filters is investigated. Utilizing

more filters helps to extract more features. However, with limited training samples,

these filters do not fit data sufficiently. Considering these trade-offs, optimum number

of filters must be searched based on classifier performance. In Table 4.3, best results

are obtained with filter numbers 128 and 256. Based on this result, 256 filters are

used throughout the tests.

4.4.2 Effect of Kernel Size

The first 2 layers of capsule networks are 1D convolutional layers. In this section, the

effect of kernel size in these layers is observed. Since kernel size has a crucial effect

46

Table 4.3: Results for CapsNet with varying number of filters, PaviaU, 200 samples

No. of Filters OA AA κ Time (sec)

16 79.71 80.51 73.94 5,313

32 79.13 80.89 73.32 5,487

64 81.19 82.88 75.9 5,515

128 81.26 83.3 75.88 5,510

256 81.72 82.34 76.4 5,606

512 80.32 82.91 74.79 5,451

on the success of CNN, it is expected to act similarly for the proposed algorithm. For

this reason, optimum kernel size is searched for capsule networks. In the experiments

with Pavia University datasets, best performance is observed with kernel size 3. Based

on this result, kernel size of 3 is used throughout the tests.

Table 4.4: Results for CapsNet with varying kernel sizes, 200 samples

Datasets Kernel Size OA AA κ Time (sec)

Pavia University

3 81.72 82.34 76.40 5,606

7 79.67 80.93 74.02 5,350

11 77.54 81.24 71.78 5,310

4.4.3 Effect of Number of Routing Iterations

In the original paper [49], it is recommended that the number of iterations be kept

between 3-5. Following this rule, the experiments are conducted on Pavia Centre

dataset. In Figure 4.5, it is seen that best result is obtained with 3 iterations. It is con-

cluded that increasing the iterations causes the network to overfit the data. Changes

in iterations do not directly effect the training time. Based on this result, 3 iterations

are applied throughout the tests.

47

Table 4.5: Results for CapsNet with varying number of iterations in dynamic routing,

PaviaC, 400 samples

No. of Iterations OA AA κ Time (sec)

3 98.35 94.0 97.63 135,055

4 97.78 93.47 97.11 137,952

5 98.09 93.64 97.26 147,188

4.4.4 Effect of Number of Training Samples

When few training samples are used, neuron weights cannot update sufficiently to fit

the training data. This fact affects the success of classifier. On account of this, the

number of training samples for each class is set to 200 and 400 and their outcomes are

analyzed. As can be seen in Table 4.6, accuracies have increased by 1-2% with the

increase in training samples. We can conclude that the classifier needs more samples

to characterize the classes. It almost has no effect on computation time. In Figure 4.7,

classification map for Pavia Centre dataset is visualized together with its groundtruth.

Figure 4.7: Classification map for Pavia Centre with 400 training samples.

48

Table 4.6: Results for CapsNet with varying number of training data and window size

Datasets Training Data Window size OA AA κ Time (sec)

Pavia Uni.

200

3x3 74.09 78.48 67.26 1,716

5x5 75.75 78.67 69.39 3,286

7x7 81.72 82.34 76.35 5,606

400

3x3 77.87 80.1 71.2 1,753

5x5 76.92 80.71 70.39 3,539

7x7 80.16 85.14 74.93 6,055

Pavia Centre

200

3x3 96.48 89.76 95.00 21,190

5x5 97.47 92.09 96.41 54,730

7x7 97.93 93.04 97.05 130,797

400

3x3 97.49 91.53 96.41 22,439

5x5 97.91 92.83 97.00 66,384

7x7 98.35 94.0 97.63 135,055

Salinas

200

3x3 84.66 87.99 82.94 11,630

5x5 86.96 89.81 85.46 23,842

7x7 86.63 90.94 85.09 39,600

400

3x3 88.72 89.91 85.07 12,138

5x5 88.52 91.69 87.08 27,403

7x7 88.28 92.58 86.8 45,557

49

4.4.5 Effect of Window Size

As mentioned earlier, an n ∗ n neighborhood region is extracted for each pixel and

fed into the network. The effect of size of neighborhood region is observed in Table

4.6 . The window sizes are chosen as 3x3, 5x5, and 7x7. Choosing a larger neigh-

borhood region increases the input data size. This leads to a greater network and thus

more trainable parameters. For example, with a 5*5*4 data size, number of network

parameters becomes 1,653,284. On the other hand, for a 7*7*4 data size, this number

increases to 2,643,332.

