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ABSTRACT

SUBOPTIMAL CONFLICT BASED SEARCH FOR MULTI AGENT PATH
FINDING

Karabulut, İlhan Yoldaş

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Faruk Polat

September 2019, 43 pages

Multiagent pathfinding is a problem faced in many fields including computer games,

simulation software, and robotics. These applications generally require complete and

real-time solutions. The class of methods which solves the problem optimally and

completely spends much more time than real-time solutions. The algorithms to solve

the problem within expected time limits, are mostly incomplete and do not guarantee

an optimum solution. In this thesis, we proposed a method that improves the Conflict

Based Search algorithm which is complete and optimum. In this way, we combined

the features of two different classes of solutions to develop an algorithm that can

be used in real-life problems. Using a heuristic-based approach, we developed an

algorithm which is complete, time-efficient and producing near-optimal solutions.

We compared our method with CBS and suboptimal algorithms experimentally and

showed the advantage of our proposed method.

Keywords: Path Finding, Multiagent Agent Path Findig, Search-Based Solutions,
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Optimal Solvers, Suboptimal Solvers
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ÖZ

ÇOK UNSURLU YOL BULMA İÇİN EN UYGUNA YAKIN ÇÖZÜMLÜ
ÇATIŞMA TABANLI ARAMA

Karabulut, İlhan Yoldaş

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Faruk Polat

Eylül 2019 , 43 sayfa

Çok unsurlu yol bulma, bilgisayar oyunları, simülasyon yazılımları ve robotik gibi

birçok alanda kaşılaşılan bir problemdir. Bu alanlar genellikle her örnek için ve ger-

çek zamanlı çözümlere ihtiyaç duyar. Sorunu optimum ve her örnek için çözen yön-

temler, gerçek zamanlı çözümlerden çok daha fazla zaman harcamaktadır. Beklenilen

zaman sınırları içerisinde çözüm bulan yöntemler ise çoğunlukla tüm örnekleri çöze-

miyor ve optimum çözümden uzaklar. Bu tezde, Conflict Based Search algoritmasını

geliştirerek, tüm örnekler için sonuç veren ve optimum bir yöntem önerdik. Bu şe-

kilde, sahada kullanılabilecek bir algoritma geliştirmek için iki farklı çözüm sınıfının

özelliklerini birleştirmiş olduk. Sezgisel yaklaşım tabanlı bir yöntem kullanarak, her

örnek için çalışan, zaman açısından verimli ve optimum çözümlere yakın sonuçlar ve-

ren bir algoritma geliştirdik. Yöntemimizi CBS ve optimum olmayan algoritmalarla

karşılaştırdık ve yöntemimizin avantajlarını gösterdik.

Anahtar Kelimeler: Yol Bulma, Çok Unsurlu Yol Bulma, Arama Tabanlı Çözümler,
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En Uygun Çözümler, En Uyguna Yakın Çözümler
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CHAPTER 1

INTRODUCTION

Single-agent pathfinding is the calculation of a route from a start position to an end

position for a moving agent commonly modeled as a path search from one node to

another in a graph. For this problem mostly search-based solutions are used. One

of the commonly used methods is the A* algorithm [1]. A* searches graph nodes

based on a cost function which is f = g + h, where g stands for the cost spent to reach

parameter node, h is a heuristic value which estimates the cost to reach the goal. With

an admissible heuristic, A* guarantees producing optimum solutions for single-agent

pathfinding problems.

In the case of multi-agent path finding (MAPF) problems, the aim is transporting more

than one agent from their start to goal nodes on the same graph. While doing this,

a MAPF solver must consider the constraints like no two agents can be at the same

graph node at the same time. For MAPF problems optimality is minimizing a cost

function which is the sum of the path lengths of all agents. Because the state space

grows exponentially with the number of agents, solving a MAPF problem optimally is

NP-Hard[2] [3]. Some application domains including computer games, simulations,

and robotics require real-time solutions. Optimal algorithms can not be computed in

real-time as the problem size grows. That’s why suboptimal solutions are acceptable.

In this thesis, we proposed a complete and time-efficient algorithm by modifying

an existing optimal algorithm. While doing this, although we do not guarantee the

optimality feature, the algorithm that we proposed reached competitive total path

cost results compared to other suboptimal algorithms. Our method based on CBS

algorithm [4]. The proposed algorithm creates a tree that consists of information

gathered from conflicts of single-agent paths. By searching this tree according to
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the cost function, CBS tries to find an optimum solution. We changed this search

mechanism so that it finds a solution in a shorter way by using a heuristic approach

similar to A*. With this modification, we developed a complete, time-efficient but

suboptimal solution.

The proposed method compared with CBS and some suboptimal algorithms which

belong to different solution families and results are presented in the experimental

work. In the experimental work, we used several graph configurations with varying

number of agents.

We organized this thesis as follows. In chapter 2, we defined the problem with its

constraints and classified the solution methods. In the next chapter, related work is

given and evaluated by pointing at strong and week points of the algorithms. Chapter

4 covers the detailed explanation of the proposed method. The next chapter includes

the experimental setup and input generation method. Then experimental results and

evaluation of the algorithms are presented. The last chapter summarizes the thesis

work and states the future research directions.
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CHAPTER 2

BACKGROUND

Multi-agent pathfinding can be defined as planning routes from start position to goal

position for more than one agent commonly modeled as a path search from one node

to another in a graph. In this chapter, the fundamentals of the problem setup are

explained. Definitions that are used in this thesis are also given.

2.1 Problem inputs

An environment and an agent list are the inputs of the MAPF problem. The environ-

ment mostly defined as a graph. Vertices of the graph define locations in which an

agent can be placed at any time and edges define roads between vertices of the graph.

