
A COMPARATIVE STUDY OF LEARNING BASED CONTROL POLICIES AND
CONVENTIONAL CONTROLLERS ON 2D BI-ROTOR PLATFORM WITH

TAIL ASSISTANCE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HALIL İBRAHIM UĞURLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2019

Approval of the thesis:

A COMPARATIVE STUDY OF LEARNING BASED CONTROL POLICIES
AND CONVENTIONAL CONTROLLERS ON 2D BI-ROTOR PLATFORM

WITH TAIL ASSISTANCE

submitted by HALIL İBRAHIM UĞURLU in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Electronics Engineering De-
partment, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Afşar Saranlı
Supervisor, Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Sinan Kalkan
Co-supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. İlkay Ulusoy
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Afşar Saranlı
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Sinan Kalkan
Computer Engineering, METU

Assist. Prof. Dr. Mustafa Mert Ankaralı
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Mehmet Serdar Güzel
Computer Engineering, Ankara University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Halil İbrahim Uğurlu

Signature :

iv

ABSTRACT

A COMPARATIVE STUDY OF LEARNING BASED CONTROL POLICIES
AND CONVENTIONAL CONTROLLERS ON 2D BI-ROTOR PLATFORM

WITH TAIL ASSISTANCE

Uğurlu, Halil İbrahim

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Afşar Saranlı

Co-Supervisor: Assoc. Prof. Dr. Sinan Kalkan

September 2019, 59 pages

With the developing technology, multi-rotor platforms have become widespread and

their control has become an important problem. In this thesis, we analyze physi-

cal extensions and control approaches for better control of rotor platforms. The first

main contribution of the thesis is whether a tail-appendage that is attached under

a multi-rotor platform can improve the multi-rotor’s performance. Moreover, we

used conventional control approaches as well as Deep Reinforcement Learning to

learn a policy for controlling rotor platforms with or without tail appendage. To ob-

tain better training and testing performance with Deep Reinforcement Learning, we

adopted a curricular learning approach, where the difficulty of training samples is

gradually increased. For the experiments, a two-dimensional simulation environment

is developed to simulate a bi-rotor flying system, the counterpart of quad-rotors in

three-dimensions. Both control strategies are rigorously analyzed for controlling the

platform with and without tail appendage in this simulation environment.

v

Keywords: Deep Reinforcement Learning, multi-rotor UAVs, Artificial Neural Net-

works

vi

ÖZ

ÖĞRENME TEMELLİ KONTROLCÜLER İLE GELENEKSEL
KONTROLCÜLERİN İKİ BOYUTTA KUYRUKLA DESTEKLENMİŞ İKİ

ROTORLU UÇAN ROBOTİK PLATFORM ÜZERİNDE
KARŞILAŞTIRMALI ÇALIŞMASI

Uğurlu, Halil İbrahim

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Afşar Saranlı

Ortak Tez Yöneticisi: Doç. Dr. Sinan Kalkan

Eylül 2019 , 59 sayfa

Gelişen teknoloji ile birlikte çok rotorlu platformlar yaygınlaştı ve kontrolleri önemli

bir problem haline geldi. Bu tezde, rotor platformlarının daha iyi kontrolü için fi-

ziksel uzantıları ve kontrol yaklaşımlarını analiz ediyoruz. Tezin ilk ana katkısı, çok

rotorlu bir platformun altına yerleştirilmiş kuyruk eklentisinin çoklu rotorun perfor-

mansını arttırıp arttırmayacağıdır. Ayrıca, kuyruk eklentisi olan veya olmayan rotor

platformalarını kontrol etmek için geleneksel kontrol yaklaşımlarının yanı sıra De-

rin Pekiştirmeli Öğrenme’yi de kullandık. Derin Pekiştirmeli Öğrenme ile daha iyi

eğitim ve test performansı elde etmek için, eğitim örneklerinin zorluğunun kademeli

olarak arttığı bir müfredatla öğrenme yaklaşımı kullandık. Deneyler için, üç boyutlu

bir dört-rotorun iki boyuttaki karşılığı olan iki-rotorlu uçan sistemi için bir benze-

tim ortamı geliştirdik. Her iki kontrol stratejisini, bu simülasyon ortamında kuyruk

eklemesi olan ve olmayan platformun kontrolü için titizlikle analiz ettik.

vii

Anahtar Kelimeler: Derin Pekiştirmeli Öğrenme, çoklu-rotorlu İHAlar, Yapay Sinir

Ağları

viii

To my dear family...

"Plans are worthless, but planning is everything"

Dwight D. Eisenhower

ix

ACKNOWLEDGMENTS

First and foremost, I would first like to express my sincere appreciation and gratitude

to my supervisors Assoc. Prof. Dr. Afşar Saranlı and Assoc. Prof. Dr. Sinan Kalkan

for their continuous support, criticism and invaluable guidance throughout my thesis

study. For their comments and criticism, I would also like to thank the examining

committee members; Prof. Dr. İlkay Ulusoy, Assist. Prof. Dr. M. Mert Ankaralı, and

Assoc. Prof. Dr. Mehmet Serdar Güzel.

I would like to express my gratitude to the mates from ATLAS Interdisciplinary

Robotics Laboratory. Osman Kaan Karagöz is the one who sits on the next table.

Ferhat Gölbol, Cem Önem, Başer Kandehir, Sinan Şahin Candan, Jeanpierre Demir

and Görkem Seçer made the hours I spend in laboratory enjoyable. Lütfullah Tomak

and Nurullah Gülmüş are also my roommates from the department.

I would like to mention my friends, Furkan Karakaya, Hasan Burhan Beytur, Yusuf

Candan, Salih Gedük for our friendly conversations on deep or small issues through

my Ms. journey.

I am thankful to METU-BAP, coordinator-ship of scientific research projects, for their

financial support under GAP-312-2018-2705.

I am thankful to TÜBİTAK, the National Scientific and Technological Research Coun-

cil of Turkey, for granting me their M.S. studies scholarship.

Finally, but forever I owe my loving thanks to my family, my loving mother Emine,

my dear father Davut, my brothers Muhammed and Musab, my sister Zeyneb but

especially my beloved wife Hacer Banu for their undying love, support, and encour-

agement.

"And he made it a word enduring among his posterity; haply so they would return."

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xix

LIST OF ABBREVIATIONS . xx

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition 1

1.2 Contributions . 2

1.3 The Outline of the Thesis . 3

2 RELATED WORK . 5

2.1 Deep Reinforcement Learning . 5

2.2 Curriculum Learning . 6

2.3 Multi-rotor Control . 6

xi

3 MATHEMATICAL BACKGROUND . 9

3.1 Bi-rotor Dynamics and Control . 9

3.2 Bi-rotor Representation as Markov Decision Process 14

3.3 Reinforcement Learning . 17

3.4 Deep Reinforcement Learning . 19

3.4.1 Value-based Methods . 20

3.4.2 Policy Gradient Methods . 21

4 A BI-ROTOR WITH TAIL APPENDAGE 23

4.1 Dynamics of Tail Assisted Bi-rotor 23

4.1.1 Time-discretization of System Dynamics 25

4.2 Design of Simulation Environment 26

4.2.1 Initial State Constraint . 27

4.2.2 Termination Criteria . 28

4.2.3 Reward Shaping . 28

4.2.4 Motor Model . 29

5 CONTROL APPROACH . 31

5.1 Design of a Conventional Controller for Tail Appendage 31

5.2 Deep Reinforcement Learning Strategies 32

5.2.1 Policy Network Structure . 33

5.2.2 Vanilla Training . 33

5.2.3 Curriculum Training . 34

5.2.4 Point-to-point Training . 34

6 EXPERIMENTS & RESULTS . 35

xii

6.1 Optimization of Conventional Control 35

6.2 Case 1: Horizontal Step of Bi-rotor 36

6.2.1 Conventional Control of Bi-rotor without Tail 36

6.2.2 Conventional Control of Bi-rotor with Tail 37

6.2.3 Learning Based Control of Bi-rotor without Tail 39

6.2.4 Learning Based Control of Bi-rotor with Tail 43

6.3 Case 2: Comparison of Controllers through 100 Randomly Started
Episodes . 47

6.4 Case 3: Curriculum Learning against Vanilla Case 48

6.4.1 Vanilla . 49

6.4.2 Curriculum . 49

7 CONCLUSIONS . 53

REFERENCES . 55

xiii

LIST OF TABLES

TABLES

Table 4.1 Parameters of shaped reward for the bi-rotor with and without tail

appendage . 29

Table 4.2 Parameters of the simulation environment 30

Table 6.1 Optimized controller parameters of our conventional controller . . . 36

Table 6.2 Steady state errors of point-to-point trained control policies 45

Table 6.3 Mean settling time of conventional and learning based controllers

with and without tail . 48

Table 6.4 Stages of Curriculum Learning . 51

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 A crazyflie 2.0 quad-rotor UAV [1] 1

Figure 1.2 Quanser’s 3-DOF bi-rotor helicopter setup [2] 2

Figure 3.1 Our bi-rotor model . 10

Figure 3.2 Block diagram of state feedback controller 12

Figure 3.3 Block diagram of conventional controller 12

Figure 3.4 Agent-Environment interaction in Reinforcement Learning . . . 17

Figure 4.1 Our bi-rotor model with tail appendage 23

Figure 4.2 An instance of bi-rotor platform flying. Dark red line is body

of bi-rotor, light red lines are rotor thrusts, yellow cross is the aiming

point. The bi-rotor is restricted in 10x10 square indicated with blue

lines. Simulation episode terminated if platform crosses this boundary. . 27

Figure 5.1 Extension of conventional controller for tail appendage 32

Figure 5.2 Policy network structure. A fully connected neural network:

input is state vector, two hidden layers with ReLU activated 64 neurons

and output is action vector. 33

Figure 6.1 Randomly selected points for optimization 35

xv

Figure 6.2 Linear position and velocity of bi-rotor in horizontal movement

for 4 seconds with conventional controller. Blue, green, orange and red

lines represent the position in horizontal and vertical directions and the

velocity in horizontal and vertical directions, respectively. 37

Figure 6.3 Transitions of orientation and angular velocity of bi-rotor in hor-

izontal movement for 4 seconds with conventional controller. 38

Figure 6.4 Commanded forces, their sum and effective torque of bi-rotor in

horizontal movement for 4 seconds with conventional controller. Blue

and orange lines represent the commands sent to left and right rotors,

respectively. Green and red lines represent equivalent total force and

equivalent torque on robot body. 38

Figure 6.5 Linear position and velocity of bi-rotor with tail appendage in

horizontal movement for 4 seconds with conventional controller. Blue,

green, orange and red lines represent the position in horizontal and ver-

tical directions and the velocity in horizontal and vertical directions,

respectively. 39

Figure 6.6 Orientation and angular velocity of bi-rotor body and tail in hori-

zontal movement for 4 seconds with conventional controller. Green and

orange lines represent orientation and velocity of bi-rotor body. Green

and red lines represents orientation and velocity of tail with respect to

body. 40

Figure 6.7 Sum of commanded forces, effective torque due to them and tail

torque command of bi-rotor with tail appendage in horizontal move-

ment for 4 seconds with conventional controller. Blue and orange lines

represent the total force and effective torque due to rotors, respectively.