The experiments show that larger spatial region gives better classification accuracy.

For Salinas dataset, increasing window region from 5x5 to 7x7 has a slight effect

in the accuracy. Since it has a higher spatial resolution than other datasets, taking

larger neighborhood results in assimilation of classes with small region. As the size

of neighborhood region increases, the computation time of both algorithms linearly

increases. Compared to other parameters, this has a major effect on training time.

This can be explained with the increase in the network size.

4.4.6 Effect of Number of PCs

Although hyperspectral data consists of hundreds of channels, they can be sufficiently

represented by several principal components. In the literature, up to 6 PCs are de-

ployed for the hyperspectral data classification. In Table 4.2, the spectral information

stored for different number of PCs can be observed. Although increasing number of

PCs provides more spectral information, it affects computation time of the classifier

negatively as can be seen in Table 4.7. Increasing PC numbers brings a wider network

and this network requires longer time to train.

4.4.7 Effect of Data Augmentation

In order to search the impact of increasing training data virtually, number of training

data is increased with varying ratios (4, 10, and 50). This is achieved by linearly

combining 2 samples and adding random noise. The evident increase in classification

50

Table 4.7: Effect of PC Numbers on Classification Accuracy for All Datasets (window

size = 7x7)

Datasets PCs OA AA κ Time (sec)

Pavia University

2 81.26 81.56 75.53 3,334

3 80.9 82. 16 75.33 4,468

4 81.72 82.34 76.35 5,606

Pavia Centre

2 90.91 84.67 87.3 58,495

3 98.15 93.69 97.35 102,506

4 98.35 94.0 97.63 135,055

Salinas

2 82.57 88.88 80.6 6,616

3 87.4 91.45 85.9 9,077

4 86.87 92.67 85.3 14,256

performance proves that the network better generalizes with data augmentation. In

Table 4.8, a satisfying performance increase is observed with adding virtual data. A

5% increase in overall accuracy of Salinas dataset is obtained, which is more effec-

tive than all other parameters. For Pavia University and Pavia Centre datasets, this

increase equals to 9% and 1%, respectively. Since Pavia Centre results are almost

saturated, this has a slighter affect on its performance. Computation time increases

by 12.6, 16, and 3.42 times for these datasets, respectively.

Confusion matrix of experiments with Pavia University is given in Table 4.9. It is seen

that asphalt, bare soil and meadows classes have the smallest class accuracy. Simi-

larity between meadows and bare soil classes results in this poor performance.10%

of meadows and 15% of bare soil samples are mislabeled as each other. Moreover,

18.83% of asphalt samples are misclassified as bitumen, bricks and gravel. When

class signatures are considered (Figure 4.2), extracted features suffer from lack of de-

tails to discriminate these classes. This indicates the deficiency of preprocessed data

and proposed algorithm in discriminating similar classes.

Confusion matrix of experiments with Pavia Centre dataset is given in Table 4.10.

Tree and asphalt signatures resemble each other and CapsNet misclassifies them as

51

Table 4.8: Effect of data augmentation on classification Accuracy for all datasets,

window size =7x7

Datasets
Sample Size

After Augmentation
OA AA κ Time (sec)

