
A LINK DELAY COMPUTATION METHOD FOR THE QUALITY OF SERVICE
SUPPORT IN SOFTWARE DEFINED NETWORKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EFE BALO

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2019

Approval of the thesis:

A LINK DELAY COMPUTATION METHOD FOR THE QUALITY OF
SERVICE SUPPORT IN SOFTWARE DEFINED NETWORKS

submitted by EFE BALO in partial fulfillment of the requirements for the degree
of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Ece Güran Schmidt
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı
Electrical and Electronics Engineering, METU

Prof. Dr. Ece Güran Schmidt
Electrical and Electronics Engineering, METU

Prof. Dr. İlkay Ulusoy
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Ertan Onur
Computer Engineering, METU

Assist. Prof. Dr. Barbaros Preveze
Electrical and Electronics Engineering, Çankaya University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Efe Balo

Signature :

iv

ABSTRACT

A LINK DELAY COMPUTATION METHOD FOR THE QUALITY OF
SERVICE SUPPORT IN SOFTWARE DEFINED NETWORKS

Balo, Efe
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ece Güran Schmidt

September 2019, 60 pages

Packet switched networks cannot provide tight delay bounds that are required by cer-

tain types of applications despite facilitating high throughput. Therefore, delay mea-

surement techniques for packet-switched networks have always grabbed the attention

of the community to both utilize advantages of packet-switched networks and pro-

vide a realistic end to end delay prediction of packets. Software Defined Networking

(SDN) is a new paradigm of packet-switched networking which gathers management

functionality of network in a logically single controller. SDN is thought to eliminate

problems of legacy layered architecture by utilizing the control information coming

from all network layers. However, in SDN topology, control plane and data plane are

separated which implies control packets for network management flow in a different

channel than datapath channel. Moreover, the SDN controller has to have a decision

metric similar to legacy link-state computation approaches in order to calculate the

most efficient route in the topology. All of these indicate that link delay computation

in SDN needs new perspectives different than the legacy network to achieve its proper

operation.

v

In this thesis, we propose a link delay computation method for SDN topologies. For

this purpose, we construct a framework which uses standard OpenFlow messages

and computes the switch queuing delay in run-time. In this framework, we model

each queue in SDN switches as a G/G/1 queue and measure the ingress traffic with

OpenFlow meters. Then, we utilize meter statistics to obtain mean and variance of

interarrival times between packets. After finding the average state of the queues we

eventually infer the respective queuing delay from Little’s equation. We demonstrate

our method in three cases which are single flow per queue, multiple flows per queue

and a test application which uses our delay information to determine the fastest queue

of an SDN switch port. Also, we discuss the accuracy and the application limitations

of the proposed method.

Keywords: QoS, SDN, delay measurement, OpenFlow

vi

ÖZ

YAZILIM TABANLI AĞLARDA SERVİS KALİTESİ DESTEĞİ İÇİN
BAĞLANTI GECİKMESİ HESAPLANMASI

Balo, Efe
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ece Güran Schmidt

Eylül 2019 , 60 sayfa

Paket anahtarlamalı ağlar, yüksek verim elde etmeyi kolaylaştırmasına rağmen, be-

lirli uygulama türlerinin gerektirdiği sıkı gecikme sınırları sağlayamaz. Bu nedenle,

paket anahtarlamalı ağlar için gecikme ölçüm teknikleri, paket anahtarlamalı ağların

avantajlarını kullanmak ve paketlerin gerçekçi gecikme tahminini yapabilmek için her

zaman topluluğun dikkatini çekmiştir. Yazılım Tanımlı Ağlar (SDN), ağın yönetim iş-

levselliğini mantıksal olarak tekil bir denetleyicide toplayan paket anahtarlamalı ağ

paradigmasıdır. SDN’in tüm ağ katmanlarından gelen kontrol bilgilerini kullanarak

eski katmanlı mimari sorunlarını ortadan kaldırdığı düşünülmektedir. Bununla bir-

likte, SDN topolojisinde, kontrol düzlemi ve veri düzlemi ayrılır ve bu da ağ yönetimi

için kontrol paketlerini veri yolu kanalından farklı bir kanaldan kontrol eder. Dahası,

SDN denetleyicisi, topolojideki en verimli rotayı hesaplamak için eski link-durum

hesaplama yaklaşımlarına benzer bir karar ölçütüne sahip olmalıdır. Bunların tümü,

SDN’teki bağlantı gecikmesi hesaplamasının, düzgün çalışmasını sağlamak için eski

ağdan farklı yeni bakış açıları gerektirdiğini göstermektedir.

Bu tezde, SDN topolojileri için bir bağlantı gecikmesi hesaplama yöntemi öneriyoruz.

vii

Bu amaçla, standart OpenFlow mesajlarını kullanan ve çalışma sırasındaki anahtar

sırası gecikmesini hesaplayan bir çerçeve inşa ediyoruz. Bu mimaride, SDN anah-

tarlarındaki her bir sırayı G / G / 1 olarak modelliyoruz ve OpenFlow sayaçlarıyla

giriş trafiğini ölçüyoruz. Daha sonra, paketler arası geliş zamanlarının ortalama ve

varyansını elde etmek için sayaç istatistiklerini kullanıyoruz. Ortalama sıra durumunu

bulduktan sonra, Little denklemini kullanarak sıraya girme gecikmesine geçiş yapabi-

liyoruz. Yöntemimizi sıra başına tek akış, sıra başına çoklu akış ve SDN anahtarlama

noktasının en hızlı sırasını belirlemek için gecikme bilgilerimizi kullanan bir test uy-

gulaması olan üç durumda gösteriyoruz. Ayrıca, önerilen yöntemin doğruluğunu ve

uygulama sınırlamalarını tartışıyoruz.

Anahtar Kelimeler: Servis Kalitesi, Yazılım Tanımlı Ağlar, Gecikme Ölçme, OpenF-

low Protokolü

viii

to humanity

ix

ACKNOWLEDGMENTS

First of all, I would like to thank my supervisor Prof. Dr. Şenan Ece Güran Schmidt,

for her guidance throughout my Master’s period as well as her positive and tolerant

attitude towards me.

Secondly, I would like to thank my mum and dad whose support I always felt in my

life. I love them so much and have always wanted to be a son whom they were proud

of.

Thirdly, I am thankful to my brother Ege. He is such an energetic guy and helped me

to relieve my stress with his motivating words. I hope he will be very successful man

in his life like the words he tells for me.

Fourthly, I want to present my sincere thanks to my company ASELSAN A.Ş. and

my collegues that tolerate me during my Master’s period. I want to thank my man-

agers Ulaş Kılıçarslan and Tuğrul Ertekin for their tolerance towards me; my team

leaders Birol Keskin and Ahmet Emrah Demircan for their contributions to improve

my technical knowledge as well as their patience to my labor; my collegues Mehmet

Gökcan Bayrak, Yasin Çiftçi, Mehmet Bal, Ferhat Bozoklu, Erdem Çerkeşli, Kıvanç

Kerse and Ercan Gürsoy for helping me to tackle problems in job when I had to share

more time to my Master’s than to my company.

Fifthly, I would like to thank my friends Mehmet Çetinkaya, Kerem Eyice, Onur

Gülsem. We all performed similar stages of life around the similar ages in close

dates. When we look back in future days, I hope these would be the days which we

remember with a smile on our faces and would not remember any bad memories.

While going through tough times, it is very lucky to have friends who do not under-

stand your words but feel your emotions. I feel very honorable and lucky to spend my

Master’s period with you guys. I cannot wait to meet with you and drink beers after

this hurry finishes.

x

At this part I want to make mention of my colleague Kerem Parıldar who committed

suicide in November 19, 2017. I hope he has already found the peace which he had

always been searching for. I wish there had been the opportunity to ask this to him.

Finally, during my Master’s period lots of depressing moments were happened in

Turkey such as July 15, 2016 Turkish Military Coup Attempt or August 10, 2018

rise of exchange rate of USD to TRY from 5.25 to 7.21 in one day. Even in that

moments what whips me up was getting my Master’s degree from METU and opening

new horizons for my carrier. I want to thank myself and my desire to continue my

Master’s because being such a patient human knocked me out so much that it might

have harmed to my health. I feel very sorry for my friends who had to abandon their

Master’s and appreciate the ones who were able to finish their Master’s in spite of

such hard times. Hopefully, after finishing my Master’s, I am going to share more

valuable time to myself and my beloved ones and do not put anything in front of body

wellness and being healthy.

xi

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xii

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND . 7

2.1 Software Defined Networking (SDN) 7

2.2 OpenFlow . 10

2.3 SDN Controller . 15

2.4 Quality of Service (QoS) . 17

2.5 Delay Modeling in Computer Networks 18

2.6 SDN Topology Management and Delay Measurement Issues 20

2.7 Constraints and Performance Metrics in SDN Network Monitoring . . 22

3 RELATED WORK . 25

xii

4 PROPOSED LINK DELAY COMPUTATION METHOD FOR SDN 33

4.1 Sample Creation Mechanism . 34

4.2 Implemented Application for Delay Measurement 37

5 IMPLEMENTATION AND EVALUATION 39

5.1 Implementation . 39

5.2 Evaluation . 41

5.2.1 Single Flow . 41

5.2.2 Multiple Flows . 46

5.3 Best Queue Selector Application . 49

5.4 Sampling Period effect on Relative Percentage Correctness 52

6 CONCLUSION . 55

REFERENCES . 57

xiii

LIST OF TABLES

TABLES

Table 3.1 Summary of Delay Measurement Techniques in SDN 31

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 Example of SDN Architecture 9

