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ABSTRACT

METHODS FOR HYBRID FLOW SHOP SCHEDULING AND A CASE
STUDY IN AN AEROSPACE COMPANY

Ozmen, Yigitalp
Master of Science, Industrial Engineering
Supervisor: Assoc. Prof. Dr. Sedef Meral

September 2019, 157 pages

In this study, we address the scheduling problem in Hybrid Flow Shop (HFS) with
makespan objective. Since this problem is known to be NP-hard and an HFS is a
common environment in real-life manufacturing systems, several approximate
solution approaches have been proposed in the literature. Hence, we resort to some of
these such as MILP model, dispatching rules, Palmer, CDS, NEH, and Bottleneck
Heuristic. Due to the complexity of HFS scheduling problem, MILP model provides
only a near optimal solution by using CPLEX for the real problem which we are
inspired by the scheduling problem in the manufacturing of fuselage panels at an
aerospace company as a case study whose current hybrid job shop is converted to an
HFS by discrete event simulation to improve the output quality, lessen materials
handling and shorten the manufacturing lead time. The job sequences of these
approaches are simulated to compute makespan values of HFS scheduling problem.
Moreover, we propose a Constraint Programming (CP) model for solving HFS
scheduling problem to optimality for the real problem and test problems. We also
propose a Hybrid Algorithm (HA) and a Galactic Swarm Optimization (GSO) in order
not to be stuck in local optima for most of the test problems and to solve the real

problem for optimality within an acceptable computational time. While HA and GSO



seem to be promising for solving most of the test problems to optimality, the CP model
outperforms the other approaches in the literature by solving all of them to optimality.

Keywords: Aerospace Industry, Constraint Programming, Galactic Swarm
Optimization, Hybrid Flow Shop, Scheduling
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MELEZ AKIS TiPi ATOLYE CiZELGELEMESI iICIN YONTEMLER VE
BiR HAVACILIK FIRMASINDA VAKA ANALIZI

Ozmen, Yigitalp
Yiiksek Lisans, Endiistri Miithendisligi
Tez Danismant: Dog. Dr. Sedef Meral

Eyliil 2019, 157 sayfa

Bu c¢aligmada, Melez Akis-tipi Atolye (MAA) cizelgeleme problemini en biiyiik
tamamlanma zamani amaci ile ele aldik. Bu problemin NP-zor ve bir MAA nin gergek
yasam imalat sistemlerinde yaygin bir ortam olmasindan dolay1 literatiirde bir¢ok
yaklasik ¢6ziim yaklasimlar1 Onerilmistir. Dolayisiyla, KTDP modeli, dagitim
kurallari, Palmer, CDS, NEH ve Darbogaz Sezgiseli gibi bunlardan bazilarina
basvurduk. MAA ¢izelgeleme probleminin karmasik olmasindan dolayr KTDP
CPLEX kullanarak gercek problem i¢in yalnizca optimale yakin bir sonug saglamistir.
Mevcut durumdaki melez siparis-tipi atolyesi ¢ikt1 kalitesini arttirmak, malzeme
elleglemesini azaltmak ve iiretim temin siiresini kisaltmak i¢in ayrik olayl benzetim
araciligryla MAA’ya doniistiiriilen bu vakay1 bir havacilik firmasinda liretilmekte olan
orta gdvde panellerinin ¢izelgeleme probleminden ilham aldik. MAA ¢izelgeleme
probleminin en bilyiik tamamlanma zamani degerlerinin hesaplanabilmesi i¢in bu
¢Oziim yontemlerinin is siralamalari simiile edilmistir. Bundan bagka, gercek problem
ve test problemlerini optimal olarak ¢6zebilen bir kesin yontem olan Kisit
Programlama (KP) modeli Onerilmistir. Ayrica, test problemlerinin biiylik bir
boliimiiniin yerel optimalde sikigmamasini saglayacak ve gergek problemi makul bir
¢Ozlim siiresi igerisinde optimale yakin bir sonug verecek sekilde ¢ozebilen, bir Melez

Algoritma (MA) ve bir Galaktik Siirii Optimizasyonu (GSO) 6nerilmistir. MA ve

vii



GSO, test problemlerinin biiyiik bir bolimiinii optimal olarak ¢6zebildigi i¢in umut
verici goriinmekte iken, KP modeli, bunlarin tamamimi optimal olarak ¢6zdiigii i¢in

literatlirdeki diger ¢6ziim yontemlerinden daha iyi bir performans gdstermistir.

Anahtar Kelimeler: Havacilik Sanayii, Kisit Programlama, Galaktik Siirii

Optimizasyonu, Melez Akis-tipi Atdlye, Cizelgeleme
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CHAPTER 1

INTRODUCTION

Due to the global and competitive structure of aerospace and defense industry, it is
essential to realize both effective and efficient solutions for manufacturing processes
in order to move one step forward to gain an advantageous position in this race. In this
study, we are motivated by same planning and scheduling problems one of the
companies that has a worldwide reputation in this market with a wide range of
products offer. Among these products, one of the biggest shares belongs to the Airbus
A320 fuselage’s Section-18 and 19 panel parts. In order to manufacture these panels,
a remarkably long operations sequence is followed as the manufacturing routing.
Since the operations in this routing are carried out in several different manufacturing
facilities at the factory campus, some serious problems emerge very often namely,
abnormally long lead times, complex materials handling methods, and quality
degradation. Moreover, these problems disrupt the timely delivery of the panels and
thus the assembly schedule of them. Not only do they result in panel shortages, they
also give rise to over-production, and Work-In-Process (WIP) accumulation. On the
other hand, extra materials handling and WIP accumulation result in quality-related
problems due to the frictions among parts, requiring rework operations which may

sometimes result with scrapped parts.

Obviously, the type of layout observed in the manufacturing of the panel
parts/subassemblies is a process type layout; and the manufacturing process is
typically a Hybrid Job Shop (HJS). In this study, we propose an alternative
manufacturing process that is basically a flow shop but with parallel machines at some
or all stages of the shop. This type of flow shop is the Hybrid Flow Shop (HFS) which

is an extension of the traditional flow shop configuration. The major difference is that



in the traditional flow shop, each stage has only a single machine whereas in the HFS
configuration, at least one of the stages has more than one machine working in parallel.
Figure 1.1 is a pictorial representation of an HFS with k stages and a number of
variable machines (m) at each stage. But this added feature in the HFS brings about
extra complexity and thus difficulty in terms of scheduling compared to the traditional
flow shop. Hence, HFS scheduling problems have attracted an ever-increasing
attention from researchers since the 1970s. In 1988, HFS scheduling problem is shown

to be NP-complete, and, later, in 1996, NP-hard.
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Figure 1.1. The representation of the HFS configuration

In addressing the HFS scheduling problem, MILP for small-to-medium size problems,
dispatching rules, and several heuristic algorithms for the large realistic problems are
applied in the studies in the literature. In this study, we propose a Constraint
Programming (CP) model, a Hybrid Algorithm (HA) as a heuristic method, and a
Galactic Swarm Optimization (GSO) as a metaheuristic approach. Both in HA and
GSO, we use First Available Machine (FAM) for assignment of machines and Earliest
Completion Time (ECT) for job sequences, especially chosen for an HFS scheduling
problem. The proposed methods are applied to the test problems provided by Carlier



and Neron (2001) in order to have a comparative analysis of all methods including
those in the literature for the HFS scheduling problem.

While HA heuristic and GSO metaheuristic solve the case problem and test problems
to near optimality within an acceptable computational time, CP model solves all
problems to optimality in a shorter computational time than the others, and hence
outperforms the others. Based on the results of the CP model, the proposed HA
heuristic and GSO metaheuristic seem to be promising in terms of both solution
quality and time for the case problem and test problems. Thus, these solution methods
seem to be applicable in other industries as well where the manufacturing process is

in the HFS configuration.

In the case study with the aerospace company under consideration, the current HJS
process is converted to an HFS process. To start with, the Minimum number of
Machines (MoM) required for each stage in the HFS configuration is determined by
means of simulation. Hence, a Discrete-Event Simulation (DES) model is developed
for the manufacturing of the panel parts in the new HFS. Then scheduling problem is

addressed for the HFS using the approaches proposed in the study.

Chapter 2 discusses the relevant studies in the literature about the HFS scheduling
problem. In Chapter 3 includes the problem description, while Chapter 4 presents the
MILP Model and the renowned heuristics for the HFS scheduling problem with its
assumptions. Chapter 5 describes the proposed solution methods including the CP
model, HA heuristic, and GSO metaheuristic with their structures and pseudo codes.
The case study in the aerospace company under consideration and computational study
are presented in Chapter 6 including the current production system at the company.
This chapter also covers the conversion of the HIS to HFS configuration at the
company by means of the discrete-event simulation modelling. Chapter 7 covers the
application of proposed solution methods to the test problems as a computational

study. Moreover, they are compared to the other solution methods developed earlier



in the literature in terms of both overall and average performances. Chapter 8 includes
the conclusion and further research issues emphasizing the important findings derived
from the results.



CHAPTER 2

LITERATURE REVIEW

2.1. Framework and Notation

In all scheduling problems, it is assumed that there is a finite number of jobs and
machines in the particular manufacturing environment as a system. Therefore, in order
to comprehend the variety of the systems in the literature, it is essential to understand
the general framework and notation used for describing the scheduling problems
similar to the descriptions of Pinedo (2016), and Ruiz and VVazquez-Rodriguez (2010).
In general, the number of machines is denoted by m while the number of jobs is
denoted by n. Usually, the index i refers to a machine while the index j refers to a job.
If job j is processed on machine k then the pair (j, k) is used in order to represent the
relationship between job j and machine k. Concordantly, the descriptions in the
following are the system’s components in which only the processing time is

indispensable for each type of system:

Processing time (pj): It represents the processing time of job j on machine k.

Scheduling problems are classified by Graham et al. (1979) via a triplet «|f|y, where
a field represents the machine environment referred to as the shop configuration, S
field describes a set of assumptions, constraints, job characteristics and restrictions
related to the problem, and y field indicates the performance measures of concern. The

possible shop configurations represented in the o field are:

Single machine (1): The case of a single machine in shop configuration.



Identical parallel machines (Pm): m identical parallel machines in a single stage in
which job j is processed on any one of them.

Uniform parallel machines (Qm): m parallel machines with different speeds in a

single stage where the speed of the machine k is denoted by v;.

Unrelated parallel machines (Rm): m different machines with different speeds in a

single stage where the speed of the process for job j executed on machine k is vjy,.

Flow shop (Fm): m serial machines on which each job has to be processed in the same
sequence. After a job is processed on machine k, it joins machine k + 1’s queue which
is also called as buffer or backlog. If the queue of the machine is assumed to behave
according to First-In First-Out (FIFO) discipline, then a flow shop is referred to as a

permutation flow shop and it is denoted by prmu in g field.

Flexible flow shop (HFc): A hybrid version of the traditional flow shop and parallel
machine environments. Instead of m serial machines, flexible flow shop consists of ¢
serial stages in which at least one of them has more than one identical, uniform or
unrelated machines in parallel. In the literature, flexible flow shops have been widely
known as Hybrid Flow Shop (HFS) or Multi-Processor Flow Shop (MPFS). Each job

has the same routing.

The possible entries in the g field that represents the features of the system are as

follows:

Due date (d;j): Job j’s planned completion date which is agreed upon by both the

customer and the supplier.

Release date (rj): Job j’s ready time which is also job j’s arrival time at the system.



Preemption (prmp): Interrupting a job being processed on a machine without waiting
its finish time in order to load a different job.

Precedence constraints (prec): Constraints taken into account when there are

predecessor or successor relationships among the jobs.

Sequence dependent setup times (Ssq): If setup times depend on the sequence of jobs
then ssq is taken into account in completion time calculations. If setup times are not
sequence dependent, then they are represented as snsd and included in the processing

times.

Job families (fmls): n jobs belong to F different job families. There is a setup time
denoted by sgh between the job families g and h while there are no setup times among

the jobs in the same family.

Batch processing (batch): A machine processes a number of the same or different

jobs in series.

Unavailability (unavail): Usually machines are not always available because of

breakdowns (brkdwn), shift changes or scheduled maintenances.

Machine eligibility restrictions (M;): In parallel machines (Pm) environment, if all
m machines are not capable of processing job j, then the capable ones that process job

j are denoted by M;.

Blocking (block): In a flow shop environment, if the buffer between two successive
stages, then blocking may occur, not allowing the upstream machine to release a

completed job, therefore, preventing it from processing the next job.



No-wait (nwt): In a flow shop environment, a job is not allowed to wait between two
consecutive machines/stages. Therefore, the starting time of a job at the first
machine/stage is delayed in order to make this job go on without waiting for any next
machines/stages. Moreover, it is understood that under nwt constraint, the shop

operates according to First-In First-Out (FIFO) discipline.

Recirculation (rcrc): A job visits a machine, a stage or a work center more than once.

Size (sizej): In an HFS environment, at each production stage k, one operation of job
j (opj) is simultaneously processed on sizej parallel machines without preemption

during the required processing time of job j.

The y field represents the objective function measure which usually tries to minimize
a function of the completion times of jobs. Therefore, the common y entries related to

the objective function are the followings:

Maximum completion time (Cmax): Makespan that is the completion time of the last
job. Minimizing the makespan is equivalent to maximizing the utilization of

machine/s.

Maximum flow time (Fmax): Flow time of a job is completion time minus release
time. The biggest value among the flow times of all jobs represents the maximum flow

time.

Maximum lateness (Lmax): Lateness value of a job can be obtained by subtracting due
date from completion time. The biggest lateness value among all jobs represents the
maximum lateness. If lateness has a positive value for a job, then it means that the job
is completed late and it is tardy. On the other hand, if it has a negative value for a job,
then the job is completed early. If lateness value is equal to 0, then the job is completed

on time.



Maximum tardiness (Tmax): Jobs’ non-negative lateness values. The biggest

tardiness value among all jobs is the maximum tardiness.

Maximum earliness (Emax): Earliness value of a job is due date minus completion
time. It is either positive or equal to 0 in order to ensure that the job is completed either
early or on time. The biggest earliness value among all represents the maximum

earliness.

Total/average completion time (C): Either summation or average of all completion

times of jobs.

Total/average weighted completion time (C%): Either summation or average of all

weighted completion times of jobs.

Total/average flow time (F): Either summation or average of all flow times of jobs.

Total/average weighted flow time (F*): Either summation or average of all weighted

flow times of jobs.

Total/average tardiness (7): Either summation or average of all tardiness values of

jobs.

Total/average weighted tardiness (7): Either summation or average of all weighted

tardiness values of jobs.

Total/average earliness (E): Either the summation or average of earliness values of

jobs.



Total/average weighted earliness (E“): Either summation or average of all weighted

earliness values of jobs.

Number of tardy jobs (U): Number of jobs completed later than their due dates.

Total weighted number of tardy jobs (U%): Summation of all weighted tardy jobs.

Usually, these weights are represented by total holding or inventory costs.

The objective function measures based on the review of Ruiz and VVazquez-Rodriguez
(2010) are commonly used in scheduling problems (Table 2.1).

Table 2.1. Mathematical descriptions of objective function measures

Notation Description Meaning

Cax max G maximum completion time

Frmax max (G-1) maximum flow time

Lmax mj?lx L; maximum lateness

Trmax max U maximum tardiness

Enmax max £ maximum earliness

C z G /n total/average completion time
v z w;C;/n total/average weighted completion time
F z Fi/n total/average flow time

Y z w,F;/n total/average weighted flow time
T z T;/n total/average tardiness

™ Z w,T;/n total/average weighted tardiness
U z U; number of tardy jobs

uv z wU; total weighted number of tardy jobs
E Z E; /n total/average earliness

EY Z wiE; /n total/average weighted earliness

Different HFS scheduling problems can be represented by the o|f|y triplet as in Table
2.2.

10
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2.2. Review of the HFS Scheduling Studies

In this section we review the studies about the HFS scheduling problems.

As the first algorithm, Branch and Bound (B&B) algorithm is proposed for an HFS
problem (HF2, 1, P2||Cnax) by Rao (1970).

B&B is applied again to an HFS problem (HF2, P2, 1||Cmax) by Arthanary and
Ramaswamy (1971). Later, Gupta (1988) proves that this problem is strongly NP-hard

and he proposes a heuristic algorithm.

B&B is applied again by Salvador (1973) to a more generalized HFS problem (HFc,
Pm|nwt|Cnmax) for small instances. Later, B&B algorithm is applied again to a similar
HFS problem (HFc, Pm||Cmax) by Brah and Hunsucker (1991).

For the first time, dispatching rules are studied by Paul (1979) for an HFS problem
(HF2, Pm|no-idle|T, V).