Pavia University

200 81.72 82.34 76.35 5,606

800 79.41 82.56 73.86 8,332

2,000 83.66 86.63 79.27 13,730

10,000 90.67 89.67 87.86 90,032

Pavia Centre

200 97.93 93.04 97.05 130,797

800 97.34 91.44 96.21 196,317

2,000 98.63 95.19 98.06 263,701

10,000 98.94 95.94 98.49 544,716

Salinas

200 86.63 90.94 85.09 39,600

800 88,16 92,3 86.81 80,111

2,000 91.22 95.22 90.17 142,094

10,000 91.41 95.71 90.38 270,097

Table 4.9: Confusion matrix of experiments using augmented data (x50) on Pavia

University dataset

Predictions

Classes Asphalt Meadows Gravel Trees Metal s. B. Soil Bitumen Bricks Shadows

Asphalt 5,021 11 267 8 0 2 693 251 9

Meadows 0 15,191 6 261 0 1,907 0 0 0

Gravel 14 0 1,732 0 0 0 5 66 0

Trees 3 4 0 2,813 0 1 1 0 1

Metal sheets 0 0 0 0 1,145 0 0 0 0

Bare Soil 24 722 9 2 5 4,059 7 1 0

Bitumen 7 0 3 0 0 0 1,120 0 0

Bricks 4 1 107 1 0 2 6 3,360 1

Shadows 0 0 0 0 0 0 0 0 747

Class Acc. (%) 80.18 87.48 95.32 99.65 100 84.05 99.12 96.5 100

52

Table 4.10: Confusion matrix of experiments using augmented data (x50) on Pavia

Centre dataset

Predictions

Classes Water Trees Asphalt Bricks Bitumen Tiles Shadows Meadows B. Soil

Water 65,116 0 0 0 0 53 0 0 0

Trees 0 7,090 244 0 0 0 0 0 0

Asphalt 0 110 2,626 0 0 0 0 4 0

Bricks 0 1 0 2,449 18 14 2 1 0

Bitumen 0 0 2 7 6,358 1 2 0 0

Tiles 0 0 0 14 2 8,939 19 5 0

Shadows 0 0 0 153 2 168 6,763 1 0

Meadows 0 0 8 19 1 53 3 42,067 28

B. Soil 0 0 0 0 0 2 0 12 2,643

Class Acc. (%) 99.92 96.67 95.84 98.55 99.67 99.55 95.43 99.73 99.47

each other. 3.3% of tree samples are classified as asphalt. 3.8% of asphalt samples

are categorized as tree. Providing more spectral information is essential to avoid

this problem. Moreover, 4.6% of shadow samples are labeled as bricks and tiles.

Remaining classes have achieved more than 99% precision in classification.

4.4.8 Comparing with CNN

A convolutional neural network is implemented to compare with our proposed method.

The network consists of 1 convolutional layer, 1 max pooling layer, and 2 fully-

connected layers, respectively. Parameters of the convolutional layer are kept same

as in CapsNet. First fully-connected layer has 32 nodes and the other layer has as

many nodes as the number of classes. For both methods, 400 samples are used in

training. Results obtained with CNN are given in Table 4.11. It is observed that CNN

outclasses CapsNet for all datasets in terms of accuracy and computation time.

The experiments are repeated with augmented training data. In this case, number

of training samples per class has increased to 10,000. In Table 4.12, it is seen that

CapsNet performs slightly better than CNN. However, capsule networks have much

longer training time with respect to CNN. This proves that CapsNet has a higher

learning capacity when sufficient data is provided.

53

Table 4.11: Comparison with CNN using 400 training samples each class (window

size = 7x7)

Datasets Method OA AA κ Time (sec)

Pavia University
CNN 89.86 89.44 86.48 774

CapsNet 80.16 85.14 74.93 6,055

Pavia Centre
CNN 98.66 95.05 98.08 2,477

CapsNet 98.35 94.0 97.63 135,055

Salinas
CNN 91.15 94.8 90.05 998

CapsNet 88.28 92.58 86.8 45,557

Table 4.12: Comparison with CNN using data augmentation (window size = 7x7)

Datasets Method OA AA κ Time (sec)

Pavia University
CNN 89.31 87.62 86.04 4,639

CapsNet 90.67 89.67 87.86 90,032

Pavia Centre
CNN 98.26 93.82 97.53 6,426

CapsNet 98.94 95.94 98.49 544,716

Salinas
CNN 92.17 95.2 91.24 8,054

CapsNet 91.41 95.71 90.38 270,097

54

Table 4.13: Confusion matrix of experiments with CNN using augmented data (x50)