Figure 2.2 Flow Table Example . 10

Figure 2.3 Match of a Flow Example . 11

Figure 2.4 OpenFlow Pipeline Processing Mechanism [1] 12

Figure 2.5 OpenFlow Statistics Packet . 13

Figure 2.6 OpenFlow Header [1] . 13

Figure 2.7 Multipart Request Header Structure [1] 13

Figure 2.8 Multipart Reply Header Structure [1] 14

Figure 2.9 Types of Multipart Messages [1] 14

Figure 2.10 Meter Statistics Request Structure [1] 14

Figure 2.11 Queue Statistics Request Structure [1] 15

Figure 2.12 Queue Statistics Response Structure [1] 15

Figure 2.13 Meter Statistics Response Structure [1] 16

Figure 2.14 RYU Northbound JSON Meter Statistics 17

Figure 2.15 RYU Northbound JSON Queue Statistics 17

Figure 4.1 Proposed Queueing Delay Measurement Methodology 34

xv

Figure 4.2 Sampling Mechanism . 35

Figure 4.3 Sample Creation Algorithm . 36

Figure 4.4 UML Diagram of Proposed Method 38

Figure 5.1 Testing Environment . 40

Figure 5.2 Test Topology . 42

Figure 5.3 Interarrival times between packets to the SDN Switch for Single

Flow Case . 43

Figure 5.4 Queuing Delay Time Series of Wireshark Data for Single Flow

Case . 44

Figure 5.5 Average Queueing Delay of Wireshark Data versus Computed

Queuing Delay of Proposed Application for Single Flow Case 44

Figure 5.6 Relative Percentage Correctness Graph of Single Flow Case . . . 45

Figure 5.7 Interarrival times between packets to the SDN Switch for Highly

Accurate Multiple Flow Case . 47

Figure 5.8 Queuing Delay Time Series of Wireshark Data for Highly Ac-

curate Multiple Flow Case . 48

Figure 5.9 Average Queueing Delay of Wireshark Data versus Estimated

Queuing Delay of Proposed Application for Highly Accurate Multiple

Flow Case . 48

Figure 5.10 Relative Percentage Graph of Highly Accurate Multiple Flow Case 49

Figure 5.11 Test Topology of Best Qos Selector Application 50

Figure 5.12 Best QoS Selector Application Iperf Measurements 51

Figure 5.13 Sampling Period effect on Relative Percentage Correctness . . . 53

xvi

LIST OF ABBREVIATIONS

ABBREVIATIONS

API Application Programming Interface

ARP Address Resolution Protocol

BSP Board Support Package

Dst Destination

Eth Ethernet

FCFS First Come First Served

HTTP Hyper Text Transfer Protocol

ICMP Internet Control Message Protocol

ID Identification

IP Internet Protocol

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

Kbps Kilobits per seconds

LAN Local Area Network

MAC Medium Access Control

Mbps Megabits per seconds

ms miliseconds

ns nanoseconds

NW Network

OfSoftSwitch13 Open Flow Software Switch 1.3

OS Operating System

OVS Open Virtual Switch

OVSDB Open Virtual Switch Database

xvii

QoS Quality of Service

Proto Protocol

REST Representational State Transfer

RYU RYU SDN Controller Framework

s seconds

SDN Software Defined Networking

SNMP Simple Network Management Protocol

SNR Signal to Noise Ratio

Src Source

TCP Trasnmission Control Protocol

ToS Type of Service

Tp Transport

UDP User Datagram Protocol

UML Unified Modelling Language

us microseconds

VLAN Virtual Local Area Network

WSGI Web Service Gateway Interface

xviii

CHAPTER 1

INTRODUCTION

Compared to circuit-switched networks, packet-switched networks have lots of ad-

vantages such as high utilization rates of bandwidth capacity, efficiency or scalability.

However, they do not provide delay guarantees. To this end, delay measurement is an

important tool to support delay sensitive applications [2]. Previous work on providing

delay guarantees in packet-switched networks [3] [4] [5] cannot guarantee an upper

bound delay when network is overloaded since nodes in the network only commu-

nicate with their counterpart equivalents. SDN [6] has brought a new point of view

to packet-switched networks in terms of their management. The information of the

whole network stack could be seen by a single entity (SDN controller) which removes

constraints of the layered structure. With the SDN technology, a controller can ob-

tain information from different network layers and use this information to facilitate

different network services such as computing the most efficient route in the network

not to impede the delivery of packets.

SDN can provide delay guarantees [7] [8] by obtaining real-time network statistics

and dynamically change the routes of packets if their routes are overloaded with traf-

fic. In order to provide delay guarantee in SDN networks, we model problem in two

parts which are monitoring delays of links and efficient routing. In the scope of this

thesis, we focus on monitoring delays of links which provides an alternative metric

for efficient routing of packets. Note that efficient routing not only depends on delay

but depends on other factors such as bandwidth or hop count. The advantages of our

proposal are that our computation method uses standardized protocol of SDN called

OpenFlow [1]; moreover, our architecture does not need to send redundant link delay

computation packets to the datapath channel.

1

When a packet passes through a node in the network, its delay is modeled in four

components which are processing, queuing, transmission and propagation. [9] All

of these components except queuing delay are deterministic and assumed not to be

changed during transmission of a packet. Queuing delay, however, has a stochastic

nature and it is mostly mentioned as average queuing delay. Average queuing delay

depends on the state of network with Little’s Law [10].

To this end, determining the average queuing delay on the links is the most signif-

icant component of providing service quality to the delay sensitive applications in

the packet-switched networks. Average queuing delay computation is not straight-

forward. One has to choose the correct Markovian model in order to compute the

average state of a queue. Moreover, the correctness of computation is an important

criterion. One can determine so loose bounds that they might result in inefficient route

calculation even there exists enough capacity for satisfactory service. Furthermore,

in SDN, the control plane and data plane are separated from each other. This requires

control packets flow from a separated channel. Hence, while measuring queue state

redundant traffic affecting data plane shall not be generated.

In legacy packet-switched networks, queuing delay computation is used in applica-

tions such as traffic management or load balancing [11]. However, in SDN, there

exists no straightforward protocol similar to OSPF [12] or standard link delay com-

putation technique which enables the controller to obtain states of links from SDN

switches. If states of links can be computed correctly in realtime, SDN becomes

more agile in terms of traffic management such that it can shape, limit or redirect

traffic when there exists bottleneck point in the network. Moreover, besides its tech-

nical advantages, efficient usage of resources influences all stakeholders; for example,

customers are satisfied thanks to high-quality service whereas service providers are

pleased due to reduced maintenance costs.

For the evaluation of queuing delay computation, the first performance metric is accu-

racy. In order to conclude about the accuracy of delay computation, one can observe

the difference between real packet delays and samples that queuing delay method

computes. Moreover, SDN has a single point (SDN controller) for managing the net-

work. Such an organization brings a burden on the controller and limit the scalability.

2

Hence, the second metric is the scalability of the method.

Existing solutions in the literature for queuing delay compuation on SDN controllers

mostly concentrate on generating redundant traffic from SDN controller which passes

through the path of both data plane and controller plane. However, such solutions con-

tradict with SDN’s separation of control and data planes. Moreover, some solutions

such as OpenNetMon [13] cannot provide accurate delay compuatation results.

On the one hand, some techniques are restricted to compute the delay of a certain type

of packets such as only TCP Flows [14]. Moreover, most type of delay computation

techniques require customization on network interfaces or they depend on the certain

type of hardware. [15]. However, the solution that we propose for queuing delay

computation utilizes standard statistics defined in OpenFlow 1.3 [1] standard. First,

we calculate the inter-arrival times between packets coming through a queue of a

port by measuring ingress traffic with OpenFlow meters [1]. We created a sampling

mechanism to find the mean and variance of the inter-arrival times through the queue.

Output rate has predefined mean and variance values thanks to the popular traffic

generator tool iPerf [16] that we use. Since we model queues as G/G/1 we utilize

Marchal’s method [17] to compute the state of the queue from mean and variances of

ingress and egress traffic. After finding the queue state, we reach queuing delay from

Little’s equation [10].

We use software tools to demonstrate our proposed solution. One of these tools is

Mininet [18] which enables to construct SDN network for simulation purposes. More-

over, we selected RYU as SDN Controller that utilizes OpenFlow 1.3 [1] interface and

provides a WSGI(Web Service Gateway Interface) API with JSON(JavaScript Object

Notation) format to extract obtained OpenFlow data such as meter and queue statis-

tics. We realized our solution as a software application that communicates with RYU

controller through WSGI interface and extracts queuing delay from meter statistics.

After simulation runs, we collect two types of data which are real-time Wireshark cap-

tures that contain time tags when a packet passes from an interface of SDN switch and

data from our proposed solution periodically updating the computed average queuing

delay. To demonstrate the accuracy of our method, we compare two sets of data.

Moreover, limitation is determined by the amount of time passes between controller

3

requests statistics from SDN switch and obtains reply of it. This depends on the band-

width of control links between the SDN controller and SDN switches. On the other

hand, the controller has to satisfy a minimum sampling frequency which depends on

the bandwidth of data plane traffic links. In order not to miss samples between pack-

ets, the sampling rate has to exceed the maximum packet per unit time rate that can

pass from a data plane interface.

While performing simulations we have encountered various issues. Firstly, the sim-

ulation tools that we use provide timing sensitivity in microseconds scale. Such

timing scale is not enough to demonstrate real networks [19]. Therefore we used

1 Mbps links to prove our method which guarantees a maximum of 1 bit passes in 1

us. Moreover, comparison of Wireshark captures and simulation data required tim-

ing synchronization for comparison. We used the time of Operating System which

provides synchronous time for two distinct components inherently. Furthermore, in

some scenarios, we observed inconsistent outcomes. These inconsistent outcomes

could not be solved but they depend on the instantaneous performance of the com-

puter which they operate on.

Results of our implementation are promising and our proposed method is open to im-

provements. We evaluate our method in three cases which are single flow, multiple

flows and a test application Best QoS Selector that utilizes our calculated queuing

delay from statistics to decide which queue of a port has the lowest delay. For the sin-

gle flow case our application measures queuing delay with high accuracy. However,

our solution has scalability problems on our simulation platform. This is because

of the bandwidth limitation of southbound links between SDN controller and SDN

switches. Bandwidths of these links limit the maximum number of queues queried

in a minimum sampling period of statistics. Moreover, for multiple flow case, our

method computes link delay correctly after an adaptation period. During adaptation

period, variance of inter arrival traffic is high and we cannot find true mean value.

When high variance component of inter arrival time becomes close to zero and true

mean value is found our method becomes stable. Furthermore, we evaluate test ap-

plication Best Qos Selector from jitter measurements of iPerf [16] data generation

application.

4

Thesis from this point is organized as follows. In chapter 2, we introduce key con-

cepts that are used in the explanation of our solution. Moreover, we define perfor-

mance metrics which will be used in the evaluation of our method. In chapter 3, we

represent literature contributions about queuing delay monitoring in SDN networks.

In chapter 4, we present our contribution; that is, our framework for collecting Open-

Flow statistics as well as the model that we use for inferring queue delay from statis-

tics. In chapter 5, we first introduce the emulation tools that we use for demonstrating

our solution. Then, we present the results of experiments which are evaluated in terms

of evaluation criteria. In chapter 6 we conclude our approach and mention the future

work for improving this study.

5

6

CHAPTER 2

BACKGROUND

This chapter explains the necessary concepts, glossary terms, problems and perfor-

mance metrics which are used in further chapters. In the Software Defined Network-

ing (SDN) section, we explain the concept of SDN and elaborate differences from the

traditional layered packet-switched networks. In the OpenFlow section, we explain

the OpenFlow protocol. It is a defacto standard protocol used in SDN to exchange

network information between SDN entities. Since OpenFlow consists of abundant

message types, we only explain messages which we used in testing our architecture.

In Quality of Service section, we explain a glossary term Quality of Service (QoS). In

Delay Modelling in Computer Networks section, we explain four components of node

delay in a computer network. Before finishing this chapter we indicate problems en-

countered in SDN delay measurement. Finally, we define performance metrics which

are used in the evaluation of our framework architecture.

2.1 Software Defined Networking (SDN)

In traditional computer networks, there exists a concept called five-layered stack de-

sign [9] where each layer has its own functionality. The most top layer is layer five

or called the application layer, which produces data exchanged between hosts. Layer

four is the transport layer. It provides a unique interface to applications in end hosts.

The responsibilities of this layer extend to reordering packets at the receiving end

for delivering application layer data correct order or controlling the flow of applica-

tion data not to bottleneck communication. Most popular transport layer protocols

are User Datagram Protocol (UDP) and Transmission Control Protocol (TCP). Layer

7

three is the network layer. The purpose of the network layer is to identify network

devices from their unique network numbers and route packets properly. Internet Pro-

tocol version 4 (IPv4) is commonly agreed on protocol for exchanging data in the

network layer. Routers are network devices which provide service in the network

layer. Layer two is the data link layer. This layer provides service for connecting two

machines standing in the same medium. A popular protocol for this layer is Ethernet.

Ethernet switches manage the connection between two nodes in the same medium.