Dispatching rules are applied by Narasimhan and Panwalkar (1984) for an HFS
problem (HF2, 1, R2||idleness, waiting).

Wittrock (1985) studies an HFS problem (HF3, Pm|skip|Cmax), with different
methods, including LP, Longest Processing Time (LPT) as a dispatching rule, and a

dynamic balancing algorithm as a heuristic approach.

Kochhar and Morris (1987) study an HFS problem (HFc, Pm|snsq, block, skip,
brkdwn|F), by applying dispatching rules and heuristic algorithms such as myopic
method and Local Search (LS) approach.

12



Due to the exhaustive computational time of B&B algorithms, Sriskandarajah and
Sethi (1989) propose dispatching rule-based heuristic algorithm for an HFS problem
(HF2, Pm||Cmax) in order to observe its worst and average cost performances in a short
period of time.

A real-world problem, a paper industry, is studied by Sherali et al. (1990) as an HFS
problem (HF2, P10, P12||allocation, sequence) via a mathematical model.

Two HFS problems (HFc, Pm|prmu|F) and (HF2, Pm||F) are studied by Rajendran
and Chaudhuri (1992). They apply B&B algorithm to the first problem and heuristic
algorithm to the second problem. For the purpose of comparison, they also apply
Shortest Processing Time (SPT) as a dispatching rule to the second problem in order
to determine which method is superior. In terms of both solution’s quality and
computational time performance, their heuristic algorithm has better results than SPT

rule.

A real-world problem, packaging industry’s scheduling problem is considered as a
(HFc, Rm|ssa| 7%) problem by Adler et al. (1993) and a five-step heuristic algorithm is
developed in order to minimize the total priority-based tardiness (also known as the

total weighted tardiness).

Lee and Vairaktarakis (1994) apply the first error bound analysis to an HFS problem
(HF2, Pm||Cinax).

Chen (1995) uses a worst-case performance ratio for two HFS problems, (HF2, 1,
Pm||Cmax) and (HF2, Pm, 1||Cmax), by classifying some of the heuristics proposed

earlier for makespan minimization in the literature.

Hoogeveen et al. (1996) show that an HFS problem (HF2, Pm|prmp|Cmax) is NP-hard

in the strong sense.

13



Gupta et al. (1997) work on an HFS problem (HF2, Pm, 1||Cnax) using B&B and
heuristic algorithms (both constructive and improvement) from the literature with a
new LB calculated for experimental test problems.

Nowicki and Smutnicki (1998) apply Tabu Search (TS) to an HFS problem (HFc,
Pm||Cmax) by considering tabu restrictions and search diversification while creating
the tabu list and developing neighborhood search strategy.

Brah and Loo (1999) study an HFS problem (HFc, Pm||Cmax, F) by applying
regression analysis to determine the performance of Campbell, Dudek, and Smith
(1970) heuristic (CDS) algorithm, Nawaz, Enscore and Ham (1983) heuristic (NEH)
algorithm, Hundal and Rajgopal (1988) modified Palmer heuristic algorithm, Yang,
Pegden, and Enscore (1984) combined heuristic algorithm and Ho (1995) heuristic
algorithm. Moreover, with regression analysis, they find out that job characteristics,
number of jobs, number of stages and parallel identical machines, have significant

effects on the quality of the results obtained.

A real-world problem, concrete blocks production as a building industry, is studied by
Grabowski and Pempera (2000) as an HFS problem (HFc, Pm|nwt|Cmax). They apply
TS metaheuristic algorithm to the problem. Their algorithm seems to be promising in
terms of balancing the trade-off between the solution time and the quality of the

solutions obtained.

An HFS problem (HFc, Pm||Cmax) is studied by Neron et al. (2001). They observe that
their branching schemes are effective for small to medium size instances, but not for

larger instances.

An HFS problem (HFc, Pm||E"+T"+C"+d;") is studied by Gupta et al. (2002) with
different problem characteristics, controllable processing times, varying between a

minimum and a maximum value depending on the use of a continuously divisible

14



resource, and assignable weighted due dates, which are not a priori given but can be
fixed by a decision-maker in return for a due date assignment cost. This cost is one of
the objective measures constituting a cost function in terms of the penalty cost. For
this problem, they develop constructive heuristic algorithms as dispatching rules based
on insertion techniques and improvement heuristic algorithms as LS methods based
on shifting neighborhood procedures.

Kurz and Askin (2003) study an HFS problem (HFc, Pm|ssda| Cmax) by exploring cyclic,
multiple insertion, and Johnson’s Rule-based heuristics and comparing the
performance of these heuristics through evaluating them on a set of test problems

whose data are generated as an experimental design.

Similar to the genetic algorithm (GA) as an evolutionary algorithm, Artificial Immune
System (AIS), a smart problem-solving technique, is proposed by Engin and Doyen
(2004) for an HFS problem (HFc, Pm||Cmax). Their experimental results show that AIS
is an effective and efficient method that can be used for real-life industrial problems.

Moreover, their AIS heuristic is hybridized with some other heuristic algorithms.

Oguz and Ercan (2005) propose a GA with its four different versions for an HFS
problem (HFc, Pm|sizej|Cmax). They check the deviation of these GAs from the LB
value inspired by the previous studies in the literature in order to find the GA with the
best genetic operators among all. They also add that the best GA outperforms the TS
algorithm of Oguz et al. (2004).

A real-world problem, similar to fabric manufacturing as a textile industry, the
production process of ceramic tiles is considered as an HFS scheduling problem (HFc,
Rm|ssd, Mj|Cmax) by Ruiz and Maroto (2006) through developing a GA algorithm with
four new crossover operators. After designing extensive experimental datasets, they
calibrate their algorithm and compare it to nine other metaheuristic algorithms

introduced earlier in the literature.
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For an HFS problem (HF3, Rm|prec, Ssq, block|Crmax), Chen et al. (2007) propose a TS
metaheuristic algorithm, a mathematical model and a LB.

Ruiz et al. (2008) develop a mathematical model for a realistic HFS problem (HFc,
Rm|skip, Ssq, time lag, rm, M;j, prec|Cmax) and also test the model for medium size
instances. However, for real medium and especially large instances, they develop six
heuristic algorithms, five of which are based on dispatching rules and one of which is
inspired from the earlier studies. For benchmarking purposes, they develop a
Classification Tree as a Machine Learning (ML) technique by using advanced

statistical tools.

Naderi et al. (2009) propose a metaheuristic algorithm, namely Hybrid Simulated
Annealing (HSA), for a realistic HFS problem (HFc, Pm|ssq, transportation time|F,
T), by comparing the performance of HSA to well-known dispatching rules and the
adaptations of some metaheuristic algorithms introduced earlier in the literature of
HFS without transportation times. According to their experimental assessment, HSA
outperforms the solution methods in the literature that they include in their

comparisons.

Dugardin et al. (2010) develop three metaheuristics as Strength Pareto Evolutionary
Algorithm (SPEA), Non-dominating Sorting GA (NSGA) and Lorenz NSGA (L-
NSGA) and an exact algorithm for an HFS problem (HFc, Pm|rcrc|U, capacity
utilization). They examine the performances of these three metaheuristic algorithms
by using a DES model. Their exact method is a full enumeration technique that is used
for small instances only to obtain optimal solutions, as expected, in order to determine
the solution qualities of these three metaheuristic algorithms. The computational
results of the DES model show that SPEA and NSGA are outperformed by L-NSGA
whose solutions are very close to the optimal solutions yielded by the full enumeration

technique.

16



An Efficient GA (EGA) with Neighborhood Based Mutation (NBM) is proposed by
Engin et al. (2011) for an HFS problem (HFc, Pm||Cmax) through comparing it to the
GA without NBM and a parallel greedy heuristic algorithm. It is observed that EGA
performs better than the GA and parallel greedy heuristic algorithm in terms of

solution quality for the test problems.

Liao et al. (2012) develop a metaheuristic algorithm, Particle Swarm Optimization
(PSO) with a Bottleneck Heuristic (BH) to completely manipulate the bottleneck stage
and also with a SA heuristic to avoid stucking in local optima (PSO-SA-BH), for an
HFS problem (HFc, Pm||Cmax) through comparing it to PSO and PSO-SA in order to
find the best PSO variant. As a result, PSO-SA-BH is chosen as the best one for the
purpose of further comparison. Then, PSO-SA-BH is compared to Quantum-inspired
Immune Algorithm (QIA), Ant Colony Optimization (ACO), AIS and B&B
algorithms. According to the experimental results, PSO-SA-BH performs better than
QIA, ACO and AIS in terms of both effectiveness and efficiency, and better than B&B

algorithm in terms of efficiency, and the same in terms of effectiveness.

Luo et al. (2013) develop a metaheuristic algorithm, Multi-Objective ACO
(MOACO), for an HFS problem (HFc, Qm||Cmax, electric power cost) with the
presence of Time-Of-Use (TOU) electricity prices as an energy consumption approach
in the context of green manufacturing. In the light of computational experiments’
results, even though MOACO is worse than SPEA and NSGA in terms of efficiency,

it outperforms them in terms of effectiveness.

Marichelvam et al. (2014) develop metaheuristic algorithms, Cuckoo Search (CS) and
Improved CS (ICS) for an HFS problem (HFc, Pm||Cmax) by comparing CS and ICS
to GA, SA, ACO, PSO and an existing constructive heuristic algorithm which is also
used to generate initial solutions for ICS in order to obtain optimal or near optimal

solutions quickly. Computational results show that not only does ICS provide optimal
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results with minimum CPU time, but also it is superior to the other metaheuristic
algorithms in terms of both effectiveness and efficiency.

Li and Pan (2015) propose a novel hybrid algorithm, combining TS and Artificial Bee
Colony (ABC), (TABC) to solve an HFS problem (HFc, Rmj|buffer, block|Cmax).
According to the experimental results, TABC performs better than the five existing
heuristic algorithms in the literature for most of the instances in terms of both
effectiveness and efficiency.

A realistic HFS problem (HFc, Rm|batch, fmls, sqn, unavail, rj, M;, skip|aC"+8T") is
studied by Shahvari and Logendran (2016) through a mathematical model solved via
CPLEX for small instances to obtain optimal/upper and LBs, and developing several
TS based metaheuristic algorithms due to NP-hardness of the medium and especially
large instances in the strong sense. According to the comparative numerical results,
TS with Path-Relinking (TS/PR) based batch scheduling is promising and performs
well most of the time for small to large instances in terms of effectiveness and

especially efficiency.

According to the study of Chamnanlor et al. (2017), a metaheuristic algorithm, GA
hybridized with ACO (GACO), for an HFS problem (HFc, Qm|rcrc, time window,
fmls, M;j|Cmax) and a mathematical model are presented. GACO is compared to GA
and ACO in terms of computational results showing that GACO has the best results

compared to the other two.

Li et al. (2018) develop Energy-Aware Multi-objective Optimization Algorithm (EA-
MOA) for an HFS problem (HFc, Pm|ssq|Cmax, total energy consumption). Comparing
EA-MOA to several efficient heuristic algorithms in the literature, the experimental

results show that EA-MOA’s robustness and efficiency are promising.
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2.3. Summary of the Survey

It is obvious that shop configurations vary in terms of the number of stages, the
number of machines at the stages and the similarity/dissimilarity of the machines at
any stage. On the other hand, shop characteristics and the objective function measures
cannot be classified so easily as the shop configurations. Therefore, each HFS
scheduling problem is considered according to its shop characteristics and the
objective function measures. Solution methods can be classified in four main groups,
namely, exact, heuristic, hybrid, and other methods, like in the classification of Ribas
et al. (2010)’s review paper. Exact methods solve HFS scheduling problems to
optimality, while the others do not guarantee optimality all the time owing to the
parameters of the problems such as the size of the problem instance. B&B algorithm
and mathematical modelling are good examples for the exact method. On the other
hand, commonly used dispatching rules are good examples for constructive heuristic
algorithms, while the frequently used metaheuristic GA is a good example for an
improvement heuristic algorithm. Furthermore, any combined versions of these
methods such as Column Generation (CG) with GA or with SA, and Dynamic
Programming (DP) with Lagrangian Relaxation (LR) are good examples for the
hybrid algorithms. Finally, good examples for the other methods are DES models or
expert systems. In order to simplify the comprehension, any combinations among
exact, heuristic, hybrid and the other solution methods are considered as hybrid
algorithms. To summarize the literature survey in the previous section, Table 2.3 is

developed based on this classification.
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Table 2.3. Classification of the literature survey on HFS scheduling

Objective Number | Machines Solution Methods
Authors & Function of Stages | Type ata
Year Measures (c>3) Stage Exact Heuristic Hybrid Other
Rao (1970) Cmax 2 P X
Arthanary and
Ramaswamy Cmax 2 P X
(1972)
Salvador (1973) Cmax c P X
Paul (1979) T,U 2 P X
Narasimhan and .
Panwalkar '\?Vﬁ:ﬁfs’ 2 R X
(1984) g
Wittrock (1985) Cmax 3 P X X
Kochhar and -
Morris (1987) F ¢ P X
Gupta (1988) Crnax 2 P X
Sriskandarajah
and Sethi Cmax 2 P X
(1989)
Sherali et al. allocation,
(1990) sequence 2 P X
Brah and
Hunsucker Cmax c P X
(1991)
. 2 X
Rajendran and _
Chaudhuri F P
(1992)
c X

Continued on next page
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Table 2.3. — Continued from previous page

Objective Number | Machines Solution Methods
Authors & Function of Stages | Type ata
Year Measures (c>3) Stage Exact Heuristic Hybrid Other
Adler et al. =
(1993) v c R X
Lee and
Vairaktarakis Crax 2 P X
(1994)
Chen (1995) Chnax 2 P X
Hoogeveen et
Guptaet al.
(1997) Crax 2 P X X
Nowicki and
Smutnicki Chnax C P X
(1998)
Brah and Loo -
(1999) Cmax, F/ C P X X
Grabowski and
Pempera (2000) Crx ¢ P X
Neron et al.
(2001) Crnax C P X
Gupta et al. BT Y
(2002) and 4" ¢ P X
Kurz and Askin
(2003) Crnax C P X
Engin and
Doyen (2004) Crax ¢ P X
Oguz and Ercan
(2005) Crnax C P X
Ruiz and
Maroto (2006) Crax ¢ R X

Continued on next page
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Table 2.3. — Continued from previous page

Solution Methods

Objective Number | Machines
Authors & Function of Stages | Type ata
Year Measures (c>3) Stage Exact Heuristic Hybrid Other
Chen et al.
Ruiz et al.
(2008) Crax C R X X X
Naderi et al. = =
(2009) F, T c P X
Dugardinetal. | U, capacity
(2010) utilization ¢ P X X X X
Engin et al.
(2011) Crax C P X
Liao et al.
(2012) Crax C P X
Luo et al. Chmax, electric
(2013) power cost ¢ Q X
Marichelvam et
al. (2014) Crax c P X
Li and Pan
(2015) Crnax C R X
Shahvari and o
Logendran T c R X X
(2016)
Chamnanlor et
al. (2017) Crnax c Q X X
Chmax, total
Li et al. (2018) energy c P X

consumption
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CHAPTER 3

PROBLEM DESCRIPTION

In this study, we are motivated by the production planning and scheduling issues in
the job shop of center fuselage panels’ manufacturing at the aerospace company under
consideration. However, since an HFS configuration has more characteristics (Table
3.1) (Askin et al., 1993) better than an HJS environment, in this study, HFS scheduling

problem is considered.

Table 3.1. Performance characteristics depending on flow and job shops

Characteristic ~ Flow Shop Job Shop

Lead time Low High
WIP Low High
Skill level Choice High
Product flexibility Low High
Demand flexibility =~ Medium High
Machine utilization High Medium-low
Worker utilization High High
Unit production cost Low High
COMPLEXITY

As it is seen on Table 3.1, two of the major contributing factors why HFS scheduling
problem is considered in this study are lower lead time and WIP accumulation. Other
than these, lower unit production cost is another beneficial feature of an HFS
configuration as a layout type of the manufacturing process. Moreover, higher
machine and worker utilizations can be positively considered in terms of efficiency in

the manufacturing process. Because the machines in an HFS configuration are orderly
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located in the manufacturing site, capacity increase can easily be adjusted. In this way,
machine/worker utilizations, skill level, and demand flexibility can also be adjusted
with ease. Due to the fact that a certain type of products is considered for addressing
an HFS scheduling problem in this study, lower product flexibility and moderate

demand flexibility cause no negative effect on the manufacturing process.

Due to the fact that HFS scheduling is a complex problem which is proven to be NP-
hard in the strong sense, it is also difficult to solve this problem. In order to understand
the complexity level of HFS scheduling problem and its place among the other shop

configurations, Figures 3.1 and 3.2 are presented (Pinedo, 2016).