on Pavia University dataset

Predictions

Classes Asphalt Meadows Gravel Trees Metal s. B. Soil Bitumen Bricks Shadows

Asphalt 5,742 4 127 8 7 5 253 97 19

Meadows 1 15,915 0 243 0 1148 0 58 0

Gravel 52 15 1,606 3 2 5 12 121 1

Trees 7 9 0 2,798 4 1 3 0 1

Metal sheets 0 0 0 0 1,145 0 0 0 0

Bare Soil 0 717 0 1 0 4,097 8 6 0

Bitumen 19 0 0 0 3 0 1,105 0 3

Bricks 69 26 147 3 15 23 23 3,166 0

Shadows 0 0 0 0 0 0 0 0 747

Class Acc. (%) 91.7 91.65 88.39 99.11 100 84.84 97.79 90.92 100

In Table 4.13, confusion matrix of experiments on Pavia University dataset using aug-

mented data can be seen. When compared to the ones with CapsNet, CNN classifies

asphalt samples better compared to CapsNet. However, gravel and bricks are better

recognized with CapsNet. CNN algorithm has difficulty in discriminating gravel and

bricks. Both algorithms have classified trees, metal sheets and shadows with almost

no error. This indicates that improvements must be on extracting higher-level fea-

tures in order to better separate similar classes. Moreover, applying PCA on samples

is another cause of this problem.

In Table 4.14, confusion matrix of experiments on Pavia Centre dataset using aug-

mented data is shown. Similar to CapsNet; trees, bricks and shadows classes have the

smallest class accuracy. 6% of asphalt samples are classified as tree and 3.8% of tree

samples are classified as asphalt. 7.7% of shadow samples are misclassified as bricks

and tiles. Although same data representation is utilized in both methods, CapsNet

makes better use of the available data.

55

Table 4.14: Confusion matrix of experiments with CNN using augmented data (x50)

on Pavia Centre dataset

Predictions

Classes Water Trees Asphalt Bricks Bitumen Tiles Shadows Meadows B. Soil

Water 64,989 0 0 0 0 180 0 0 0

Trees 0 6,887 446 0 0 0 0 1 0

Asphalt 0 111 2,605 0 10 4 0 10 0

Bricks 0 2 1 2,330 139 11 2 0 0

Bitumen 0 1 12 32 6,319 0 0 6 0

Tiles 9 25 3 56 66 8,708 72 30 10

Shadows 0 10 0 345 60 199 6,418 54 1

Meadows 0 21 7 53 253 91 0 41,719 35

B. Soil 0 5 12 0 5 7 0 7 2,621

Class Acc. (%) 99.72 93.91 95.07 93.76 99.2 96.98 90.56 97.63 98.65

56

CHAPTER 5

CONCLUSION

In this thesis, we have addressed the problem of hyperspectral data classification by

introducing capsule networks. This network originates from CNN and aims to solve

its shortcomings. It encapsulates the state of extracted features in a vector form and

utilizes this information for a better classification. The network originally takes 2D

images as input and is modified as to take 1D hyperspectral data. First layer of capsule

networks (convolutional layer) is adapted to apply 1D convolutions. After combin-

ing spatial and spectral information, data becomes 3D and it is flattened to 1D to

feed the network. After that, proposed method is tested on Pavia University, Pavia

Centre, and Salinas datasets and proved its success by overall accuracies 90.67%,

98.94% ve 91.41%, respectively. The same dataset is applied on a CNN framework

with a similar structure. When 400 training samples are used for each class, CNN

exhibits better performance in terms of accuracy and training time. However, Cap-

sNet outclasses CNN when augmented data is used at training. Confusion matrices

show that CapsNet is more successful at distinguishing similar classes. Nonetheless,

it is thought that better results can be obtained with some modifications. During the

tests, increasing neighborhood region size and number of PCs apparently increased

the classifier performance. It is concluded that data content is not sufficient for cap-

sule network to characterize the classes. On the light of this assumption, giving all

the spectral bands as input may help characterize the classes and better discriminate

them. Combining full spectral bands with an n ∗ n window region increases the data

size by a vast amount and therefore lead to curse of dimensionality. On the other

hand, feeding all spectral bands to the network without including spatial information

led to poor performance. For this reason, it is predicted that utilizing spatial informa-

tion after classification such as segmentation would be more practical. Furthermore,

57

affine transform matrices learned during training can be utilized in creating virtual

samples. This matrix stores relationship between basic and complex features. Lastly,

spectral data can be divided into groups and trained in different networks as a solu-

tion to the high-dimensionality problem. Contributions of these modifications can be

investigated as a future work.