Finally, the lowest layer is the physical layer. It is responsible for the transportation

of packets in the medium.

In packet-switched networks, multiple packets are required to be forwarded through

the same port of router or ethernet switch simultaneously. If input traffic rate exceeds

output line rate then packets need to be buffered, or queued, to get service when the

link is available. Organization of queue determines the performance of the network

towards services. For example, First Come First Serve (FCFS) does not have any

performance differentiation; however, priority queuing forwards an important packet

prior to other waiting packets in a node. Therefore, prioritized packets are not in-

fluenced by regular traffic which increases the performance of a network in terms of

given service to important applications.

Each layer in traditional networks is responsible for giving service to its upper layers

and takes service from lower layers. However, layer in a node can only communicate

with its corresponding layer of a node in the network. Because of this fact, in tra-

ditional computer networks there exist two types of packets which are datapath and

control packets. Datapath packets encapsulate valuable information coming from the

most top layer which is converted mostly to audio, video or other valuable signals at

the end hosts. On the other hand, control packets are transferred between nodes to ex-

change their states and maintain network operation. Since each layer are only allowed

to interact with its equivalent, each layer has a separate control mechanism. After re-

ceiving states of other nodes, a network element such as ethernet switch or router

decides how to take action on packets on its own. Therefore the logic of network is

dispersed to every node on the network.

Software Defined Networking (SDN) [6] concept has emerged in order to unify the

8

dispersed control logic of the network. It allows control packets transmitted from a

different channel rather than transmitting them from the same channel with datapath

packets. It takes control plane from network elements and puts control plane to a

logically single controller which undertakes control functionality of network by its

own. In SDN there exists no different hardware for network layers. All hardware

of traditional networks such as ethernet switch and routers are put in a single SDN

switch. SDN Controller can communicate with SDN switches from its southbound

API; on the other hand, network admins or user applications can intervene to control

of the network from northbound API of SDN controller. Note that a controller in SDN

is logically single which implies that there might be more than one physical device

handling the controller functionalities. However, they have to appear logically as

single to counterparts they serve. In Figure 2.1 an example of SDN model is shown.

In the next section, we are going to elaborate the standard (OpenFlow) which not only

defines Southbound API communication between SDN controller and SDN switch

but also processing pipeline of SDN switch for packet forwarding.

Figure 2.1: Example of SDN Architecture

9

2.2 OpenFlow

In order to have a common southbound communication in SDN, OpenFlow [20] was

introduced by ONF [6]. OpenFlow is a standard in which both OpenFlow pipeline

processing and messaging protocol are explained. Before explaining OpenFlow, let

us mention glossary terms used in the definition of it. A flow is glossary term which is

used in order to identify processing rules of SDN switch. A flow table is a collection

of flows which SDN switch looks at when processing a packet. An SDN controller

controls SDN switches by modifying flow tables of them. Each flow consists of three

parts which are priority, match and actions. A visual model of a flow is given in

Figure 2.2. Priority determines the place of a flow in the flow table. The highest

priority indicates that it is the first flow to be checked when processing a packet for

that table. Furthermore, match determines which sections of packet headers to check

while processing and their predetermined values. An example is given in Figure 2.3.

One can specify a match as ethernet type equals 2048 and network protocol equals

17. This indicates that when processing a packet for this flow the searched sections of

a packet will be ethernet type and network protocol. Their values have to match with

2048 and 17 respectively. Multiple match definitions for a flow increase precision

which provides deeper flow differentiation. Moreover, action determines the behavior

of SDN Switch when a packet matches with that flow. For example, the packet could

be forwarded to the next flow tables if action part of a flow consists go to table type

of action. Multiple action definition for a flow is allowed in OpenFlow. Also, actions

are allowed to be forwarded between flow tables since they are implemented after

processing finishes. Matching sections for a packet and action types that SDN switch

can implement are given more detail in standards OpenFlow 1.0 [20] and Openflow

1.3 [1].

Figure 2.2: Flow Table Example

10

Figure 2.3: Match of a Flow Example

OpenFlow pipeline processing defines how to process packets in SDN switches. In

Figure 2.4 pipeline processing mechanism is shown. When a packet first enters Open-

Flow processing pipeline, an action set is automatically constructed for it. Processing

in OpenFlow pipeline starts with the table which has the lowest identification (ID 0).

During processing, a packet is passed from low numbered to high numbered flow ta-

bles and its action set is filled with actions of matching flows. Forwarding a packet to

a flow table which has a lower table ID than current table ID is not allowed. Finally,

if there exist no tables left to be forwarded, the action set is executed for that packet.

After a packet enters OpenFlow processing pipeline from table 0, if it does not match

with any flows then it is dropped. On the other hand, in SDN switch, one has to define

a flow with send to controller action for packets needed to be forwarded to SDN Con-

troller. This creates a packet in message sent to SDN Controller. Depending on

the implementation of SDN switch, packet in might consist either whole packet

or a small description defining header fields of the packet as well as buffer id where

that packet is hosted in SDN Switch. If the controller wants an action applied to this

packet, such as forwarded from an output port or dropped, it informs SDN switch with

a message having the same descriptions values with the packet in message. An

SDN controller can create, delete or modify a flow entry of SDN switch. Moreover,

in OpenFlow, it is allowed to define idle time and hard time for flows to be removed

automatically without the intervention of SDN Controller. If a flow is removed then

flow removed message, sent by SDN switch informs the SDN Controller.

The messaging protocol of OpenFlow provides a common language by which SDN

switches and SDN controller can exchange information. In the scope of this thesis,

we are interested in Multipart type OpenFlow messages whose header sections related

to OpenFlow are summarized in Figure 2.5. OpenFlow header is common for all type

of messages. Then comes Multipart header. An SDN controller can query statis-

11

Figure 2.4: OpenFlow Pipeline Processing Mechanism [1]

tics by sending multipart request message; on the other hand, SDN Switch

replies this request message with a multipart reply message. Multipart type

messages further have a header to indicate their payload type which could be meter,

queue, table or port statistics. Meter is an ingress traffic counting mechanism intro-

duced in OpenFlow 1.3 [1]. It counts packets which are directed to meter table (itself)

by the OpenFlow actions in terms of bytes and packet counts. In an OpenFlow switch,

firstly, a meter is defined via OpenFlow protocol then, a flow is bound to the meter by

defining METER action in action list of a flow. All type of statistics of OpenFlow in-

cluding meter could be obtained with Multipart request/reply messaging mechanism

between SDN Controller and SDN Switch.

All OpenFlow messages start with an OpenFlow header given in Figure 2.6. In this

header, version represents which version of OpenFlow is used. Moreover, type

represents the content of rest of message. length indicates total size of OpenFlow

message including OpenFlow header. Finally, xid represents the transaction number.

This number is important since when switch constructs a reply message for request,

it indicates which query number is it responding with the transaction number.

Multipart type of messages were introduced in OpenFlow 1.3 standard [1] instead of

statistics type in OpenFlow 1.0 standard [20]. Headers of multipart request

and multipart response are given in figures 2.7 and 2.8 respectively. In these

12

Figure 2.5: OpenFlow Statistics Packet

Figure 2.6: OpenFlow Header [1]

headers, type section indicates which multipart type message is sent. The types are

given in figure 2.9. Note that type number for queue statistics is 5 whereas it is 9

for meter statistics. Next field is flags. In the standard there exists only one flag

which is send more. Controller can query more than one type of statistics with same

xid of Openflow header if it sets send more flag. By the same mechanism, switch

can respond with same OpenFlow xid by setting send more flag in its multipart

reply headers.

Figure 2.7: Multipart Request Header Structure [1]

13

Figure 2.8: Multipart Reply Header Structure [1]

Figure 2.9: Types of Multipart Messages [1]

Multipart request messages that we are interested in are Meter and Queue messages.

For querying meter statistics meter type multipart request message is shown in figure

2.10. The only parameter which we need to construct this message is meter id.

Moreover, we ask queue statistics with queue type multipart request message. In

figure 2.11 body of queue type multipart request is shown. In order to ask the statistics

of a queue, one has to provide port id and queue id in the body of the message.

Figure 2.10: Meter Statistics Request Structure [1]

On the other hand, messages that an SDN switch responds to multipart request

are multipart reply. Type in the header of reply message indicates the body

of reply to the controller. Types of replies are the same with requests and seen in

Figure 2.9. Body of the queue statistics reply could be seen in Figure 2.12. In this

14

Figure 2.11: Queue Statistics Request Structure [1]

Figure, available parameters for queue statistics are given. duration_sec and

duration_nanosec is used to calculate total time passed since queue was first in-

troduced to give service whose formula is duration_sec + duration_nanosec∗10−9.

Furthermore, Meter statistics reply body is given in Figure 2.13. In meter statistics,

one can infer how many different flows, bytes and packets were associated with meter

since it was first introduced to the system. Duration mechanism is same with queue

statistics. One can create a meter with a metermod message in OpenFlow 1.3 [1].

However, queue creation is out of the scope of OpenFlow [20] [1]. Queues are cre-

ated via protocols such as Ofconfig [6] or vendor-specific mechanisms such as serial

consoles or SNMP.

In the next section, we focus on Northbound communication and SDN Controller and

RYU SDN Controller which we use in our testing setup.

Figure 2.12: Queue Statistics Response Structure [1]

2.3 SDN Controller

In this section, we explain the SDN Controller and its Northbound operations by giv-

ing examples from RYU SDN Framework [21]. In SDN topology, SDN Controller

provides an abstraction between SDN switches and external entities. Therefore, in

15

Figure 2.13: Meter Statistics Response Structure [1]

order to send message to SDN switches, an external entity has to communicate them

over the SDN controller. For this purpose SDN controllers provide two different in-

terfaces. First one is a northbound network interface. This interface does not have

a common protocol and it depends on the SDN controller. From this interface SDN

controller and external entity exchange information without having a dependency re-

lation. On the other hand, the second controller interface is module callback inter-

face. For this interface, a module integrated to the SDN controller is programmed

and it cannot exist without the SDN controller. Module subscribes to events of the

controller and it is notified when subscribed event occurs. Event types depend on

the controller and they are not allowed to be masked or closed by the external entity

during runtime.

Our SDN controller RYU provides common Web Service Gateway Interface (WSGI)

for its components that want to exchange data from Northbound interface with ex-

ternal entities. From this northbound API, OpenFlow messages are formatted in the

Javascript Object Notation (JSON) format. The format of meter statistics and queue

statistics in the JSON format is given in Figures 2.14 and 2.15 respectively. Note that

this format has all required sections parallel with OpenFlow Multipart Reply Statis-

tics. Moreover, RYU has built-in function callback modules for handling events. In

our simulations, we use two built-in modules which are OpenFlow module and Rout-

ing module. OpenFlow module works as an adapter module between an external

entity and SDN switches. When an external entity wants to create an OpenFlow mes-

sage, it communicates with the OpenFlow module of SDN RYU Controller. Then,

OpenFlow module of RYU converts message of the external entity to OpenFlow mes-

16

sage and sends it to the SDN Switch. OpenFlow asynchronous events are not sub-

scribed in this module; therefore, external entity is not notified when asynchronous

of OpenFlow events occur (asynchronous events will be explained in SDN Topology

Management and Delay Measurement Issues section). Moreover, the routing module

operates an SDN switch as a legacy router whose router functionality is conducted

with static routes. For this operation, IP addresses, network masks of ports as well as

static routes of the SDN switch have to be provided to routing module.