Some of the vertices of the graph can be defined as obstacles that agents can not be

placed at any time. Capacity can be settled for vertices which define the number of

agents that can be placed on a vertex at the same time.

The agent list consists of a set of agents with start positions and goal positions. The

aim is to find a path from start position to goal position for every agent without any

conflict.

Formally;

An environment is a graph G:(V,E) where V={v0,...,vn} is the set of vertices and

E={e1,...,et} is the set of edges. ei=(vx,vy) defines edge between two vertex.

A={a0,...,ak} is the set of agents, where ai=(vs,vg) and vs is initial node of agent i, vg

is the goal node of agent i.

3



2.2 Problem Outputs

The output of a MAPF problem instance is a path list. A path is a set of ordered

vertices. Vertices in a path indicate positions of the agent at every time step from

the start position to the goal position. A solution to the MAPF problem must satisfy

constraints explained in the next section.

2.3 Constraints

The main constraint of a MAPF problem is that the number of agents on any vertex

at any time must not be more than the capacity of that vertex. For simplicity, the

capacity constraint is not used in this work. In other words, capacity assumed to be 1

and there must not be more than 1 agent on a vertex at a time.

2.4 Solution Classifications

There are different classifications of the MAPF problem solvers. Centralized and de-

centralized solvers are one of these classifications. Decentralized solvers calculate

every agent’s paths individually, then tries to fix collisions using some messaging

mechanisms between agents. The information set can be limited based on the spe-

cific problem requirements. Decentralized solvers are more convenient to solve on

distributed systems. For a centralized solver, a state contains all agents’ positions.

The solver finds the next positions of all agents for a state transition. Centralized

solvers know every required information about all agents so a messaging mechanism

is not needed [5].

Another classification is online and offline solvers. Online methods divide the solu-

tion into smaller time intervals, apply "solving" and "moving" phases for time inter-

vals by proceeding. In "solving" phase paths are calculated, in "moving" phase paths

are realized for every agent. Time intervals can be predefined or based on conflicts.

Solving and moving phases are repeated until all paths are found for all agents. Of-

fline solvers calculate paths from start positions to goal positions before any moving

4



phase. Online solvers are commonly used in real-life applications[6].
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CHAPTER 3

RELATED WORK

In this chapter, different solution alternatives are given in a classified way. Leading

algorithms of different classes will be explained in detail with outstanding features.

Elaborated algorithms will also be the subject of experimental results in later chapters.

Before explaining the solution methods, the A* algorithm explained first because the

MAPF algorithms commonly based on this single-agent solver.

3.1 A* Algorithm

A* is a single agent pathfinding algorithm which is optimum, complete and time-

efficient [1]. The search-based algorithm works by conducting best-first search on a

tree using cost function f(n) = g(n) + h(n). g(n) is the cost from start node to node n

and h(n) is the estimated cost form n to the goal. A* uses an open list and a closed

list. Graph nodes are pushed to open list from start node and every time the node with

minimum f(n) value is fetched. Goal test is executed on the fetched node if it is the

goal node, a path from start to expanded node is returned else the neighbors of that

node are pushed to the open list. The node is added to the closed list. Every time

a node is pushed to the open list, it is checked that the node is not in the closed list

and there is not any node in the open list whose f(n) value lower than the node. In

this way, it is prevented to consider the same node again and again. If there is not

any node left in the open list, before reaching to the goal node, the problem instance

is unsolvable. Calculation of heuristic h(n) depends on the problem type but with

an admissible heuristic meaning that never overestimating the cost, A* guarantees

finding an optimal solution if one exists.
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3.2 Sub-Optimal Search based MAPF Solvers

Sub-optimal MAPF algorithms find a solution time-efficiently by sacrificing optimal-

ity and/or completeness. Search based solutions attempt to find a path with a search

algorithm for every agent without considering any other agents in the environment

and then repair conflicts using different methods [6][7][8]. A family of algorithms

that are commonly used in computer games is Local Repair A* (LRA*). In the basic

implementation of LRA*, for every agent, paths are calculated from start positions to

goal positions as any other agent does not exist in the environment, then while agents

follow their paths if any conflict occurs remaining paths are recalculated [6]. This ba-

sic form of algorithm causes many deadlocks and cycles so different techniques are

used to fix them. There is not an action taken before a conflict occurs by LRA* based

algorithms. Hierarchical A* (HCA*) and its online version Windowed Hierarchical

A*(WHCA*) solve this problem using reservation table[7]. HCA* keeps a reserva-

tion table that holds agents’ feature positions calculated previously. Path calculation

for an agent is done by considering reservation table entries recorded for agents while

their paths are calculated. WHCA* defines a window size to hold reservations in a

time interval and shifts that interval as agents move. Lastly Conflict-Oriented Win-

dowed Hierarchical Cooperative A* (CO-WHCA*) which is a variant of WHCA*

creates reservations around conflicts [8]. We worked on CO-WHCA* as a benchmark

algorithm because it comes to the forefront with being efficient in terms of time, so a

detailed explanation of CO-WHCA* as follows.

3.2.1 Conflict-Oriented Windowed Hierarchical Cooperative A*

Pseudo-code for CO-WHCA* [8] is given in Algorithm 1. CO-WHCA* algorithm is

a sub-optimal search-based approach similar to Windowed Hierarchical Cooperative

A* (WHCA*). As WHCA*, CO-WHCA* uses a fixed size reservation window. CO-

WHCA* algorithm has two phases which are planning phase and moving phase. In

the planning phase, paths are planned to some pre-defined distance. In the moving

phase, agents walk through the planned path. Unlike WHCA*, CO-WHCA* does not

keep a reservation window for all time and positions. The reservation window is only

kept for a time interval that starts a pre-defined time before the collision and ends a

8



predefined time after collision (Algorithm 1 lines 8,9). Furthermore, CO-WHCA*

makes reservations for only one of the agents that subject to collision (Algorithm 1

line 7). CO-WCHA* places reservation table such that the conflict time comes to the

center of the reservation table, in this way the planer has become aware of conflict

before some time. Keeping the reservation table for only conflict regions and a single

agent per collision makes CO-WCHA* memory efficient compared to the WHCA*.