Green line represents torque command to tail. 40

Figure 6.8 Mean episode reward collected during point-to-point training of

the bi-rotor without tail. Blue line represents average episode reward in

last 200 episodes, and light blue regions are their standard deviation. . . 41

xvi

Figure 6.9 Linear position and velocity of bi-rotor in horizontal movement

for 4 seconds with point-to-point learned the control policy. Blue,

green, orange and red lines represent the position in horizontal and ver-

tical directions and the velocity in horizontal and vertical directions,

respectively. 42

Figure 6.10 Transitions of orientation and angular velocity of bi-rotor in hor-

izontal movement for 4 seconds with point-to-point learned control policy. 42

Figure 6.11 Commanded forces, their sum and effective torque of bi-rotor in

horizontal movement for 4 seconds with point-to-point learned control

policy. Blue and orange lines represent the commands sent to left and

right rotors, respectively. Green and red lines represent equivalent total

force and equivalent torque on robot body. 43

Figure 6.12 Mean episode reward collected during point-to-point training of

the bi-rotor with tail. Blue line represents average episode reward in

last 200 episodes, and light blue regions are their standard deviation. . . 44

Figure 6.13 Linear position and velocity of bi-rotor with tail appendage in

horizontal movement for 4 seconds with point-to-point learned control

policy. Blue, green, orange and red lines represent the position in hori-

zontal and vertical directions and the velocity in horizontal and vertical

directions, respectively. 44

Figure 6.14 Orientation and angular velocity of bi-rotor body and tail in hori-

zontal movement for 4 seconds with point-to-point learned control pol-

icy. Green and orange lines represent orientation and velocity of bi-

rotor body. Green and red lines represents orientation and velocity of

tail with respect to body. 45

Figure 6.15 Sum of commanded forces, effective torque due to them and tail

torque command of bi-rotor with tail appendage in horizontal move-

ment for 4 seconds with point-to-point learned the control policy. Blue

and orange lines represent the total force and effective torque due to

rotors, respectively. Green line represents torque command to tail. . . . 46

xvii

Figure 6.16 100 random starting points. 46

Figure 6.17 Mean and standard deviation of normalized position errors of

100 episodes under conventional and learning based controller without

tail. 47

Figure 6.18 Mean and standard deviation of normalized position errors of

100 episodes under conventional and learning based controller with tail. 48

Figure 6.19 Mean reward of an episode collected by agent during vanilla

training. 49

Figure 6.20 Test run for policy learned with vanilla training 50

Figure 6.21 Mean reward collected by agent during curriculum training. . . . 50

Figure 6.22 Test run for policy learned with curriculum training 51

xviii

LIST OF ABBREVIATIONS

2D 2 Dimensional

3D 3 Dimensional

UAV Unmanned Aerial Vehicle

MDP Markov Decision Processes

RL Reinforcement Learning

DRL Deep Reinforcement Learning

TRPO Trust Region Policy Optimization

PPO Proximal Policy Optimization

PSO Particle Swarm Optimization

MLP Multilayer Perceptron

KL Kullback–Leibler

PD Proportional-Derivative

CoM Center of Mass

p2p Point-to-point

xix

LIST OF VARIABLES

M Mass of bi-rotor body

m Mass of tail

I Inertia of bi-rotor body

Itail Inertia of tail

g Gravitational acceleration

x State vector of bi-rotor system

px Position of bi-rotor in x-direction

py Position of bi-rotor in y-direction

ϑ Orientation of bi-rotor

vx Velocity of bi-rotor in x-direction

vy Velocity of bi-rotor in y-direction

ω Angular velocity of bi-rotor

ϕ Orientation of tail with respect to bi-rotor body

u Input vector of bi-rotor system

fl Thrust of left rotor

fr Thrust of right rotor

τtail Torque applied to tail

τ Equivalent torque of left and right rotor thrusts

f Sum of left and right rotor thrusts

s State of an MDP

a Action of an MDP

r Reward of an MDP

xx

CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Quad-rotor UAVs are one of the most widely studied vehicles in aerial robotics and

multi-rotor platforms [3, 4, 5]. Generally, they work on four propellers, which can

apply forces perpendicular to robot body only. They are studied in variable scales

from human carrying level [6], to micro level such as Bitcraze’s Crazyflie quad-rotor

UAV [1] shown in Figure 1.1.

Figure 1.1: A crazyflie 2.0 quad-rotor UAV [1]

A bi-rotor is a conceptual equivalent of quad-rotor in two-dimensional space. In this

work, we focused on the control of a bi-rotor. Detailed dynamics of the bi-rotor

system will be given in Chapter 3. In Figure 1.2, Quanser’s 3-DOF helicopter setup

is shown [2]. This is an example of bi-rotor notion implemented as a real-world setup

by decremented degrees of freedom. Similar to a quad-rotor UAV platform, a bi-rotor

has two parallel rotors placed at both ends of a stick like body.

1

Figure 1.2: Quanser’s 3-DOF bi-rotor helicopter setup [2]

A multi-rotor system has a non-linear, non-holonomic, underactuated structure. There-

fore, their control is challenging [7]. As an intuitive example of control complexity,

because of its rotor directions, in order to move in some horizontal direction, a multi-

rotor needs to tilt in that direction first and then recover its orientation without falling

down. There are controllers developed by traditional control-theoretic approaches

[8, 9, 7]. However, they necessitate system-identification and parameter tuning. To

avoid using such controllers, some deep learning based control policies have also been

proposed [10, 11, 12, 13]. In particular, along with advances in Deep Reinforcement

Learning methods starting from Deep Q-Networks [14], those are employed to con-

trol dynamical robotic systems from legged [15] to aerial [13] systems. Especially,

policy-gradient based methods are well suited for robotics problems because of their

capability to handle high-dimensional state spaces.

1.2 Contributions

In this thesis, a comparative investigation is conducted between control theoretic ap-

proaches and learning based methods on a bi-rotor platform. We design controllers

to locate bi-rotor platform at a point in space and drive it to that point. The control

theoretic approach is called a conventional controller in this text and implemented

with cascaded controllers for attitude and positional control of bi-rotor as done for

quad-rotor control. Moreover, Proximal Policy Optimization (PPO) [16] is used as

the learning-based method. PPO is a state-of-the-art Deep Reinforcement Learning

2

algorithm and shows its success in stabilizing a quad-rotor UAV [13].

We also equip the bi-rotor with a torque actuated under-hanging tail appendage. The

conventional controller is extended to use the tail for attitude control. A control policy

is also trained in this setting and the agent is observed how to use the tail appendage.

Although tail-like appendages have been shown to help in land or aerial vehicles

[17, 18, 19], we employ such a mechanism in a learning framework and study its

effects.

Lastly, we apply a curricular approach which is a method used in Supervised Learning

domains. Specifically, curriculum learning [20] notion is based on scheduling the

learning process first with easy samples and making harder step by step. Accordingly,

we train the agent first with an easy domain and broaden the domain by time.

1.3 The Outline of the Thesis

This thesis work organized as follows. In Chapter 2, current situation of the literature

about the control of flying rotor platforms and tail assistance in Robotics. Chapter 3

gives the mathematical background about bi-rotor dynamics, control and Reinforce-

ment Learning. Dynamics of tail appendage and design of simulation environment are

explained in Chapter 4. In Chapter 5, control methodology for both conventional and

learning based controllers are detailed. Experimental results are shared in Chapter 6.

Finally, Chapter 7 concludes this thesis with future directions.

3

4

CHAPTER 2

RELATED WORK

2.1 Deep Reinforcement Learning

Advances in deep learning and novel neural network architectures made it possible to

apply them to dynamic system control problems through deep reinforcement learning

(DRL) and several methods proposed for DRL. At first, Mnih et al. [14] have demon-

strated that one can train a network structure to learn to play early atari games simply

by observing raw pixels and with rewards only defined on win-lose outcomes. The

so called “Deep Q Networks" (DQN), being non-linear function approximators, are

successfully demonstrated to learn value functions from such raw data.

An alternative method in the literature is to use a deep network structure to directly

estimate the control policy rather than the value function and to train it using the gra-

dients on the policy [21, 22]. Methods based on these so called Policy Gradients,

were shown to provide better convergence properties, learn more sophisticated poli-

cies, and scale better to continuous action spaces. These may be considered earliest

examples of continuous action spaces. As a more recent development, two networks

are simultaneously trained [23] for the task: An actor network (i.e., a controller) that

estimates an action given the current state of the environment, and a critic network

that predicts the value function at a given state. These methods, called Actor-Critic

Networks, are demonstrated to perform much better in a number of continuous con-

trol problems [23, 24].

In policy gradient methods, generally we do not want the updated policy be too dif-

ferent from the old policy concerning instabilities. To ensure this and improve con-

vergence, Schulman et al. [25] presents Trust Region Policy Optimization (TRPO)

5

that limits the step sizes in a trust region by adding a KL divergence constraint on

optimization. Later, they propose Proximal policy optimization (PPO) [16] which

is an improved version of TRPO [25], and is currently the state of the art in policy

gradient based Deep Reinforcement Learning algorithms. Differently, PPO uses a

proportionality ratio between policies and clip them in a region instead of calculating

KL divergence. Moreover, Schulman et al. show that clipping the objective function

yields even better results.

2.2 Curriculum Learning

In addition to these methods, the data itself has also an impact on parameter im-

provements in neural networks. Bengio et al. observed that when the training data

is presented to the network randomly, it takes longer for the network to converge in

Supervised Learning [20]. Moreover, it is a well-known problem that deep learn-

ing is a non-convex optimization, and it suffers from local minima [26, 27]. They

showed that starting the training procedure with simpler examples, and introducing

gradually more complex ones as the network learns the easier subtasks improves the

convergence speed and the quality of local minima. Curriculum based methods are

not limited to supervised learning domain, and there are studies [28, 29, 30, 31] that

combine curriculum learning notion into Deep Reinforcement Learning domain.

2.3 Multi-rotor Control

Controlling non-linear, underactuated, agile and high-speed platforms such as quad-

rotor UAVs is challenging, posing problems such as high state-space dimension, con-

cerns of stability and robustness as well as considerations of response time[7, 10].

Hand-crafted, low-level controllers fall short in addressing all these challenges and

therefore, learning-based approaches emerged in the literature as an alternative to

classical control theory [10, 32, 33, 34, 11]. A recent review of these approaches is

given in [7]. In a number of studies, different applications are considered: For exam-

ple, in [32], a deep network is used to make a UAV follow a hand-drawn trajectory

while [33, 34] trains a UAV to fly using its vision sensors through cluttered outdoor

6

environments. Also, there are differences in solution approaches: [33, 34] uses learn-

ing by imitation while [10] uses an iterative method for function fitting which receives

supervision from a feedback-based controller. A reference controller is used in [11]

to train the deep network to demonstrate its trajectory generalization capability.