In the next section, we elaborate a commonly used term in packet-switched networks

for indicating the performance of the network.

Figure 2.14: RYU Northbound JSON Meter Statistics

Figure 2.15: RYU Northbound JSON Queue Statistics

2.4 Quality of Service (QoS)

Quality of Service (QoS) in computer networks is used for the notion that is "serving

unlimited demands with limited resources". Limited resources could be processing

power, bandwidth, system capacity whereas unlimited demands might be low delay,

high throughput, low cost and high efficiency. Since full satisfaction rate is impossi-

ble, the network has to prioritize some packets according to needs of it. For example,

services such as telephony or video need a delay-sensitive link quality where com-

panies are willing to pay more money for a qualitative videoconferencing experience

that saves time and money for them [22]. Therefore, if the delay is an important

parameter then priority scheduling of delay-sensitive packets in the network is more

important than bandwidth assigned to them. On the other hand, if bandwidth is criti-

cal then how much packet is transferred per amount of time is a performance criterion.

Community puts emphasis on works [23] [24] [25] which increase end to end delay

performance of a packet. It is the amount of time that a packet spends on the network

17

before reaching its destination. Furthermore, one of the issues that packet-switched

networks face is that they cannot guarantee packets go out from a certain port in a

specific time [26]. Also, QoS environment of network changes dynamically. Static

approaches fail when providing service for such environment [27]. Therefore dynam-

ically measuring the delay of packets in the network has valuable input for QoS man-

agement of delay critical applications. Delay measurement is a complex issue since

all layers in the network have their own control mechanism. On the other hand, SDN

enables to improve legacy QoS approaches since control plane information could be

gathered from whole layers of network in SDN. By this way, SDN networks can

both provide prioritized scheduling mechanism as well as high bandwidth utilization

which creates efficient networks.

In the next section, we are going to define the model of delay in legacy packet-

switched networks. We also use this model as reference in our SDN topology.

2.5 Delay Modeling in Computer Networks

While packets pass from a node, they have entrance and leaving times. Time differ-

ence between the first bit of packet is introduced to a node and last bit leaves from it is

node delay of a packet. This node delay is modeled in four components. [9] The first

component is the processing delay. Processing delay is the amount of time passes un-

til that packet is switched to its egress port. [9] This type of delay is very small thanks

to hardware; therefore often neglected when calculating total delay. Moreover, prop-

agation delay is the amount of time needed for an electrical wave traveling in a media

reaching its destination. [9] It is related to the distance between transmitting and re-

ceiving ends also electromagnetic properties of the medium in which electrical wave

travels. Propagation delay is assumed to be constant during the transmission period.

Furthermore, the transmission delay is the time necessary for a node to encode all bits

of a packet. [9] This delay depends on the length of the packets and bandwidth of the

interface. Lastly, the fourth delay which packet is exposed in a node is queueing de-

lay. If two or more packets are switched to the same egress port simultaneously then

one of them has to wait in a queue before it gets service. Amount of time a packet

waits in a queue is the queuing delay. [9]

18

Additional to node delay in SDN, packets which are forwarded to and taken back

from SDN Controller add additional burden on latency. Since multiple packets are

forwarded to one single node, this will add additional controller processing queu-

ing delay for packets of which controller is involved in the processing chain. [28]

This model becomes significant when traffic between switch and controller is in-

tense. However, controller delay could be avoided if looser match fields are defined

for flows of background traffic.

Since queuing is modeled as a stochastic process that is, it depends on probabilistic

arrival and departure rates, when referring to queueing delay one has to know it is

the average queueing delay. Average queuing delay depends on average system state

that is defined by the number of packets in the system by Little’s Law [10] given in

equation 21. In this equation L is defined as average system state, W is given as

average delay and λ is the mean packet arrival rate to the queue.

L = λ ·W (21)

Defining a queueing system has a special notation called Kendall’s notation [29]. An

example to Kendall’s notation is A/B/s. In this notation, "A" defines the shape of ar-

rival, "B" defines the shape of departure, "s" defines the number of serving capability

in the queuing system. Some letters have special meaning indicating distribution such

as "M" indicates memoryless distribution and "G" or "GI" indicates general distribu-

tion. Average system state equation is extracted from shapes of arrival and departure

processes. Average system state equation for G/G/1 queue has an approximated equa-

tion given in 22 proposed by Marchal [17]. For this equation λ is average arrival rate

whose unit is packets per seconds (or just s−1), 1/λ is the average interarrival time

between packets whose unit is seconds s and σ2
a is the variance of interarrival time.

Furthermore, similarly µ is defined as average service rate, 1/µ is the average de-

parture time between packets and σ2
s is the variance of average service rate. ρ is the

utilization of the queueing system which is defined in equation 23. C2
a is defined in

equation 24 as well as C2
s is defined in equation 25. By using Lq one can extract wait

19

time in the queue Wq by Little’s equation [10] 21.

Lq ≈
ρ2(1 + C2

s)(C2
a + ρ2C2

s)

2(1 − ρ)(1 + ρ2C2
s)

(22)

ρ =
λ

µ
(23)

C2
a =

σ2
a

(1/λ)2
(24)

C2
s =

σ2
s

(1/µ)2
(25)

2.6 SDN Topology Management and Delay Measurement Issues

In traditional networks, in order to provide low delay as a service quality, network

nodes have to schedule packets of delay-sensitive service with a prioritized fashion.

Such architecture requires custom implementation on switching hardware. Moreover,

in traditional networks, there exist messaging protocols such as RIP [30] or OSPF

[12] in the control plane to build network topology. These protocols share their own

messages which indicate the state of links in the network. With these messages, a

network node could construct a topology view of the network by its side and calculate

the shortest path or the most efficient path to the destination. However, in SDN, the

control plane is separated from the data plane. This separation brings some problems

to SDN in terms of topology management.

Firstly, in OpenFlow, there exists a limited set of asynchronous messages between the

controller and the switches. In OpenFlow protocol, four types of asynchronous mes-

sages initiated by switches are defined. These are packet in, flow removal,

port status and error messages. Packet in is a type of message which

indicates that a packet, matching with a flow that has an action type send to the con-

troller is received. The controller can respond to this packet in order to drop or allow

it from an out port. Flow removal indicates that a flow has been removed and it is

20

no more accepted as a valid flow. Port status indicates a change in the status of

a port. It might be added, shutdown or modified by the user or because of a problem

in the network. Error indicates there occurred a problem in the processing of re-

ceived controller packets. [1] These messages have limited span on network situations

which happens simultaneously most of the time. For example, a network load change

on some port could not be informed to the controller. Thus, the SDN controller has

to poll every node in the network and determine whether the link state is enough to

handle capacity. Such behavior brings a problem that dynamic behavior of legacy

networks in terms of rerouting could not be achieved standardly in SDN unless there

exists a network monitoring module in an SDN controller.

Secondly, in OpenFlow, there exist no standard topology building mechanisms. When

SDN switches contact with SDN controller for the first time, they send Hello pack-

ets and receive Hello message from SDN controller. After exchanging symmetrical

Hello packets, SDN controller can send features request message to learn

what features are implemented on SDN switch such as how many ports it has or how

many queues created for that switch. Neither features reply nor Hello mes-

sages coming from switch contain how SDN switches are organized in a network.

Which port of SDN switches is connected to where is understood from the behavior.

For example, SDN switch floods ARP query packets which have an unknown destina-

tion. SDN controller receives the same packet again from adjacent SDN switch with

a packet in message. For second SDN switch controller could understand from

which port SDN Switch has received the packet (because it is defined in packet in

message of OpenFlow); however, first SDN switch could not indicate controller from

which port it outputs the packet. Although there exist link discovery and topology

viewer mechanism in SDN controllers, most of them either do not build a complete

view that is which IP address or MAC address is behind which port or does not pro-

vide up to date view of topology. Therefore, most of the time routing is done by flood-

ing the packet and waiting for a return link to establish. In order not to be affected

from controller processing delay, some SDN controller inserts a flow automatically

after it learns a certain MAC address is behind of its port. This leads to static routing

to destination in practical since alternative paths could not be discovered for that flow.

In the next section, we define performance metrics for evaluating our proposed archi-

21

tecture.

2.7 Constraints and Performance Metrics in SDN Network Monitoring

The first constraint is the average delay definition of the system. Since queuing delay

is a stochastic process, one cannot define an instantaneous delay for packets. This

average delay definition has to represent the average performance of the system which

is the concern of controller in terms of performance metrics. Furthermore, since the

topology of SDN is controlled by a single controller and controllers initiate link-state

computation by polling, delay computation techniques would have an upper bound in

terms of the number of link-state that it can compute. Also, in order not to miss any

sample one has to define a minimum polling rate for a switch.

Until this point, we indicated that a delay computation technique has to be accurate,

scalable.

Next is the definition of performance metrics:

Relative Percentage Correctness:

We define the relative correctness of the delay as in equation 26. In this equation, m

is the sample space that holds computed delay and r is the sample space that holds

average real-time delay measurements. Since computed delay and real-time delay

measurements are not obtained at the same time, computed delay data have to be

mapped to closest real-time delay measurements. That is the reason why t1 and t2

values are different. Moreover, t1 has to be greater (later in time) than t2. Mean of

relative correctness function has to be close to 100% to have accurate results.

a(t1) =

(1 − |m(t1)−r(t2)|
m(t1)

) ∗ 100 , if 0 ≤ a(t1) ≤ 100

0 , otherwise
(26)

Scalability:

We define scalability s in equation 27 of the network monitoring system as the max-

imum number of links that a controller can monitor. For our system explained in

22

the next chapters this is limited by meter id size of OpenFlow Protocol [1] and the

maximum number of queries n that a controller can send by polling. Query number

depends on polling period of switch t_sampling, size of packets exchanged between

for query and response lquery + lresponse as well as link rate C between controller and

switch. This equation is defined in 28. Maximum possible polling period of a switch,

given in equation 29, depends on the minimum length of a packet that can pass from

datapath lmin and bandwidth of datapath B.

s = min(meter_id, n) (27)

n =
t_sampling

((lquery+lresponse)

C
)

(28)

t_sampling < t_maxswitch =
lmin

B
(29)

23

24

CHAPTER 3

RELATED WORK

In this chapter, we present selected delay measurement solutions in literature for pro-

viding QoS in SDN. Some delay measurement methods are declared implicitly in

papers while others have an explicit definition of their used techniques. The reason

behind the implicit declaration of measurement techniques in papers is that emphasis

is not put on delay measurement. In those papers, authors use delay measurement as

an input to QoS evaluation. Delay measurement is an important metric for service

differentiation in SDN. At the end of this section, we conclude the results of literature

papers in a table to provide a summary of related works.

SDN allows installing QoS policies in the form of applications that run on the SDN

controller. In [31] authors represent their QoS architecture, OpenQos which runs the

shortest path algorithm with the real-time statistics that can be collected from the SDN

switches. Their contribution has two main components which are route management

and route calculation. Route management module checks whether there exists con-

gestion by utilizing Feature Request message defined in OpenFlow 1.0 standard [20].