Despite all these improvements, selecting one of the agents subject to a collision is

problematic. Because only one of the agents uses the reservation table, the selec-

tion of agents affects the solution quality. Moreover, this selection prevents finding

a solution in some cases. As we show in the experimental results, success rates are

substantially low due to the prioritization problem. To solve prioriti issues, an almost

brute force method is proposed named CO-WCHA*P. CO-WCHA*P tries all differ-

ent priority orderings and selects the one with the minimum sum of costs. Although

this method improves solution lengths, its improvement on success rates is negligible

and the time is required to calculate became extremely huge. [9][10][11][12]

Algorithm 1 CO-WHCA*
1: reset T

2: while some agents are not at their goal do

3: for each agent ai do

4: planPath(ai, T )

5: end for

6: c = (A, v, t)← findFirstConflict

7: ac ← conflictOwner(c)

8: wstart ← movePosition(c)

9: wend ← reservePosition(c)

10: reserve wstart...wend st-points as ac in T

11: for each agent ai in paralel do

12: move ai to wstart

13: end for

14: end while

9



3.3 Sub-Optimal Rule Based Solvers

Sub-optimal rule-based methods define some rules to calculate a path from start po-

sitions to goal positions. Algorithms that belong to this class are generally time-

efficient. Because actions are taken when just a conflict occurs, produced solutions

are not guaranteed to be optimal. Rule-based methods are complete for a class of

graphs. Pebble motion[11] and Tree-based agent swapping strategy (TASS)[10] are

belongs to rule-based methods. Push and Swap[13] and Push and Rotate [9] are more

applicable methods to real-life problems. Push and Rotate is an extension of Push

and Swap. The algorithm extends Push and Swap by grouping agents and prioritizing

agent groups. Our experiments showed that the Push and Swap algorithm has satis-

factory completeness results so we used Push and Swap in our experiments. Push and

Swap is a rule-based suboptimal algorithm that is time-efficient and complete for the

graphs that have two unoccupied vertices.

3.3.1 Push and Swap

The Push and Swap is a complete algorithm that is classified as a rule-based sub-

optimal solution[13]. The algorithm works by calculating agents’ paths one by one.

For every agent, ignoring other agents, the shortest paths are calculated. The path is

traversed until the path is blocked by another agent. When an agent comes across, the

closest empty node is found. The blocked agent’s position is considered as obstacle.

Agents which are already reached at the goal positions are considered as obstacles as

well. If a reachable empty node is found, the blocking agent is pushed to this node.

If It is not found, the process continues with Swap primitive. The agents which are

already at goal positions are ignored and an empty node that has at least two empty

neighbors is found. The blocked agent and blocker agent swaps their positions at the

empty node. If this kind of a node can not be found the process halts. In this way, the

current agent can move its way. During the swap process, if it is reached to another

blocking agent, push and swap primitives are repeated. To reach the swap position

some agents can be moved from their positions. At the end of the swap process, these

agents are returned to their initial positions. In this way, the swap primitive changes

the positions of only two agents. This process continues until the parameter agent
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reaches its goal position and is continued with the next agents. When all agents are

reached to their goal positions the process returns the solution. Because the method

finds the paths one by one and the swap primitive cause too many agents to move,

Push and Swap generates paths that are much longer than optimum ones. However,

the algorithm can be evaluated as successful in terms of time-efficiency and complete-

ness.

3.4 Hybrid Solvers

Hybrid solvers use search mechanisms on maps that are divided into regions or that

are given flow directions using some rules. For Instance, graphs are divided into

known forms like cliques and halls, the paths between these subgraphs are found and

used for constraints of the problem[14][15]. Methods define flows using behaviors of

previously moved agents [16] or define traffic flows in a preprocessing step as Flow

Annotation Re-planning(FAR) [17]. The FAR algorithm prevents head-on collisions

by defining traffic flows causes some deficiencies. We chose FAR in our experiments

which is commonly used in the field. The algorithm is reviewed in the next subsec-

tion.

3.4.1 Flow Annotation Re-planning

[17] suggested a novel approach to solve multi-agent pathfinding problem named

as Flow Annotation Re-planning .In a preprocessing step, the algorithm generates

a new graph named Flow-Annotated Search Graph by assigning flow directions to

the rows and columns of the input grid graph. In this way, the algorithm tries to

prevent head-to-head collisions. The flow annotated search graph guarantees every

two locations that are available from each other in the input graph remain accessi-

ble. Unidirectional connections induce dead-end paths and impassible gateways. the

flow-annotated graph allows bi-directional or diagonal flows in these situations. Giv-

ing flows to rows and columns cause longer paths and it creates unnatural behaviors

for agents other than vehicles. Similar to other suboptimal algorithms FAR starts with

finding independent paths from start positions to goal positions for each agent ignor-
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ing other agents. The algorithm uses a collision-deadlock prevention mechanism that

enforces agents to move along straight lines if possible. Even so, there can be col-

lisions, hence a simple reservation mechanism is used. Agents reserve the nodes on

their paths for some time steps. If an agent can not reserve for a time step, it does not

move for that time step. To create a hierarchy and prevent from dead-locks, in suc-

cessive time steps priority is changed between agents with horizontal movement and

agents with vertical movements. Not using re-planning during collision avoidance

provides time-efficiency but local reservation mechanism fails for narrow gateways.