Rm Hic
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/ |

!

COMPLEXITY

Figure 3.1. Complexity hierarchy based on the shop configuration

COMPLEXITY

Figure 3.2. Complexity hierarchy based on the shop configuration for the makespan

minimization



As it is seen on Figure 3.1, the only shop configurations, more complex than the HFS,
are the unrelated parallel machines and the HJS as expected. Furthermore, on Figure
3.2, for the makespan minimization, scheduling the HFS and the job shop
configurations is harder. Especially, the HFS scheduling problem is harder than 2-

stage flow shop scheduling problem for the makespan minimization.

As an extended version of a traditional flow shop, an HFS has a more complex
structure, due to the number of machines at a stage. Therefore, according to the study
by Brah (1988), there are too many paths, shown on Equation (3.1), in order to obtain
a schedule for an HFS scheduling problem (HFc||Cyax)-

Cc

1022
i mk-l mk! .
On the other hand, a permutation flow shop has (n!) and a non-permutation flow shop

has (n")™ paths for a schedule. Hence, compared to permuation and non-permutation

flow shops, HFS scheduling problem is obviously harder to be solved to optimality.

Because of the motivations stated above, in this study, several renowned solution
approaches in the literature are applied to the HFS scheduling problem. After the
application of these approaches, it is observed that there is a room for improvement to
obtain better solutions for the HFS scheduling problem. For this purpose, three
solution approaches, a Constraint Programming (CP) model as an exact method, a
Hybrid Algorithm (HA) as a heuristic method, and a Galactic Swarm Optimization

(GSO) as a metaheuristic method, are proposed.

In the following chapters, we focus on the renowned methods for the HFS scheduling

problem.
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CHAPTER 4

HFS SCHEDULING: MILP MODEL AND HEURISTICS

Due to the NP-hardness nature of the HFS scheduling problem, exact solution methods
remain insufficient to obtain both effective and efficient solutions for medium and
especially large problem instances. Hence, several heuristic methods are proposed in
terms of effectiveness and efficiency. As reviewed in Chapter 2, these heuristics are
either used as a single heuristic or as a mix of them in a hybrid way. In this chapter,
first, we formulate the HFS scheduling problem as a Mixed-Integer Linear
Programming (MILP) model and then discuss the dispatching rules as heuristics.

Finally, we discuss the renowned heuristics for the HFS scheduling problem.

4.1. Mixed-Integer Linear Programming (MILP) Model

This section presents the MILP model for an HFS scheduling problem based on the
model of Ruiz and Vazquez-Rodriguez (2010). Before describing this model,

following assumptions are made:

e All jobs and all machines are available at time zero. Therefore, there are no

release dates constraints for the jobs.

e Parallel machines are identical at each stage. Therefore, there is no machine

eligibility constraint for the jobs.
e A machine at a stage processes only one operation at a time and a job is

processed by only one machine at a stage at a time. Therefore, partial

processings are not allowed.
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Setup times are not sequence dependent. Therefore, they are included in the
processing times of the jobs at each stage.

Preemption is not allowed. Therefore, before loading the next job, current job

on the machine is to be finished.

The buffer between two consecutive stages has unlimited capacity. Therefore,

blocking does not occur.

Problem data are deterministic and known a priori. Therefore, the routings of
the jobs are known, the number of parallel identical machines at a given stage
is fixed and the processing times of the jobs are deterministic. There are no
specific due date constraints related to the jobs, that is, all the jobs are assumed
to have a common due date. Since the importance of the jobs is the same, the

weights of the jobs are set to “1”.

A job may skip a given stage. This is represented by equaling this job’s

processing time to “0” at this stage.

There are no predecessor and successor relationships among the jobs.

Therefore, the sequence of the jobs can be altered as required.

All machines are always available. Therefore, there are no breakdown, shift

change, and scheduled maintenance constraints related to the machines.

Batch processing of a certain job is not possible due to the high cost of tool

requirements.
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e There are no no-wait constraints for the jobs. However, there are also no

technical constraints to make the jobs stop.

e A job does not visit a given stage more than once. Therefore, there are no
recirculation constraints related to the jobs.

e Job sequencing is allowed to change from one stage to another, that is, non-

permutation schedules are allowed.
According to the practical situations, these assumptions may slightly change for the
different variants of the HFS scheduling problems. The MILP model based on these
assumptions is presented below:
The MILP model
Sets
J: number of jobs: j={1, ..., n}
K: number of stages: k={1, ..., c}
L: number of parallel identical machines at stage k: I={1, ..., mc}

Parameters

pjk: processing time of job j at stage k

M= Z Z My, a big number

1 k=l

Decision Variables
Cik: completion time of job j at stage k
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_ {1, if job j is scheduled at the /™ machine of stage k
JK— 10, otherwise

_ {1, if job j precedes job r at stage k
Yk =10, otherwise

Cmax: maximum completion time of the jobs at the last stage

Objective Function

minimize Cmax (4.1)

Constraints

subject to
my
z V= vjeJ, vkeK 4.2)
=
Cj k-1TPjk=<Cijk Vjeld, vkeK: k>1 4.3)
Pj1=<Cj1 vjed (4.4)
CiktPrk-M(3-Xjrk-Yijk1-Yrk1)<Crk Vj€J, Vreld: j<r, VIeL (4.5)
CrictPik-M(2+Xirk-Yiki-Yrk)<Cijk Vj€el, Vred: j<r, VIEL (4.6)
Cjc<Crmax vjed 4.7)
yiki€{0, 1} vjeld, vkekK, VIeL (4.8)
xirk€{0, 1} Vj€eJ, Vreld, vkeK (4.9
Ck=>0 Vjeld, vkekK (4.10)
Crnax>0 (4.11)

The objective function (4.1) tries to minimize the maximum completion time at the

end of the last stage also known as the makespan. Constraint (4.2) ensures that each
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job is scheduled on exactly one machine of a given stage. Constraint (4.3) calculates
the completion time of a job at the end of a stage by adding the processing time of this
job in this stage to the completion time of this job at the end of the previous stage. In
constraint (4.4), the completion time of a job at the end of the first stage is at least
equal to the processing time of a job in the first stage. Constraints (4.5) and (4.6)
prevent any two jobs from overlapping when they are scheduled to the same machine
of a given stage. Constraint (4.7) determines the makespan value by checking the
completion times of the jobs at the end of the last stage. Sign constraints (4.8) and
(4.9) shows the domains of the binary decision variables, whereas sign constraints

(4.10) and (4.11) shows the domains of the continuous decision variables.

Being one of the exact methods, MILP may not provide the optimal solution for each
problem instance, especially for real-life size instances. Hence, the application of other
methods like dispatching rules and heuristics gains more importance in manufacturing

industry where HFS environment is very common.

4.2. Dispatching Rules

Dispatching rules have been studied for HFS since 1979. They are also known as
construction heuristic algorithms generating initial solutions to be improved later via
improvement heuristic algorithms. They are very simple to implement and also fast
for making quick decisions in scheduling. They usually yield relatively good solutions
in a reasonable time. Moreover, they provide optimal solutions for some special cases.
Furthermore, they are classified as static and dynamic rules where dynamic rules are

time dependent. In this study we use the following dispatching rules.

Service in Random Order (SIRO): A simple static dispatching rule frequently used
in practice does not try to optimize any measure (Pinedo, 2016). For example, SIRO
can be hybridized with First Available Machine (FAM) and Earliest Completion Time

(ECT) strategies for job sequencing at a stage.
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Shortest Processing Time (SPT): This simple static dispatching rule tries to
minimize the average time (waiting time+processing time) that a job spends in the
system, especially for a single machine, based on scheduling jobs according to non-
decreasing order of their pj values (Pinedo, 2016). For example, SPT schedules the

jobs according to non-decreasing order of jobs’ processing times at each stage.

Shortest Total Processing Time (STPT): This static dispatching rule tries to
minimize the average time based on scheduling jobs according to non-decreasing
order of their total processing times thru the shop shown on Equation (4.12) (Alharkan,
2005).

Z Py vjel (4.12)
=1

For example, STPT can be hybridized with FAM and ECT strategies for job

sequencing at a stage.

Longest Processing Time (LPT): A static dispatching rule which tries to minimize
the makespan, especially for a single machine, based on scheduling jobs according to
non-increasing order of their pj values (Pinedo, 2016). For example, LPT schedules

the jobs according to the non-increasing order of jobs’ processing times at each stage.

Longest Total Processing Time (LTPT): This static dispatching rule tries to
minimize the makespan based on scheduling jobs according to non-increasing order
of their total processing times thru the shop (Alharkan, 2005).

For example, LTPT can be hybridized with FAM and ECT strategies for job

sequencing at a stage.
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4.3. Renowned Heuristic Algorithms

Some heuristic algorithms in the literature are observed to be effective and efficient in
terms of generating good solutions particularly for flow shop configurations.
Moreover, they are also applied in HFS configurations for comparison purposes with
other solution methods in the literature. In this study, in order to apply these algorithms
(except Bottleneck Heuristic (BH)) with FAM and ECT strategies, the HFS
configuration is reduced down to a traditional flow shop configuration through
distributing the processing time of a job at each stage equally based on the number of

parallel identical machines at that stage as in Equation (4.13).

L vjed, vkeK 4.13
) j€J, vke (4.13)

In Equation (4.13),;‘9jk is equal to the average processing time of job j at stage k in a

traditional flow shop, as reduced from the HFS configuration.

In this study following we use the renowned heuristic algorithms for generating

relatively good solutions in an acceptable amount of time:

Johnson’s Algorithm: The most popular heuristic algorithm which yields the optimal
solution for the flow shop problem (F2||Cmax) according to the study of Johnson
(1954). This algorithm also solves (F3||Cmax) problem to optimality, if one of the
conditions in Expression (4.14) is satisfied (Alharkan, 2005).

Either, min(pj1)>max(pjz) or min(pjz)>max(pj2) vjed (4.14)

It is understood that there is no bottleneck condition for the second machine, i.e., it is
dominated either by the first and/or the third machine. If at least either of these

conditions is satisfied, the processing times of the jobs on the first and the second
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machines are summed for creating the first dummy machine. Then, for creating the
second dummy machine, the processing times of the jobs on the second and the third
machines are summed. By this way, (F3||Cmax) problem is converted to (F2||Cmax)
problem to be solved optimally. Similar to the three-machine flow shop adaptation,
Johnson’s algorithm is also applied to (Fm|/Cmax), if one of the conditions in
Expression (4.15) is satisfied (Puaar, 2017).

Either, min(pj1)>max(pjz, Pjs, ---, Pim-1) OF Min(Pjn)> (Pjz, Pis, ---» pim-1) VjEJ (4.15)

The processing times of the jobs from machine 1 to machine m-1 and the processing
times of the jobs from machine 2 to machine m are summed in order to create two
dummy machines for converting the original problem to (F2||Cmax) configuration to be
solved to optimality by the Johnson’s algorithm with the iterations which are the same
as the iterations in the algorithm for the two-machine flow shop problem, if one of the
conditions above is satisfied. However, even if none of the conditions above is
satisfied, Johnson’s algorithm is still applied as a constructive heuristic algorithm

yielding not an optimal but a relatively good initial solution.

Palmer’s Heuristic: This is another popular and easy to implement algorithm as a
constructive heuristic for (Fm||Cmax) problem in order to generate a relatively good
initial solution according to the study of Palmer (1965). Palmer’s heuristic consists of

two steps as described below:

e Step 1: Calculate slope A for j* job for (Fm||Cmax) problem (Equation (4.16)).

A= Z -xk-D]xp,, vjed (4.16)
k=1

e Step 2: Schedule the jobs based on sequencing them in a non-increasing order

according to Aj values.
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In order to understand how Palmer’s heuristic functions, the following example is used

for illustration:

Table 4.1. Example: Palmer’s heuristic for (F3||Cmax) problem

\ 1 2 3

e e |- 6 @) |- 6 @
1 3 8 (p2) 10 14
2 12 9 12 0
3 8 6 13 10
4 12 10 16 8

Table 4.2. Example: Completion times with Palmer’s heuristic for (F3||Cmax)

problem

k1273
3 [11]21
111734
233350

35|44 |62

Since the example problem is solved to optimality (Cmax=62) with the Johnson’s

NP IW|F-

algorithm, it is seen that Palmer’s algorithm has also given the optimum Cpax.

Campbell, Dudek, and Smith (CDS) Algorithm: Actually, this is m—1 times
application of the Johnson’s algorithm to the subproblems of (Fm||Cmax) problem in
order to find which subproblem/s provide the best Cnax Value according to the study
of Campbell et al. (1970). Therefore, it is understood that in order to solve (Fm||Cmax)
problem by the CDS algorithm, the number of iterations is equal to m—1 (Table 4.3).
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Table 4.3. CDS algorithm for (Fm||Cmax) problem

. Left column: Right column:
Iteration ) ] . .
Sum of processing times Sum of processing times
1 Pi1 Pjm
2 Pirt Pj2 Pjm-1+Pjm
3 Piit+ P2+ Pis Pjm-2+ Pjm-1+Pjm
m-1 Pj1t Pjot+ Pjat... TPjm-1 Pjot...+ Pjm-2+ Pjm-1+Pjm

At each iteration, there are two dummy machines where (Fm||Cmax) problem is
converted to a (F2||Cmax) subproblem to be solved to optimality via the Johnson’s
algorithm. Totally m—1 many (F2||Cmax) Subproblems are solved. As a result, the
subproblem with the best Cmax Value is chosen in order to derive the best schedule for
(Fm||Cmax) problem. The following example illustrates the CDS algorithm:

e lteration 1: Create two dummy machines with the first and the last machines

for the application of the Johnson’s algorithm (Table 4.4):

Table 4.4. Example: 1% iteration of the CDS algorithm for (F3||Cmax) problem

PK|DPj1|Pj3 Sequences Completion times
1]3]10 1/3]2]4 k| 1]2]3
2 (1212 1 3[11|21
3]813 3 [11]17 ]34
411216 2 |23[32 |46
4 |35]45 62
j 123
1 31|21
3 [11]17 |34
4 233350
2 |35 44 |62
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e lteration 2: Create two dummy machines with pji+pj2 and pp+pjs for the

application of the Johnson’s algorithm (Table 4.5):

Table 4.5. Example: 2" iteration of the CDS algorithm for (F3||Cmax) problem

Sequences

Completion times

1/3[2]4

] 1

2 |3

J PirtPi2 | Pj2*Pjs
1 11 18
2 21 21
3 14 19
4 22 26

1]3]a]2]

3

11|21

11

17 | 34

23

32 | 46

A INDN|W|F

35

45 1628

2 |3

11 |21

11

17 | 34

23

33 | 50

N IR~ W(F

35

I

Coincidentally, the optimal solution is found at the first iteration due to the fact

that the Johnson’s algorithm condition is satisfied. If none of the conditions is

satisfied, one (alternative best sequences may be obtained) of the iterations

provides the best sequence with the best Cmax value.

The CDS algorithm is a good constructive heuristic, since it checks the variants of two

dummy machines’ structures. When the Johnson’s algorithm condition is not satisfied,

it is expected that the CDS algorithm yields better results, due to the fact that the CDS

algorithm provides several sequences.

Nawaz, Enscore, and Ham (NEH) Algorithm: As an iterative insertion heuristic,

the NEH algorithm calculates Cmax Value for each insertion in each iteration (Nawaz

et al., 1983). NEH algorithm consists of the following steps:
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Step 1: Calculate total work content for each job (Equation (4.17)).

7}:2 Py vjed (4.17)
k=1

Step 2: Sequence the jobs in non-increasing order of T; values.
Step 3: Select the first two jobs and calculate Cnax values for partial schedules
based on the positions of these jobs in the schedule (Sequence 1: 15-2", and
sequence 2: 2"9-1%Y). Choose the partial schedule with the best Crax value.
Step 4: Pick the next job from the list. Insert this job into all possible positions
of the partial schedule. Calculate Cmax values for the new partial schedules
based on the position of this job in the schedule. Suppose sequence 2 is the
best partial schedule. Then sequence 1°: 3M-2"-1%t sequence 2°: 2"4-3"-15¢, and
sequence 3’; 2Md-15t-31,
Step 5: Choose the partial schedule in Step 4 with the best Crax value.

Step 6: Follow this procedure from Step 4, until there is no job unsequenced.

When all jobs are sequenced, stop the algorithm.

The following example illustrates the NEH algorithm:

Step 1: See Table 4.6.