According to congestion, the cost of each link is determined. Route calculation mod-

ule collects real-time cost of links and applies constrained shortest path algorithm to

possible routes of flow after a packet arrives in the controller. The paper presents

test results collected from a real network which consists of three SDN switches and a

controller. Nodes are connected with a triangular topology to provide at least two dif-

ferent path options for forwarding. The main performance metric is the SNR values

of flows. However, the SNR values do not provide how many bits are transferred dur-

ing communication instead they show media capacity in order to transfer how much

bits in one symbol. There is no information about the number of bits transferred and

25

the average data rate during the test. Moreover, authors should clarify how congestion

data is obtained from the controller. Inference of congestion information is given so

implicitly that one interrogates the credibility of this contribution.

The work presented in [32] brings a complete top-down approach to service differen-

tiation in SDN. The authors express their motivation as making flow centric, dynamic,

scalable and easily deployable QoS structure which interacts both with network ad-

ministrators and network elements such as controllers and SDN switches. They define

their structure in three planes and each plane is further divided into smaller parts hav-

ing smaller duties while the whole system is in service.

The first plane in this model is the data plane. Data plane constituted from switches

and their interfaces communicating with SDN controllers which are named as south-

bound APIs. The most important southbound API is OpenFlow which mainly led

to the concept of SDN. Moreover, there exists other southbound APIs to enrich the

feature set of network nodes. The second plane is the control plane. Besides hav-

ing a complete view of network resources, the controller has four extra modules in

this topology. They are admission control, routing, device tracker, statistics collec-

tor and rule database. Admission control makes the decision whether to accept new

flow to a system by checking resources from southbound API. Routing module con-

stantly tracks routes of flows defined in the rule database. It utilizes device tracker

and statistics collector modules. Device tracker simply tracks switches in the network.

Statistics collector collects the information available from network nodes. Finally, the

rule database keeps the rules which will be enforced on nodes of the interconnected

system.

The main contribution of this QoS scheme is the third plane which is the management

plane. First two planes are almost standard in SDN concept; however, management

plane provides a semi-automatic control layer between network administrators and

SDN controller. Semi-automatic means that in some situations program directs the

problem to human but it also has an automatic block which can handle variations in

the network. This block consists of two modules and they are further divided in terms

of their duties. Note that management plane elements interact with four control plane

components to have their job done and a special northbound API is implemented to

26

establish connectivity between two planes.

The first module of the management plane is policy validator. The main response of

it is to ensure that everything is normal in the network. Policy validator is further

divided into three subparts which are traffic monitor, policy checker and event han-

dler. Traffic monitor observes the network and feeds information to policy checker.

Policy checker then compares these values with database and calls event handler if

there occurs a violation. Event handler then evaluates message coming from policy

checker. It further directs the request to second management plane module which

is policy enforcer. Policy enforcer module has four subparts. While the topology

manager keeps track of the network devices, the resource manager checks network

resources. Policy adaptation determines the type of violation and resource provision-

ing takes action according to violation type. This topology is tested in terms of link

failure and flow admission. In order to test it, designers have built OVS to five differ-

ent computers. They are interconnected with GRE tunnels and Floodlight controller

is chosen as SDN controller. Overall I think this architecture is satisfying but compli-

cated to implement however such a complete approach might be preferred for those

who construct their own system.

Another perspective to service differentiation in SDN mechanism presented in [33].

In this model, authors extend traditional controller datapath model and bring a con-

cept which exchanges QoS information between controllers. Each controller manages

one domain whose responsibilities are topology management, resource management

and route calculation. Also, authors claim that a controller should support flow man-

agement, queue management, call admission and traffic policy enforcement mecha-

nisms for increasing the functionality. There exists quality of server levels in each do-

main and controllers calculate paths iteratively starting from the most prior QoS level.

Intra domain information is gathered from modules which interact with southbound

API. On the other hand, inter-domain statistics are shared between controllers and

this is the point where distributed architectures for QoS provisioning is introduced.

The first controller to controller architecture is named as fully distributed model. In

this model, controllers share information between them directly. The second architec-

ture is hierarchically distributed model in which controllers have hierarchy and they

only share information with their hierarchical super controllers. This architecture re-

27

sembles the layered architecture of traditional networks in which one layer needs to

utilize sub-layers in order to share information; they do not interact directly in the

physical sense but in the logical sense. In order to test these two architectures, cre-

ators have build three algorithms. The first algorithm runs in each controller of fully

distributed architecture while the other two runs in the super controller of hierarchi-

cally distributed architecture and domain controllers of the same architecture. They

compared two models in terms of distance and amount of traffic they served with

traditional BGP directed services. Fully distributed model wins the comparison of

three models while hierarchical model gives better result than traditional BGP rout-

ing. From my personal point of view, the authors conducted an outstanding job in

this paper. However, this approach needed to be standardized by the community or

adopted generally by vendors to get more respect. In the community, there exists no

standard controller to controller protocol so this paper gives a possible requirement

set to designers of such protocol in terms of QoS.

Collaborators of paper [34] have come up with an idea which is named as HiQos.

It mainly consists of two modules named as differentiated services module and mul-

tipath routing module. Differentiated services module identifies flows according to

their match parameters. Each type of flow is then assigned to a queue. On the other

hand, multipath routing module identifies possible paths for flows and chooses the

best option by calculating the sum of weights for each link in a route which is de-

termined by a network monitoring thread that observes bandwidth utilization period-

ically. Moreover, each flow inserted by multipath routing module has five seconds

idle time meaning that their rules vanish if there exists no packet in the network for

more than five seconds. This enables dynamicity for flows staying idle for more than

five seconds. Tests are conducted with a topology consisting of two servers eleven

clients and five switches. When the paper was written, authors could not find models

to compare their architecture and introduced two extra contributions for comparison

purposes. First of these architectures is LiQoS. This architecture always selects the

shortest path to the destination as well as it does not differentiate services by using

different queues. The second option is MiQos. It chooses the shortest path to the

destination; however, it utilizes queues for service differentiation. Comparison of

three architecture in terms of the response time of servers, throughput and recovery in

28

case of path loss resulted in the success of HiQos. The most appreciated point about

this paper is that even two of them is for testing purposes, authors have created three

different QoS architectures and compared them. Nevertheless, scalability is an issue

which was not discussed in the paper. This architecture needed to be reprogrammed

when a new switch or new server needed to be added to the topology. Topology is

given with a hash map to HiQos. Moreover, there exists no information about how

queues are configured in the system. However, how bandwidth utilization is queried

for queues is explained clearly. Benefits of such querying method are open to de-

bate but there exists no other option in OpenFlow 1.0 standard [20] or OpenFlow

1.3 standard [1] as an OpenFlow switch asynchronously sends congestion report to

the controller. In conclusion, HiQos could be an example for network administrators

who design a QoS system for their SDN networks. Also, it could inspire academics

in their future studies.

In [35] designers have designed an architecture such that controller periodically in-

jects test packets to measure delays of links. Since these packets would be forwarded

to the controller at the receiving node controller will measure the delay between in-

jection time and its current time to understand link delay. Note that while sending

test packet to the network, controller encapsulates a reference time in the packet to

calculate time difference upon receiving. While packet injection mechanism is imple-

mented by OpenFlow Packet Out Message [20] asynchronous Packet In [20] mecha-

nism enables the controller to get test packets from switches. Besides obscuring the

implementation details and test results, authors of this paper might have missed one

of the important points of SDN concept. In SDN networks datapath traffic is sepa-

rated from controller path traffic. This implies that any traffic which does not carry

user data should not be forwarded from the datapath channel. However, in this archi-

tecture, redundant test packages are transmitted. Moreover, these test packages might

not be exposed to the same QoS scheme with real traffic since they are different flows.

To conclude, despite its violation of the SDN concept, this idea is still applicable and

could be preferred although it might deteriorate performance in the network.

While modeling delay of a switching node, queueing delay is the most prominent

among four delay types which are queueing, processing, propagation and transmis-

sion since its nondeterministic nature. In [14] authors model the queuing delay of

29

TCP flows. In this model they assumed processing delay of a node is negligible,

propagation delay is constant during transmission and queueing delay dominates de-

lay of a node. Before transmission starts, authors measure propagation delay from

round trip time extracted from ICMP packets. Then, they estimate the average queu-

ing delay by deducing the average length of a queue. Length of a queue is assumed to

be related with the window length of a TCP connection because of the fact that TCP

window length is determined by unacknowledged packets which are still in the net-

work. For the multiple TCP flow case, mean of the delay for one TCP flow is modeled

as Gaussian random variable and queueing delay is extracted from variations in the

length of the queue. The testing environment consists of switches which are cascaded

to each other. After proofing their ideas, authors suggest queue switching model in

order to provide service differentiation. This idea will be mentioned in next chapters

since it has some benefits when compared with routing from another path. Neverthe-

less, the delay measurement technique in this paper has some crucial dilemmas which

should be talked about. Firstly, this model is limited to TCP applications. Although

TCP encapsulates most of the application types, the transport layer is not built just

on TCP. Secondly, TCP is a complex protocol which is affected by lots of factors.

Moreover, window length of a TCP is affected by the TCP/IP stack of OS on which

TCP socket is opened. This information could only get from the user platform which

modifies user end systems. To sum up, besides the disadvantageous delay measure

method, switching between queues when delay increases is a valuable solution which

will be discussed in other chapters.

In [13] authors have come up with a monitoring architecture and named it Open Net-

work Monitor (OpenNetMon). Designers concentrated measuring throughput, packet

loss and delay accurately. In order to measure throughput, they utilized flow statistics

of OpenFlow 1.0 protocol [20]. Because of the fact that flow statistics consist amount

of bytes transferred and the amount of time passed since the first flow was introduced

throughput of flow could be deduced. They assumed that last switch on which the

packet passes before it reaches its destination is the point where flow statistics must

be queried. Query period of statistics is an important parameter which brings accu-

racy in return of processing overhead in controller to switch (outband) network. In

order to reduce overhead in processing, they developed an algorithm which sends

30

more frequent queries when flow first introduced but reduce query time after variance

of throughput results decrease. On the other hand, for packet loss, they claim that

each port statistics [20] of SDN switches from which flow passes have to be queried

in order to understand if any drops occurred. Finally, to measure delay they injected

test packets with the help of packet out action in [20] on the network. After test

packets are routed controller gets these test packets from the last switch by the packet

in action [20]. From the time difference of sending and receiving times, controller

understands the delay in the network. Authors have tested their topology in a real

network. Where throughput and packet loss measurements were satisfying, delay

measurements were not accurate which was mentioned by authors too.

Table 3.1: Summary of Delay Measurement Techniques in SDN

Algorithm,

Year

Delay or

Link State Measurement Technique

Target,

Performance Metrics
Comments

[31],2012

OpenQos

OpenFlow 1.0 Feature Request Message [20]

to Controller
Peak SNR Values

poor performance metrics,

wrong message type

[32],2013

PolicyCop

Special interface between Management Plane

and Controller Module which collects statistics
not defined

[33],2014 Special interface which collects statistics not defined

[34],2015

HighQoS

Proactive and periodic query of

OpenFlow Queue Statistics

response time of servers, throughput,

recovery in case of path loss

[35],2016
Test Packet Injection,

Measurement from Controller
not defined controlpath datapath violation

[14],2016
from TCP buffer deplation

queue size estimation
accuracy

needs user side modification,

only covers TCP connections

[13],2014

OpenNetMon

Test Packet Injection,

Measurement from Controller
accuracy

low accuracy of results,

controlpath datapath violation

31

32

CHAPTER 4

PROPOSED LINK DELAY COMPUTATION METHOD FOR SDN

In this thesis, we propose a method to compute the average delay of links in an SDN

Network from the statistics collected by the SDN controller. Note that the link delay

depends on the queuing delay which is the only nondeterministic component in delay

model of packet-switched networks. For queuing delay measurement we propose the

set-up shown in Fig. 4.1. When a packet enters a switch, it eventually goes out from

a queue of a port. We model the switch queues as G/G/1 queues and bind a meter to

each queue for measuring ingress traffic rate. For G/G/1 queue model we need mean

and variance values inter arrival times of ingress and inter departure times of egress

traffic for calculating average state of the queue. Mean and variance components

of inter arrival times are found by meter statistics. On the other hand, we calculate

mean and variance of inter departure times from packet lengths and bandwith of links

in datapath. After we find average states of queues which is defined as the average

number of packets in a queue, we calculate queuing delay from Little’s equation.