Lastly, the algorithm uses the node density notion for solving the deadlock problem.

When more than one agent waits for each other, the algorithm detects node with the

maximum number of agents intend to pass through and the agent on this node moved

away. This process repeated for more than one agent until the deadlock is broken

down. Due to using a graph with flows and reservation mechanism, paths created by

FAR are much longer than optimum ones. The algorithm reaches a solution spend-

ing less time than other suboptimal solvers but fails at finding a solution for graphs

includes narrow gates and for large numbers of agents.

3.5 Optimal Solvers

Finding optimal solutions to MAPF problems have PSPACE-hard complexity because

problem space is expanded exponentially as the number of agents grows [2] [3]. Dif-

ferent approaches were proposed to solve the MAPF problem optimally. One alterna-

tive is to define states to include all agents positions and then employ a single agent

pathfinding problem using A* [18]. To speed up this process, some methods are pro-

posed [19][20]. Another approach is finding paths for every agent individually and

holding collisions in different data structures. By searching on these data structures

algorithms try to find collision-free paths [5][4].

Although there are prominent algorithms that overcomes different aspects, there is no

algorithm that is superior in all types of problem instances. Conflict-Based Search

[4] is a recently proposed method that outperforms on many optimal solvers in small-

sized dense graphs with a large number of agents. We modified the CBS algorithm

for creating a time-efficient method. A detailed explanation of CBS is given in the
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next subsection.

3.5.1 Conflict-Based Search for Optimal Multi-Agent Path Finding

Conflict-Based Search (CBS) algorithm [4] is a centralized multi-agent pathfinding

algorithm. CBS traverses a high-level search tree consists of constraints that are de-

fined by collisions. CBS finds a path for every agent which does not violate con-

straints associated with it. A constraint is a three-tuple (ai,n,t) where ai is the ith

agent, n is a node in the graph and t is the time point. It means that ai is involved

in a conflict at the node n at time t. A constraint forbids an agent to be located on

a node n at time t. Constraints are created by the result of a conflict which occurs

when two or more agent located on the same node at the same time. Edge conflicts

are not considered by the algorithm because of retaining simplicity. Edge conflicts

can be handled similar to node conflicts with a minor change. The algorithm uses a

two-level search mechanism named as high-level search and low-level search. High-

level search is based on creating a binary search tree called Constraint Tree (CT). CT

maintains constraints defined by conflicts. The high-level search starts with pushing

the root node to the open list (Algorithm 2, line 5). Root node includes an empty list

of constraints and a solution found by the low-level search. In high-level search, CT is

traversed using the best-first search for the Sum of Individual Cost (SIC)[4] function

so while the open list is not empty the node with lowest SIC value is popped (Algo-

rithm 2, line 7). The Popped node will be the parent of newly created CT nodes. The

solution contained by the popped node is examined to find whether there is a conflict

or not (Algorithm 2, line 8). If the solution is conflict-free, it is an optimal solution to

the MAPF problem instance. When a conflict found constraints are defined for every

agent which is subjected to the conflict (Algorithm 2, line 14). For every constraint, a

new CT node generated. The set of constraints belongs to the new CT node includes

the constraints of the parent node and newly created constraint (Algorithm 2, line

14). To find a solution for the new CT node, a low-level search is invoked for only

the constrained agent. The parent CT node’s solution is updated with the newly cal-

culated path (Algorithm 2, line 16). The last step is calculating SIC value for the new

CT node and is pushing the new CT node to the open list (Algorithm 2, line 17,20).

For low-level search, any single agent pathfinding algorithm can be used including
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that constraints are handled. CBS uses A* search and constraint handling is done by

avoiding adding a node to A*’s open list if the agent is forbidden to locate at that

node. When a conflict with more than two agents occurs, two different approaches

can be used. The first alternative is to generate a new CT node for every agent by

violating the binary feature of the CT. Otherwise, the situation is handled by creating

new nodes for only the first two of the conflicting agents leaving other conflicts to be

handled in the lower levels of the CT. Because both methods have similar complexity

the second method is preferred in the algorithm.

For MAPF problems, time-efficiency is an important concern because in most cases

real-time solutions are required in real-life applications. Although CBS has better

experimental results than other optimal algorithms, still it does not sense using CBS

in real-time applications. In the next chapter, a modified version of CBS will be

introduced. Completeness will be the outstanding feature of this new algorithm while

it can compete with other suboptimal methods in terms of time efficiency.
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Algorithm 2 High level of CBS
Require: Graph,AgentList

1: // construct root node

2: initial constraints = Ø

3: solution = run low level search (find individual paths for all agents)

4: cost = sum of individual cost for root node’s solution

5: insert root node to open list

6: while open list not empty do

7: P ← node with least cost from open list // best node

8: Validate P //search for a conflict.

9: if P is a conflict free node then return path list in P // P has a solution

10: end if

11: C ← first conflict (ai, aj, v, t) in P

12: for all agent ai in C do

13: // construct new node

14: constraints← constraints in P + (ai, v, t)

15: solution← solution in P

16: Update solution by invoking low level search for ai

17: cost = sum of individual cost for new node’s solution

18: // end of new node construction

19: if new node’s cost <∞ then

20: insert new node to open list

21: end if

22: end for

23: end while
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CHAPTER 4

SUBOPTIMAL CONFLICT-BASED SEARCH FOR MULTI-AGENT PATH

FINDING

In this chapter, modifications that make CBS algorithm time-efficient and complete

but suboptimal will be introduced. We named the proposed method as Suboptimal

Conflict-Based Search (S-CBS) for multi-agent path finding.