58

REFERENCES

[1] R. Pu, Hyperspectral Remote Sensing. Taylor and Francis Group, 2017.

[2] Concerning the light. remote sensing basics. [Online]. Available: http:

//www.50northspatial.org/concerning-the-light/

[3] C. Chang, Hyperspectral Imaging: Techniques for Spectral Detection and

Classification, ser. Hyperspectral Imaging: Techniques for Spectral Detection

and Classification. Springer US, 2003, no. 1. c. [Online]. Available:

http://books.google.com.tr/books?id=JhBbXwFaA6sC

[4] H. Grahn and P. Geladi, Techniques and Applications of Hyperspectral Image

Analysis. Wiley, 2007. [Online]. Available: http://books.google.com.tr/books?

id=DqmWQk01mlIC

[5] L. Ma, M. Crawford, and J. Tian, “Local manifold learning-based k -nearest-

neighbor for hyperspectral image classification,” Geoscience and Remote Sens-

ing, IEEE Transactions on, vol. 48, no. 11, Nov 2010.

[6] Introduction to remote sensing. [Online]. Available: http://employees.oneonta.

edu/baumanpr/geosat2/RS-Introduction/RS-Introduction.html

[7] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and

J. Chanussot, “Hyperspectral unmixing overview: Geometrical, statistical, and

sparse regression-based approaches,” IEEE Journal of Selected Topics in Ap-

plied Earth Observations and Remote Sensing, vol. 5, no. 2, pp. 354–379, April

2012.

[8] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Processing

Magazine, vol. 19, no. 1, pp. 44–57, Jan 2002.

[9] D. G. Manolakis, D. Marden, and G. A. Shaw, “Hyperspectral image processing

for automatic target detection applications,” 2003.

59

http://www.50northspatial.org/concerning-the-light/
http://www.50northspatial.org/concerning-the-light/
http://books.google.com.tr/books?id=JhBbXwFaA6sC
http://books.google.com.tr/books?id=DqmWQk01mlIC
http://books.google.com.tr/books?id=DqmWQk01mlIC
http://employees.oneonta.edu/baumanpr/geosat2/RS-Introduction/RS-Introduction.html
http://employees.oneonta.edu/baumanpr/geosat2/RS-Introduction/RS-Introduction.html

[10] G. Mercier and M. Lennon, “Support vector machines for hyperspectral image

classification with spectral-based kernels,” in IGARSS 2003. 2003 IEEE Inter-

national Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat.

No. 03CH37477), vol. 1. IEEE, 2003, pp. 288–290.

[11] D. Stein, S. G. Beaven, L. E. Hoff, E. M. Winter, A. P. Schaum, and A. Stocker,

“Anomaly detection from hyperspectral imagery,” Signal Processing Magazine,

IEEE, vol. 19, pp. 58 – 69, 02 2002.

[12] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical fea-

tures for scene labeling,” IEEE transactions on pattern analysis and machine

intelligence, vol. 35, no. 8, pp. 1915–1929, 2013.

[13] P. Sermanet, S. Chintala, and Y. LeCun, “Convolutional neural networks applied

to house numbers digit classification,” in Pattern Recognition (ICPR), 2012 21st

International Conference on. IEEE, 2012, pp. 3288–3291.

[14] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Convolu-

tional neural network committees for handwritten character classification,” in

Document Analysis and Recognition (ICDAR), 2011 International Conference

on. IEEE, 2011, pp. 1135–1139.

[15] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recognition: A

convolutional neural-network approach,” IEEE transactions on neural networks,

vol. 8, no. 1, pp. 98–113, 1997.

[16] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural net-

work for modelling sentences,” arXiv preprint arXiv:1404.2188, 2014.

[17] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, “Deep convolutional neural

networks for hyperspectral image classification,” Journal of Sensors, vol. 2015,

pp. 1–12, 07 2015.

[18] J. Yue, W. Zhao, S. Mao, and H. Liu, “Spectral spatial classification of hy-

perspectral images using deep convolutional neural networks,” Remote Sensing

Letters, vol. 6, no. 6, pp. 468–477, 2015.