Step 2: See Table 4.7.
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Table 4.6. Example: 1% step of the NEH algorithm for (F3||Cmax) problem

J 1
3

3| T
10 |21
12 12 133
8 13 | 27
12 110| 16|38

DD (O |00 N

AlWIN|F

Table 4.7. Example: 2" step of the NEH algorithm for (F3||Cmax) problem

K[1[2]3]T;
1210|116 |38
12 12|33
13|27
10|21

RPWiIN| D>

(ee]
|| ©

e Step 3: See Table 4.8.

Table 4.8. Example: 3" step of the NEH algorithm for (F3||Cmax) problem

Completion times Completion times
J 1123 J 11213
4 (1212238 2 1212133
2 |24 ]33 B0} 4 [24]34 500

In this step, there are two partial schedules which are alternative to each other.
From now on, remainder steps of NEH algorithm are followed based on these
two partial schedules.

e Step 4: See Table 4.9.

e Step 5: See Table 4.10.
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Table 4.9. Example: 4" step of the NEH algorithm for (F3||Cmax) problem

Completion times Completion times
J 1123 J 1123
3 |8 (1427 3 | 81427
4 1201|3046 2 20|29 |41
2 324158 4 | 32|42 |58
J 1123 J 1123
4 (1212238 2 |1212133
3 1201|2851 3 20|27 |46
2 324163 4 | 32|42 |62
J 1123 J 1123
4 (1212238 2 |1212133
2 |24 (33|50 4 | 243450
3 |32(39|63 3 |32]40 |63

Table 4.10. Example: 5% step of the NEH algorithm for (F3||Cmax) problem

Completion times Completion times
J 11213 J 11213
3 |8 (14|27 3 | 8 (14|27
4 |20]30]46 2 12029 |41
2 [32]41 B8 4 [32]42 B8}

Step 6: See Table 4.11.

As it is seen in Table 4.11, the NEH algorithm provides alternative optimal

solutions for this particular problem.
Although the NEH algorithm is more time consuming than the CDS algorithm

for the same example problem, it is expected that the NEH algorithm provides

better solution than the CDS algorithm when Johnson’s algorithm condition is
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not satisfied. It is obvious that, due to its iterative insertion method, the NEH

algorithm produces relatively better solutions.

Table 4.11. Example: 6" step of the NEH algorithm for (F3||Cmax) problem

Completion times Completion times
J 1123 J 1123
1 3|11 21 1 3 (11|21
3 |11(17 |34 3 1117 |34
4 |23|33|50 2 |23]32|46
2 | 3544 620 4 |35] 45 [62)
J 1123 J 1123
3 |8 (1427 3 8 |14 | 27
1 112237 1 11|22 |37
4 |23|33|53 2 |23]32(49
2 35|44 |65 4 |35]|45]|65
J 11213 J 11213
3 |8 (14|27 3 | 81427
4 |20|30|46 2 120]29 |41
1 |23 (38|56 1 123|137 |51
2 | 35|47 |68 4 | 35|47 |67
J 11213 J 11213
3 | 8 (14|27 3 |8 (14|27
4 |20|30|46 2 [20]29 |41
2 324158 4 32|42 |58
1 35|49 |68 1 35|50 |68

Bottleneck Heuristic (BH): According to the study of Paternina Arboleda et al.
(2008), it is also called Theory of Constraints (TOC)-based heuristic for an HFS

scheduling problem. The steps of this heuristic are described below:

Step 1: Identify the bottleneck stage:
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e For each stage k, the flow ratio is computed (Equation (4.18)).

FR=) £ vkeK (4.18)

e Stage with the maximum FR value is chosen as the bottleneck stage. Let b

denote the bottleneck stage.

e Release time of job j for stage b is calculated (Equation (4.19)).

b-1
R]:Z Py vjed (4.19)
=1

e Due date of job j for stage b is calculated (Equation (4.20)).

Djzz FR,- Z Py vjel (4.20)
= i=b+1

Step 2: Sequence the bottleneck stage:
e Schedule the jobs in non-decreasing order of R;. If there is a tie, rank the jobs
in non-decreasing order of D;. If there is a tie again, rank the jobs in non-

decreasing order of processing times.

e Schedule the jobs on the machines of the bottleneck stage according to the

preceding ranking.

Step 3: Sequence the non-bottleneck stages:
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e Stages before the bottleneck stage b: Schedule the jobs in non-decreasing order
of D;. If there is a tie, rank the jobs in non-decreasing order of R;. If there is a

tie again, rank the jobs in non-decreasing order of processing times.

e Stages after the bottleneck stage b: Schedule the jobs according to FAM and
ECT strategies.

In order to comprehend BH, following problem is used as an example (Table 4.12):

Table 4.12. Example (HF3, P2, 1, P2||Cmax) problem for BH

jNc| 1123
1{3]8]/10
2 (1219 |12
318|613
4 112(10|16
PP 2|12

Step 1: See Tables 4.13, 4.14, and 4.15.

Table 4.13. Example: Flow ratio table for each stage

Cc 1 2 3
FR«| 17.5 25.5

e According to Table 4.13, stage 2 is identified as the bottleneck stage.

Step 2: See Table 4.16.
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Table 4.14. Example: Release times of jobs for the bottleneck stage

R
3
12
8
12

slw[n|e =

Table 4.15. Example: Due dates of jobs for the bottleneck stage

Dj
66
64
63
60

Sw[N[e =

Table 4.16. Example: Table for scheduling the bottleneck stage

Stage 2 PP 1
j | PP1 | Rj|D; Pj2 start finish
1| [1] | 3|66 8 3 11
2| [4] |12|64 9 27 36
3] [2] | 8|63 6 11 17
41 [3] |12|60 10 17 27

Step 3: See Table 4.17.

e Since stage 3 is scheduled according to FAM and ECT strategies, the job
sequence for this stage is J1-J3-J4-J2. Therefore, the final schedule is shown
in Table 4.18.

This example problem is solved by the proposed CP model (in Chapter 5

below) to optimality, and the optimal makespan value is found to be 48.
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Hence, BH provides the optimal solution for this example problem as seen in
the table.

Table 4.17. Example: Scheduling the stage before the bottleneck stage

Stage 1 PP 1 PP 2
j| PP1 | PP2 R; Dj | pju |start|finish |start|finish
1] [1] 0 3 13 0 3
2 [4] 0 27 | 12 8 20
3 [2] 0 11 | 8 0 8
41 [3] 0 17 | 12 | 3 15

Table 4.18. Example: Final schedule with the BH

Completion times

j 1] 273
1] 31121
3| 81730
4 |15 | 27 | 43
2

20 | 36
PP | 2 1 2

In the following chapter, we discuss the solution approaches that we propose in this

study:

o A Constraint Programming (CP) model as an exact method

o A Hybrid Algorithm (HA) as a heuristic method

o A Galactic Swarm Optimization (GSO) as a metaheuristic method

45






CHAPTER 5

PROPOSED SOLUTION METHODS

We propose a Constraint Programming (CP) model, a Hybrid Algorithm (HA), and a
Galactic Swarm Optimization (GSO) metaheuristic algorithm in order to provide
stabilized efficiency and especially effectiveness for HFS scheduling problems.

Different from the MILP model in terms of definitions, but the same in terms of the
assumptions, in the CP model, instead of binary and continuous decision variables,
the processing time of a job at a stage is modelled as an interval length decision
variable having the size of the processing time of the job at the stage. Moreover, the
relationships between these operations are modeled with precedence constraints. The
assignments of these operations to parallel identical machines at each stage are
modeled with the cumulative function of the CP model as a resource constraint. This

CP model is inspired by the model based on the study of Laborie et al. (2011).

Furthermore, we propose a Hybrid Algorithm (HA) that consists of three phases. In
the first phase, the HA calculates a Global Lower Bound (GLB) value as in the study
of Santos et al. (1995) in order to measure the quality of the solution. In the second
phase, in order to obtain the random order of the jobs determined initially at the
beginning of the first stage, two dispatching rules, FAM and ECT, particularly
powerful for HFS scheduling are used at the beginning of each stage. The reason why
these dispatching rules FAM as a machine allocation strategy and ECT as a job
sequencing strategy at each stage are chosen is that FAM maximizes machine
utilization and ECT minimizes job idleness simultaneously in order to shorten the
makespan. By this way, the schedule which is generated by the algorithm approaches

to a non-delay schedule for the purpose of obtaining near optimal or optimal makespan
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value if possible. The makespan value is then compared to the GLB. If the makespan
is observed to be equal to the GLB, then the optimal schedule is obtained. Most of the
time, this case is observed for small to some medium instances within an acceptable
computational time. The larger the problem size, the more difficult the problem
becomes due to the NP-hardness property of the HFS scheduling problem. On the
other hand, if the makespan value is observed to be close to the GLB, then a near-
optimal schedule is obtained with a makespan value within a relatively acceptable gap
from the GLB value. This case is commonly observed for the problems of medium to
large sizes. In medium size instances, the gap from the GLB is relatively smaller than
the gap in large size instances. Therefore, it is obvious that the larger the problem size
is, the bigger the gap is. In the third and last phase of the HA, the sequence of this
generated schedule with the best available makespan value for the test problem is

recorded for comparison purposes.

We propose another solution method for the HFS scheduling problem which is a new
metaheuristic approach inspired by the motion of stars and superclusters inside
galaxies, based on the study of Muthiah-Nakarajan and Noel (2016). This
metaheuristic is called Galactic Swarm Optimization (GSO) which balances
exploration and exploitation phases for a proper global search. In this chapter, GSO is
explained in detail with all of its phases. Similar to HA, GSO also uses FAM and ECT
strategies to form its cost function in order to compute the makespan value for a given
HFS scheduling problem. Similar to the HA, the performance of GSO varies according

to the problem instance size in terms of effectiveness and efficiency.

In the following sections, we elaborate more on these three methods proposed.

5.1. Constraint Programming (CP) Model

The CP model (Laborie et al., 2011) is a new method to find solutions for scheduling

and other combinatorial optimization problems. In order to deal with the complexity
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of real-world problems for especially large-scale scheduling problems, the CP model
becomes a powerful and invaluable tool. Rather than using an imperative
programming language, the CP model uses a declarative programming language
which simplifies the scheduling of jobs to machines with resource constraints. The
automatic search algorithm of the CP model is complete, and it uses Tree Search
(Depth First) and Constraint Propagation. This automatic search algorithm starts with
first reducing the set of possible values in the domain of decision variables according
to constraint propagations. When any further reduction is not possible in the domain
of decision variables, the CP model backtracks according to depth search and starts
the whole procedure in order to find a feasible or a better solution for the objective

function value.

The following example is used as an illustration for understanding the CP model with
its depth search and constraint propagation strategies based on Google OR-Tools
(2018):

How can 4 queens be placed on a 4x4 chessboard so that no two of them attack each

other? (In chess, a queen can attack horizontally, vertically, and diagonally.)

Placing the first queen in the upper left corner reduces the domain of the objective
functions with the application of constraint propagation. Then, the second queen is
placed and thus the domain of the objective functions is reduced again with constraint
propagation. After placing the third queen, it is seen that this solution is infeasible due
to constraint propagation according to the location of the third queen shown in Table
5.1.

Due to the fact that the solution above is infeasible, the location of the second gqueen

is changed. Constraint propagation is repeated according to the new location of the

second queen. After placing the third queen, it is seen that this solution is infeasible
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due to constraint propagation according to the new location of the third queen shown
in Table 5.2.

Table 5.1. Example: 1% iteration of CP

Q[X[Xx[x] [Qx[x[x] [Q]x[x][x
X [ X x[x[olx| [xIx]o|x
x| [x XXX x| [x|x][x][x
X x| x| [x[x] [x]olx|x

Table 5.2. Example: 2" iteration of CP

Q[x[x[x] [ox[x|x] [Q]x|x]x
X [ X X[ x[x]o] [x|x[x|o
x| [x x| Ix[x] [x]o|[x]x
X x| [x[x] [x] [x]x[x]x

Since an infeasible solution is encountered again, the location of the second queen is
changed once more. Constraint propagation is applied again according to the new
location of the second queen. After placing the third queen, it is seen that this solution
is infeasible due to constraint propagation according to the new location of the third

queen shown in Table 5.3.

Table 5.3. Example: 3" iteration of CP

QIx[x[x| [o[x[x[x] [Q[x[x]x
X | X X | x| x X|x[x]o
x| [x xlo|[x[x] [x]o[x]x
X x| [ x[x[x][x] [x]x[x]x

Because the third iteration of the CP approach yields an infeasible solution, in the

fourth, fifth and sixth iterations, the second queen is placed at new available locations.
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However, a feasible solution is not reached in any of the iterations. By this iterative
manner, depth search is completed for the first location of the first queen as shown in
Table 5.4.

Table 5.4. Example: 4", 5™ and 6" iterations of CP

QIX[XIx] To[x[x[x] To[x[x[x
| X[X X Ix[xTx] [xTx[x]x
x| [x x|x[xlo| [x[x[x]|o
X x| [x] [x[x] [x]o[x]x
QIX[xIx] To[x[x[x] To[x[x]x
5| X|X xIx] x| [xIx[olx
x| [x X [ x]x X [ x[xTx
X x| [xTo[x|x] [x]o[x|x
QIx[x[x] [o[x[x[x] [o[x[x]x
g | X|X X | X[ x X[ x|x]o
x| [x X[ x| x|[x| [x|x[x]x
X x| [x|x]olx]| [x|x[o]x

In the seventh iteration, the first queen is placed to the intersection of the first row and
the second column as its new location. According to this new location of the first
queen, the second queen is placed at the first available location. By placing each queen
at the available location, constraint propagation is applied according to these
placements. Then, the third queen is placed at the available location. After the last
constraint propagation is completed according to the location of the third queen, the

fourth queen is placed at the final position as shown in Table 5.5.

By synchronously using depth search and constraint propagation, the CP approach
drastically decreases the memory usage and the solution time. Therefore, the CP
approach seems to be promising, when MILP model is inefficient to optimally solve

especially real-life size instances.
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Table 5.5. Example: 7" iteration of CP

x[o[x[x] [x]o[x|x] [x]o[x[x] [x[Q]x]x
X | X% x|[xIx[o] [x|x|x][o] [x[x[x]|o
x| [x X[ x|x] [o[x[x|x] |o]x][x][x
X x| Ix] Ix[x] x| [x[x]o|x

For our HFS scheduling problem, following expressions are used in the CP model to
represent the corresponding expressions described in the MILP model:

The CP model

Sets

J: number of jobs: j={1, ..., n}

K: number of stages: k={1, ..., c}

L: number of parallel identical machines at each stage: I={1, ..., m¢}
Parameters

pjk: processing time of job j at stage k

Decision Variables

opj: the interval length of job j’s operation time at stage k

Objective Function

minimize max (endOf{opj)) (5.1)
JEJ
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Constraints

subject to
endBeforeStart(opjx-1, Opjk) vjeld, VkeK: k>1 (5.2)
Z pulse(opjk,l)Smk vkeK (5.3)
=1

In this CP model, decision variable is described as an interval. The functions endOf
and endBeforeStart, represent the precedence relationships of the interval length
decision variables. Finally, pulse is the critical function representing the number of
parallel identical machines as a resource constraint which is a cumulative function of
the CP model. If this problem were a traditional flow shop scheduling problem, instead
of constraint (5.3) of the CP model, constraint (5.4) would be used in the CP model.

noOverlap(opjx) VjeJ, vkekK (5.4)

In the CP model, the difference between the constraint (5.3) model and the constraint

(5.4) is illustrated in Figure 5.1.

P | e 1. [t ——

noOverlap | Stage 1 | 0p11 -

Figure 5.1. pulse vs. noOverlap in the CP model

Pulse makes operations of the jobs overlap at a given stage on the parallel identical
machines. On the other hand, the function noOverlap sequences the operations of jobs
for a given stage without overlapping. If the problem were a traditional flow shop,

noOverlap does exactly what is expected from it. However, our problem is an HFS
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scheduling problem and thus we actually want the operations of jobs to overlap at a
given stage until the parallel identical machines at this stage are filled up with these
operations. Figure 5.2 shows that how exactly pulse works for the HFS scheduling
problem with two jobs (j=1, 2) at stage 1 having two parallel identical machines (PP
1 and PP 2).

PP 1 Oop11

Stage 1 PP 2

Figure 5.2. The role of pulse cumulative function in the CP model for the HFS

scheduling problem

Due to the fact that opjx is the interval length decision variable, it takes only positive
integer values which cover (4.4), (4.10), and (4.11) domain constraints in the MILP
model. Moreover, in order to describe this interval length decision variable, the
processing times of the jobs whose units of measure are hours are converted to
minutes. Since the allocations of jobs to machines are performed with a depth search
and constraint propagation in the CP model, (4.8) and (4.9) sign constraints in the
MILP model are satisfied after the optimal solution of the CP model is obtained.
Objective function (5.1) in the CP model corresponds to objective function (4.1) in
the MILP model, covers the constraint (4.7) and tries to minimize the makespan.
Constraint (5.2) in the CP model is similar to constraint (4.3) in MILP model and
covers it. Constraint (5.3) in the CP model covers constraints (4.2), (4.5), and (4.6) in
the MILP model. Constraint (5.3) allows the jobs to be scheduled one by one up to the
number of parallel identical machines at a given stage. Therefore, the number of jobs
processed in parallel at a given stage never exceeds the number of parallel identical

machines at that stage.