4.1 Modifications

CBS has two levels of search; high-level search and low-level search. The high-

level search is done to find a conflict-free node. The node with the minimum cost is

examined whether it has a conflict or not and it is removed from the high-level tree.

If a conflict is found low-level search is triggered for one of the conflicting agents.

Time efficiency of the CBS algorithm is highly related to the number of high-level

and low-level searches. Searching for the node with the least cost in the high-level

search tree guarantees optimality but this is a costly process.

The first modification we made on CBS aims to solve the problem executing a mini-

mum number of high-level searches. It takes place in selecting a node from the open

list. S-CBS selects the node that has the minimum number of conflicts (Algorithm

3, line 7) instead of the node with the best cost. Because a node with a solution has

no conflict, this modification leads us directly to the solution. But the found solution

may not be optimum.

CBS examines nodes whether there is a conflict or not. When a conflict is detected the

search is terminated. We need a new set of data which is conflict count for modifying
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Algorithm 3 High Level of Suboptimal CBS
Require: Graph,AgentList

1: // construct root node

2: initial constraints = Ø

3: solution = run low level search (find individual paths for all agents)

4: cost = sum of individual cost for root node’s solution

5: Validate the paths in root node until the time that longest path ends // Store con-

flict count and first conflict

6: if root node has no conflict then return path list in root // root has a solution

7: end if

8: insert root node to open list

9: while open list not empty do

10: P ← node with lowest conflict count from open list

11: C ← first conflict (ai, aj, v, t) in P

12: for all agent ai in C do

13: // construct new node

14: constraints← constraints in P + (ai, v, t)

15: solution← solution in P

16: Update solution by invoking low level search for ai

17: cost = sum of individual cost for new node’s solution

18: if new node’s cost <∞ then

19: Validate the paths in new node until the time that longest path ends //

Store conflict count and first conflict

20: if new node has no conflict then return path list in new node // new

node has a solution

21: end if

22: insert new node to open list

23: end if

24: end for

25: end while

18



CBS. Conflict count is used for selecting nodes with the minimum number of conflict

from the high-level search tree. So, when examining a node, even if a conflict is

found the process is continued until the time that the longest path ends. In this way,

conflict count for every node is found but as CBS algorithm, the first conflict is used

for creating new nodes (Algorithm 3, line 19).

The last modification is changing the order of validating and pushing processes. CBS

algorithm pushes newly created nodes to the open list without checking whether a

conflict exists or not (Algorithm 2, lines 19-20). The nodes with the lowest costs are

fetched from the open list and are examined until a conflict-free node is found (Algo-

rithm 2, lines 7,8). This way, CBS guarantees optimality. Suboptimal CBS validates

nodes when just they are created and before pushing them to open list (Algorithm 3,

line 19). This modification is needed because suboptimal CBS uses conflict count

while selecting nodes from the open list and conflict count is calculated in the valida-

tion process. By this modification, If a conflict-free node is encountered, the solution

is returned without any further exploration. So the time consumption to find a solution

is decreased highly with this modification.

By these modifications, a complete and time-efficient algorithm is proposed. Because

the S-CBS algorithm searches the high-level tree until a conflict-free node is found,

the proposed method guarantees completeness. Optimality is sacrificed by not fetch-

ing the best node. The experimental results show that the modified version of CBS

has advantages over other suboptimal algorithms in terms of success rates while being

competitive in time.

4.2 Example 1: S-CBS Outperforms CBS

Figure 4.1 [4] contains a sample MAPF problem. In this example, taxi 1 and taxi 2

should pick up passengers 1 and 2, respectively. A taxi can move in four directions

(left, right, up, down) or stands still avoiding obstacles with a unit cost. CBS can not

efficiently solve this problem instance because of the open area in the middle of the

graph.

Figure 4.2 show the high-level tree constructed by CBS algorithm. Calculations start
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Figure 4.1: Example on Suboptimal CBS Outperforms CBS

Figure 4.2: High level tree for Example in Figure 3.1
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with a root node which has a total cost of 8. In the root node, CBS finds solutions

for two agents by using a low-level search. As seen in Figure 4.2, both agents occupy

the same location B2 so being in that position at time 1 should be constrained and

new high-level nodes should be created. The root node is popped from the open list

and is validated whether a conflict exists or not (Algorithm 2 lines 7,8). Left child is

created for forbidding agent 2 to locate on B2 at time 1 and the right child is created

for forbidding agent 1 to locate on B2 at time 1. Because the costs of two nodes in the

open list are the same, the left child is popped. This child is validated and a conflict

in place C2 at time 2 is found. For this conflict again two children nodes are created

with costs 9 and 8. At this point, there are three nodes in the open list, one with cost

9 and two with cost 8. CBS selects one of the nodes with cost 8 and this process goes

until there is no node with cost 8 in the open list. Then a node with cost 9 is popped

from open list and validated. Because the node with cost 9 is valid, process halts

and returns solutions. To solve this problem instance, CBS has to do 5 high-level

searches, one for every node with cost 8 and 12 low-level searches, two for the root

node and one for every child node.

For the same problem instance, S-CBS validates the root node and creates first two

child node of the tree in the same way with CBS. While validation, S-CBS counts

conflicts for these children. The right child of the root node is popped because it has

less conflict. Two children nodes are created with costs 9 and 8. S-CBS validates

these nodes before pushed into the open list. Because the node with cost 9 is a valid

solution, further exploration is not needed. S-CBS solves the problem with a total

of 2 high-level searches and 5 low-level searches. For this problem instance, both

solutions have a cost of 9. This case shows that S-CBS has advantages in graphs with

open spaces compared to CBS. Both algorithms create solutions that have the same

cost and clearly S-CBS solves the instance in less time.