With promising results in using DRL for robot control problems, similar approaches

have been employed for quad-rotor UAV control. These include e.g. [35], which

used a DQN to teach a UAV to avoid obstacles in indoor environments from a single

image; [36], which combined model-predictive control with deep RL to obtain better

performance and [12], which used an actor-critic network to teach a UAV to go to a

close-by way-point. Their network maps the robot state to four actuator commands,

hence requires no control theory background other than mathematical modeling of the

quad-rotor. Their policy network controller is robust, even under very harsh initial-

ization, the robot can stabilize itself successfully. To obtain the controller, Hwangbo

et al. train two networks. Since their state vector is 18 dimensional and their action

vector is 4 dimensional, input and output layers of the policy network have 18 and 4

neurons, respectively. They use two hidden layers, each with 64 neurons and tanh ac-

tivation. Value network has the same architecture, except it has a single neuron in the

output layer. They train value network using Huber loss [37], and policy network us-

ing natural gradient descent. As a more recent study, Molchanov et al. [13] employs

PPO algorithm to learn a policy for multiple quad-rotors with different sizes.

7

8

CHAPTER 3

MATHEMATICAL BACKGROUND

In this chapter, the mathematical background for problem formulation will be given.

First of all, in section 3.1 the dynamical model of bi-rotor platform is derived and con-

trol methodology is developed. Next, this control system is converted into a Markov

Decision Process to apply Reinforcement Learning. In section 3.2, MDP formulation

is derived from the dynamics of the system. Finally, in sections 3.3 and 3.4 Rein-

forcement Learning approach is introduced to find a solution to the MDP.

3.1 Bi-rotor Dynamics and Control

Bi-rotor is a planar equivalent of a quad-rotor. It has a linear body like a stick and

two propellers at both ends as seen in Figure 3.1. All mass M and inertia I of the

robot are assumed to be concentrated at the midpoint of the body, which is center of

gravity.

The position of bi-rotor is defined by the location of the center of gravity in a 2D co-

ordinate frame, given with (px, py). The orientation of bi-rotor is defined as the angle

between the robot body and the positive x-axis, given with ϑ. There is a gravitational

acceleration g at negative y direction affecting the bi-rotor body. The propellers apply

forces fl and fr, perpendicular to the robot body.

Given these quantities, state vector of the bi-rotor system x is a 6x1 vector consisting

of position, orientation, velocity and angular velocity of bi-rotor given as,

x =
[
px, py, ϑ, ṗx, ṗy, ϑ̇

]T
, (3.1)

that is, by definition of what the state is, includes enough information about the system

9

θM,I
fl

y

x

fr

g

d

Figure 3.1: Our bi-rotor model

dynamics. This is also called as Markovian Property in Markov Decision Processes

which will be refered in section 3.2. The input vector u consists of propeller forces

given as,

u = [fl, fr]
T (3.2)

where fl, fr ∈ [0, fmax] and fmax is the maximum thrust that one rotor can supply. A

thrust-to-weight ratio is defined as,

rthrust2weight =
2fmax
Mg

, (3.3)

where M is the mass of bi-rotor and g is the gravitational acceleration.

We have velocities defined as,
vx = ṗx,

vy = ṗy,

ω = ϑ̇.

(3.4)

By substituting velocities in Equation 3.4 into Equation 3.1, the state vector becomes,

x = [px, py, ϑ, vx, vy, ω]T . (3.5)

Total forces acting on the body in the x and y directions are

fx = −(fl + fr) sinϑ,

fy = (fl + fr) cosϑ−Mg,
(3.6)

10

and the total torque around the center of mass is,

τ = (fr − fl) · d, (3.7)

where d is the half distance between left and right rotors.

According to Newton’s second law, we have that,

v̇x =
fx
M

= −fl + fr
M

sinϑ, (3.8)

v̇y =
fy
M

=
fl + fr
M

cosϑ− g, (3.9)

ω̇ =
τ

I
=

(fr − fl) · d
I

. (3.10)

Rearranging equations 3.8, 3.9 and 3.10 into state space representation form of,

ẋ = Ax +Bu + g, (3.11)

we get,

ẋ =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


x +



0 0

0 0

0 0

− sinϑ/M − sinϑ/M

cosϑ/M cosϑ/M

−d/I d/I


u +



0

0

0

0

−g
0


. (3.12)

Full state information is used to control this system. Figure 3.2 represents the block

diagram of full state feedback. The controller takes the full state information and

drives the system by supplying thrust inputs of the bi-rotor system accordingly. A

reference input and error calculation is not shown in the figure since the main task to

achieve in this work is to reach the zero state configuration. That is, positioning the

bi-rotor at the center of the reference coordinate frame with zero velocity and parallel

orientation to horizontal. So, the state fed to the controller is itself the error.

In this work, two kinds of controller structure are studied. The first one is inspired by

current quad-rotor control methods. This controller structure is called as a conven-

tional controller in this text and used as a baseline. Rest of this section describes this

11

Bi-rotor Systemu
x

Controller

Figure 3.2: Block diagram of state feedback controller

structured controller. The second controller is represented as an artificial neural net-

work that maps states to system inputs. The parameters of this controller network are

learned with a Deep Reinforcement Learning method called Proximal Policy Opti-

mization [16]. This controller is called a learning-based controller or a control policy

which is the terminology used in Reinforcement Learning literature.

The conventional controller has a particular controller structure that separates angular

and positional control of bi-rotor. The bi-rotor platform has two thrust inputs that are

orthogonal to the platform surface and it is at equilibrium at zero orientation while

thrust forces opposing the gravitational force. Adjusting the trusts by keeping them

equal bi-rotor can be accelerated in vertical. From this equilibrium by deviating thrust

forces, a net torque can be generated as can be seen from Equation 3.7. For horizontal

movements, the system needs to break the zero orientation and can get a net force in

the vertical direction.

Horizontal PD[pxvx]
Desired Angle

Conversion

fx,des

Vertical PD[pyvy] 1/ cos (ϑ)

ϑ

fy,des

Angular PD

[ϑω]

ϑdes τ

f

Figure 3.3: Block diagram of conventional controller

12

In Figure 3.3, the block diagram of the conventional controller is given. The complete

diagram takes the terms of state vector as inputs and gives a torque and a force. The

torque τ derived from rotor thrust difference as given in Equation 3.7 before. The

force f is the total rotor thrust force applied to the center of mass of bi-rotor and

those are defined as,

f = fr + fl. (3.13)

Taking fr and fl from equations 3.7 and 3.13 we get,

fr =
f

2
+

τ

2d
,

fl =
f

2
− τ

2d
,

(3.14)

to calculate input vector u of the bi-rotor system from outputs of conventional con-

troller.

There are five mathematical blocks represented in Figure 3.3 that are relating in-

put terms to outputs mathematically. First, Horizontal PD block is a Proportional-

Derivative (PD) controller in the horizontal direction. It outputs the required net force

in horizontal as,

fx,des = −(Kp,xpx +Kd,xvx), (3.15)

where Kp,x and Kd,x are controller parameters. Similarly, Vertical PD block gives the

required net force in vertical by,

fy,des = Mg − (Kp,ypy +Kd,yvy), (3.16)

where Kp,y and Kd,y are controller parameters. Third block calculates total rotor

thrusts f such that its projection gives the desired vertical force:

f = fy,des
1

cos (ϑ)
. (3.17)

This equation provides that for higher ϑ values cosine becomes smaller and the total

thrust command grows too much to supply from rotors. Since in this case, the bi-

rotor cannot maintain the height level, it is necessary to keep its angle below a certain

value. The orientational objective of bi-rotor is determined to provide the thrust forces

13

in both horizontal and vertical direction. That value is calculated in Desired Angle

Conversion block as,

ϑdes = clip(atan2(fx,des, fy,des), {ϑmin, ϑmax}), (3.18)

where the wanted value first calculated by 2-argument arctangent function, then clipped

to keep it in a safe range where the clipping function is defined as,

clip(x, {xmin, xmax}) =


xmin, x ≤ xmin

x, xmin < x < xmax

xmax, xmax ≤ x

. (3.19)

The clipping interval is a design parameter determined by considering thrust-to-weight

ratio of bi-rotor given in equation 3.3 so that the bi-rotor can supply enough thrust to

keep itself stable in vertical. Final block Angular PD is again a PD controller block

that controls the attitude of bi-rotor as,

τ = (Kp,ϑ(ϑdes − ϑ) +Kd,ϑ(−ω)), (3.20)

where Kp,ϑ and Kd,ϑ are controller parameters.

3.2 Bi-rotor Representation as Markov Decision Process

Markov Decision Processes provide a mathematical framework for sequential decision-

making problems including probabilistic state transitions. MDP is a straightforward

framework for Reinforcement Learning problems [38] which we mention in next sec-

tion. In this section, at first mathematical foundations of Markov Decision Processes

are given and then the bi-rotor control problem is represented as a Markov Decision

Process.

A Markov Decision Process is generally defined with 5-tuple: (S,A, P, R, ρ0). Here,

S and A denotes the sets of all states and actions. The process has a state s ∈ S at

discrete time step. For a state s ∈ S an action a ∈ A is taken, the process transitions

into a new state s′ ∈ S and gives a reward signal r. State-transition probabilities are

given by P function:

P (s′|s, a) = Pr{st+1 = s′|st = s, at = a}, (3.21)

14

where, subscripts t and t + 1 denotes the current and next time steps. Verbally, the

next state of MDP is conditioned on the current state and action pair with a probability

in [0, 1]. This is called the Markov Property that the future states of the process only

depend on the current situation, and not to past.

The fourth element of MDP is a reward function R that supplies the reward signal

depending on the current state-action pair and the next state:

r = R(s, a, s′). (3.22)

A trajectory with sequential discrete time steps can be generated starting from an

initial state s0 ∈ S:

s0, a0, r1, s1, a1, r2, s2, . . .

where actions at’s are selected by the decision maker and next state and reward is

derived from equations 3.21 and 3.22. Initial state of the process is given by ρ0 as a

probability distribution;

ρ0(s) = Pr{s0 = s}. (3.23)

In the problem of a Markov Decision Process, an agent, the decision maker, interacts

with an environment that follows the properties of MDP. Action selection procedure

of an agent is defined as a policy. Mathematically, the policy is represented as a

probability distribution over actions given state:

π(a|s) = Pr{at = a|st = s}. (3.24)

So far we give mathematical descriptions about Markov Decision Processes. Next,

the bi-rotor system given in section 3.1 will be represented as a Markov Decision

Process.

The states and actions of our MDP correspond to states and inputs of the bi-rotor

15

system. So, state and action sets are defined as the following;

S = {(px, py, ϑ, vx, vy, ω)|px, py, ϑ, vx, vy, ω ∈ R}, (3.25)

A = {(f ′l , f ′r)|f ′l , f ′r ∈ [−1, 1]}, (3.26)

where f ′l and f ′r are normalized thrust commands of propeller motors.

Hereby, the states and actions on bi-rotor is defined in continuous domain in contrast

to vanilla MDP case. MDP formalisation can be extended to continuous state-action

domain by defining state-transitions as probability distribution functions instead of

probability mass functions. In our case, state-transitions happen according to the

state space dynamic Equation 3.11 of the bi-rotor system with time discretization.

That means, the input u given to the system is assumed to be constant for a small time

step ∆t and the next state of MDP is considered as the state of the bi-rotor system at

that time instant as mathematical details will be explained in Section 4.1.1. Note that

this model satisfies the Markov Property since the differential Equation 3.11 can be

solved by the initial value of state x and independent from the past states.