In order to implement our idea, we design an application which uses the North-

bound interface of RYU controller. We periodically poll OpenFlow meter statistics

via OpenFlow module of RYU controller. This module further communicates via

OpenFlow protocol with SDN switches and it reports results of statistics query via

Northbound interface. Our application is operated independently from RYU con-

troller; however, they run in the same Virtual Machine. Note that environment where

our application is realized and communication interfaces will be explained in Imple-

mentation section of Chapter 5. We only present the inner architecture and the idea

of link delay computation method in this chapter.

33

Figure 4.1: Proposed Queueing Delay Measurement Methodology

4.1 Sample Creation Mechanism

For G/G/1 queueing model, one has to assume that shape of ingress and egress traffic

could be any type. Hence, for the proposed model we have to extract the mean and

variance of interarrival time between packets as well as the time between departed

packets from the queue.

For measuring the interarrival time of packets we create a sampling mechanism that

creates samples of interarrival times from meter statistics. Sampling mechanism is

visualized in Figure 4.2. Meter statistics of SDN switch is periodically requested.

Reply of meter statistics consists of how many packets are counted to that time and

how much time has passed since meter started its operation. They are called packet

count and duration respectively. Moreover, the algorithm of how we extract a

sample is visualized as a flowchart in Figure 4.3. Sampling mechanism holds states

for packet count and duration. If the packet count increases, we take

the difference of durations that comes from statistics message and the value sam-

pling mechanism holds. This creates a time difference. Then we divide this time

34

value to the difference of packet counts. This division gives us one sample of

interarrival time of packets.

Let us clarify this with an example. Suppose our sampling mechanism holds values 50

ns for duration and 10 for packet count. If a statistics message is received with

values 110 ns for duration and 12 for packet count then we first look the difference

between packet counts. Since packet count is increased, we take time difference

between durations which is 60 ns. Then we divide it by difference of packet counts.

In the end, we get one sample for interarrival time between packets which is 30 ns.

We accumulate these samples to calculate mean and variance of interarrival time of

packets. In order to get accurate measurements sampling period of statistics by the

SDN controller is an important parameter. We define the minimum sampling period

as given in Equation 41. In this Equation lmin is the minimum length of a packet that

can ingress through the switch. C is the bandwidth of the port. If τmin_sampling is

satisfied then no false samples will be fed to mean and variance calculating process.

Figure 4.2: Sampling Mechanism

τmin_sampling =
lmin

C
(41)

Departure rate of a queue is defined as how many packets it can transmit in a unit

of time. This depends on the bit rate of the service link and length of packets. If

the bitrate is assumed to be constant, what changes the departure rate is the length of

35

Figure 4.3: Sample Creation Algorithm

packets. Since there exists no statistics about the length of packets, we used a prede-

fined departure rate in delay calculation whose mean and variance are hardcoded in

application. Mean and variance values do not change during the simulation thanks to

iPerf [16] application. Mean of packet lengths is 1512 bytes and variance is assumed

to be zero. We also observe correctness od this decision by checking the length of

packets from Wireshark.

After samples are created they are transferred to a process where their mean and

variances are calculated. Note that samples are collected in a serial fashion. One

cannot calculate mean and variance by using standard mean and variance equations

when the sample count reaches to large amounts. Calculating mean and variance from

serial samples are given in Equations 42 and 43 respectively. In these Equations x̄k is

the mean of k samples, xk is kth sample and σ2
k is the variance of k samples.

x̄k =
(k − 1)x̄k−1 + xk

k
(42)

36

σ2
k =

(k − 1)

k
(σ2

k−1 +
(xk − x̄k−1)

2

k
) (43)

4.2 Implemented Application for Delay Measurement

We design an application which communicates with the SDN controller and collects

statistics periodically. In Figure 4.4 we show the modules and their relations on a

UML diagram. Our application mainly consists of seven types of threads working

concurrently. First of these threads is the main thread called as environment

manager. This thread is responsible for creating and stopping all the other threads,

inserting flows which are necessary for queueing mechanism and forwarding requests

to the related threads which are created by itself. Furthermore, second and third

are statistics collecting threads which are Meter Statistics Collector and

Queue Statistics Collector. They periodically poll Meter and Queue Statis-

tics and pass them to the Queues of Statistics Calculator Threads. Forth and fifth

Statistics calculator threads process messages and calculate mean and

variances between statistics messages by using algorithms described previously. The

sixth type of thread is Query manager. It creates collector and calculator threads

as well as calculates the queue state and queue delay when environment manager

wants the report for delay of a specific queue. Seventh thread is Console Thread

which enables user to interact with the program. It is built for debugging, starting and

stopping the application.

The purpose of SwitchBSP class in figure 4.4 is abstracting out the southbound

interface from our application. By this way, this application could support various

type of interfaces that SDN controllers implement. Furthermore, Application

interface and Environment Manager classes in figure 4.4 provide the interface

for programs which can pull information created from our application. These inter-

faces are not vital for our applications to work but they enhance their adaptability and

scalability.

37

Figure 4.4: UML Diagram of Proposed Method

38

CHAPTER 5

IMPLEMENTATION AND EVALUATION

5.1 Implementation

We evaluate and test our application in a simulation environment. Figure 5.1 shows

the components of the evaluation set-up and how they are organized. All of the tests

are conducted on a Linux Virtual Machine. The testing environment has mainly three

components. First of these components is Mininet [18] which creates a virtual net-

work on Linux machine. This network has real interfaces meaning that one can share

and observe real data while the network operates. Also, it enables its user to cre-

ate SDN switches such as Ofsoftswitch13 [36] or Open Virtual Switch (OVS) [37];

moreover, it could direct controller interfaces of switches to out of Mininet.

The second component of the testing environment is Opensoftswitch13 [36]. It is an

SDN switch and supports OpenFlow 1.3 [1] protocol. For our application, meter and

queue support of switch play a vital role. Except its stable features and being widely

accepted from community we did not choose Open Virtual Switch (OVS) [37] for

our tests because it does not implement meters although it can negotiate with SDN

Controllers via OpenFlow 1.3 protocol [1].

In OpenFlow 1.3 protocol meter creation, modification and deletion is defined [1].

Also, Multipart request/response messages are defined in order to query meter statis-

tics. On the other hand, queue creation is out of the scope of OpenFlow 1.3 proto-

col [1]. Therefore, manufacturers have special queue creation mechanisms.

For queue creation, OVS implements its protocol OVSDB management protocol [38]

via which user can define the minimum and the maximum rates of queues. However,

39

Figure 5.1: Testing Environment

Ofsoftswitch13 implemented its own command-line tool ’dpctl’ which interacts with

Ofsoftswitch13 and configures the queues of it. ’dpctl’ only enables the user to con-

figure minimum bandwidth feature of Ofsoftswitch13 queues. Minimum bandwidth

is defined by one of thousand of the bandwidth of the link. For example, when user

enters 10 for queue 1 it means, queue 1 should have minimum 10/1000 of the link

bandwidth. When multiple queues exist for a port, a priority mechanism is not de-

fined. Both OVS and OfSoftSwitch13 exchange their queue statistics via Multipart

request/response messages [1]. However, Ofsoftswitch13 [36] lacks a communication

protocol for creating queues. For queue creation and deletion, we have implemented

a command-line queue adding and deleting mechanism using ’dpctl’ which commu-

nicates Ofsoftswitch13 via the command line of Linux Virtual Machine.

The third component is RYU SDN Framework [21] which is an SDN controller. It

has a modular structure and one can include those modules if they are needed. Since

40

we restrict our scope with link delay measurement, we choose [21] controller which

has a built-in routing module that routes packets. However, built-in route module

inserts and deletes flows from table 0 of SDN switches. On the other hand, we have

the requirements for ingress traffic passes from meter to be counted as well as they

are directed to queues to count egress traffic. Therefore, we changed the standard

routing module of RYU, which inserts routing flows to table 1 of SDN switch instead

of table 0. Moreover, we insert flows for link delay measurement to table 0 of SDN

switch which direct ingress traffic to meters and output egress traffic from predefined

queues. Also, we pass packets to table 1 for routing purposes. This modification

brings an advantage which is the separation of concerns of two problems in QoS,

routing and queuing.

5.2 Evaluation

In this section, we present experimental results of our approach. Firstly, we examine

the performance when a single flow passes through the queue whose queuing delay is

observed. Secondly, we analyze the performance of our approach when two different

flows are multiplexed into the queue under test. We also evaluate our approach in

terms of performance metrics defined in Section 2.

5.2.1 Single Flow

In this experiment we test our proposed method for queuing delay computation in

Mininet [18] when a single flow arrives through the queue under test. Our topology is

seen in Figure 5.2. This experiment has stages which must be accomplished in order

to obtain proper measurements. The first part of the stages is preparation. In this part,

we insert flows to the SDN switch that enable datapath packets pipe through a certain

queue of SDN Switch. Then, we start Wireshark captures from port 1 and port 2 of

SDN Switch to measure time values when packets reach to port 2 of SDN Switch and

when they depart from port 1 of SDN switch.

41

Figure 5.2: Test Topology

Next, we move to the testing stage. We start our proposed application and logger

application. Our proposed application periodically polls meter statistics and runs

our proposed method which updates queuing delay from meter statistics. Logger

application is an embedded thread of our proposed application. It polls queuing delay

with one-second intervals and logs computed value of queueing delay as well as the

time when it was obtained. Then, we start traffic from hosts. We use iPerf [16]

to generate UDP traffic. Host 1 in Figure 5.2 is an iPerf [16] UDP server which

accepts UDP traffic from UDP port 5001. On the other hand, Host 2 is a UDP client

which sends UDP packets to Host 1. After we run tests for 10 minutes we have two

Wireshark captures files of port 1 and port 2 of SDN switch as well as a log file.

Logfile consists computed value of queueing delay and time tag when it is logged.