4.3 Example 2: S-CBS Outperform CO-WHCA*

The prominent feature of the S-CBS over other suboptimal solutions is its complete-

ness. Figure 4.3 shows a simple example where CO-WHCA* does not find a solution

but Sub-Optimal CBS does. This instance shows a case that one agent’s goal position
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Figure 4.3: Example on Sub-Optimal CBS Outperforms Other Sub-Optimal Solutions

is on the way of the other agent. Agent (Taxi) 1 starts from position C2 and tries to

reach D3 and agent (taxi) 2 starts from position C4 and tries to reach to D2. Individual

optimal solutions of agent 1 and agent 2 conflicting on position D3. Agent 1 should

wait a time step before reaching the goal position. When two agents conflict on D3

at time 2, S-CBS creates two new CT nodes. One for forbidding agent 1 to locate on

D3 at time 2 and one for forbidding agent 2 to locate on D3 at time 2. Then tries both

cases till a solution found. In this case, the node that agent 1 is forbidden reaches a

solution. For the same problem instance, CO-WHCA* is affected by the prioritiza-

tion rule directly. CO-WHCA* starts with finding individual paths of both agents and

finds a conflict on D3 at time 2 same as S-CBS. But in this case, CO-WHCA* selects

one agent to fill the reservation table. When agent 1 is selected to reserve D3 for time

1 and reaches the goal without any wait action, there is no other way for agent 2 to

complete its path. Because CO-WHCA* uses random prioritization 1, fails for this

sample and for the instances that have similar issues.
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CHAPTER 5

EVALUATION AND RESULTS

In this chapter, a performance evaluation of the proposed solution will be given. An

algorithm superior in every aspect of the problem domain does not exist, so, methods

were evaluated with a wide range of test cases. In this way, the advantages of differ-

ent algorithms were specified. Experiments were conducted with a varying number

of agents on maps with different sizes, densities, and characteristics. Magnitudes of

the numerical results of CBS affected the visual representations of the results of other

suboptimal algorithms badly, so, we presented results of CBS separated from subop-

timal methods. All algorithms were implemented using C++ with Visual Studio IDE.

The PC running on 64-bit Windows 10 operating system with specifications 2.4 GHz

i7 processor, 8 GB RAM is used for conducting all of the test cases.

First, the generation of maps and test cases will be explained in detail. Second, per-

formances of S-CBS and other algorithms will be presented.

5.1 Input Generation

Two different sets of maps were used for the experiments. The first one is grid maps

that are randomly generated and the other is the Dragon Age Origins (DAO) game

maps [21]. For the randomly generated maps, obstacle settings was used as a param-

eter. Tree different obstacle ratios were used; obstacle-free, %20 and %50 obstacle.

For DAO, ost003d, den520d and brc202d maps were used. These maps are widely

used in the field [4][8] and with their different sizes and characteristics, they are con-

venient for comparing MAPF algorithms. These characteristics will be given in the

results and discussion section in detail.
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An input for a MAPF problem instance contains a map and a number of agents with

their unique start and goal positions. When start and goal positions are generated ran-

domly, the agent set can contain agent groups that their paths completely independent

with each other. The number of independent groups affects the evaluation. To prevent

these effects, all agents’ paths should be dependent on each other. To create agents

that are depended on each other, the method proposed in [5] was used. A number

of agents are created and single-agent paths are calculated by ignoring other agents.

Then, these paths are evaluated by checking whether there are conflicts or not. Agents

that their paths are conflicted with each other are grouped. If the number of agents in

a group reaches a number that will be used in experiments, using this agent group, a

MAPF instance is created.

For every map configuration, test cases with a different number of agents were cre-

ated. For every agent count, 10 different MAPF instances were generated. The aver-

age of the results for these 10 instances was represented.

5.2 Results and Discussion

In this section, Experiment results will be given. We used three different performance

metrics that are completeness, optimality and time efficiency.

• Completeness : We represented completeness metric as the ratio of instances

solved by the algorithm. Test cases for all map configurations contain 10 solv-

able inputs. For every agent count, obstacle ratios and maps, completeness

ratios were presented.

• Optimality : A solution for a MAPF problem instance includes paths from

start positions to goal positions for every agent. An optimum solution has the

minimum total path cost possible. In our experiments, every move and wait

action count unit cost. For an agent that reached to the goal position and never

moved again, wait actions were not added in the path cost. Except for the FAR

algorithm, it is allowed that agents follow each other. An agent can move to a

position that is left by another agent at the same time. FAR algorithm forbids

24



CBS S-CBS

Number of Agents Time(ms) Path Length Time(ms) Path Length

3 0 17 0 18

4 1 25 0 26

5 3 31 1 32

6 33 33 1 48

7 17 47 1 49

8 52 52 3 64

9 180 65 3 68

10 63 75 4 79

11 270 79 4 82

12 625 85 3 87

13 674 83 2 86

14 928 98 5 101

15 1398 107 8 111

16 992 107 7 110

17 2294 117 9 120

Table 5.1: Running times and total path lengths on 8x8 obstacle free grid map.

this kind of action in the definition. The cost of a solution is the sum of the path

costs for all agents.

• Time Efficiency : Time efficiency is an important metric because real-life appli-

cations require real-time solutions. A MAPF algorithm is time-efficient com-

pared to another algorithm if it consumes less time to reach a solution. Subop-

timal methods can be claimed to offer real-time solutions but this is not the case

for optimal algorithms. Because CBS spent long times for reaching a solution

especially in DAO maps, we used five minutes of time limit.