Additionally, the Equation 3.11 can be transformed from continuous-time to discrete-

time as a difference equation. For small enough time step, the solution of this differ-

ence equation becomes close to the solution of the differential equation.

Under these conditions the state-transitions do not include stochasticity and state tran-

sition function can be represented in a deterministic way by rewriting Equation 3.21

as,

s′ = P (s, a). (3.27)

Beyond these definitions, the reward function and the initial state distribution are

design parameters defining the objective of the bi-rotor and details will be given in

section 4.2.

16

3.3 Reinforcement Learning

Reinforcement Learning is simply defined as learning from interaction with an en-

vironment [38]. A general agent-environment interaction scheme in Reinforcement

Learning is given in Figure 3.4. At a time step, the agent decides to take an action ac-

cording to the current state observed from the environment. As a result of that action,

the environment reaches a new state and produces a reward signal. The state transi-

tions occur according to the dynamics of the environment, and the reward signal is

the main objective that specifies the behavior of agent on environment. Briefly, a rein-

forcement learning agent is learning to get higher rewards continuously by interacting

with the environment.

Agent

Environment

Action atNew state st+1 Reward rt+1

Figure 3.4: Agent-Environment interaction in Reinforcement Learning

The problem of reinforcement learning is formalized as control of Markov Decision

Processes [38]. As explained before, the agent uses a policy that maps situations to

actions and walks on the environment in the problem of MDP. This formalization

implements sensation, action and the goal in a simple form and is very suitable for

Reinforcement Learning problem in that sense.

At first, the agent has no prior information about how to act, instead, it should explore

which actions return high reward. Another important challenge is that an action is

not only affecting the current reward but affects future rewards through next states.

Hereby, trial-and-error and delayed reward concepts are two main properties seen in

Reinforcement Learning problems.

The reward signal is received one at a time step as given in Equation 3.22, and in-

cludes an instantaneous information. Aim of an agent is not gaining an immediate

17

high reward but looking after future rewards can be reached later before the termi-

nation of episode. Therefore, the return notion is defined to represent sum of future

rewards collected through a trajectory as;

Gt = rt + rt+1 + · · ·+ rT =
T−t∑
k=0

rt+k, (3.28)

whereGt is the return at time step t, equals to sum of all rewards of the sequence from

time step t to termination time step T . Additionally, discounted return is defined as;

Gt = rt + γrt+1 + γ2rt+2 + · · ·+ γT−trT =
T−t∑
k=0

γkrt+k, (3.29)

where γ is the discount factor in [0, 1] closed interval that provides a trade of between

importance of short term or long term rewards.

A policy can be evaluated according to the expected value of discounted reward under

that policy that is called a value function and defined as,

V π(s) = E[
T−t∑
k=0

γkrt+k|st = s, π], (3.30)

where actions are derived by the policy π. The optimal value function is the maximum

expected return under possible policies defined as;

V ∗(s) = max
π∈Π

V π(s), (3.31)

where Π denotes the set of all policies. Similar to the value function, an action-value

function is the expected return under an initial state-action pair and defined as,

Qπ(s, a) = E[
T−t∑
k=0

γkrt+k|st = s, at = a, π]. (3.32)

The only difference of action-value function is that the first action is not derived by

policy but specified as a parameter to the function. Similarly, the optimal action-value

function is defined as;

Q∗(s, a) = max
π∈Π

Qπ(s, a). (3.33)

Than, an optimal policy is the policy that yields the optimal value or action-value

function, and the solution to the problem of Reinforcement Learning is that optimal

policy. Additionally, an advantage function is difference between action-value and

value functions and defined as,

Aπ(s, a) = Qπ(s, a)− V π(s). (3.34)

18

This measure defines goodness of an action when compared to following the policy.

These value function definitions are used in different algorithms solving Reinforce-

ment Learning problems.

Instead of writing sum of rewards to the termination of episode in Equation 3.32, it

can be derived in a recursive manner with one step forward. That is called a Bellman

Equation [39] and defined for action-value function as,

Q∗(s, a) =
∑
s′∈S

P (s′|s, a)(R(s, a, s′) + γmax
a′∈A

Q∗(s′, a′)), (3.35)

where P and R are state transition and reward function defined in equations 3.21 and

3.22.

There are several methods proposed to solve the problem of Reinforcement Learn-

ing. They can be mainly separated as tabular methods and function approximation

methods. In tabular methods value functions kept as tables and updated according to

the Bellman Equation. For example in the q-learning algorithm [40], the action-value

function is estimated on a table that contains all state-action pair. This table updated

at every time step the agent moves and it is proved to converge to optimal action-value

function [40]. The tabular methods are well suited for low-dimensional state and ac-

tion spaces. However, function approximation methods fit for high-dimensional and

even continuous state and action spaces. Those methods can also use a deep neural

network for function approximation and this brings us to Deep Reinforcement Learn-

ing methods which will be covered in the next section.

3.4 Deep Reinforcement Learning

Deep Reinforcement Learning is a synthesis of Reinforcement Learning and Deep

Learning [41]. It applies deep neural networks as function approximators for Rein-

forcement Learning methods. In particular, it represents the value or the policy func-

tions as artificial neural networks to solve Reinforcement Learning problems. Even

though there are a number of method proposed under Deep Reinforcement Learn-

ing, Proximal Policy Optimization (PPO) [16], a policy-gradient based algorithm, is

employed in this thesis. In this section, the mathematical bases of value-based and

19

policy-gradient Deep Reinforcement Learning methods will be covered on the focus

of PPO algorithm.

3.4.1 Value-based Methods

The goal of value-based algorithms is to construct a value function with neural net-

works. Later, a policy is derived from that value function. In this subsection, Deep

Q-Network (DQN) [14] algorithm is covered particularly.

In DQN algorithm, experiences of an agent is stored in a replay buffer in the form

of tuples < s, a, r, s′ > which are state, action, reward and next state of a transition

on environment. This experience replay buffer allows to do gradient descent updates

on value network with batches like supervised learning. The algorithm starts with

an initial parameter distribution of action-value network Q(s, a; θ0) where θ0 is the

initial parameters of network. At kth update step target values of action-values are

calculated as;

Y Q
k = r + γmax

a′∈A
Q(s′, a′; θk), (3.36)

where θk defines the parameters at that iteration. This target value is an estimation

derived from Bellman Equation given in 3.35. Then, a square loss is defined as,

LDQN = (Q(s, a; θk)− Y Q
k)2. (3.37)

Using the gradient of that loss parameters of action-value network are updated using

batches as;

θk+1 = θk + α(Y Q
k −Q(s, a; θk))∇θkQ(s, a; θk), (3.38)

where α is a scalar learning rate.

After convergence, the policy is derived on top of action-value network. In order

to extract a policy from value function it is needed to have finite number of actions

for the sake of computational complexity and algorithms designed for this. Thus,

value-based methods do not fit to our bi-rotor control problem with continuous action

choices in an interval.

DQN algorithm gives the essential idea behind value-based methods in Deep Re-

inforcement Learning. There are many variants of DQN proposed after that don’t

20

covered in this text.

3.4.2 Policy Gradient Methods

Policy gradient methods optimize a parametric policy directly. From Equation 3.30,

value of initial state under a stochastic policy can be derived as;

V π(s0) =

∫
S
ρπ(s)

∫
A
π(s, a)R′(s, a)dads, (3.39)

where ρπ(s) gives the state distribution with discount and defined as,

ρπ(s) =
∞∑
t=0

γtPr{st = s|s0, π} (3.40)

Suppose the policy is parameterized with parameters $, policy gradient theorem [21]

gives,

∇$V
π$(s0) =

∫
S
ρπ$(s)

∫
A
∇$π$(s, a)Qπ$(s, a)dads. (3.41)

Using the equivalence,

∇$π$(s, a) = π$(s, a)
∇$π$(s, a)

π$(s, a)
= π$(s, a)∇$ log(π$(s, a)), (3.42)

the Equation 3.41 reduced to an expectation as,

∇$V
π$(s0) = Es∼ρπ$,a∼π$ [∇$ log(π$(s, a))Qπ$(s, a)]. (3.43)

The policy can be updated step by step by estimating this gradient. This method

uses action-value estimates that can be estimated by roll-outs on environment or an

additional value estimator network can be constructed. The methods using both policy

and value networks for this purpose are called actor-critic methods. The actor denotes

the policy that take actions and the critic denotes the value network that criticizes the

actor.

Furthermore, there are methods proposed to use Natural Gradients [42] instead of

direct gradient. Modifying Natural Policy Gradients, Schulman et al. came up with

Trust Region Policy Optimiation (TRPO) [25] that changes the policy in a controlled

way with a constraint on Kullback Leibler (KL) divergence. Mathematically, their

reformulated objective is defined using advantage function in Equation 3.34 as,

max
∆$

Es∼ρπ$,a∼π$ [
π$+∆$(s, a)

π$(s, a)
Aπ$(s, a)], (3.44)

21

subject to,

EDKL(π$(s, ·)||π$+∆$(s, ·)) ≤ δ, (3.45)

where δ is a hyperparameter and δ$ is the parameter update. By using Equation 3.45

as a penalty in Equation 3.44 we get,

max
∆$

Es∼ρπ$,a∼π$ [
π$+∆$(s, a)

π$(s, a)
Aπ$(s, a)− βDKL(π$(s, ·)||π$+∆$(s, ·))], (3.46)

which is an unconstrained optimization that TRPO actually solves. Proximal Policy

Optimization (PPO) [16] is a modification of TRPO algorithm. Defining the probabil-

ity ratio as, rt(∆$) = π$+∆$(s,a)

π$(s,a)
, the objective function is a clipped version instead

of KL divergence penalty as,

Es∼ρπ$,a∼π$ [min(rt(∆$)Aπ$(s, a), clip(rt(∆$), 1− ε, 1 + ε)Aπ$(s, a))], (3.47)

where ε is a hyperparameter. That function clips the change in probability distribution

near rate one, and offers simple implementation with better results [16].

22

CHAPTER 4

A BI-ROTOR WITH TAIL APPENDAGE

4.1 Dynamics of Tail Assisted Bi-rotor

Tail appendage is a bio-inspired method used in robotics field [18] in order to improve

the capabilities of a robotic platform. In Figure 4.1, tail assisted bi-rotor model is

represented. At this point, an additional rigid body is connected to the center of bi-

rotor body with an actuated revolute joint.

θM,I
fl

y

x

fr

g

φ

d

d'

m,Itail

Figure 4.1: Our bi-rotor model with tail appendage

The state vector is now extended with orientation and angular velocity of tail with

respect to the bi-rotor body as,

x = [px, py, ϑ, vx, vy, ω, ϕ, ϕ̇]T , (4.1)

where ϕ represents the tail angle with respect to main body as seen in figure. The

input vector is extended with torque input of revolute joint as,

u = [fl, fr, τtail]
T , (4.2)

23

where τtail represents the torque applied to the revolute joint.