[19] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extraction and

classification of hyperspectral images based on convolutional neural networks,”

60

IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 10, pp.

6232–6251, 2016.

[20] J. Yang, Y. Zhao, J. C. W. Chan, and C. Yi, “Hyperspectral image classifica-

tion using two-channel deep convolutional neural network,” in 2016 IEEE In-

ternational Geoscience and Remote Sensing Symposium (IGARSS), 7 2016, pp.

5079–5082.

[21] S. Yu, S. Jia, and C. Xu, “Convolutional neural networks for hyperspectral image

classification,” Neurocomputing, vol. 219, no. Supplement C, pp. 88 – 98, 2017.

[22] W. Li, G. Wu, F. Zhang, and Q. Du, “Hyperspectral image classification using

deep pixel-pair features,” IEEE Transactions on Geoscience and Remote Sens-

ing, vol. 55, no. 2, pp. 844–853, 2 2017.

[23] Y. Li, H. Zhang, and Q. Shen, “Spectral-spatial classification of hyperspectral

imagery with 3d convolutional neural network,” Remote Sensing, vol. 9, p. 67,

01 2017.

[24] H. Lee and H. Kwon, “Going deeper with contextual cnn for hyperspectral im-

age classification,” IEEE Transactions on Image Processing, vol. 26, no. 10, pp.

4843–4855, 10 2017.

[25] W. Zhao and S. Du, “Spectral - spatial feature extraction for hyperspectral im-

age classification: A dimension reduction and deep learning approach,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 54, no. 8, pp. 4544–4554,

8 2016.

[26] Y. Luo, J. Zou, C. Yao, X. Zhao, T. Li, and G. Bai, “Hsi-cnn: A novel convolu-

tion neural network for hyperspectral image,” in 2018 International Conference

on Audio, Language and Image Processing (ICALIP), 7 2018, pp. 464–469.

[27] M. E. Paoletti, J. M. Haut, J. Plaza, and A. G. Plaza, “A new deep convolutional

neural network for fast hyperspectral image classification,” ISPRS Journal of

Photogrammetry and Remote Sensing, vol. 145, no. Part A, pp. 120–147, 2017.

[28] F. Z. Alan J.X. Guo, “Spectral-spatial feature extraction and classification by

ann supervised with center loss in hyperspectral imagery,” IEEE Transactions

on Geoscience and Remote Sensing, pp. 1–13, 9 2018.

61

[29] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based classifi-

cation of hyperspectral data,” IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 7, no. 6, pp. 2094–2107, 6 2014.

[30] W. Zhao, Z. Guo, J. Yue, X. Zhang, and L. Luo, “On combining multiscale deep

learning features for the classification of hyperspectral remote sensing imagery,”

International Journal of Remote Sensing, vol. 36, no. 13, pp. 3368–3379, 2015.

[31] Y. Liu, G. Cao, Q. Sun, and M. Siegel, “Hyperspectral classification via deep

networks and superpixel segmentation,” International Journal of Remote Sens-

ing, vol. 36, no. 13, pp. 3459–3482, 2015.

[32] J. Yue, S. Mao, and M. Li, “A deep learning framework for hyperspectral image

classification using spatial pyramid pooling,” Remote Sensing Letters, vol. 7,

no. 9, pp. 875–884, 2016.

[33] C. Xing, L. Ma, and X. Yang, “Stacked denoise autoencoder based feature ex-

traction and classification for hyperspectral images,” Journal of Sensors, vol.

2016, pp. 1–10, 01 2016.

[34] X. Ma, H. Wang, and J. Geng, “Spectral spatial classification of hyperspectral

image based on deep auto-encoder,” IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, vol. 9, no. 9, pp. 4073–4085, 9 2016.

[35] Y. Chen, X. Zhao, and X. Jia, “Spectral spatial classification of hyperspectral

data based on deep belief network,” IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, vol. 8, no. 6, pp. 2381–2392, 6 2015.

[36] M. E. Midhun, S. R. Nair, V. T. N. Prabhakar, and S. S. Kumar, “Deep model

for classification of hyperspectral image using restricted boltzmann machine,”

in Proceedings of the 2014 International Conference on Interdisciplinary Ad-

vances in Applied Computing, ser. ICONIAAC ’14. New York, NY, USA:

ACM, 2014, pp. 35:1–35:7.