5.2.1 Experimental Results on 8x8 Grid Maps

5.2.1.1 Comparison with CBS

Tables 5.1, 5.2 and 5.3 shows the experimental results for S-CBS and CBS on 8x8

grid maps. Both methods are complete and solved all instances of test cases, so

completeness results were not presented. In the case of time efficiency, results show

that S-CBS has a huge advantage. For all of the map configurations, S-CBS consumed
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CBS S-CBS

Number of Agents Time(ms) Path Length Time(ms) Path Length

3 0 22 0 22

4 1 28 0 29

5 3 34 1 36

6 4 42 1 43

7 3 50 1 52

8 38 63 1 67

9 24 58 2 64

10 192 75 3 79

11 279 84 3 91

12 338 82 4 86

13 477 101 4 106

14 642 96 4 104

15 294 101 4 105

16 418 108 2 113

17 469 115 4 123

Table 5.2: Running times and total path lengths on 8x8 grid map with %20 obstacle.

much less time than CBS. The gap between time consumption values became smaller

for the maps with more number of obstacles. For example, in obstacle-free maps with

17 agents, CBS consumed approximately 250 times more time than S-CBS, but in

maps with %20 obstacle and 17 agents, the difference was approximately 120 times.

The increase in agent counts causes both algorithms to consume more time. Results

show that increase ratios of time consumption values for CBS are much more than

S-CBS. S-CBS created a little longer paths for all map configurations. We see the

obstacle ratio has not distinct effect on the difference of path lengths created by CBS

and S-CBS. The results show that the proposed method achieves the aim of creating

a complete, time-efficient but suboptimal algorithm.

5.2.1.2 Comparison with CO-WHCA*, FAR, Push and Swap

We run S-SBC and 3 competitive suboptimal algorithms; CO-WHCA*, FAR and

Push and Swap on different maps.
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CBS S-CBS

Number of Agents Time(ms) Path Length Time(ms) Path Length

3 0 17 0 18

4 1 28 0 28

5 5 32 1 33

6 12 45 2 45

7 13 56 1 56

8 56 52 2 64

9 606 61 70 65

Table 5.3: Running times and total path lengths on 8x8 grid map with %50 obstacle.

Figure 5.1: 8x8 obstacle free grid map, number of agent v.s. success rates

Completeness

Figures 5.1, 5.2 and 5.3 show success rates for tests conducted on 8x8 grid maps with

obstacle free, %20 obstacle ratio and %50 obstacle ratio configurations respectively.

Because algorithms other than S-CBS could not solve any instances, we limit the

agent count with 9 for the maps with %50 obstacles. For S-CBS, we see that in

all map configurations and for all agent numbers, any of the test cases failed. For

CO-WHCA* success rates decrease considerably with the increase of agent counts

and obstacle ratios. An increase in the number of agents seems to be less effective

on completeness results of the Push and Swap. As in the map configuration with

%50 obstacle, higher ratios of obstacles decrease success rates because it makes it

challenging to find swap positions. The FAR algorithm affected severely from an
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Figure 5.2: 8x8 grid map with %20 obstacle, number of agent v.s. success rates

Figure 5.3: 8x8 grid map %50 obstacle, number of agent v.s. success rates

28



increase in both agent number and obstacle ratios. The results show that S-CBS has

advantages over the other algorithms in terms of completeness.

Figure 5.4: 8x8 obstacle free grid map, number of agent v.s. run time

Time Efficiency

The results presented in Figures 5.4, 5.5 and 5.6 show that S- CBS solves test cases

consuming similar time with CO-WHCA*. With a simple reservation mechanism,

the FAR algorithm recorded better time scores than other suboptimal algorithms. The

Push and Swap algorithm consumed more time than other algorithms. The differ-

ences in obstacle ratios did not change the time-efficiency relations between algo-

rithms. The results of test cases on %50 maps are affected by the number of instances

that a solution found. Because algorithms were able to solve a different number of

instances, time consumption values on %50 maps were not distinctive.

Optimality

Figures 5.7, 5.8 and 5.9 show the total path lengths results for suboptimal algorithms.

CO-WHCA* and S-CBS produced similar results in terms of solution quality. The

FAR algorithm that uses flow annotated graph creates paths like traffic flows, so the

solution costs are more than those of search-based algorithms. Push and Swap algo-

rithm calculates agent’s paths one by one. This feature causes adding wait actions
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Figure 5.5: 8x8 grid map with %20 obstacle, number of agent v.s. run time

Figure 5.6: 8x8 grid map %50 obstacle, number of agent v.s. run time
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Figure 5.7: 8x8 obstacle free grid map, number of agent v.s. path length

to the agent whose path is not currently calculated, so Push and Swap generated

longer paths. As we claimed, the S-CBS algorithm calculate near-optimal solutions

for MAPF problem instances.

5.2.2 Experimental Results on Dragon Age: Origin Maps

5.2.2.1 Comparison with CBS

The results generated by CBS for test cases on DAO maps are not presented because

the CBS algorithm could not generate a solution for most of the test cases in 5-minute.

S-CBS solved almost all of these test cases within time limits. This situation shows

that we improved CBS considerably in terms of time-efficiency. For the test cases

which were solved by CBS, S-CBS calculated slightly longer paths. However, S-

CBS has competitive optimality results compared to other suboptimal algorithms.