The final stage is the evaluation stage. Firstly, from two Wireshark capture files of

SDN Switch, we first construct interarrival delays between packets and the individual

queuing delay time series of packets during the simulation. Interarrival times between

42

packets are given in Figure 5.3. Since iPerf [16] do not change packet lengths during

the simulation, we do not graph the change of packet lengths versus time. Packet

lengths for calculating queuing delay is constant which is 1512 bytes. Moreover, in-

dividual queuing delay time series of packets are given in Figure 5.4. We assume that

the queuing delay a packet experiences while passing through the queue under test

is differences of time tags in the port 1 and port 2 Wireshark capture files. In Figure

5.4, we see that each packet faces different amount of queuing delay during the sim-

ulation. Therefore, average queuing delay of time series needed to be calculated for

time t1 in order to compare Wireshark data with the computed value of our proposed

application. Average queueing delay of time t1 is given in Equation 51. In Figure

5.5 we compare average queuing delay of Wireshark data calculated with Equation

51 and the computed queuing data we obtain from our proposed application.

daverage(t1) =

t1∑
i=tstarting

delay(i)

n
(51)

0 10000 20000 30000 40000
ith delay

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

de
la

y
in

 se
co

nd
s

Interarrival Delay of Packets
interarrival delay of wireshark data

Figure 5.3: Interarrival times between packets to the SDN Switch for Single Flow

Case

43

0 10000 20000 30000 40000
ith packet

0.006

0.008

0.010

0.012

0.014

0.016
de

la
y(

i)

Queuing Delay Time Series of Wireshark Data
time series of wireshark data

Figure 5.4: Queuing Delay Time Series of Wireshark Data for Single Flow Case

19:0
3:00
19:0
4:00
19:0
5:00
19:0
6:00
19:0
7:00
19:0
8:00
19:0
9:00
19:1
0:00
19:1
1:00

time (Hour:Minutes:Seconds)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

de
la
y
(s
)

Comparison Graph of Computed Delay versus Wireshark Data
computed delay
delay measured by Wireshark

Figure 5.5: Average Queueing Delay of Wireshark Data versus Computed Queuing

Delay of Proposed Application for Single Flow Case

Note that, since every component uses the time of virtual machine that it runs on,

44

time tags for comparing average queueing delay and the computed queuing delay

data we obtain from our proposed application are time-synchronized. The Relative

Percentage Correctness changing with the time is given in Figure 5.6. It is calculated

according to Equation 26 which is defined as a performance metric while evaluating

performance of our proposed delay computation method. Moreover, our sampling

period of statistics t_sampling is 5 ∗ 10−4s. This number is selected according to

Equation 29 where lmin of packets in network is 64 bytes and bandwidth is 1 Mbps.

n in Equation 28 is calculated as 2.74 where t_sampling is 5 ∗ 10−4s, lquery is 90

bytes lresponse is 138 bytes and C is 10 Mbps. Therefore our scalability index in

Equation 27 equals to 2.74 (n) which is smaller than maximum meter_id field (232)

of OpenFlow Protocol.

19:0
3:00

19:0
4:00

19:0
5:00

19:0
6:00

19:0
7:00

19:0
8:00

19:0
9:00

19:1
0:00

19:1
1:00

time (Hour:Minutes:Seconds)

0

20

40

60

80

100

re
la
tiv

e
pe

rc
en

ta
ge

 c
or
re
ct
ne

ss
 (%

)

Relative Percentage Correctness Graph

relative percentage correctness

Figure 5.6: Relative Percentage Correctness Graph of Single Flow Case

Scalability depends on the bandwidth ratio between links of controller path traffic

and links of datapath traffic. For this case, the bandwidth of controller path traffic

links is 10Mbps and bandwidth of datapath traffic links are 1Mbps. For example, if

the bandwidth of controller path links becomes 100Mbps, scalability value n auto-

matically becomes 27.4 increasing ten times of our testing case. This introduces the

necessity for our system to run in such SDN topologies whose controller traffic links

45

have higher bandwidth rates than datapath traffic links.

5.2.2 Multiple Flows

Multiple flow case test topology is shown in Figure 5.2 and information flowing from

links are same with Single Flow case. Furthermore, starting stages are same except

we start two iPerf [16] UDP flows between Host 1 and Host 2. These flows are

transmitted from the same queue in SDN Switch. We perform this test with the same

procedures applied. Note that Scalability is same with Single Flow test case since we

do not change testing topology. Results of multiple flow case are given as follows.

In Figure 5.7 interarrival times between incomming packets are shown. Moreover,

Wireshark time series of queuing delay is given in Figure 5.8. In order to compare

time series we calculate average queuing delay for time t1 with Equation 51. The

comparison graph of average queuing delay and computed queuing delay of our pro-

posed application is given in Figure 5.9. Finally, Relative Percentage Correctness

graph for Multiple Flows case is given in Figure 5.10.

Firstly, in Figure 5.7, it is seen that interarrival packet times are consistent with the

Single Flow case. By consistency we mean that mean component of interarrival times

are gathered around 0.012 seconds. This value is forced by the bandwidth link of

datapath traffic which is 1Mbps. Further, it is converted to 82.67 packets per second

link capacity by dividing link bandwidth to the length of packets in bits (12096 bits

per packet). 1/82.67 is the amount of time between packet interarrival time which is

0.012 seconds. Since we utilize queue under test close to 100%, the mean component

of packet interarrival times being around value 0.012 seconds is reasonable. However,

the variance component differs (as we expected) because of the fact that multiple

flows have different paces while sending packets.

Moreover, in Figure 5.9 computed delay of our proposed application converges to av-

erage queuing delay of Wireshark capture slowly. The reason behind this is the high

variance value component of packet interarrival times is significant in queuing delay

calculation. After the variance component of packet interarrival times approaches to

the minimum value as well as the mean component of packet interarrival times be-

46

comes more stable, the relative percentage correctness becomes close to 100% com-

pared to start of application. Note that our computation method of mean and variance

of interarrival times influences the convergence time of computed delay. We compute

mean and variance from all collected samples; meaning that from start of application

all samples collected until time t1 have impact on computed delay. If there exists a

sample whose value differs too much from average, it affects the convergence result

of computed delay whose effect is seen in Figure 5.6. On the other hand, mean and

variance values of interarrival delay of packets could have been computed with most

recent k samples for which we only calculate mean and variance of recent k samples.

However, computationally this method requires more processing time as we calculate

new mean and variance from scratch. Moroever, k samples method requires more

memory space since we hold states for k samples; however, with the method we use,

it is only required to hold state for mean, variance and sample count of interarrival

delays of packets.

Outcome of multiple flows testing, results have consistency with single flow test.

Next we demonstrate our proposed application in a possible usage scenario of QoS

differentiation of a flow.

0 10000 20000 30000 40000 50000 60000 70000
ith delay

0.000

0.005

0.010

0.015

0.020

de
la

y
in

 se
co

nd
s

Interarrival Delay of Packets
interarrival delay of wireshark data

Figure 5.7: Interarrival times between packets to the SDN Switch for Highly Accurate

Multiple Flow Case

47

0 10000 20000 30000 40000 50000 60000 70000
ith packet

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250
de

la
y(
i)

Queuing Delay Time Series of Wireshark Data
time series of wireshark data

Figure 5.8: Queuing Delay Time Series of Wireshark Data for Highly Accurate Mul-

tiple Flow Case

02:0
0:00

02:0
5:00

02:1
0:00

02:1
5:00

time (Hour:Minutes:Seconds)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

de
la
y
(s
)

Comparison Graph of Computed Delay versus Wireshark Data
computed delay
delay measured by Wireshark

Figure 5.9: Average Queueing Delay of Wireshark Data versus Estimated Queuing

Delay of Proposed Application for Highly Accurate Multiple Flow Case

48

02:0
0:00

02:0
5:00

02:1
0:00

02:1
5:00

time (Hour:Minutes:Seconds)

0

20

40

60

80

100

re
la
tiv

e
pe

rc
en

ta
ge

 c
or
re
ct
ne

ss
 (%

)

Relative Percentage Correctness Graph
relative percentage correctness

Figure 5.10: Relative Percentage Graph of Highly Accurate Multiple Flow Case

5.3 Best Queue Selector Application

In this section, we demonstrate a possible usage scenario of our proposed method for

providing QoS to a predefined flow. For this purpose, we constructed the topology

given in Figure 5.11. In this topology, two different UDP iPerf [16] flows flow from

Host 2 to Host 1. Host 1 is UDP port 5001 and port 5002 iPerf [16] server, whereas

Host 2 behaves as UDP client. At the start of the test, all flows are transmitted from

one single queue. In further part, we have 2 scenarios no QoS and with QoS. In no

QoS scenario, our proposed method is not operated and all flows are continued to be

transmitted from a single queue. On the other hand, with QoS scenario, our proposed

method monitors delay value for all queues in port 1 of SDN Switch which is con-

nected to Host 1. Moreover, in with QoS scenario, there exists a Best Queue Selector

Application which is able to communicate with our proposed method to get estimated

queuing delay values. Furthermore, Best Queue Selector Application provides a de-

lay critical service to UDP dst port 5001 flow by monitoring estimated delays of our

proposed application and determines the fastest queue for UDP dst port 5001 flow.

After determining the fastest queue, it inserts necessary flows to SDN switch. In or-

49

der not to jump QoS flow unnecessarily, we put a queuing delay threshold value for

changing the queue of QoS flow which is 10ms. If queue delay of UDP dst port 5001

flow is greater than 10ms then Best Queue Selector Application searches the best

queue and changes flows in SDN switch if it is necessary.

For evaluation of no QoS and with QoS, we compared jitter measurements of iPerf

[16] servers in Host 1 which listens UDP port 5001. Jitter measurements are declared

in one-second intervals. In Figure 5.12 jitter measurement values, as well as their

trend lines, are shown. Diamonds are jitter measurements of no QoS scenario and

Squares are jitter measurements of with Qos Scenario. The dashed line is the trend

line of no Qos and the continuous line is trend line of with QoS scenario. Since

queues of SDN switch does not provide a priority mechanism, we could not provide

a significant improvement; however, from Figure 5.12 with Qos scenario has more

stable fashion in terms of jitter compared to no QoS.

Figure 5.11: Test Topology of Best Qos Selector Application

50

Fi
gu

re
5.

12
:B

es
tQ

oS
Se

le
ct

or
A

pp
lic

at
io

n
Ip

er
fM

ea
su

re
m

en
ts

51

5.4 Sampling Period effect on Relative Percentage Correctness

In this section, we demonstrate the effect of sampling period of statistics t_sampling

on Relative Percentage Correctness. The purpose of this section is to investigate

whether t_sampling period defined in Equation 29 is a sufficient factor that limits

our scalability. In another words, "Can we still provide high relative percentage ac-

curacy by reserving little amount of resources such as low computational power on

SDN Controller or less bandwidth between SDN controller and SDN Switches?". We

set the sampling period of statistics t_sampling to 10−4 s, 10−3 s, 10−2 s, 10−1 s,

1 s, 10 s respectively and conduct Single Flow tests with these periods. Note that,

in our test setup the minimum required sampling period t_sampling is calculated as

5 ∗ 10−4 s. Furthermore, to evaluate sampling period t_sampling effect, we calcu-

lated the average relative percentage correctness for each tests. Average relative per-

centage correctness is calculated according to Equation 52. In this Equation, aaverage

is average percentage correctness parameter which will be used in order to evaluate

sampling period effect on relative percentage correctness. Moreover, a(i) is Relative

Percentage Correctness metric which is defined in Equation 26. Finally, tstarting and

tending times are the start time and the ending time of the multiple flow test respec-

tively. The comparison graph of each tests are given in Figure 5.13. Note that, we

have conducted tests with iPerf [16] which generates constant packet length traffic.