In order to understand the CP model, the example HFS scheduling problem in the

study of Santos et al. (1995) is optimally solved with this CP model. The example

54



problem is represented in Table 5.6 and a Gantt Chart generated by the CP Optimizer
of IBM ILOG CPLEX 12.6 is shown in Figure 5.3.

Table 5.6. The example problem (HF3, P2||Cmax)

~ej1(2)3
1/13|5|9
2171114
312714
4 18|22
51637
PP|2|2]|2
lo 1r J2 |z ¢4 [s |6 |7z I8 |9 [1o [11 [12 |13 |14 |15 [16 [17 |18 |19 |20 |21
]
(T
Stage 1
[
[
e s |
Stage 3
[Bia ]
[ETE T

Figure 5.3. Gantt Chart of the example problem solution generated by CP Optimizer

At the first stage, jobs 1 and 2 are scheduled to the two parallel identical machines,
concurrently. Interval [1][1] (op1y) is represented with [stage][job] structure to obtain
stage-based Gantt Chart from the CP Optimizer of IBM ILOG CPLEX 12.6. After job
1 is completed on the first machine of the first stage, on this machine, job 5 is

scheduled. Job 3 and 4 are scheduled consecutively, after job 2 is completed on the
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second machine of the first stage. At the second stage, jobs 1 and 2 are scheduled to
parallel identical machines. After job 1 is completed on the first machine and job 2 is
completed on the second machine at the second stage, jobs 3 and 5 are scheduled to
these machines, concurrently. After the completion of job 4 at the first stage, it can be
scheduled to either one of the machines at the second stage, however, according to
FAM strategy, it is scheduled on the second machine at the second stage. At the last
stage, again, jobs 1 and 2 are scheduled to the parallel identical machines,
concurrently. After job 1 is completed on the first machine at the last stage, job 3 is
scheduled. Jobs 5 and then 4 are scheduled to the second machine at the last stage,
after job 2 is completed. By this way, the schedule having the shortest length (21 units)
is obtained for this example problem, which is (HF3, P2||Cnax) 0f Santos et al. (1995).

5.2. Hybrid Algorithm (HA)

We propose an HA inspired by the GLB of Santos et al. (1995). With the inclusion of
the GLB, the solution quality of HA heuristic is always under control, even though the
job sequence is randomly generated. In the following sections, we explain the concept
of the HA in detail.

5.2.1. Global Lower Bound (GLB)

The development of the GLB value is executed by a stage-based approach. For each
stage, the lower bound value is denoted by LB(K), k=1, ..., c. Moreover, there is also
a job-based lower bound which is denoted by LB(0). Then the GLB value is equal to

the maximum value of a set consisting of LB(0) and LB(K) values for all k=1, ..., c.
LB(0) and LB(k) are explained in Equations (5.5) and (5.6).

LB(0)= max (; pjk) (5.5)
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my n my
1
LB(k)zm— X ZLSA’k+Zpik+Z RSAy, vkeK (5.6)
k - i - ’ -
J=1 =1 Jj=1

LSA is the left-hand side total processing times for jobs from stage 1 to k—1 sequenced
in non-decreasing order represented by Equation (5.6.1). Moreover, RSA is the right-
hand side total processing times for jobs from stage k+1 to ¢ sequenced in non-

decreasing order represented by Equation (5.6.2).

k-1

LSAjkzz Py else 0 if k=1 vjel vkeK: 1<ksc  (5.6.1)
k=1

RSAy= Z Py else 0if k=c vjed, vkeK: 1<k<c (5.6.2)
k=k+1

Equation (5.5) represents the calculation of the job-based lower bound value which is
equal to the maximum of all job-based lower bound values. Equation (5.6) shows all
of the stage-based lower bound values’ calculations. If the processing times of the jobs
are integer, then LB(k) value is simply rounded up. Finally, the GLB is the maximum

value of a set consisting of LB(0) and LB(k) values as in Equation (5.7).

GLB=max [LB(0), rEEaIg((LB(k))] (5.7)

For better comprehension, the following example (Table 5.7) is used to illustrate the

computation of the GLB:
e Step 1: LB(0) computation (Table 5.8).

e Step 2: Sum of the processing times of the jobs for each stage (Table 5.9).
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Table 5.7. Example: (HF3, P2||Cmax) problem for GLB computation

12 12
13
1211016

PP| 2|22

AW [N |-
oo

Table 5.8. Example: (HF3, P2||Cnax) problem job-based lower bound computation

2 | 3 |LB(0)
3/8|10| 21
9
6

12 12| 33
13| 27

12|10 16 [ SN

Table 5.9. Example: (HF3, P2||Cmax) problem sum of the processing times of the

jobs
] cl 1 2 3
1 8 | 10
2 12 | 9 | 12
3 8 6 | 13

Total| 35 | 33 | 51
PP | 2 2 2

e Step 3: Lower bound calculations for each stage (Tables 5.10, 5.11, and 5.12).
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LB(1)=(1/2)x[0+35+(18+19)]=36

Table 5.10. Example: (HF3, P2||Cmax) problem calculation of LB(1)

J>~Cc| 1] 243
1 3] 18
2 12| 21
3 |8 19
4 |12 26
Total |35
PP |2

1| 243

3

8

N |W |-

12) 21

12| 26

Total
PP

LB(2)=(1/2)x[(3+8)+33+(10+12)]=33

Table 5.11. Example: (HF3, P2||Cmax) problem calculation of LB(2)

J>~¢|1/2|3 I>¢| 1|23
1 |3|8]|10 1 8 10
2 1121912 3 6 (13
3 [8|6]13 2 [12]9 |12
4 112]10|16 4 (12]10|16

Total| |33 Total
PP 2 PP

12

WIN |-
w
OO |0

4 112(10|16
Total
PP

LB(3)=(1/2)x[(11+14)+51+0]=38

e Step 4: Global lower bound calculation.

GLB=max(38, max(36, 33, 38))=38

The schedules in Figures 5.4 and 5.5 are generated by the proposed HA in order to

show the lowest gap value possible.
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These schedules makespan values’ gap away from the GLB is calculated as in

Equation (5.8).

Table 5.12. Example: (HF3, P2||Cmax) problem calculation of LB(3)

] >~c¢| 1+2 |3
1 11 |10
2 21 |12
3 14 |13
4 22 |16
Total 51
PP 2]
k[PP[1]2[3[4]5]6[7[8]o]10]11]12]13]14]15]16]17[18[19]20[21]22] 23] 24] 25] 26| 27] 28] 29[ 30[31[32]33]34]35]36]37]38]39]40[41
1; i 3 \ : 2
i 1T 4 ] |
3% | | : 3| | [ ] : 2
Figure 5.4. Gannt chart of sequence J1-J3-J4-J2
k[PP[1]2][3]4]5]6]7]8][9]10]11]12[13]14]15]16]17]18]19]20]21]22]23]24]25]26] 27] 28] 29] 30]31[32] 33]34]35] 36 37[38]39]40[ 41
1; 1 : 4 ’
GEl —— i 7 |
3% | [ : 3| | [ ] : 2

Figure 5.5. Gannt chart of sequence J3-J1-J4-J2

_ Cpax-GLB

Gap=—Gr8

(5.8)

For these schedules, gap value is equal to 7.89 %. Since the optimal makespan value

is greater than or equal to the GLB value, there is a probability that this gap is zero.
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Therefore, this problem is also solved with the CP model, and the makespan value is
found that it is equal to 41 which is thr optimal solution for this problem.

5.2.2. First Available Machine (FAM) and Earliest Completion Time (ECT)

Strategies

FAM is a dynamic strategy that is always chasing the machines at a stage to see the
machine with the earliest finish time among the parallel identical machines for a given
stage. Therefore, FAM simply outperforms other methods for machine allocation to
jobs, since FAM is a dynamic strategy depends on the time. By means of FAM
strategy, machine utilization increases. Table 5.13 is used to illustrate the FAM

dispatching rule.

Table 5.13. Example: The application of FAM strategy for the first stage

Stage1  |J3-J1-J4-J2
PP FT
1[—|J3] 8

2 -] 8
3415
J3

1 [=]a

2 [ >[4

For job sequence J3-J1-J4-J2, finish times at machine 1 and 2 are respectively equal

l

l

l

to p31=8 and p11=3 for the first stage. In order to process job 4 at stage 1, the machine
with minimum finish time is selected. Therefore, job 4 is loaded to machine 2 after it
completes the processing of J1. New finish time for machine 2 is equal to 3+p41=15.
According to the sequence, job 2 is the last job to be processed at stage 1. For this

purpose, job 2 is loaded to machine 1 after it completes the processing of job 3, since
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machine 1 has the minimum finish time (8<15) compared to machine 2’s finish time
which is now equal to 15. At the end, machine 1’s finish time is updated. The finish

time of machine 1 is now equal 8+p21=20.

ECT is the job sequencing strategy at the beginning of each stage after FAM
dispatching rule is applied at the previous stage. The aim of ECT job sequencing rule
IS to minimize job waiting time. In this way, with FAM and ECT rules applied together
to an HFS problem, the makespan value is tried to be decreased as much as possible.
Based on the definition of a non-delay schedule, with this proposed Hybrid Algorithm
(HA), the makespan value of any HFS problem approaches to the optimal solution as
much as possible. ECT job sequencing rule is illustrated through an example in Table
5.14.

Table 5.14. Example: The application of ECT job sequencing rule at stage 2

FAM FAM
Stage 1 | Completion times Stage 2 | Completion times
3 8 ECT 11
1 3 — 14
4 15 25
2 20 29
PP 2 PP 2

For job sequence J3-J1-J4-J2, the completion times of the jobs at the end of the first
stage are calculated according to FAM dispatching rule. As a result, job 1 has the
shortest completion time at the end of the first stage, despite the fact that it is scheduled
to the first stage at the 2" order of the sequence. Using the ECT job sequencing rule,
the order of jobs changes and thus updates as J1-J3-J4-J2 at the beginning of the
second stage. Since, coincidentally, the completion times of the jobs result in a non-

decreasing order at the end of the second stage, ECT keeps this same sequence at the
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beginning of the third stage. Ties are broken with the machine having the lowest index
for FAM dispatching rule and with the job having the lowest index for ECT rule.

The gap value determines how good the generated schedule’s makespan value is. The
sequence of the jobs at the beginning of the first stage is selected randomly, the fitness
of which depends on how far the makespan value is from the GLB. Therefore, in order
to ensure that the proposed algorithm is not stuck in the local optima, the job sequence
at the first stage is randomly generated for each iteration as a random search method.
In the first iteration, for a given HFS problem, the GLB value is calculated. Then, by
using randomly generated sequence at the first stage, makespan value is calculated
with FAM and ECT strategies for this problem. After that, calculated makespan value
is checked whether it is equal to the GLB value or not. If it is equal to the GLB value,
then the solution reached is certainly optimal. Otherwise, the gap value is calculated,
and the next iteration is initiated. In the next iteration, for a new randomly generated
sequence at the first stage, new makespan value is calculated. If this new makespan
value is smaller than GLB(1+Gap) value, this new sequence is accepted as a better
solution, thus, gap value is updated for the next iteration according to this new
makespan value. This loop continues until the stopping criterion is reached. In the HA,
the stopping criterion is the number of iterations. This gap strategy is the reason why
this proposed HA is powerful and easy to implement for any variant of HFS

scheduling problems.

5.2.3. Pseudo Code and Flowchart of the Hybrid Algorithm (HA)

The proposed HA for (HFc, Pm||Cmax) problems is presented in the following pseudo

code where & represents the sequence of the jobs.

Hybrid Algorithm (HA)

1:  Load HFS problem data

2:  Calculate LB(0) job-based LB
3:  Calculate LSA
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Hybrid Algorithm (HA) (cont’d)

4:  Calculate RSA

5. Calculate LB(k) stage-based LB

6:  GLB=max(LB(0), LB(k))

7:  Initialization: generate = randomly
8 Scheduling the first stage:

9

: Forj=1m;
10: Allocate the empty machines for the jobs up to m;
11: Find the completion times of jobs up to m;
12: Find the FTs of machines
13:  EndFor
14:  For j=my+1:n
15: Find the machine with the minimum FT
16: Allocate the FAM for the remaining jobs
17: Find the completion times of remaining jobs
18: Update the FTs of machines
19: EndFor
20:  Scheduling the other stages:
21 Fork=2:c
22: Apply the ECT based on the completion times of jobs at the previous stage
23: Based on the ECT, reorder the jobs which is a new sequence at the current stage
24: For j=1:my
25: Allocate the empty machines for the jobs up to my
26: Find the completion times of jobs up to my
27: Find the FTs of machines
28: EndFor
29: For j=mi+1:n
30: Find the machine with the minimum FT
31: Allocate the FAM for the remaining jobs
32: Find the completion times of remaining jobs
33: Update the FTs of machines
34: EndFor
35:  EndFor

36: Calculate C,,
37 If Cnax=GLB then Cnax is optimal and STOP
38. Else Gap=(Cnax—GLB)/GLB

39: Set the counter and the number of iterations

40: do

41: Initialization: generate =’ randomly

42: Scheduling the first stage:

43: For j=1:m;

44: Allocate the empty machines for the jobs up to m;
45: Find the completion times of jobs up to m;
46: Find the FTs of machines

47: EndFor

48: For j=m;+1:n

49: Find the machine with the minimum FT

50: Allocate the FAM for the remaining jobs
51: Find the completion times of remaining jobs
52: Update the FTs of machines

53: EndFor

54: Scheduling the other stages:

55: For k=2:c
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Hybrid Algorithm (HA) (cont’d)

56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
17:
78:

Apply the ECT based on the completion times of jobs at the previous stage
Based on the ECT, reorder the jobs which is a new sequence at the current stage
For j=1:my
Allocate the empty machines for the jobs up to mg
Find the completion times of jobs up to my
Find the FTs of machines
EndFor
For j=mi+1:n
Find the machine with the minimum FT
Allocate the FAM for the remaining jobs
Find the completion times of remaining jobs
Update the FTs of machines
EndFor
EndFor
Calculate Cpax’
If Cmax’<GLB(1+Gap)
Crax= Cmax’
Gap:(CmaxfeLB)/GLB
EndIf
While counter<iteration
EndIf
Return Cpax
STOP

The flowchart of the proposed HA heuristic is as well presented in Figure 5.6.
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Figure 5.6. The flowchart of the HA
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5.3. Galactic Swarm Optimization (GSO)

GSO is a new evolutionary based metaheuristic algorithm inspired by the motion of
stars and super-clusters inside galaxies in order to find the global optima of a given
optimization problem based on the study by Muthiah-Nakarajan and Noel (2016). This
metaheuristic consists of two levels, adjusting the balance between exploration
(diversification) and exploitation (intensification) phases for a given optimization
problem. In many metaheuristic algorithms, in order to explore better solutions or in
other words not to be stuck in local optima while exploiting, a lot of parameter
optimization processes are required. For instance, in GA, the number of iterations,
population size, crossover and mutation rates, and the selection strategy should be
considered carefully. On the other hand, the structure of GSO has already been
designed to manage the trade-off between diversification and intensification.
Moreover, GSO is such a flexible metaheuristic that, in its two phases, different types

of metaheuristic algorithms can be used such as GA, TS, ACO and SA.
5.3.1. GSO in HFS Scheduling

In this study, in the levels of GSO metaheuristic, PSO method by Eberhart and
Kennedy (1995) is used in order to let the stars and the super-clusters in the galaxy
find better solutions. Like particles in PSO, in GSO, each star and super-cluster has its
own position and velocity values. In the first level of GSO, in order to update the

velocity of a star s at time t+1 Equation (5.9) is used.

vidl=w ity (P;;xé)jLCz” 2 (gl %) (5.9)

In Equation (5.10), L, represents the number of iterations in the first level of GSO and
k represents the current iteration value. In Equation (5.9), ci1 is the cognitive
acceleration coefficient which makes star s to learn from its best personal position

where p' is equal to the best personal position of star s at time t and x{ is equal to the
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position of star s at time t. Similarly, c is the social acceleration coefficient which
makes stars s learn from the global best position where g’ 'is equal to the global best
position at time t. In Equation (5.9), r1 and r> are uniformly distributed random
numbers between 0 and 1. In Equation (5.9), wi is the inertia weight determining the
balance between local and global searches. In the first level of GSO, w; is linearly
decreasing according to the Equation (5.10). After calculating v4:!, the position of star

s at time t+1 is computed via Equation (5.11).