Dynamics of tail assisted bi-rotor system can be derived from Euler-Lagrange formu-

lation. The generalized coordinates of system is defined as;

q = [px, py, ϑ, ϕ]T . (4.3)

Position of tail center of mass can be calculated as,

px,tail = px + d′ sin(ϑ+ ϕ), (4.4)

and,

py,tail = py − d′ cos(ϑ+ ϕ), (4.5)

where d′ is the distance from revolute joint to center of mass of tail. Then, velocities

of tail center of mass is found by taking time derivative of equations 4.4 and 4.5 as;

vx,tail = vx + d′(ϑ̇+ ϕ̇) cos(ϑ+ ϕ), (4.6)

and,

vy,tail = vy + d′(ϑ̇+ ϕ̇) sin(ϑ+ ϕ). (4.7)

Kinetic energy K of system is,

K =
1

2
[M(v2

x + v2
y) + Iω2 +m(v2

x,tail + v2
y,tail) + (Itail)(ω + ϕ̇)2], (4.8)

where body mass, body inertia, tail mass and tail inertia are M, I,m and Itail respec-

tively. Potential energy U of system is,

U = Mgy +mg(y − d′ cos(ϑ+ ϕ)), (4.9)

where g is the gravitational acceleration. The Lagrangian is calculated as,

L = K − U, (4.10)

and the Euler-Lagrange formulation is,

d

dt

∂L

∂q̇
− ∂L

∂q
= f , (4.11)

where f is generalized forces vector and defined as;

f =


−(fr + fl) sin(ϑ)

(fr + fl) cos(ϑ)

(fr − fl)d
τtail

 . (4.12)

24

Rearranging Equation 4.11 and collect double time derivative of generalized coordi-

nates we get,

Mq̈ =


−(fl + fr) sin(ϑ) +md′(ϑ̇+ ϕ̇)2 sin(ϑ+ ϕ)

(fl + fr) cos(ϑ)−md′(ϑ̇+ ϕ̇)2 cos(ϑ+ ϕ)

d(fr − fl)−mgd′ sin(ϑ+ ϕ)

τtail −mgd′ sin(ϑ+ ϕ)

 , (4.13)

where M is the inertia matrix,

M =


M +m 0 md′ cos(ψ) md′ cos(ψ)

0 M +m md′ sin(ψ) md′ sin(ψ)

md′ cos(ψ) md′ sin(ψ) I + Itail +md′2 Itail +md′2

md′ cos(ψ) md′ sin(ψ) Itail +md′2 Itail +md′2

 , (4.14)

and ψ = ϑ+ ϕ.

In Equation 4.13, multiplying both sides by M−1 we get third row as,

ϑ̈ =
d(fr − fl)− τtail

I
, (4.15)

that gives the angular dynamics of bi-rotor body.

4.1.1 Time-discretization of System Dynamics

System dynamics of bi-rotor is discretized in time in order to simulate. This dis-

cretization is held in constant time steps. We show the mathematical description of

discretization from a general representation in Equation 3.11. Although dynamics

with tail appendage is derived in a different form in Equation 4.13, it can also be

represented in a state-space like form. At a discrete time step t we can calculate

continuous time derivative of state vector by Equation 3.11 as,

dst = Ast +Bat + g, (4.16)

where st and at are state and action vectors represented in discrete time and dst is

vector of time derivatives. Then, for a small time step ∆t next state can be calculated

as,

st+1 = st + ∆tdst. (4.17)

25

Note that, although inspired from each other we use different notations for discrete-

time states and a state of Markov Decision Process. Former one is a vector and letter

one is a tuple containing same values.

This implementation converges to continuous time solution by smaller time-steps.

Although there is a small gap between real world scenarios, in the scope of this thesis

we apply all of our experiments on this method and compare them in fair.

4.2 Design of Simulation Environment

We design a simulation environment to run the bi-rotor dynamics with and without

tail as given in Equations 3.12 and 4.13. Our Reinforcement Learning agent interacts

with this environment as shown in the general agent-environment interaction scheme

in Figure 3.4. Our simulation environment takes action signal at at time step t, runs

the bi-rotor dynamics for small time duration ∆t, gives the next state st+1 and reward

signal rt+1. The transition dynamics from st to st+1 under applied action at are given

in section 3.1 and 4.1. The reward signal is given according to the state distance from

goal point as the details will be explained in section 4.2.3.

The simulation environment is implemented at Python programming language. Box2D

physics engine [43] is used to simulate dynamics of bi-rotor. This is an open-source

engine that solves the differential equations of rigid body dynamics for multiple bod-

ies in two-dimensional space as given in Equation 4.17. We also used OpenAI’s gym

toolkit [44] to implement a Deep Reinforcement Learning environment software in-

terface. This toolkit is commonly used in Deep Reinforcement Learning field for

developing and comparing algorithms.

A gym environment is basically consist of two methods: step, reset. Reset method ini-

tiates the environment according to initially given state distribution which is detailed

in Subsection 4.2.1. Step method makes one step on environment with given action

and returns the next state, the reward signal and termination status. Termination of an

episode is detailed in Subsection 4.2.2, and the reward function is given in Subsection

4.2.3. Other relevant parameters implemented in the simulation environment is given

in Table 4.2.

26

In the simulation environment, transition of the bi-rotor during an episode can be

rendered optionally. Figure 4.2 shows the render of an instance.

Figure 4.2: An instance of bi-rotor platform flying. Dark red line is body of bi-rotor,

light red lines are rotor thrusts, yellow cross is the aiming point. The bi-rotor is

restricted in 10x10 square indicated with blue lines. Simulation episode terminated if

platform crosses this boundary.

4.2.1 Initial State Constraint

Starting state of each episode is defined by a probability distribution over state space.

We use uniform distributions over position to parameterize initial state and limit the

Reinforcement Learning problem in a scope. Mathematically, we derive the position

terms of state as,

|px| ∼ U(px,l, px,h), (4.18)

|py| ∼ U(py,l, py,h), (4.19)

where px,l, px,h, py,l, py,h ∈ [0,∞) are parameters representing lower and higher bounds

of distribution. Note that, we derive absolute values of this position and they can be

negative or positive equally likely.

27

4.2.2 Termination Criteria

There are two main termination case for episodes. First, if the bi-rotor exits the

region so far it terminates. We chose this region as 10x10 square around the goal

location, which is shown in Figure 4.2 with blue lines. Mathematically, the criteria

for termination is, ∥∥∥∥∥∥pxpy
∥∥∥∥∥∥
∞

> 5, (4.20)

for this case. This allows the agent to not explore far regions. At the first stages of

training, the agent usually drives bi-rotor far regions and we gain time by terminating

this irrelevant situations.

Second case is a time limit for episodes. During training after the agent learns to

stabilize bi-rotor around goal location, it can drive around there forever. We limit

episode time to 4 seconds -400 time steps- for exploration of other states in region.

4.2.3 Reward Shaping

In Reinforcement Learning field mostly rewards are considered sparse. Reward shap-

ing is a concept for propagating this sparse reward to state space by hand. Main

purpose of reward shaping is to canalize agent through the goal in high dimensional

state spaces. In our work, we use a shaped reward like it was used in literature [12].

Reward at a time step is calculated for the bi-rotor without tail-appendage as,

rt = 25− (kp‖pt‖+ kv‖vt‖+ kϑ‖ϑt‖+ kω‖ωt‖+ ka‖at − ah‖), (4.21)

where rt denotes the reward at time step t, pt denotes the position vector [px py]
T ,

vt denotes the velocity vector [vx vy]
T , θt denotes orientation, ωt denotes angular

velocity, at denotes action vector, ah is hovering actions and k’s are constant param-

eters. So, the agent gets a maximum reward of 25 and gets less by the distance from

goal state and action configuration. We use L1 norm for norm operations. Similarly,

reward for the bi-rotor with tail-appendage is calculated as,

rt = 25− (kp‖pt‖+ kv‖vt‖+ kθ‖θt‖+ kω‖ωt‖+ ka‖at − ah‖+ kϕ‖ϕt‖+ kϕ̇‖ϕ̇t‖).
(4.22)

28

Parameters of formula is given in Table 4.1. As a comment of parameter selection,

main contribution to reward is comes from positional errors. The cost on linear veloc-

ities acts as the Derivative term of PID controller, it keeps the agent to oscillate around

goal point. It can be noted that also without penalizing angular position or non-sense

actions bi-rotor makes angular oscillations around goal point but not changing its

position too much.

Table 4.1: Parameters of shaped reward for the bi-rotor with and without tail ap-

pendage

Parameters Bi-rotor Bi-rotor with tail

kp 20 20

kv 2 2

kθ 1 4

kω 0 0

ka 1 1

kϕ - 2

kϕ̇ - 0.2

4.2.4 Motor Model

In simulation, instead of supplying commanded thrust forces instantaneously, a sim-

ple mathematical motor model is implemented. The thrust forces of propellers ac-

cording to their motor speeds are defined as,

fl = fmaxω
2
m,l, (4.23)

and,

fr = fmaxω
2
m,r, (4.24)

where ωm,l, ωm,r ∈ [0, 1]’s are representing normalized motor velocities. Then, the

motor velocity commands are derived from normalized actions in Equation 3.26 as,

ω′m,l =

√
f ′l + 1

2
, (4.25)

29

and,

ω′m,r =

√
f ′r + 1

2
, (4.26)

where ω′m,l, ω
′
m,r ∈ [0, 1] are motor commands. Finally, motor velocities are updated

through a discrete time low pass filter as,

ωm,t =
4∆t

ts
(ω′m,t − ωm,t−1) + ωm,t−1 (4.27)

where ωm,t−1 is motor speed at time t − 1, ω′m,t is the motor command, ωm,t is the

motor speed at time t and ts is the %2 settling time of low pass filter.