5.2.2.2 Comparison with CO-WHCA*, FAR and Push and Swap

Completeness

Figures 5.10, 5.11 and 5.12 show success rate results for the tests conducted on DAO

maps ost003d, den520d and brc202d. These maps have sizes of 194x194, 257x257,
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Figure 5.8: 8x8 grid map with %20 obstacle, number of agent v.s. path length

Figure 5.9: 8x8 grid map %50 obstacle, number of agent v.s. path length
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Figure 5.10: Dragon Age:Origins Ost003d map, number of agent v.s. success rates

and 530x530 respectively. CO-WHCA* generated acceptable completeness results

for the test cases on the ost003d map, which has open spaces. For the den520d and

brc202d, success rates of search-based algorithm decrease because these maps have

narrow gates and passageways. The FAR algorithm, indipendent of map sizes and

obstacle ratios, was effected badly from the increase in the number of agents. Similar

to the test conducted on 8x8 grid maps, FAR achieved the worst completeness results

on DAO maps. Push and Swap is the only algorithm that solves all instances of the

test cases on DAO maps. Because these maps have big open spaces, Push and Swap

was able to swap positions easily. On the brc202d map, S-CBS could not calculate

solutions within time limits for test cases with 25 agents. For the maps ost202d and

den520d, Suboptimal CBS solved all of the test cases. Suboptimal CBS generated

better completeness results except the Push and Swap algorithm.

Time Efficiency

Experimental results for CBS showed that CBS could not calculate a solution in the

given time limit for the maps with bigger sizes and high densities of agents. Although

S-CBS solved almost all test cases on DAO maps, S-CBS calculated solutions con-

suming more time then suboptimal solutions. Figures 5.13, 5.14 and 5.15 shows time

consumption results on DAO maps. CBS performed poorly on test cases with a high
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Figure 5.11: Dragon Age:Origins Den520d map, number of agent v.s. success rates

Figure 5.12: Dragon Age:Origins Brc202d map, number of agent v.s. success rates
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Figure 5.13: Dragon Age:Origins Ost003d map, number of agent v.s. time

number of agent. CO-WHCA* achieved superiority on S-CBS. Push and Swap and

FAR reached solutions consuming less time than search-based algorithms.

Optimality

Tests conducted on DAO maps showed that changing map sizes is not affected the

relations between methods in terms of solution qualities. Figures 5.16, 5.17 and 5.18

shows optimality results. As in the 8x8 maps S-CBS and CO-WHCA* generated

similar total path lengths. Compared to search-based algorithms, Push and Swap

performed poorer performances. FAR creates the biggest total path lengths on every

map and agent count configurations. As we claimed, the S-CBS algorithm achieved

competitive optimality results on DAO maps.
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Figure 5.14: Dragon Age:Origins Den520d map, number of agent v.s. time

Figure 5.15: Dragon Age:Origins Brc202d map, number of agent v.s. time
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Figure 5.16: Dragon Age:Origins Ost003d map, number of agent v.s. path length

Figure 5.17: Dragon Age:Origins Den520d map, number of agent v.s. path length
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Figure 5.18: Dragon Age:Origins Brc202d map, number of agent v.s. path length
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Existing research on MAPF showed that optimal and complete solutions could not be

computed in real-time as the problem size grows. Besides, suboptimal methods do

not guarantee completeness. Completeness is an essential requirement for the real-

life applications. Motivated from these requirements, we proposed a MAPF algorithm

which is complete, time-efficient, and suboptimal by modifying an optimal algorithm.

Being one of the best optimal algorithm, CBS creates a high-level tree that contains

nodes which are created for conflicts of the agents’ paths. By searching high-level

tree, CBS finds optimal conflict-free paths for every agent. Because CBS searches for

an optimum solution, it considers nodes with least costs first. So, reaching a solution

takes longer than suboptimal algorithms. In this thesis work, a suboptimal version of

CBS algorithm named S-CBS is developed. S-CBS algorithm is based on the truth

that a high-level tree node of CBS must be conflict-free to be a solution. Instead

of the node with the least cost, S-CBS searches for the node with the least number

of conflicts. This modification is made by counting future conflicts that a node will

produce. This count is used for fetching a node from the high-level tree. Moreover,

pushing and validating order is changed for reaching a solution immediately. Instead

of searching for the best solution, the algorithm returns when a solution is found.

By these modifications, S-CBS becomes a suboptimal, complete and time-efficient

algorithm.

Because the algorithm proposed is suboptimal, we compared S-CBS with other sub-

optimal methods. Experiments were conducted on suboptimal algorithms. We eval-

uated two search-based algorithms (WHCA* and WHCA*P), a rule-based algorithm

(Push and Swap), and a hybrid algorithm (FAR). Experiments were conducted with
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varying number of agents and obstacle ratios on maps with different sizes. Opti-

mality, completeness, and time efficiency metrics were used for evaluation criteria.

The results showed that S-CBS algorithm is competitive in optimality and time ef-

ficiency and has significant superiority in terms of completeness, especially in maps

with small sizes. In these maps, it is seen that S-CBS created smaller path lengths

than Push and Swap which achieved the closest completeness results with S-CBS.

In addition to experiments on small-sized maps, DAO maps which have bigger sizes

were used. In these maps, S-CBS produced competitive completeness and optimality

results. Although considerably better than CBS, S-CBS spent more time than other

suboptimal algorithms to reach a solution.

In this work, we achieved the aim of creating a suboptimal but complete and time-

efficient algorithm. Decreasing time consumptions in bigger sized maps can be one

of the works that will be considered in the future. For this, S-CBS can be converted

to an online algorithm. In other words, a time frame can be defined, and the calcula-

tions can be done within this time frame. After the solution found for this time frame,

next time frames can be processed. In this case, for preserving completeness, proper

modifications should be done. With this work, we showed that optimal and complete

algorithms could be modified to achieve different performance goals. Another direc-

tion can be identifying different algorithms that can be modified by using this point

of view and comparing them with each other.
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