Wy =1-k/(L,+1) (5.10)
xi =yl it (5.11)

After completing the first level, or in other words, the exploration phase, the second
level of GSO is initiated. Global best positions from the first level are passed to the
second level of GSO in order to form a super-cluster. Now, the exploitation phase is
starting with the application of PSO once again to the stars in this super-cluster. From

now on, the position of star s in super-cluster at time t is represented by y!. Similarly,
the velocity of star s in super-cluster at time t is represented by vi,.. Therefore, Equation

(5.12) is the new velocity update equation.

vyl mwavtresrs (o) (gl ) (5.12)

In Equation (5.13), k is the current iteration value whereas L, is the number of
iterations in the second level of GSO. Similar to c; and ¢z in the first level, cs and cs
are cognitive and social acceleration coefficients in the second level of GSO,
respectively. rs and rs are random numbers between 0 and 1. Like wy in the first level,
W is the inertia weight in the second level of GSO. It also decreases linearly according
to the Equation (5.13). After calculatingv;zl, in order to compute the position of star s

in super-cluster, Equation (5.14) is used.
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wy=1-kI(L,+1) (5.13)

1— 1
y£+ _yi +v)t; (5.14)

In this study, initial position and velocity values are generated randomly according to
the Equations (5.15) and (5.16) based on the study of Tasgetiren et al. (2007).

xgzxmin+(xmax'xmin)rand() (515)
VJ? :vmin+(vmax'vmin)rand() (516)
In Equation (5.15), Xmin=0, Xmax=4and in Equation (5.16), Vmin=—4, Vmax=4. On the other
hand, continuous velocity values are restricted in the range [—4, 4]. v)‘ﬁs is also restricted

in the same range. Moreover, and again based on the study of Tasgetiren et al. (2007),
C1, C2, C3, and c4 are equal to 2. Furthermore, wy and w. values start from “1” and they
decrease linearly according to the number of iterations in the first and the second levels
of the GSO based on the Equations (5.10) and (5.13), respectively. However, they are
never to be decreased below 0.4. The number of iterations in the first level of the GSO,
L1 is equal to the number of jobs n. Similarly, the number of stars in each cluster inside
the galaxy is also equal to the number of jobs n. However, in order to increase
diversification, the number of clusters in the galaxy is set to n+5. Similarly, the number

of iterations in the second level of the GSO, L, is also set to n+5.

Since the position values of stars are continuous but not discrete, they turn out to be
insufficient to represent the decision variables for a combinatorial optimization
problem. Due to the fact that HFS scheduling problem is a combinatorial optimization
problem with the positions of the jobs as its decision variables, Smallest Position
Value (SPV) rule based on the study of Tasgetiren et al. (2007) is applied to the
position values of stars. In order to comprehend how SPV works, Table 5.15 is used

for an illustrative example:
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Table 5.15. Example: The application of SPV rule

Job 1 2 3 4 5
Position values 2.922 | —2.574 | -1.426 | 1.251 2.402

Job Position 5 1 2 3 4

Job Sequence () 2 3 4 5 1

According to the updated position values in Table 5.15, job 2 has the smallest position
value. Therefore, its job position is equal to 1. Job 2 is followed by job 3 having the
second smallest position value. Hence, it takes the job position 2. The third smallest
position value belongs to job 4. Thus, job position 3 belongs to it. Job 5 has the fourth
smallest position value and, so, it takes the job position 4. Finally, job 1 has the largest
position value among all. Therefore, it takes the last job position. By this way, we have
a candidate job sequence for stage 1 to be evaluated.

Similar to the HA, the GSO uses FAM and ECT in order to form its cost function.
Therefore, the makespan value of each job permutation m alternative is calculated in

the same way.

At the end of the second iteration in the GSO, in order to improve the solution quality
without hindering the solution time, Insertion Heuristic (IH) and Local Search (LS)
methods are applied to the global solution obtained. By this way, it is thought that if
there is a chance for improvement, then global solution can be improved. In the IH, a
job is inserted to different job positions one by one by swapping the job in that
position. If the new job permutation is better than the previous one in terms of
makespan value, global job permutation is updated, thus, new job permutation is made
to be equal to it. This process continues until each job is inserted to each job position
except inserted job’s current job position. Therefore, the number of iterations for the
IH is determined by the number of jobs n. When a better job permutation is obtained,
the procedure goes on by trying the next job instead of restarting. Otherwise, solution

time is extended, if the procedure is restarted when encountered with a better
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permutation. The IH builds up its search method based on providing a better
permutation. Otherwise, it keeps the previous permutation as the global solution and,
naturally, it tries to improve this solution. After the IH is completed, swap mutation
which is randomly changing two jobs’ positions at a time, is applied to the latest global
solution as an LS method. The number of iterations in the LS is equal to L, which is
thought to be sufficient to obtain a better permutation, if possible, without hindering
the solution time. The GSO is a powerful metaheuristic providing a good global
solution. Therefore, the IH and LS methods have a slight effect on that solution.
However, solution time is not drastically hindered by these methods, hence, they are
still applied to that solution in order to find hopefully a better one.

In the next section of the proposed GSO metaheuristic, pseudo code of the approach
is presented in order to clarify the mechanism of this method.

5.3.2. Pseudo Code of the GSO Metaheuristic

In order to clarify the proposed GSO for (HFc, Pm||Cnax) problem, the following

pseudo code is designed.

Galactic Swarm Optimization (GSO)

1 Initialization: x,,,;,=0, Xxx=%, Vimin=-% Vimax=%h C1=Cr=C3=¢c4=2
2 For 1:n+5

3 For 1:n

4: Randomly generate x? & p° ~rand(Xyin, Xmax) @A VI~rand(Viin, Viay)
5: Apply SPV to x? and p°

6: If Cuor()<Criax @2)

7 o=

8: EndIf

9: EndFor

100 g =p (1)

11: For 2:n

12: If Cmax(pfc)s)<cmax(ggs)

13: L

14: EndIf

15: EndFor

16: EndFor
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Galactic Swarm Optimizaton (GSO) (cont’d)

17:  galaxy=g° (1)

18: For 2:nt5

19: If Cp0r(g7,)<Cran(galaxy)

20: galaxy=g%

21: EndIf

22: EndFor

23: Level 1 (Exploration):

24: For Lint5

25: For 0:L,-1

26: Equation (5.10) and check w;<0.4 condition
27: For 1:n

28: 7y & ry~rand()

29: Equation (5.9) and restrict v''~[-4, 4]
30: Equation (5.11) and apply SPV x%*!
32 prl=yit] ‘

33 I G (PE<Can(l)
34: &= |
2. 1f G (@57)<Cpn(galaxy)

t+1

36: galaxy=g
37: EndIf

38: EndIf

39: EndIf

40: EndFor

41. EndFor

42: EndFor

43: Forming the super-cluster and initialization: v,;,=-4, V=4
44:  For 1:nt5

45 yi=g!

46: vj,’;rand(vmim Vinax)
47 p;)s:yg
48: EndFor
49: Level 2 (Exploitation):
50: For 0:L,-1
51: Equation (5.13) and check w,<0.4 condition
52: For 1:n+5
53: 7y & ry~rand()
54 Equation (5.12) and restrict v/;'~[-4, 4]
55: Equation (5.14) where galaxycgzl and apply SPV y*!
56: I Ci 02 H<Crra ')
. t+1 1
57: P =V,
58' If Cmax(p}t;l)<cmax galaxy)
59: galaxyﬁp;1
60: EndIf
61: EndlIf
62: EndFor
63: EndFor

64: Return galaxy

72



Galactic Swarm Optimization (GSO) (cont’d)

65: Initialization of the Insertin Heuristic (1H):
66: galaxy_copy=galaxy

67. Fori=1lin

68: For j=1:n

69: If i%

70: galaxy(j)=galaxy_copy(i)

71: galaxy(i)=galaxy_copy(j)

72: If C,,..(galaxy)<C,,..(galaxy copy)
73: galaxy_copy=galaxy (update)
74: Else galaxy=galaxy copy (reset)
75: EndIf

76: EndIf

77 EndFor

78. EndFor

79: Initialization of the Local Search (LS) (Swap mutation):
80: For 1L,

81: r=randperm(length(galaxy_copy)) (random permutation of jobs’ indices)

82. g=galaxy_copy (copy galaxy_copy)
83:  g([r(1) r(2)])=galaxy_copy([r(2) r(1)]) (randomly select two indices to swap jobs on them)

84: If C,r (©)<Crax(galaxy_copy)
85: galaxy_copy=g

86: EndIf

87: EndFor

88. Return galaxy_copy

89: STOP
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CHAPTER 6

CASE STUDY IN THE AEROSPACE COMPANY

In this chapter, we attempt to propose a Hybrid Flow Shop (HFS) configuration to the
company which is currently operating as a Hybrid Job Shop (HJS). Furthermore, we
present alternative methods to schedule the designed HFS so as to meet the demand

for the required panels of the A320 fuselage.

For the case study, first of all, an HFS configuration is required to be designed. Since
the current manufacturing environment is an HJS with longer lead times and complex
material handling systems, an HFS configuration turns out to be necessary for shorter
lead times and less complex material handling systems than the previous one. In this
chapter, for better comprehension of these problems in the case study, the current

manufacturing system operating as an HJS is explained in detail.

In order to convert the current HJS manufacturing environment to an HFS
configuration, firstly, all required data such as demand, capacity, production and

machine availability information are collected.

Secondly, after data collection is completed, in the data analysis and interpretation,
due to the fact that processing times and machine availability data are stochastic, we
fit each of them to the distribution with the best goodness value. Before fitting machine
availability data to the best distribution, we cleanse them from the outliers falling far
away from the conglomerated values according to their plots. Since processing times
data are less polluted with the outliers considered as negligible according to their plots,
we directly fit each of processing times data to the best available distribution by

skipping the data cleansing process.
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Thirdly, after data analysis and interpretation are completed, Cycle Time (CT) is
calculated according to demand and capacity data. The source module of Discrete-
Event Simulation (DES) model creates each type of panel according to this cycle time.
From production data, routes of the parts are obtained to be realized in DES model as
an HFS configuration. The processing times of the jobs and the breakdowns of the
machines are defined in DES model according to the outputs of data analysis and

interpretation.

Then, with Minimum number of Machines (MoM) calculation for each stage, the
number of parallel identical machines is determined for each stage according to the
results from the DES model. By this way, HJS environment is converted to an HFS
configuration. In MoM calculations, if demand per year is satisfied for each type of
panel, then there is no need for an additional machine for any stage. However, if there
is a bottleneck stage and/or demand is not satisfied then, the number of parallel
identical machines is increased by one unit for this stage according to the results of

DES model runs.

After the conversion of HJS to an HFS configuration by means of the DES model, the
job sequences obtained by the solution methods are inserted to the source module.
Then DES model is run for a single production of each panel (job) in order to obtain
the makespan value of each job sequence inserted to the source module. The solution
method for HFS scheduling problem that gives the best makespan value identifies the

best solution method for the case study.
In order to understand how an HFS configuration is converted from HJS environment

by means of the DES model, the phases of this process are explained explicitly in the

following sections.
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6.1. Products: Panels of Fuselage

The company is Turkey’s technology leader in design, development, modernization,
manufacturing, integration, and life cycle support of integrated aerospace systems
with a remarkable number of products from fixed and rotary wing air platforms to
Unmanned Air Vehicles (UAV)s and satellites.

The company, ranking among the top hundred global companies in aerospace and
defense industry, based its business on six strategic areas which are Aerostructure,
Aircraft, Helicopter, UAV Systems, Space Systems, and National Combat Aircraft
groups with the provision of related integrated logistics support.

Today, the company is conducting A320 Section-18 Panels (ABS) of Fuselage and
AIRBUS-PAG SA Section-19 Shells & Barrel (S19) Programs which are two of the

projects under the Aerostructure Group.

The main and strategic assembly parts (load items) of these two programs are the
panels. Before completion of the assembly process, the panels are called “skins”
(detail parts) in the manufacturing area. In ABS project, there are seven types of panels
which are upper, lower 1, lower 2, left forward side, right forward side, left rear side,
and right rear side skins. On the other hand, in S19 project, there are six types of panels
which are upper middle, upper left, upper right, lower left, lower right and lower
middle skins. In skin manufacturing, the batch size of each panel is equal to one, due
to the difficulties of materials handling in Hybrid Job Shop (HJS) configuration, the
size of panels being too big to be maneuvered in an HJS configuration, and in the
assembly of the fuselage, the usage of each panel is only one unit. Table 6.1 lists the
panels making up the center fuselage of Airbus A320 with the potential annual demand

values.
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Table 6.1. Panels of the center fuselage of Airbus A320

Pane_ls of | Project Description Annual
Sections ABS Demand
° 1 UPPER SKIN
&) LOWER SKIN 1
SR E LOWER SKIN 2
<t § 4 S18 LEFT FORWARD SIDE SKIN | 960
é 2 s 5 RIGHT FORWARD SIDE SKIN
3 3 6 LEFT REAR SIDE SKIN
5| E 7 RIGHT REAR SIDE SKIN
§ a 8 UPPER MIDDLE SKIN
= zE: 3 9 UPPER LEFT SKIN
E 2| 5 10 s19 UPPER RIGHT SKIN 790
T &g 1 LOWER LEFT SKIN
ol Al 12 LOWER RIGHT SKIN
@ 13 LOWER MIDDLE SKIN

In order to manufacture the panels, several operations (each corresponding to a
separate stage of manufacturing) must be performed on the panels taking into account
the precedence relationships among these operations. Except the raw material issue,
in order to manufacture a single panel, 19 sequential operations shown on Table 6.2

are performed.

Table 6.2. Operations routing for any panel manufacturing

Stage No Stage Name
0 Raw Material Issue (Cycle Time)
First Cut
Roll
Clean Opsl (Alkali Cleanl & Vapor Degreasel)
Heat Treatment
Refrigerator
Stretch Press

OO WIN|F

Continued on next page

78



Table 6.2. — Continued from previous page

Stage No Stage Name
7 Clean Ops2 (Alkali Clean2 & Vapor Degrease?2)
8 Deburrl, Drill Hole & Remove Tab
9 Mechanic Mill
10 Vapor Degrease3
11 Hand Form
12 Deburr2 & Hand Finish
13 Conductivity, Dimensional & Hardness Inspection
14 Pre-Penetrant Etch Ops
15 Non-Destructive Penetrant Inspection
16 Mask & Wet Blast & Surface Inspection Ops
17 Tartaric Sulfuric Acid Anodize Ops
18 Paint Ops
19 Paint Inspection

One of the major problems is that the panels are carried out and in five different
buildings in order to manufacture them. If the revisit is counted as well, total number
of buildings that panels visit is six. Moreover, complex materials handling is used both
during operations and transportation among buildings. Due to the fact that the physical
manufacturing area is too large to control, there are lots of quality and coordination

problems that cause assembly line to stop occasionally.

Furthermore, due to the lack of quality, some of the operations, especially manual
finish tasks require more time than their standard processing times. Therefore, any
excessive work on the panels extends the manufacturing lead time which causes
unplanned stoppages and bottlenecks not only in the assembly line, but also in the
manufacturing process itself. Because the panels are manufactured in an HJS
environment, there is always accumulating WIP in front of the machines. These WIP
accumulations make a stack of parts where they scrap each other by scratching. Since
the panels have bigger sizes, unbalanced WIP accumulations in both manufacturing
and assembly areas hinder the movement of the other parts. Also, they affect the

quality of other parts, negatively, because of the frictions.
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Another disadvantage of the existing HJS configuration in panel manufacturing is that
it is almost impossible to purchase and locate new machines in parallel to the existing
ones without altering the layout. The HJS configuration currently has almost no free
space to make small adjustments such as paralleling the bottleneck machines and
installing smart materials handling methods including conveyor belts, Automated
Guided Vehicles (AGV) or Automated Storage-Retrieval Systems (AS-RS) rather
than local cranes, carts, trolleys and dollies. Paralleling machines is useful for not only
handling bottleneck operations, but also offering volume flexibility and streamlining
the operations in the form of a flow line in case of increasing demand and product

variety.

In this case study, we first address the conversion of the current HJS environment as
an HFS configuration and then the scheduling of manufacturing in this converted HFS

configuration:

- A Discrete-Event Simulation (DES) model is developed and utilized so as to
obtain the minimum number of parallel identical machines at each
manufacturing stage in the HFS, taking into account the practical restrictions

and the expected demand value.