Table 4.2: Parameters of the simulation environment

Parameters Bi-rotor Bi-rotor with tail

g 9.81 9.81

M 0.8 0.4

m 0 0.4

d 0.5 0.5

d′ - 0.25

∆t 0.01 0.01

rthrust2weight 1.5 1.5

ts 0.15 0.15

30

CHAPTER 5

CONTROL APPROACH

5.1 Design of a Conventional Controller for Tail Appendage

We have the dynamics of bi-rotor with tail appendage as in Equations 4.13 and 4.14;

Mq̈ =


−(fl + fr) sin(ϑ) +md′(ϑ̇+ ϕ̇)2 sin(ϑ+ ϕ)

(fl + fr) cos(ϑ)−md′(ϑ̇+ ϕ̇)2 cos(ϑ+ ϕ)

d(fr − fl)−mgd′ sin(ϑ+ ϕ)

τtail −mgd′ sin(ϑ+ ϕ)

 , (5.1)

and,

M =


M +m 0 md′ cos(ψ) md′ cos(ψ)

0 M +m md′ sin(ψ) md′ sin(ψ)

md′ cos(ψ) md′ sin(ψ) I + Itail +md′2 Itail +md′2

md′ cos(ψ) md′ sin(ψ) Itail +md′2 Itail +md′2

 . (5.2)

We keep the controller designed for out bi-rotor in Section 3.1 as it is for rotor thrust

commands. Although dynamics of the tail is also affecting the dynamics of bi-rotor

position by Coriolis and gravitational effects as can be seen from Equation 5.1, those

effects can be neglected assuming soft and stable control of the tail. Main advantage

of tail is observed in Equation 4.15, rewritten as,

ϑ̈ =
d(fr − fl)− τtail

I
. (5.3)

It is observed from Equation 5.3 that the torque given to tail can be directly used in

attitude control of bi-rotor body as the Angular PD block does in Figure 3.3. Without

changing the controller structure, another block is added to conventional controller as

31

Horizontal PD[pxvx]
Desired Angle

Conversion

fx,des

Vertical PD[pyvy] 1/ cos (ϑ)

ϑ

fy,des

Angular PD

[ϑω]

Tail Torque

Command

[ϕϕ̇ϑω]

ϑdes τ

f

τtail

Figure 5.1: Extension of conventional controller for tail appendage

shown in Figure 5.1. In this new block, we can write a PD controller similar to that

in Equation 3.20 as,

τtail1 = −(Kp,ϑ,tail(ϑdes − ϑ) +Kd,ϑ,tail(−ω)), (5.4)

where τtail1 is a torque command to tail motor and Kp,ϑ,tail and Kd,ϑ,tail are controller

parameters. Furthermore, we also want the tail to stay stabilized around its hanging

orientation. Another command can be written for that purpose as,

τtail2 = (Kp,ϕ(−ϑdes − ϕ) +Kd,ϕ(−ϕ̇)), (5.5)

where τtail2 is a torque command to tail motor and Kp,ϕ and Kd,ϕ are controller pa-

rameters. We give both commands to the tail motor as,

τtail = τtail1 + τtail2. (5.6)

5.2 Deep Reinforcement Learning Strategies

We train our Deep Reinforcement Learning agent interfacing with the simulation en-

vironment using Proximal Policy Optimization [16] method. Main principles of this

method was given in section 3.4. We use stable-baselines [45] package, an open-

source package including implementations of several Deep Reinforcement Learning

algorithms, as a base.

32

5.2.1 Policy Network Structure

A Multilayer Perceptron (MLP) is employed as policy network. Figure 5.2 represents

the dimensions of network layers. The input layer is fed with ns = 6 or ns = 8

dimensional state vector according to tail usage. There are two layers of 64 hidden

neurons with ReLU activation [46]. Finally, the output layer serves na = 2 or na = 3

dimensional action vector with tangent hyperbolic activation that feeds the environ-

ment one step. We implement tangent hyperbolic activation at last layer on purpose

in order to get normalized actions between negative and positive one.

1xns

1x64

1xna

1x64
ReLU ReLU

tanh

Input Layer:
State Vector

Output Layer:
Action Vector

Hidden Layers

Figure 5.2: Policy network structure. A fully connected neural network: input is state

vector, two hidden layers with ReLU activated 64 neurons and output is action vector.

5.2.2 Vanilla Training

We develop different training strategies based on initial state distribution of episodes.

We call vanilla training as covering all space initially as it applied in previous work

on quad-rotor UAVs [12, 13]. Formally, we assign the constraints in Equations 4.18

and 4.19 as,

px,l = py,l = 0, (5.7)

and,

px,h = py,h = pmax < 5, (5.8)

33

where pmax gives the range that the policy finally cover and assigned once from start.

The algorithm runs 1e7 time-steps and saves the best network parameters during train-

ing based on total reward collected for a number of previous episodes. Finally, this

parameters are used to sample runs of bi-rotor and comparison.

5.2.3 Curriculum Training

As an alternative training strategy we use a curriculum that is increasing the hardness

of task gradually. We control pmax parameter in Equation 5.8 for adjusting hardness

of task during training. This parameter is increases in discrete stages. Each stage

is trained for a previously assigned number of time steps and transfers best network

parameters to the next stage.

5.2.4 Point-to-point Training

In this case, the task is simplified to fixed horizontal length. By sampling only single

starting point initially, the agent becomes more successful when started from that

point but does not give guaranty to converge from other states. The constraints are

assigned as,

py,l = py,h = 0, (5.9)

and,

px,l = px,h = pp2p < 5, (5.10)

where pp2p is the fixed length that the agent learns to overcome.

34

CHAPTER 6

EXPERIMENTS & RESULTS

6.1 Optimization of Conventional Control

4 3 2 1 0 1 2 3 4
p_x

3

2

1

0

1

2

3

p_
y

20 random starting points

Figure 6.1: Randomly selected points for optimization

Our conventional controller for bi-rotor was presented in 3.1 and the extension for tail

equipped case in 5.1. Parameters of controllers are optimized through both global and

local optimization techniques. Particle Swarm Optimization (PSO) [47] is employed

as global optimizer, and in order to fine tune the local minimum Nelder-Mead [48]

method is applied. We use the reward functions in Equations 4.21 and 4.22 to give

fair comparison with Deep Reinforcement Learning case. The cost function is defined

by the total reward collected through 20 random starting points which are shown

35

in Figure 6.1. This points are used for all experiments in this section. Resulting

parameters of optimization is listed in Table 6.1. Note that, proportional term of

tail stabilizer falls negative in optimization. However, the situation does not cause

instability due to the derivative term.

Table 6.1: Optimized controller parameters of our conventional controller

Parameter Bi-rotor Bi-rotor with tail

Kp,x 3.23 3.42

Kd,x 2.57 2.78

Kp,y 4.45 5.18

Kd,y 2.89 3.18

Kp,ϑ 11.79 4.40

Kd,ϑ 2.40 1.11

Kp,ϑ,tail - 3.43

Kd,ϑ,tail - 0.93

Kp,ϕ - −0.80

Kd,ϕ - 1.00

6.2 Case 1: Horizontal Step of Bi-rotor

Following, sample runs of bi-rotor with and without tail are presented under con-

ventional and learning based controllers. In each cases, robots are initiated from

(px, py) = (2, 0) point and observed for 4 seconds. For learning based controller, bi-

rotors are trained under point-to-point training with episodes starting from (px, py) =

(2, 0) and (px, py) = (−2, 0). So, they learned to make a 2m horizontal movement

from equilibrium point and not guarantied to converge from every close state to cen-

ter.

6.2.1 Conventional Control of Bi-rotor without Tail

Trajectory followed by the bi-rotor is illustrated in three graphs. First, position and

linear velocity of bi-rotor is presented in Figure 6.2. Position in x-direction is settled

36

in 1.427 seconds considering %2 settling time, and there is a slight change in y-

direction is observed due to the attitude change of bi-rotor. By time, all values are

converged to zero nicely.

Attitude change of bi-rotor is given in Figure 6.3. Robot first tilts positive side to

accelerate in negative x-direction and later the other side to slow down.Finally, force

commands are plotted in Figure 6.4. Right and left rotors are derived differently to

gain a torque for attitude control. At the end, they equally supply the weight of the

bi-rotor.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time(s)

2

1

0

1

2

po
sit

io
n(

m
),

ve
lo

cit
y(

m
/s

)

Linear positions and velocities
p_x
v_x
p_y
v_y

Figure 6.2: Linear position and velocity of bi-rotor in horizontal movement for 4

seconds with conventional controller. Blue, green, orange and red lines represent

the position in horizontal and vertical directions and the velocity in horizontal and

vertical directions, respectively.

6.2.2 Conventional Control of Bi-rotor with Tail

Trajectory followed by bi-rotor with tail appendage from same starting point of pre-

vious case is given in three plots. In Figure 6.5, position and linear velocity is plotted.

The settling time of x-position is 1.545 seconds, slightly worse than non-tailed case,

and although x-velocity starts decreasing sharper that non-tailed case it finally show

similar performance. However, it should be also considered that together with tail,

37

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time(s)

2

1

0

1

2

3

an
gl

e(
ra

d)
, a

ng
ul

ar
 v

el
oc

ity
(ra

d/
s)

Orientation and angular velocity
angle
angular velocity

Figure 6.3: Transitions of orientation and angular velocity of bi-rotor in horizontal

movement for 4 seconds with conventional controller.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time(s)

2

0

2

4

6

8

10

Fo
rc

es
(N

),
To

rq
ue

(N
m

)

Forces
f_l
f_r
f_l + f_r
(f_r - f_l)d

Figure 6.4: Commanded forces, their sum and effective torque of bi-rotor in hori-

zontal movement for 4 seconds with conventional controller. Blue and orange lines

represent the commands sent to left and right rotors, respectively. Green and red lines

represent equivalent total force and equivalent torque on robot body.

center of mass slides towards it and this makes the robot slower to attitude change.

All positions and due to them velocities converged to zero at the end.

38

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time(s)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

po
sit

io
n(

m
),

ve
lo

cit
y(

m
/s

)

Linear positions and velocities
p_x
v_x
p_y
v_y

Figure 6.5: Linear position and velocity of bi-rotor with tail appendage in horizontal

movement for 4 seconds with conventional controller. Blue, green, orange and red

lines represent the position in horizontal and vertical directions and the velocity in

horizontal and vertical directions, respectively.

Orientation and angular velocities of body and tail are plotted in Figure 6.6 on the

same graph. Body angle and velocity draw a very similar pattern with non-tailed case.

Tail makes a negative movement at first to orient forces faster. Later, it is observed

to follow the body angle by following its commands. Note that, these behaviours,

such as the peaks observed at time 0.5s and 1.5s, helps the robot to orient back in

equilibrium by the tail’s gravitation.

Finally, the commanded forces are drawn in Figure 6.7. Notably, the torque due

to rotors are nearly half way down compared to non-tailed case by the help of tail

appendage.

6.2.3 Learning Based Control of Bi-rotor without Tail

Deep Reinforcement Learning agent is trained for twelve million time steps. Mean

episode rewards of last 200 episodes collected through training is plotted in Figure 6.8

with its standard deviation. The agent is learned a valuable control policy later than

8 million time steps. Demonstrated policy parameters are chosen by the performance

39

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time(s)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

an
gl

e(
ra

d)
, a

ng
ul

ar
 v

el
oc

ity
(ra

d/
s)

Orientation and angular velocity
body angle
body angular velocity
joint angle
joint angular velocity

Figure 6.6: Orientation and angular velocity of bi-rotor body and tail in horizon-

tal movement for 4 seconds with conventional controller. Green and orange lines

represent orientation and velocity of bi-rotor body. Green and red lines represents

orientation and velocity of tail with respect to body.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time(s)

0

2

4

6

8

Fo
rc

es
(N

),
To

rq
ue

(N
m

)

Forces
f_l + f_r
(f_r - f_l)d
Tail torq

Figure 6.7: Sum of commanded forces, effective torque due to them and tail torque

command of bi-rotor with tail appendage in horizontal movement for 4 seconds with

conventional controller. Blue and orange lines represent the total force and effective

torque due to rotors, respectively. Green line represents torque command to tail.

40

of last 20 episodes during training.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
time steps 1e7

12500

10000

7500

5000

2500

0

2500

5000
m

ea
n

ep
iso

de
 re

wa
rd

Mean episode reward during training

Figure 6.8: Mean episode reward collected during point-to-point training of the bi-

rotor without tail. Blue line represents average episode reward in last 200 episodes,

and light blue regions are their standard deviation.

Trajectories of bi-rotor without tail under learned control policy is draw in three fig-

ures. In Figure 6.9, linear positions and velocities of bi-rotor is presented. It ap-

proaches to goal point faster in x-direction when compared to the conventional case.