[37] T. Li, J. Zhang, and Y. Zhang, “Classification of hyperspectral image based

on deep belief networks,” in 2014 IEEE International Conference on Image

Processing (ICIP), 10 2014, pp. 5132–5136.

62

[38] P. Zhong, Z. Gong, S. Li, and C. B. Schonlieb, “Learning to diversify deep

belief networks for hyperspectral image classification,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 55, no. 6, pp. 3516–3530, 6 2017.

[39] F. Deng, S. Pu, X. Chen, Y. Shi, T. Yuan, and S. Pu, “Hyperspectral image

classification with capsule network using limited training samples,” Sensors,

vol. 18, no. 9, 2018. [Online]. Available: http://www.mdpi.com/1424-8220/18/

9/3153

[40] M. E. Paoletti, J. M. Haut, R. Fernandez-Beltran, J. Plaza, A. Plaza, J. Li, and

F. Pla, “Capsule networks for hyperspectral image classification,” IEEE Trans-

actions on Geoscience and Remote Sensing, vol. 57, no. 4, pp. 2145–2160, April

2019.

[41] R. E. Uhrig, “Introduction to artificial neural networks,” in Industrial Electron-

ics, Control, and Instrumentation, 1995., Proceedings of the 1995 IEEE IECON

21st International Conference on, vol. 1, Nov 1995, pp. 33–37 vol.1.

[42] S. Haykin, Neural Networks: A Comprehensive Foundation, ser. International

edition. Prentice Hall, 1999.

[43] M. R. Veronez, S. Florêncio de Souza, M. T. Matsuoka, A. Reinhardt, and

R. Macedônio da Silva, “Regional mapping of the geoid using gnss (gps)

measurements and an artificial neural network,” Remote Sensing, vol. 3, no. 4,

pp. 668–683, 2011. [Online]. Available: https://www.mdpi.com/2072-4292/3/

4/668

[44] A. C. Ian Goodfellow, Yoshua Bengio, Deep Learning. MIT Press, 2016.

[45] Convolutional neural networks. [Online]. Available: http://www.khshim.com/

archives/681

[46] A beginner’s guide to understanding convolutional neural networks

part 2. [Online]. Available: https://adeshpande3.github.io/A-Beginner%

27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/

[47] A. Andrej Karpathy. (2015) Cs231n convolutional neural networks

for visual recognition. [Online]. Available: http://cs231n.github.io/

convolutional-networks/

63

http://www.mdpi.com/1424-8220/18/9/3153
http://www.mdpi.com/1424-8220/18/9/3153
https://www.mdpi.com/2072-4292/3/4/668
https://www.mdpi.com/2072-4292/3/4/668
http://www.khshim.com/archives/681
http://www.khshim.com/archives/681
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/

[48] “Hyperspectral remote sensing scenes

,” http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_

Scenes, [Accessed: 21-February-2018].

[49] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” in

Advances in Neural Information Processing Systems 30. Curran Associates,

Inc., 2017, pp. 3856–3866.

[50] A keras implementation of capsnet in nips2017 paper dynamic routing between

capsules. [Online]. Available: https://github.com/XifengGuo/CapsNet-Keras

64

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://github.com/XifengGuo/CapsNet-Keras

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Literature in Hyperspectral Image Classification Using Deep Learning
	Capsule Networks
	Artificial Neural Networks
	Convolutional Neural Networks
	Drawbacks of CNN

	Capsule Networks: A Novel Deep Learning Algorithm
	What is a Capsule?
	Computing the magnitude of a capsule
	Affine transformation of input vectors

	Dynamic routing
	Loss function
	Margin loss
	Reconstruction loss

	Capsule Networks vs. CNN

	Experiments
	Datasets
	Preprocessing The Datasets
	Architecture of the Proposed Method
	Results and Comparison
	Effect of Filter Number
	Effect of Kernel Size
	Effect of Number of Routing Iterations
	Effect of Number of Training Samples
	Effect of Window Size
	Effect of Number of PCs
	Effect of Data Augmentation
	Comparing with CNN

	Conclusion
	REFERENCES