- For the HFS scheduling problem part of the case study, we utilize several
solution methods for scheduling the HFS with the objective of minimizing the

makespan, expecting a growing demand for panels in the near future.
6.2. Production Processes
For each panel, the production process starts with issuing related raw material. The
specification of raw material, such as the measure of raw material already matching

with its required stock size to manufacture the panels and whether heat treatment has

already been applied to raw material or not, affects the first cut and heat treatment
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processes. Briefly, under both conditions, first cut and heat treatment operations are
not required in order to prepare raw material for metallic manufacturing. However,
there is a slight difference among the panels 1, 2 and 3. While both operations are not
applied to panel 1, only first cut operation is applied to panels 2 and 3. On the other
hand, these conditions are not valid for the other panels. But, if stock-sized material
has already been available, raw material is sometimes provided without first cut
process for S19 panels 9, 10, 11, and 12 under the condition of urgent demand.
However, most of the time, this approach is impractical due to the high price of raw

material.

After the completion of the issuance of raw material, production goes on with first cut
operations. In this operation, firstly, raw material is loaded to the related manual
cutting machine from its pallet. After that, with the help of saw and ruler on the
machine, raw material is cut in order to bring its dimensional measures to the required
stock size. In the final phase of first cut operations, stock-sized raw material is
unloaded from the machine and loaded to an empty pallet previously prepared with
the help of a forklift and a hooked crane during cutting operation until all of the empty
pallets are loaded with materials one by one. These operations form stages 0 and 1 that
are executed in Building 200 (B200) where the warehouse of raw material and first
cut machines are located. These stages are shown on the partial layout of B200 in

Figure 6.1.

After the completion of the first cut operations, the pallets filled with the panels shown
in Figure 6.2 are loaded to a truck with the support of a forklift in order to transport
stock-sized materials from one location to another, because first cut operations are
performed in a different building which is the main warehouse of the raw materials.
Even though the first cut operations are under the roof of metallic manufacturing, the
other operations belonging to this class are still performed in a different building

which is the structural manufacturing and assembly facility.
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Figure 6.1. Production stages 0 and 1 in Building B200
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Therefore, a transportation operation is required, however, if current HJS environment

is converted to an HFS configuration, this waste can be eliminated.

Figure 6.2. Loaded pallet to be transported with the related work orders

When transportation operation is completed, the chips on the panels are removed by
alkali clean and rinse tanks with the help of vacuum manipulator shown in Figure 6.3.
On the other hand, if current HJS environment were converted to HFS configuration,

excessive materials handling tools and motions waste would have been removed.

First, with the vacuum manipulator, the panel is lifted from the pallet and loaded to an
empty transportation cart previously prepared. Then, by the moving crane,
transportation cart is sinked into alkali clean tank and then it is lifted and sinked into
rinse tank, in succession. By this way, cleansing operations are completed before the

heat treatment process which is the succeeding stage.

Now, the panels are located on transportation carts as a batch whose quantity varies

from 4 to 8 according to their thickness value. The panels are first loaded to oven
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loading apparatus with the help of a vacuum manipulator and fixed crane, due to the
fact that this process is performed while the panels are still flat.

Figure 6.3. Alkali clean vacuum manipulator with the fixed crane

And again, with the help of the moving crane, oven loading apparatus is lifted and
loaded to oven in order to make the panels reach their required finish condition in a
predetermined period of oven time. After dwelling time is up, oven loading apparatus
is removed from oven via the moving crane. Then, the panels are reloaded to
transportation carts via vacuum manipulator and fixed crane. At the final stage of this
process, transportation carts are transferred to the refrigerator by technicians,
manually, in order to complete cooling process of the panels for a predetermined
period of cooling time. This transportation requires materials handling manually

which can be reduced or even eliminated in an HFS environment.
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Before removing transportation carts from the refrigerator manually after the
completion of the cooling process, the related stretch form tool is loaded to the stretch
form machine with the help of the mega crane. Each panel has its own unique stretch
form tool which is designed, manufactured, and dedicated to the panel’s particular
geometric structure. In an HFS conversion, there needs to be more than one stretch
form machine. However, batch size of each panel type must be one only due to the
high cost of stretch form tools. By this way, excessive tool cost is eliminated.
Furthermore, in order to initiate assembly operations of the fuselage without stopping,
each type of panel is to be completed in the same manufacturing line, one after the

other.

The panels, removed from the refrigerator, are loaded to the stretch form machine one
by one after each panel’s stretch process is completed. But, this time, due to the fact
that the panels are formed, they are transferred from regular transportation carts to the
formed panels’ transportation carts when the panels are unloaded from the stretch
machine with the help of the mega crane. After that, alkali clean and rinse processes
are repeated. However, because the materials handling is slightly different from
previous process, loading and unloading processes also differ. Because different types
of transportation carts require different types of materials handling systems, non-
value-added costs drastically increase. Therefore, an HFS conversion is thought to
decrease the non-value-added costs in terms of automated materials handling systems

implementation.

With the completion of cleansing process, transportation carts are transferred to
drilling and removing tab area in order to prepare the panels for mechanical milling
process. In order to connect the panels to related milling fixture on mechanical milling
machine, the panels are drilled. With the help of fixed crane and robotic cutting
machine shown in Figure 6.4. Although the tabs of the panels are required for the
stretching process, they are actually excess materials on the panels which are removed

for further processes. Therefore, the tabs of the panels are removed with the help of
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the same machine. Then, again, the panels are unloaded from the robotic cutting
machine and loaded to the formed panels’ transportation carts with the help of the

fixed crane.

After transporting the panels to the mechanical milling machine, with the help of the
fixed crane, the panels are loaded to the mechanical milling machine. There are two
entrance doors each with its own fixed crane at both sides of the machine. A panel is
loaded to its milling fixture which is slided into the machine from a door with the help
of constant crane. While the loaded panel is processed by the machine, without waiting
for the completion time of this panel’s milling process, the other panel is prepared
outside of the machine (external setup) and loaded to its milling fixture which is slided
into the machine from the other door with the help of the opposite fixed crane after
unloading the processed panel.

Figure 6.4. Robotic cutting machine
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By this way, loading and unloading operations of the panels are following each other
without leaving the machine idle. Due to the fact that it takes too much time to process
a single panel on this machine, this external setup operation is pretty useful for
increasing the daily output. After converting the HJS environment to an HFS
configuration, it may not be feasible to parallel this milling machine due to the high
cost of it. Similar to the stretch form machine, batch size must be again equal to 1 in

order to avoid excessive milling fixture tool cost.

After the completion of mechanical milling process, alkali cleaning and rinsing
processes are repeated. Then, for hand forming and deburring operations, the panels
are transported to hand finish area. If there is a forming problem on the panel, it is
corrected by manual hammering. After hammering operation, chips from previous
operations and traces from hammering operation are deburred in order to increase the
surface quality of the panels for incoming dimensional inspection which also checks
the surface quality and the correction of the panel. Hand finish processes are applied
to both sides of a panel with the help of specially designed carts according to the

panel’s form and geometric structure.

Firstly, inner area of the panel is deburred and dimensionally inspected. After that,
outer area of the panel is deburred and dimensionally inspected. By this way, hand

finish and dimensional inspection processes are completed consecutively.

Before transporting parts to the facility of chemical processes, parts are loaded to the

building-to-building transportation carts for further processes.
The manufacturing stages above are all located in Building 10 (B10) which is the core

facility including both manufacturing and assembly operations. The sequence of the

stages executed in B10 is shown on its partial layout in Figure 6.5.
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As it can be seen in Figure 6.5, the HJS environment causes a lot of non-value-added
activities adversely affecting the lead time and the quality of the panels. Therefore, an
HFS configuration must be implemented in order to decrease materials handling
complexity and thus lowering lead times and improving quality.

After the panels are transported to the chemical processes facility, they are loaded to
the white carts with the help of the moving crane and manual labor for further
processes. By this way, empty building-to-building carts are sent back for maintaining
the loop between metallic production in the structural manufacturing facility and

surface preparation in the chemical processes facility.

At this point of the manufacturing process, the panels are in another building which is
the third different facility named as Building 20 (B20). Converting HJS the
environment to an HFS configuration, wastes resulting from waiting, transportation,
and quality can be decreased by eliminating the panel movements among buildings
via different types of transportation carts. Especially, quality defects may be reduced,
some of which cause a panel to be reworked for unpredictable rework times increasing
manufacturing lead time or even stopping a panel which leads to a shortage in the
assembly line depending on the severity of error. Some of these defects can be
tolerable and corrected by rework process whereas some of them can make a panel

totally scrap and permanently useless.

Before non-destructive inspection, which is also called penetrant inspection, pre-
penetrant etch operation is applied to the panels in order to increase the surface quality.
Since this is a chemical process, rinse operation must also be applied afterwards. These
two consecutive operations have their own tanks in which the panels are sinked into
one by one with the help of the moving crane in order to meet the required dwelling

times.
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Figure 6.5. Metallic manufacturing stages in Building B10
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After pre-penetrant etch and its rinse operation, the panels are sinked into infiltration
liquid for penetrant inspection. After completion of penetrant inspection, the panels
are transported to wet blast operation area. In this process, the panels are put into a
cabinet with a spraying system, one by one after masking process is completed.

After surface quality is satisfied with surface inspection, for other chemical processes,
the panels are ready to be transported to another building which is the fourth different
facility named as Building 220 (B220) and has much bigger tanks than the tanks of
B20. In this facility, tartaric sulfuric acid anodize with its rinse operation, sealant with
its rinse operation and drying in oven operation are applied to the panels, successively.
Surface operations applied to the panels are shown in Figures 6.6 and 6.7, on the
partial layouts of B20 and B220, respectively.

All of the operations related to the painting process are applied to the panels in the
painting process facility which is the fifth and the final building utilized in the
manufacturing process of the panels. Painting process operations are executed in
Building 40 (B40) as shown in Figure 6.8.

After all painting operations are completed, under the condition that the panels are
suitable for the assembly line according to the final inspection, they are sent back to
B10 where assembly of the panels takes place, including riveting and mating,
packaging and final inspection. Assembly of the panels so as to obtain the center

fuselage is out of the scope of this study.
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Figure 6.7. Surface operations in Building B220
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6.2.1. Data Analysis

The relevant data are collected with the help of Structural Query Language (SQL)
from RDBMS. Related tables are connected to each other with the SQL queries in
SAP Business Objects Crystal Reports 2008. Moreover, in order to retrieve the unit
processing times of each panel in each stage for all occurrences, some functions are
developed. Query codes with the syntax of Microsoft Object Linking and Embedding,
DataBase (OLE DB) Provider for SQL Server and the functions with related attributes
from the tables of RDBMS are compiled by Crystal Reports.

All of the outputs having overall 143,119 raw records are exported to MS Office Excel
2016 as a single spreadsheet for each panel type in a given stage with the average of
processing times per quantity in a work order. Manufacturing stages 3, 4, 5, 7, 10, and
17 are metallurgical surface operations and they have standard processing times
according to the specifications of the panels based on their manufacturing data
packages. Similarly, machine failure data are obtained from JAVA-based Materials

Requirement Planning (MRP) in ERP system.

All of the outputs having overall 1936 raw records are exported to MS Office Excel
2016 as spreadsheets for the stages 3, 4, 6, 7, 9, 10, 15, and 18. Upon collection of raw
data related to unit processing times of panels for each stage and machine availability

of each stage, data analysis and interpretation phase follow.

Two types of data, processing times and machine availability, are required to be
analyzed due to their uncertainty. Since outliers heavily affect machine availability, in
order to get realistic breakdown information from this data, we cleanse them through
plotting. By this way, total of 1936 raw records are cleansed and reduced to 1143
meaningful data. In detail, machine availability data are reduced from 103 to 98 for
stages 3, 7, and 10, from 101 to 73 for stage 4, from 500 to 276 for stage 9, from 118
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to 107 for stage 15, and from 829 to 304 for stage 18. On the other hand, the number
of machine availability data for stage 6 remain the same and equal 285.

Machine availability data are related to breakdown occurrences. Breakdown
occurrences are interpreted by both durations and frequencies for the stages at the
same time. By this way, necessary information about breakdowns is obtained for the
DES model developed for the company’s case scenario. The completion of data
cleansing process is followed by fitting the data to one of the available distributions
with the best goodness value in MATLAB R2018b.

After fitting the data to the best available distribution according to data’s pattern
observed on histogram, by using this distribution’s parameter values, we calculate its
mean to be determined as a processing time for each type of panel at each stage. This
analysis is executed for the processing times of all panels at all stages of

manufacturing.

A sample of data interpretations are accessible in Appendices (Appendix A). These
data interpretations derived by the MATLAB function of Sheppard (2012) are used as
the processing times of the panels at the manufacturing stages and the failures of

parallel identical machines at the stages in the DES model’s resource modules.
6.2.2. DES Model Design for an HFS Configuration

In order to start developing the DES model, first, the cycle time per panel is calculated

based on Equation 6.1 according to the most demanded panel.

300 days 3 shifts 7.5 hrs 60 min 32 min

CT= - X X ————X =—
960%13 unitsxtypes  days  shifts hrs unitsxtypes

(6.1)
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Assembling the highest annual demand of fuselage which is 960 is supported by the
resource capacity, i.e, 300 working days each with 3 shifts lasting 7.5 hours. Since the
fuselage requires 13 types of panels, CT is calculated based on (960x13) panels/year.
After that, CT in Equation 6.1 is rounded down to the largest integer to be introduced
as an interval value having minutes as its unit of measure for the source module.
Moreover, by being rounded down, CT value ensures that each type of panel can be
manufactured during the cycle time.

For determining the number of parallel identical machines at each stage k, MoM, is

calculated based on Equation (6.2).

Z'.’: p., X D.
MoM,= [%l VkeK (6.2)
k

D; represents the demand of panel j per year. C, identifies the yearly capacity of a

machine at stage k. The example in Table 6.3 shows how

MoM,, value is calculated for the cooling stage.
As it is observed in Table 6.1, in order to satisfy the yearly demand of panels, given
the capacity of the cooling machine (refrigerator), the cooling stage requires at least 5

refrigerators.

Table 6.3. MoMx calculation for the cooling stage

REFRIGERATOR

panel, j | P (hrs) | D; (per year) | p;*D; | C; (300 days x 3 shifts x 7.5 hrs) | MoM,;,

1 0 960 0 6750 0
2 0 960 0 6750 0
3 0 960 0 6750 0

Comtinued on next page
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Table 6.3. — Continued from previous page
REFRIGERATOR

panel, j | Py, (Nrs) | D; (per year) | p;*D; | Cy (300 days x 3 shifts x 7.5 hrs) | MoM,

4 4 960 3840 6750 0.57
5 4 960 3840 6750 0.57
6 4 960 3840 6750 0.57
7 4 960 3840 6750 0.57
8 4 720 2880 6750 0.43
9 4 720 2880 6750 0.43
10 4 720 2880 6750 0.43
11 4 720 2880 6750 0.43
12 4 720 2880 6750 0.43
13 4 720 2880 6750 0.43

4.84

rounded up 5

Similarly, MoM, calculations for the the other stages are accessible in Appendices
(Appendix B). After a few runs with the DES model developed in Tecnomatix Plant
Simulation 14, MoM, values are updated iteratively with adjusted the D; values and,
as a result, the minimum number of parallel identical machines for each stage is
determined in order to satisfy the highest annual demand. Table 6.4 lists the number
of parallel identical machines for each stage as obtained from the DES model of the

suggested HFS configuration for panel production in the company.

All of the required data are obtained now in order to illustrate the DES model

physically.
DES model design starts with the creation of its source module shown in Figure 6.9.