However, it do not stabled in goal point and also a steady state error is left finally.

Steady state errors are listed in Table 6.2 under bi-rotor column quantitatively.

Attitude changes are plotted in Figure 6.10. Similar pattern to conventional case is

observed for gaining acceleration in x-direction and slow down near goal point. How-

ever, changes in angular velocity is more aggressive than conventional case because

the neural network can encode a higher order non-linearity and the policy can make

distinct changes.

Finally, commanded forces are drawn in Figure 6.11. Notably, changes in commands

are more instant than the conventional case as explained before. However, this also

means an unnecessary effort looking to total performance in completing the job.

41

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time(s)

2

1

0

1

2

po
sit

io
n(

m
),

ve
lo

cit
y(

m
/s

)

Linear positions and velocities
p_x
v_x
p_y
v_y

Figure 6.9: Linear position and velocity of bi-rotor in horizontal movement for 4

seconds with point-to-point learned the control policy. Blue, green, orange and red

lines represent the position in horizontal and vertical directions and the velocity in

horizontal and vertical directions, respectively.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time(s)

2

1

0

1

2

an
gl

e(
ra

d)
, a

ng
ul

ar
 v

el
oc

ity
(ra

d/
s)

Orientation and angular velocity
angle
angular velocity

Figure 6.10: Transitions of orientation and angular velocity of bi-rotor in horizontal

movement for 4 seconds with point-to-point learned control policy.

42

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time(s)

2

0

2

4

6

8

10

Fo
rc

es
(N

),
To

rq
ue

(N
m

)

Forces
f_l
f_r
f_l + f_r
(f_r - f_l)d

Figure 6.11: Commanded forces, their sum and effective torque of bi-rotor in hori-

zontal movement for 4 seconds with point-to-point learned control policy. Blue and

orange lines represent the commands sent to left and right rotors, respectively. Green

and red lines represent equivalent total force and equivalent torque on robot body.

6.2.4 Learning Based Control of Bi-rotor with Tail

The bi-rotor with tail is also trained for twelve million time steps. Mean episode

rewards of last 200 episodes collected through training is plotted in Figure 6.8 with

its standard deviation. The agent is learned a valuable control policy later than 8

million time steps. Demonstrated policy parameters are chosen by the performance

of last 20 episodes during training.

Trajectories are again examined in three figures. First, linear position and velocity are

plotted in Figure 6.13. It has a rapid initial acceleration in x-direction compared to

both non-tailed and tail with the conventional controller case. However, %2 settling

time is 1.465s and close to other performances.

Attitude changes of body and tail of bi-rotor are shown in Figure 6.14. Rapid changes

is observed like non-tailed control policy because of the same reason. Additionally,

the tail is well used during transition. First, it is actuated to rotate body fast and to

gain linear acceleration. Later, it is placed such that the gravitational effects help the

43

0.0 0.2 0.4 0.6 0.8 1.0 1.2
time steps 1e7

20000

15000

10000

5000

0

5000

m
ea

n
ep

iso
de

 re
wa

rd

Mean episode reward during training

Figure 6.12: Mean episode reward collected during point-to-point training of the bi-

rotor with tail. Blue line represents average episode reward in last 200 episodes, and

light blue regions are their standard deviation.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time(s)

2

1

0

1

2

po
sit

io
n(

m
),

ve
lo

cit
y(

m
/s

)

Linear positions and velocities
p_x
v_x
p_y
v_y

Figure 6.13: Linear position and velocity of bi-rotor with tail appendage in horizon-

tal movement for 4 seconds with point-to-point learned control policy. Blue, green,

orange and red lines represent the position in horizontal and vertical directions and

the velocity in horizontal and vertical directions, respectively.

44

bi-rotor to settle in equilibrium. As a bad side, the tail angle is also settles with a

steady state error, given in Table 6.2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time(s)

3

2

1

0

1

2

3
an

gl
e(

ra
d)

, a
ng

ul
ar

 v
el

oc
ity

(ra
d/

s)

Orientation and angular velocity
body angle
body angular velocity
joint angle
joint angular velocity

Figure 6.14: Orientation and angular velocity of bi-rotor body and tail in horizontal

movement for 4 seconds with point-to-point learned control policy. Green and or-

ange lines represent orientation and velocity of bi-rotor body. Green and red lines

represents orientation and velocity of tail with respect to body.

Table 6.2: Steady state errors of point-to-point trained control policies

Steady state error Bi-rotor Bi-rotor with tail

px −0.146 0.032

py 0.010 0.143

ϑ 0 0

ϕ - −0.113

Finally, force commands are plotted in Figure 6.15. Sudden changes are observed

again as a property of neural network policy. It can be also noted that tail helps to

rotate body before rotors supply the required torque because of motor delay.

45

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time(s)

4

2

0

2

4

6

8

10

Fo
rc

es
(N

),
To

rq
ue

(N
m

)

Forces
f_l + f_r
(f_r - f_l)d
Tail torq

Figure 6.15: Sum of commanded forces, effective torque due to them and tail torque

command of bi-rotor with tail appendage in horizontal movement for 4 seconds with

point-to-point learned the control policy. Blue and orange lines represent the total

force and effective torque due to rotors, respectively. Green line represents torque

command to tail.

3 2 1 0 1 2 3
p_x(m)

3

2

1

0

1

2

3

p_
y(

m
)

Uniformly distributed 100 point

Figure 6.16: 100 random starting points.

46

6.3 Case 2: Comparison of Controllers through 100 Randomly Started Episodes

In this experiment conventional and learning based controllers are compared on their

average performance through 100 episode runs. Here, the learning based controllers

are trained with vanilla training with pmax = 3. Both controllers are started from

randomly determined 100 points with and without tail. In Figure 6.16, these starting

points are presented. Positional errors are analyzed through those 100 episodes. In

order to compare close and far starting points we normalize positional error for each

episode between one and zero such that the episode started from one meter and ends

at zero.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Po

sit
io

n
Er

ro
r

Mean and Standard Deviation of Normalized Position Error Trajectories
Learning Based
Conventional

Figure 6.17: Mean and standard deviation of normalized position errors of 100

episodes under conventional and learning based controller without tail.

In Figure 6.17, normalized position errors are plotted for bi-rotor without tail under

both controllers. Here, the mean and standard deviation over episodes at each time

step is given. This result is an experimental proof of stability of learning based con-

troller, although mathematical analysis is very hard on a neural network policy. How-

ever, it can be concluded by comparing standard deviations that, the performance of

learning based controller is depending where to start when compared to conventional

case.

Similar plot for bi-rotor with tail appendage is given in Figure 6.18. Here, standard

deviation of position error for learning based controller is observed even higher than

47

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Po

sit
io

n
Er

ro
r

Mean and Standard Deviation of Normalized Position Error Trajectories
Learning Based
Conventional

Figure 6.18: Mean and standard deviation of normalized position errors of 100

episodes under conventional and learning based controller with tail.

the case without tail. Settling times of each case is given in Table 6.3 as quantitative

results. It can be concluded that the conventional controller is better when comparing

settling times.

Table 6.3: Mean settling time of conventional and learning based controllers with and

without tail

Controller %2 Settling Time(s)

Conventional without tail 1.61

Learning Based without tail 2.02

Conventional with tail 1.61

Learning Based with tail 1.86

6.4 Case 3: Curriculum Learning against Vanilla Case

In this experiment we show the advantage of curriculum strategy against vanilla train-

ing on bi-rotor without tail. The results of both methods given one by one.

48

6.4.1 Vanilla

In this setting, the agent is trained with pmax = 3. Rewards collected in each episode

during vanilla training is given in Figure 6.19. In this graph mean of total reward

collected in last 200 episode is plotted with its standard deviation. The time-step of

best policy chosen by algorithm is represented with orange dot. This policy is chosen

with the total performance of last 20 episodes during training.

0.0 0.2 0.4 0.6 0.8 1.0
timesteps 1e7

12500

10000

7500

5000

2500

0

2500

5000

m
ea

n
ep

iso
de

 re
wa

rd

mean episode reward during training

Figure 6.19: Mean reward of an episode collected by agent during vanilla training.

A test run for policy derived by vanilla training is given in Figure 6.20. The bi-

rotor is started 2m away in x-axis and its transition observed through positions and

velocities in horizontal and vertical directions for five seconds. This starting point

is selected because the motion in horizontal is restricted and challenging for bi-rotor

platform and vertical motion is straight forward. A significant steady state error can

be observed from the figure.

6.4.2 Curriculum

A curriculum learning is conducted with six stages that the parameters are listed in

Table 6.4.

Reward collected at each six training stage of curriculum learning is given in Figure

6.21. In this plot different stages represented with different colors, on time scale they

49

0 1 2 3 4 5
time (s)

2

1

0

1

2

Po
sit

io
n

(m
) a

nd
 v

el
oc

ity
 (m

/s
)

x-y position and velocity transition
pos_x
vel_x
pos_y
vel_y

Figure 6.20: Test run for policy learned with vanilla training

0.0 0.2 0.4 0.6 0.8 1.0
timesteps 1e7

10000

5000

0

5000

10000

m
ea

n
ep

iso
de

 re
wa

rd

mean episode reward during training

Figure 6.21: Mean reward collected by agent during curriculum training.

are going from 1 to 6. Black dots are representing the time-step that the network

is stored and transferred to the next stage. Episode reward at stage 1, it gets 10000

reward after some time-steps, since there is no reward loss caused by state transitions

and it learns to stay at the starting point. In other words, it gets very close to 25

reward for 400 time-steps. At higher stages, since the initial starting point of episodes

becomes away from goal, the total episode reward can be collected is decreased. Also,

50

Table 6.4: Stages of Curriculum Learning

Stage pmax time-steps

1 0 5e7

2 1 1.25e7

3 1.5 1.25e7

4 2 1.25e7

5 2.5 1e7

6 3 1e7

we cannot observe significant improvements at stages 2 to 6 probably because at each

stage the policy is generalized to higher stages by neural network. For example, at

stage 2 the policy function may learns to cover areas of stage 3 without trained on

them.

0 1 2 3 4 5
time (s)

4

3

2

1

0

1

2

Po
sit

io
n

(m
) a

nd
 v

el
oc

ity
 (m

/s
)

x-y position and velocity transition
pos_x
vel_x
pos_y
vel_y

Figure 6.22: Test run for policy learned with curriculum training

In Figure 6.22, a test run for the policy trained with curriculum is given. By compar-

ing with Figure 6.20, this method is more maneuverable -settles in less than 1s- and

has much less steady state error. The reason for this improvements may be that the

policy first learns to stabilize closer to the goal point and at next stages this behaviour

is preserved. However, the policy learned directly from a high state space in vanilla

51

case.

52

CHAPTER 7

CONCLUSIONS

In this thesis, control of a bi-rotor, a simplified 2D version of a quad-rotor, was consid-

ered. Two kinds of control strategy were studied. First, a control theoretic approach,

called conventional method, is employed in a cascaded manner inspired from control

methods of quad-rotor. Secondly, a Deep Reinforcement Learning agent is trained

to learn a non-linear control policy with trial-and-error. Moreover, the bi-rotor is

extended with a torque actuated tail appendage. The bi-rotor with and without tail

extension are examined under both controllers.