Packet lengths are fixed to 1512 bytes. Hence, minimum sampling period required is

calculated as 1.2∗10−2 s according to Equation 29 (Bandwidth B is 1Mbps and lmin

is 12 kilobits). In Figure 5.13, average relative percentage starts to deteriorate after

t_sampling is greater than 10−2 s. The required sampling time for proper operation

is 1.2 ∗ 10−2 s. We utilize links close to 100% in tests. Note that, minimum sampling

time for proper operation is between 10−2 s and 10−1 s. This explains the deteriorate

of average relative percentage correctness in Figure 5.13 after 10−2 s. When sampling

period is increased further, we obtain so much errorneous statistics while computing

queuing delay that relative percentage becomes almost zero. Therefore, we conclude

that introducing the minimum sampling period requirement to the system is a sensible

52

idea that this period has to be satisfied in order to compute queuing delay correctly.

aaverage =

tending∑
i=tstarting

a(i) (52)

10−4 10−3 10−2 10−1 100 101

sampling period (s)

0

20

40

60

80

100

av
er

ag
e

re
la

tiv
e

pe
rc

en
ta

ge
 c

or
re

ct
ne

ss
 (%

)

Relative Percentage Correctness vs. Sampling Period

Figure 5.13: Sampling Period effect on Relative Percentage Correctness

53

54

CHAPTER 6

CONCLUSION

In this thesis, we concentrate on queuing delay measurement in SDN networks which

could provide a decision metric for efficient route calculation. We used OpenFlow

meters to measure the ingress rate through a queue and calculate the mean and vari-

ance of arrival rate from OpenFlow meter statistics. We used G/G/1 model to extract

average state of the queue. Then we find delay from Little’s equation that converts

queue state to queuing delay.

When compared with works in literature, our solution uses data defined in OpenFlow

1.3 standard [1] which increases adaptability to different environments. OpenFlow

1.3 [1] is a well known and widely accepted standard in the community. Therefore,

when a design is built on top of raw mechanisms of OpenFlow, that design becomes

realizable in most of SDN topologies. Moreover, the work presented in this thesis

does not violate the SDN control plane and data plane separation. We do not intervene

in datapath traffic by generating redundant traffic to measure queue delays.

We conduct three experiments to prove the functionality of our work. In the first sce-

nario, we transfer single flow per queue. This experiment presents relatively correct

realtime insight about the delay of observed queues; however, maximum queue num-

ber that our model can query is limited by packet sizes of OpenFlow Meter Statistics

and bandwidth between the SDN controller and SDN switches. In the second sce-

nario, we transfer multiple flows from the observed queue. For this case we observed

the fact that our method needs an adaptation time to get accurate results; however

after computing a stable mean and variance close to zero, our compuatational results

achieves high relative percentage correctness rates which is close to 100%. Further-

more, we made an instance application that uses computed queuing delay of our ap-

55

proach as a metric to determine the emptiest queue of a port. This application does

not provide significant QoS since queues of SDN switch is organized to provide fair

bandwidth and it is not changeable. However, it provides an improvement in average

delay trend which is more stable compared to standard traffic transmission. Finally,

we investigate minimum sampling period on correctness of delay computation. Af-

ter conducting multiple flow tests with different sampling periods, we conclude that

minimum sampling period is required to compute queuing delay relatively correct.

We test our solution only on soft environment. Because of this reason our experi-

ments are conducted in suboptimal conditions. For example, due to the fact that the

virtual machine has microscale time sensitivity, we could not measure queueing delay

of links over 1 Mbps which require nanoscale time resolution in OpenFlow statistics.

Moreover, since lots of concurrent module runs in single hardware, our simulation

stops when sampling frequency of controller exceeds 104 query per seconds. There-

fore, for future work, our contribution needs to be tested under real hardware which

eliminates mostly capacity issues of the simulation environment. However, measure-

ment techniques of real queuing delay changes as timing synchronization are lost

between Wireshark captures and our application.

56

REFERENCES

[1] B. Pfaff, B. Lantz, et al., “Openflow switch specification version 1.3.1 (wire

protocol 0x04),” September 6, 2012. https://www.opennetworking.org/wp-

content/uploads/2013/04/openflow-spec-v1.3.1.pdf.

[2] P. Goyal, S. S. Lam, and H. M. Vin, “Determining end-to-end delay bounds in

heterogeneous networks,” in International Workshop on Network and Operating

Systems Support for Digital Audio and Video, pp. 273–284, Springer, 1995.

[3] R. L. Cruz, “Quality of service guarantees in virtual circuit switched networks,”

IEEE Journal on Selected areas in Communications, vol. 13, no. 6, pp. 1048–

1056, 1995.

[4] P. Goyal, H. M. Vin, and H. Cheng, “Start-time fair queueing: a schedul-

ing algorithm for integrated services packet switching networks,” IEEE/ACM

Transactions on networking, vol. 5, no. 5, pp. 690–704, 1997.

[5] G. G. Xie and S. S. Lam, “Delay guarantee of virtual clock server,” IEEE/ACM

transactions on Networking, vol. 3, no. 6, pp. 683–689, 1995.

[6] “Open network foundation.” https://www.opennetworking.org/sdn-definition/.

[7] R. Kumar, M. Hasan, S. Padhy, K. Evchenko, L. Piramanayagam, S. Mohan,

and R. B. Bobba, “End-to-end network delay guarantees for real-time systems

using sdn,” in 2017 IEEE Real-Time Systems Symposium (RTSS), pp. 231–242,

IEEE, 2017.

[8] C. Cascone, L. Pollini, D. Sanvito, A. Capone, and B. Sanso, “Spider: Fault

resilient sdn pipeline with recovery delay guarantees,” in 2016 IEEE NetSoft

Conference and Workshops (NetSoft), pp. 296–302, IEEE, 2016.

[9] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach

(6th Edition). International Edition, Pearson, May 1, 2012.

57

[10] A. Leon-Garcia, Probability, statistics, and random processes for electrical

engineering. Prentice Hall, 2008.

[11] M. Ben-Akiva, M. Bierlaire, D. Burton, H. N. Koutsopoulos, and R. Mishalani,

“Network state estimation and prediction for real-time traffic management,”

Networks and spatial economics, vol. 1, no. 3-4, pp. 293–318, 2001.

[12] R. Coltun, D. Ferguson, J. Moy, and A. Lindem, “Ospf for ipv6,” 2008.

https://tools.ietf.org/html/rfc5340.

[13] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon: Network

monitoring in openflow software-defined networks,” IEEE Network Operations

and Management Symposium (NOMS), 2014.

[14] M. Haiyan, Y. Jinyao, P. Georgopoulos, and B. Plattner, “Towards sdn based

queuing delay estimation,” China Communications Vol. 13, No. 3, 2016.

[15] M. Karakus and A. Durresi, “Quality of service (qos) in software defined net-

working (sdn): A survey,” Journal of Network and Computer Applications,

vol. 80, pp. 200–218, 2017.

[16] “iperf - the ultimate speed test tool for tcp, udp and sctp.” https://iperf.fr/.

[17] W. G. Marchal and C. M. Harris, “A modified erlang approach to approximating

gi/g/1 queues,” Journal of Applied Probability Vol. 13, No. 1, 1976.

[18] B. Lantz, B. O’Connor, et al., “Mininet an instant virtual network on your laptop

(or other pc).” http://mininet.org/.

[19] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal, J. Carter,

and R. Fonseca, “Planck: Millisecond-scale monitoring and control for com-

modity networks,” in ACM SIGCOMM Computer Communication Review,

vol. 44, pp. 407–418, ACM, 2014.

[20] B. Pfaff, B. Heller, et al., “Openflow switch specification version 1.0.0 (wire

protocol 0x01),” December 31, 2009. https://www.opennetworking.org/wp-

content/uploads/2013/04/openflow-spec-v1.0.0.pdf.

[21] T. Fujita, Y. Kaneko, and Y. Isaku, “Ryu component-based sdn framework,”

2014. https://osrg.github.io/ryu/.

58

[22] X. Xiao and L. M. Ni, “Internet qos: A big picture,” IEEE Network, 1999.

[23] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick, “A framework for qos-

based routing in the internet,” 1998. https://tools.ietf.org/html/rfc2386.html.

[24] H. Badis, A. Munaretto, K. A. Agha, and G. Pujoll, “Qos for ad hoc networking

based on multiple metrics: Bandwidth and delay,” 2003.

[25] P. Mohapatra, J. Li, and C. Gui, “Qos in mobile ad hoc networks,” IEEE

Wireless Communications, June 2003.

[26] S. Ran, “A model for web services discovery with qos,” Communications of the

ACM, 2003.

[27] L. Zeng and et. al., “Qos-aware middleware for web services composition,”

IEEE Transactions on Software Eengineering. Vol. 30, No. 5, May 2004.

[28] S. Muhizi, G. Shamshin, A. Muthanna, R. Kirichek, A. Vladyko, and

A. Koucheryavy, “Analysis and performance evaluation of sdn queue model,” in

International Conference on Wired/Wireless Internet Communication, pp. 26–

37, Springer, 2017.

[29] D. G. Kendall, “Stochastic processes occurring in the theory of queues and

their analysis by the method of the imbedded markov chain,” The Annals of

Mathematical Statistics Vol. 24, No. 3, 1953.

[30] G. Malkin, “Rip version 2,” 1998. https://tools.ietf.org/html/rfc2453.

[31] H. E. Egilmez, T. S. Dane, T. K. Bagci, and M. A. Tekalp, “Openqos: An open-

flow controller design for multimedia delivery with end-to-end quality of service

over software-defined networks,” Proceedings of The 2012 Asia Pacific Signal

and Information Processing Association Annual Summit and Conference, 2012.

[32] B. M. Faizul, C. S. Rahman, A. Reaz, and B. Raouf, “Policycop: An autonomic

qos policy enforcement framework for software defined networks,” 2013 IEEE

SDN for Future Networks and Services (SDN4FNS), 2013.

[33] H. E. Egilmez and M. A. Tekalp, “Distributed qos architectures for multimedia

streaming over software defined networks,” IEEE Transactions on Multimedia,

2014.

59

[34] Y. Jinyao, Z. Hailong, S. Qianjun, L. Bo, and G. Xiao, “Hiqos: An sdn-based

multipath qos solution,” China Communications Vol. 12, No. 5, 2015.

[35] M. Selmchenko, M. Beshley, O. Panchenko, and M. Klymash, “Development

of monitoring system for end-to-end packet delay measurement in software-

defined networks,” 13th International Conference on Modern Problems of Radio

Engineering, Telecommunications and Computer Science (TCSET), 2016.

[36] E. L. Fernandes et al., “Basic openflow software switch (bofuss).”

https://github.com/CPqD/ofsoftswitch13.

[37] “Open virtual switch.” https://www.openvswitch.org/.

[38] P. B. and D. B., “The open vswitch database management protocol,” 2013.

https://tools.ietf.org/html/rfc7047.

60

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	introduction
	background
	Software Defined Networking (SDN)
	OpenFlow
	SDN Controller
	Quality of Service (QoS)
	Delay Modeling in Computer Networks
	SDN Topology Management and Delay Measurement Issues
	Constraints and Performance Metrics in SDN Network Monitoring

	related work
	Proposed Link Delay Computation Method for SDN
	Sample Creation Mechanism
	Implemented Application for Delay Measurement

	Implementation and Evaluation
	Implementation
	Evaluation
	Single Flow
	Multiple Flows

	Best Queue Selector Application
	Sampling Period effect on Relative Percentage Correctness

	conclusion
	REFERENCES