The conventional controller includes cascaded PD controllers in charge of attitude

and positional control. The controller parameters are optimized through a global

optimization method, Particle Swarm Optimization, and a local optimization method,

Nelder-Mead, for fine tuning. The cost to optimize is rewards defined for learning

collected in several episodes to give a fair comparison between learning agent. The

learning agent is trained on the simulation environment to stabilize bi-rotor by trial-

and-error with only using the reward signals that evaluates how good is the state at

the time. A neural network control policy is obtained that maps the current situation

of bi-rotor to what action it should apply. In a control theoretic manner, it is a highly

non-linear full state feedback mechanism.

The conventional controller requires knowledge on the robot dynamics and a con-

troller design process. On the other side, a simple reward definition can yield a good

control policy with Deep Reinforcement Learning. However, the learned policy is

not the far best policy instead it was a good local minimum over parameter space

of policy neural network. Furthermore, an action of learning policy can differ too

much with a small change in input state and also it may not since the neural network

53

expresses a highly non-linear model. Therefore, learning policy can be more maneu-

verable than conventional controller. On the other side, the conventional controller is

mathematically approved to be stable but the stability analysis of learning policy is

complicated. The convergence is also proved in conventional controller but the learn-

ing based policy yields a close point to goal in experiments leaving a steady state

error behind.

The tail extension provides a fast control chance on attitude. It also provides the

opportunity to control center of mass of robot and it can be used in benefit. However,

it comes with a complication in robot dynamics. Hence, it is hard to design and

implement a conventional controller but learning method does not suffer from that

point. It also brings a mechanical complexity for real world applications.

Different learning strategies are also examined in this work by changing the initial

state distribution of simulation episodes. It is shown that training under a curriculum

from simpler region to harder helps the learning agent to find a better policy. The

explanation is that since the parameter space of neural network policy is too high, the

curriculum lead it to a better local minimum.

54

REFERENCES

[1] A. Bitcraze, “Crazyflie 2.0,” 2016.

[2] J. Apkarian, “3d helicopter experiment manual,” Canada: Quanser Consulting,

1998.

[3] P. Pounds, R. Mahony, and P. Corke, “Modelling and control of a quad-rotor

robot,” in Proceedings Australasian Conference on Robotics and Automation

2006, Australian Robotics and Automation Association Inc., 2006.

[4] J. Kim, M.-S. Kang, and S. Park, “Accurate modeling and robust hovering con-

trol for a quad-rotor vtol aircraft,” in Selected papers from the 2nd International

Symposium on UAVs, Reno, Nevada, USA June 8–10, 2009, pp. 9–26, Springer,

2009.

[5] A. L. Salih, M. Moghavvemi, H. A. Mohamed, and K. S. Gaeid, “Flight pid

controller design for a uav quadrotor,” Scientific research and essays, vol. 5,

no. 23, pp. 3660–3667, 2010.

[6] M. D. Lepine, “Design of a personal aerial vehicle,” 2017.

[7] S. Tang and V. Kumar, “Autonomous flying,” Annual Review of Control,

Robotics, and Autonomous Systems, vol. 1, pp. 6.1–6.24, 2018.

[8] S. Bouabdallah and R. Siegwart, “Full control of a quadrotor,” in 2007 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 153–158, Ieee,

2007.

[9] T. Lee, M. Leok, and N. H. McClamroch, “Geometric tracking control of a

quadrotor uav on se (3),” in 49th IEEE conference on decision and control

(CDC), pp. 5420–5425, IEEE, 2010.

[10] H. Bou-Ammar, H. Voos, and W. Ertel, “Controller design for quadrotor uavs

using reinforcement learning,” in IEEE International Conference on Control

Applications (CCA), pp. 2130–2135, IEEE, 2010.

55

[11] S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine, and C. J. Tomlin, “Learning

quadrotor dynamics using neural network for flight control,” in 2016 IEEE 55th

Conference on Decision and Control (CDC), pp. 4653–4660, IEEE, 2016.

[12] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor with

reinforcement learning,” IEEE Robotics and Automation Letters, vol. 2, no. 4,

pp. 2096–2103, 2017.

[13] A. Molchanov, T. Chen, W. Hönig, J. A. Preiss, N. Ayanian, and G. S. Sukhatme,

“Sim-to-(multi)-real: Transfer of low-level robust control policies to multiple

quadrotors,” arXiv preprint arXiv:1903.04628, 2019.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-

mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-

level control through deep reinforcement learning,” Nature, vol. 518, no. 7540,

pp. 529–533, 2015.

[15] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and

M. Hutter, “Learning agile and dynamic motor skills for legged robots,” Science

Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[16] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal

policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[17] R. Briggs, J. Lee, M. Haberland, and S. Kim, “Tails in biomimetic design: Anal-

ysis, simulation, and experiment,” in IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS), pp. 1473–1480, IEEE, 2012.

[18] A. Demir, M. M. Ankaralı, J. P. Dyhr, K. A. Morgansen, T. L. Daniel, and N. J.

Cowan, “Inertial redirection of thrust forces for flight stabilization,” in Adaptive

Mobile Robotics, pp. 239–246, World Scientific, 2012.

[19] J. Zhao, T. Zhao, N. Xi, F. J. Cintrón, M. W. Mutka, and L. Xiao, “Controlling

aerial maneuvering of a miniature jumping robot using its tail,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pp. 3802–

3807, IEEE, 2013.

56

[20] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in

Proceedings of the 26th annual international conference on machine learning,

pp. 41–48, ACM, 2009.

[21] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient

methods for reinforcement learning with function approximation,” in Advances

in neural information processing systems, pp. 1057–1063, 2000.

[22] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in Intelligent

Robots and Systems, 2006 IEEE/RSJ International Conference on, pp. 2219–

2225, IEEE, 2006.

[23] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “De-

terministic policy gradient algorithms,” in ICML, 2014.

[24] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,

and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv

preprint arXiv:1509.02971, 2015.

[25] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region pol-

icy optimization,” in International conference on machine learning, pp. 1889–

1897, 2015.

[26] K. Kawaguchi, “Deep learning without poor local minima,” in Advances in neu-

ral information processing systems, pp. 586–594, 2016.

[27] K. Kawaguchi and L. P. Kaelbling, “Elimination of all bad local minima in deep

learning,” arXiv preprint arXiv:1901.00279, 2019.

[28] A. Graves, M. G. Bellemare, J. Menick, R. Munos, and K. Kavukcuoglu, “Au-

tomated curriculum learning for neural networks,” in Proceedings of the 34th

International Conference on Machine Learning-Volume 70, pp. 1311–1320,

JMLR. org, 2017.

[29] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel, “Re-

verse curriculum generation for reinforcement learning,” arXiv preprint

arXiv:1707.05300, 2017.

57

[30] D. Held, X. Geng, C. Florensa, and P. Abbeel, “Automatic goal generation for

reinforcement learning agents,” arXiv preprint arXiv:1705.06366, 2017.

[31] T. Matiisen, A. Oliver, T. Cohen, and J. Schulman, “Teacher-student curriculum

learning,” arXiv preprint arXiv:1707.00183, 2017.

[32] Q. Li, J. Qian, Z. Zhu, X. Bao, M. K. Helwa, and A. P. Schoellig, “Deep neural

networks for improved, impromptu trajectory tracking of quadrotors,” in IEEE

International Conference on Robotics and Automation (ICRA), pp. 5183–5189,

IEEE, 2017.

[33] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A. Bag-

nell, and M. Hebert, “Learning monocular reactive uav control in cluttered natu-

ral environments,” in IEEE International Conference on Robotics and Automa-

tion (ICRA), pp. 1765–1772, IEEE, 2013.

[34] S. Daftry, J. A. Bagnell, and M. Hebert, “Learning transferable policies for

monocular reactive mav control,” in International Symposium on Experimen-

tal Robotics, pp. 3–11, Springer, 2016.

[35] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a single real

image,” arXiv preprint arXiv:1611.04201, 2016.

[36] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep control policies

for autonomous aerial vehicles with mpc-guided policy search,” in IEEE Inter-

national Conference on Robotics and Automation (ICRA), pp. 528–535, IEEE,

2016.

[37] P. J. Huber, “Robust estimation of a location parameter,” in Breakthroughs in

statistics, pp. 492–518, Springer, 1992.

[38] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT

press, 2018.

[39] R. E. Bellman and S. E. Dreyfus, Applied dynamic programming, vol. 2050.

Princeton university press, 2015.

[40] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4,

pp. 279–292, 1992.

58

[41] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, J. Pineau, et al.,

“An introduction to deep reinforcement learning,” Foundations and Trends® in

Machine Learning, vol. 11, no. 3-4, pp. 219–354, 2018.

[42] S. M. Kakade, “A natural policy gradient,” in Advances in neural information

processing systems, pp. 1531–1538, 2002.

[43] E. Catto, “Box2d: A 2d physics engine for games,” 2011.

[44] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[45] A. Hill, A. Raffin, M. Ernestus, A. Gleave, R. Traore, P. Dhariwal,

C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman,

S. Sidor, and Y. Wu, “Stable baselines.” https://github.com/hill-a/

stable-baselines, 2018.

[46] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann

machines,” in Proceedings of the 27th international conference on machine

learning (ICML-10), pp. 807–814, 2010.

[47] R. Eberhart and J. Kennedy, “Particle swarm optimization,” in Proceedings of

the IEEE international conference on neural networks, vol. 4, pp. 1942–1948,

Citeseer, 1995.

[48] F. Gao and L. Han, “Implementing the nelder-mead simplex algorithm with

adaptive parameters,” Computational Optimization and Applications, vol. 51,

no. 1, pp. 259–277, 2012.

59

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF ABBREVIATIONS
	introduction
	Motivation and Problem Definition
	Contributions
	The Outline of the Thesis

	Related Work
	Deep Reinforcement Learning
	Curriculum Learning
	Multi-rotor Control

	Mathematical Background
	Bi-rotor Dynamics and Control
	Bi-rotor Representation as Markov Decision Process
	Reinforcement Learning
	Deep Reinforcement Learning
	Value-based Methods
	Policy Gradient Methods

	A Bi-rotor with Tail Appendage
	Dynamics of Tail Assisted Bi-rotor
	Time-discretization of System Dynamics

	Design of Simulation Environment
	Initial State Constraint
	Termination Criteria
	Reward Shaping
	Motor Model

	Control Approach
	Design of a Conventional Controller for Tail Appendage
	Deep Reinforcement Learning Strategies
	Policy Network Structure
	Vanilla Training
	Curriculum Training
	Point-to-point Training

	Experiments & Results
	Optimization of Conventional Control
	Case 1: Horizontal Step of Bi-rotor
	Conventional Control of Bi-rotor without Tail
	Conventional Control of Bi-rotor with Tail
	Learning Based Control of Bi-rotor without Tail
	Learning Based Control of Bi-rotor with Tail

	Case 2: Comparison of Controllers through 100 Randomly Started Episodes
	Case 3: Curriculum Learning against Vanilla Case
	Vanilla
	Curriculum

	Conclusions
	REFERENCES