By changing “Mobile Unit (MU) selection” area from “Sequence Cyclical” to

“Sequence”, the DES model is run for a single unit production of each panel.
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Table 6.4. MoMx values in the HFS

k Stage MoM,
1 FIRST CUT 1
2 ROLL 1
3 CLEAN OPS1 (ALKALI CLEAN1 & VAPOR DEGREASE1) 1
4 HEAT TREATMENT 2
5 REFRIGERATOR 7
6 STRETCH PRESS 6
7 CLEAN OPS2 (ALKALI CLEAN2 & VAPOR DEGREASE?) 1
8 DEBURR1, DRILL HOLE & REMOVE TAB 3
9 MECHANIC MILL 7
10 VAPOR DEGREASE3 1
11 HAND FORM 1
12 DEBURR2 & HAND FINISH 6
13 CONDUCTIVITY, DIMENSIONAL & HARDNESS INSPECTION 2
14 PRE-PENETRANT ETCH OPS 1
15 NON-DESTRUCTIVE PENETRANT INSPECTION 2
16 MASK & WET BLAST & SURFACE INSPECTION OPS 1
17 TARTARIC SULFURIC ACID ANODIZE OPS 1
18 PAINT OPS 5
19 PAINT INSPECTION 1

This option is used for measuring the makespan values of different job (panel)
sequences obtained by different scheduling methods. On the other hand, “Sequence
Cyclical” option is only used for running the DES model based on the predetermined
simulation length which is equal to 300 days according to CT calculation in order to
determine the minimum number of parallel identical machines for each stage. Job
sequence is altered via the panel type table shown in Figure 6.10. After creating the
source module, stages are created as the resource modules, having determined the
number of parallel identical machines at each stage. Each resource module represents

the corresponding stage with an infinite buffer for WIP accumulation.
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Tools

MNavigate View

Help

; i T i M, . | RawMateriallssue Failed

RawMateriallssue ame: | | B DOrale
Label: | | O [Pemned - || CJExitlocked o
Atributes | Failures Controls Exit Statistics User-defined 4 b

Operating mode:

Time of creation:

Interval: | Const - || 3200 B
Start: |Const - ||0 | ]
Stop: |Const M ||U | O
MU selection: Sequence Cydical A

Table: Models.Frame. Type .. BE [lGenerate asbatch O

Blocking O

Interval Adjustable - | [E  Amount: O

DDD:HH:MM: 55, )XK%X

= -

Figure 6.9. The source module of the DES model

object integer | string table

=== 1 2 3 =
=== string (MU Mumber  |Mame Attrib...
—— 1 MUz Skinl |1 pl

2 MUs. Skin2 (1 p2

3 MUz, skin3 (1 p3

| MuUs, Sking (1 p4

5 MUz, skins |1 p5

3] MUz, sking |1 pa

F MUs. SkinF (1 o7

g MUz, sking |1 pa

q MUs, Sking (1 p9

10 [ MUs.Skin1d |1 pi0

11 | .Mus.sSkinii |1 pll

17 | .Mus.Skin12 |1 plz

13 | .Mus.sSkin13 |1 pl3

Figure 6.10. Initial sequence table of panel (skin) type inserted to source module

99



Figures 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, and 6.17 are used to illustrate one of the
resource modules, heat treatment stage, of the DES model with its infinite
(capacity=500 panels) buffer (backlog of jobs).

OvenPT
R . " [=]+
L—1 —1
OvenBacklog Oven

Figure 6.11. The resource module structure of heat treatment stage

| .Models.Frame.OvenBacklog ? X
Navigate View Tools Help

Name: | OvenBacklog| ‘ = Failed Entrance locked ]

Label: O |Planned v Exit locked O

Attributes | Times Failures Controls Exit Statistics Energy User-defined 4 »

I Capacity: 500 IEI

Buffer type: | Queue - 0

| Show fill level O
Cancel Aoply

Figure 6.12. Heat treatment stage backlog
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strimg time
1 2
string MU type Time
1 p1 0.0000
2z  |p2 0.0000
3 p3 0.0000
& P 1:00:00, 0000
5 p5 1:00:00., 0000
=3 pS 1:00:00., 0000
a pF 1:00:00. 0000
a8 p3 10000, D000
=1 p3 10000, D000
10 |pl0 10000, D000
11 pl1l 1:00:00,0000
12 plz 1:00:00,0000
13 pl3 1:00:00,0000

Figure 6.13. Heat treatment stage processing times (hrs) table of panels

.Models.Frame.Oven ? x|
Navigate View Tools Help

Name: | Oven| B [ |Faied Entrance locked u]
Label: O Plamned - || [JExitlocked ]

Attributes | Times Set-Up Failures Controls Bat Statistics Importer Ei 1 b

[ x-gmension: | 2 | [5]
¥-dimension; | 1 =

oK Cancel Apply

Figure 6.14. Heat treatment stage with EiiGIGHCIUCHCaNoves
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Models.Frame.Oven

Navigate View Tooks Hep

Name: B [Faied [JEntrance locked o

Label: | O |pamed ~ || ClExitloded o

Adtributes | Times | Set-Up Failures Controls Bt Statistics Importer E1 4 P

roessngtime: | Lst{Type) - | | Models Frame.OvenPT Ila
Setup tme: const - ][0 I:
Recovery time: | Const -0 o
Recovery fm stars: [ 11 o et _

Cyde time: Const *[0 o

B o ([

Figure 6.15. Heat treatment stage with the processing times table of panels

E Models.Frame.Oven ? X
Navigate View Tools Help

Name: | Oven | B [IFaed Uentancelocked
Label: | | O [Pamed - || [lEsitloced o

Attributes Times Set-Up | Failures | Controls Exit Statistics Importer E1 4 P

- [ Active ]

ProcessingTime | Weibul, 1, 36:14:2

4 LI} ]

B e ([ o |

Figure 6.16. Heat treatment stage with failure distribution
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.Models.Frame.Oven ? X

Name: Failure I Failed v Active [E
Start: Weibull * |11, 36:14:27:57 =]
Stop: Const ~|l0 =
Interval: Weibull - || 1, 36:14:27:57 =
Duration: Weibull -~ |11, 4%21:36 =
Availability =
Failure relates to: ProcessingTme ~ [
OK Cancel Apply

Figure 6.17. Heat treatment stage with faillire frequency and duration

Some of the stages are skipped by some of the panels (Figure 6.13). Processing times

of all panels at the stages are listed in Appendices (Appendix C).

After calculating the mean values of processing times of the panels for each stage
based on the fit distribution, the mean processing times are inserted to the resource
modules with panel type tables rather than the stochastic counterparts, since the
processing times are assumed as deterministic in the DES model. However, fitting
them to the best available distributions is only used for data analysis and interpretation
phase in order to cleanse the data collected via SQL queries from RDBMS to obtain
meaningful values from them based on the mean values of the best available

distributions.

In the DES model designed with Tecnomatix Plant Simulation 14, Weibull

distribution is exponentiated to obtain exponential distribution via Equation (6.3).
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f(x)= IZC G)k'l e /D x>0 is the pdf of Weibull distribution (6.3)
When k=1 in the pdf of the Weibull Distribution f(X)=/T1€'X’T1 is the pdf of the
exponential distribution. The failure of the resource occurs in Tecnomatix Plant
Simulation 14 according to the Figure 6.18 for given start (a resource begins
operating), duration (a failure occurs), and interval (a resource begins operating again)
values based on the study by Bangsow (2015).

start interval

- 1

. L .-

simulation time

duration

Figure 6.18. Failure settings of a resource in Tecnomatix Plant Simulation 14

The physical appearance of the DES model designed with Tecnomatix Plant

Simulation 14 is shown in Figures 6.19 and 6.20.

First of all, event controller shown in Figure 6.21 determines the simulation speed and
length. Simulation length is set as 300 days. Moreover, it generates a report which
summarizes the simulation after a run is completed. The summary report of a DES
model run is shown in Figure 6.22. The summary report gives statistics like which
panel is drained by which drain module, mean life time of each panel, throughput of
each panel, utilization percentages of production, transport and storage to derive
value-added percentage with its portion bar. Summary report is used for checking the
throughput for each panel at the end of simulation run in order to determine whether
the simulated HFS configuration has sufficient capacity to satisfy panels’ annual
demand or not. The reason why value-added is low is that we try to find the minimum
number of parallel identical machines utilized at each stage by providing infinite

buffers between stages in order to satisfy panels’ demand per year.

104



T UOITRINWIS JUB|d XITeWwouda ul [apow S3d ayL 6T'9 ainbi4

Iy e Ty S o T o oy emes Deeegem o] Deen eupey Dmgags wge

o = ] = = " e e = '

i T .5 .5 B .F . 0 N 5B ¥ MW

_____.|I.T_ o | ARE— B B ——
_I_ "

losmansy e = e = N = ey

- - e f o E
Tepm)  fpema W ey Wy fomgnen o e
_________ == =3
o —— I —— I p——

Wewy = g Hoom Hogmey 0

—
E E E B E
Py e e R T TR sReRe
_________ ===
B p— B e p—— _.._
e — Ly = — il

_____________________________________________________________________ﬁmo




T UOITENWIS JUg|d XI1TeWOouds 1 Ul [3pow S3d 8yl JO UoIsIsA g '0z'9 anbid

106



| # .Models.Frame EventController E

# .Models.Frame.EventController 7 X
g Mavigate View Tools Help MNavigate View Tools Help
EventControler Time 300:00:00:00.0000 Time 300:00:00:00.0000
Controls | Settings 4 b Controls | Settings 4 b
Y = Date: ||
End: 300:00:00:00
Slower Faster
Statistics: | 0
| Delete MUs on reset
Real-time x 10 : | Step over animation events
/| Show summary report
Cancel Apply Cancel Apply
Figure 6.21. Event controller as one of the simulation settings
Bimulation time: 300:00:00:00.0000
Cumulated Statistics of the Parts which the Drain Deleted
Object |Mame| Mean Life Time |Throughput|TPH|Production|Transport|Storage|Value added Portion I

Todssembly | pl 20004:13:37.8458 952 0 2.42% 0.00%] 97.58% 2.13% _I
Todssembly | pl0 20017:37:51.2153 9560 0 5.73% 0.00%] 94.27% 4.96% _"
ToAssembly|pll |20:21:17:06.1238 959 0 6.44% 0.00%] 93.56% 5.58% _"
ToAssembly|pl2 |20:17:38:13.5406 950 0 5.77% 0.00%] 94.23% 4,99% _"
ToAssembly|pl3 |20:118:22:24.0929 259 o0 5.94% 0.00% ] 94.06% 5.21% _"
Todssembly | p2 20:02:56:31.0368 952 [ 2.33% 0.00% ] 97.67% 2.05% _"
Todssembly | p3 20:02:18:09.0369 952 0 1.84% 0.00% ] 98.16% 1.55% _"
ToAssembly | p4 20012:28:26.1015 951 0 A4.77% 0.00%] 95.23% 4.13% _"
Todssembly | p5 20:14:44:47.3187 951 0 4.87% 0.00% ] 95.13% 4.27% _"
Todssembly | p6 20:115:04:12.9723 951 0 4.64% 0.00% ] 95.36% 4.10% _"
Todssembly | p7 20014:28:26.7778 980 0 4.79% 0.00%] 95.21% 4.18% _"
Todssembly | p8 200118:15:04.0043 9560 0 5.42% 0.00% ] 94.58% 4.72% _"
ToAssembly | p9 2(:18:23:16.6526 950 0 5.75% 0.00%] 94.25% 4.97% _"

Figure 6.22. Summary report generated at the end of a simulation run

Therefore, storage has the highest utilization percentage due to the fact that buffers
are highly utilized at all times during a simulation run. Another reason why value-
added is low is that the processing times among stages vary drastically. While some

of the operations last for hours, the others last for minutes, resulting in unbalances

among the stages causing bulky WIP accumulation.
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Secondly, shift calendar determines the number of shifts with hours for working days
required. In the simulation run, there are 3 shifts, each of them with 7.5 hours in total
300 day/year. The frame of shift calendar is shown in Figure 6.23.

#% .Models.Frame.ShiftCalendar

File  Mavigate View Tools Help

Mame: | ShiftCalendar | ] =] Active o
Label: | | O
ShiftTimes| Calendar Resowurces User-defined 1 F
Shift From To|Mo |Tu |We |Th |Fr |[Sa |So |Pauses =
1 |shift-3 moo| so0 [ |+ [+ (¥ [+ [+ [+ |03:30-04:00
2 | shift-1 g:o0| 15:00 [ ¥ |[¥ [+ [+« [+ |[+ |11:30-12:00
3 | shift-2 15:00 | 2400 [+ [+ |[+ |+ |+ |+ [+ | 13:30-20:00

o I

Figure 6.23. The frame of shift calendar

Finally, bottleneck analyzer shows the utilizations of the resource modules. It helps us
to identify the bottleneck resources so that we can increase the number of identical
parallel machines at a particular bottleneck stage. This tool and MoMx values support
each other by feedbacking one another iteratively based on the simulation runs results
and at the end of the iterations, the minimum number of parallel identical machines,
required for each stage, is determined. Figure 6.24 shows the bottleneck analyzer with
its outcome. In order to determine the exact MoMyVvalues, the utilizations of the stages
obtained from bottleneck analyzer’s outcome shown on Figure 6.24 are used with the
precalculated MoMy values. For example, the stage with the highest utilization is the
candidate whose number of parallel identical machines is increased by one based on
simulation the runs results and its precalculated MoMy value. Bottleneck analyzer also
helps to configure its outcome with its frame for different options as shown in Figure
6.25.
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Ui Bottleneck Analyzer == | ——
i h @ Navigate Help Please select the sort criteria for statistics ranking.
- Working
BottieneckAnalyzer|  analyze | configure | Frrt
Working + Disrupted
_ Worl g + Set-up + Disrupted + Pause
Al charts:
Ranking table:
OK Cancel
Loox )l oms [ tom ] =
Sorted according to working time
root.HandFinish
object real real real real real real real real real
1 2 3 5 6 9 10
string resource working set-up waiting blocked poweringUpDown disrupted stopped pause sortCriteria
1 tml.Hmm 93.496 0.00 0.2 0.00 0.00 0.00 0.00 6.25 93.46
2 root.PaintOps 88.06 0.00 1.95 0.00 0.00 3.74 0.00 6.25 88.06
3 |root.PrePentEtch 86.77 0.00 6.98 0.00 0.00 0.00 0.00 6.25 86.77
4  root.FirstCut 86.28 0.00 7.47. 0.00 0.00 0.00 0.00 6.25 86.28
5 root.Fridge 85.99 0.00 0.17 8.10 0.00 0.00 0.00 6.25 85.99
6 root.NDI 85.38 0.00 5.87 0.00 0.00 2.51 0.00 6.25 85.38
7 |root.Oven 82.46 0.00 5.22 5.74 0.00 0.33 0.00 6.25 82.46
8 root.MechMil 78.99 0.00 4.29 0.00 0.00 10.47 0.00 6.25 78.99
9 root.DrilHole 78.36 0.00 15.39 0.00 0.00 0.00 0.00 6.25 78.36
10 [root.StretchPress 77.01 0.00 0.09 0.00 0.00 16.64 0.00 6.25 77.01
11 [root.TSA 69.43 0.00 24.32 0.00 0.00 0.00 0.00 6.25 69.43
12 |root.Inspection 60.71 0.00 33.04 0.00 0.00 0.00 0.00 6.25 60.71
13 |root.HandForm 51.33 0.00 42.42 0.00 0.00 0.00 0.00 6.25 51.33
14 |root.Paintinspection 44.68 0.00 49.07 0.00 0.00 0.00 0.00 6.25 44.68
U, Bottleneck Analyzer [ | | M Bottleneck Analyzer ==
Navigate Help Navigate Help
Analyze Configure | Analyze |Gonﬁwe |
Which resource types are viewed? I Model: % I
[FlProduction  [¥] Transport ] Storage All charts:
Display: Plus Background v Ranking table
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Figure 6.25. The frame of bottleneck analyzer with its outcomes displayed on the

complete DES model
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Another useful tool is the drain module which helps to measure the effectiveness of
the HFS scheduling methods the sequences of which are inserted to DES model source
module. Drain module provides detailed statistics table for each type of panel. Figure
6.26 shows the drain module frame with its statistics table.

As it is seen in Figure 6.26, with time attribute, the makespan for a given sequnce is
obtained by sorting this attribute in descending order at the end of the simulation run.
Therefore, at the end of simulation run, in time attribute, panel with the highest
completion time value determines the makespan for a sequence inserted to DES model

source module.
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6.3. Computational Study

So far, data retrieval from RDBMS, processing the retrieved data and designing the
DES model based on these data are covered. Having obtained an HFS configuration
for the panel productson for the fuselage under consideration, scheduling the HFS
becomes the issue. Therefore, this section covers all aspects of the computational
study on scheduling the HFS which is supported by the DES model in detail. For this
purpose, several different software packages are used for different solution methods.
MILP and CP models are coded via Optimization Programming Language (OPL) in
IBM ILOG CPLEX 12.6. Dispatching rules are applied with LEKIN 3.3 and
MATLAB R2018b. The renowned heuristic algorithms are implemented with both
MS Excel 2019 and MATLAB R2018b. The proposed HA heuristic and GSO
metaheuristic methods are coded in MATLAB R2018b. Moreover, LEKIN outputs
and Excel spreadsheets of dispatching rules are provided also in Appendices
(Appendix D). In this phase, the results of the computational studies with the case HFS

scheduling problem are shared.

The HFS scheduling problem in the case study consists of 13 jobs and 19 stages some
of which have more than one identical machine in parallel. Table 6.5 shows that the
makespan values obtained from the scheduling methods some of whose job sequences
are also inserted to the DES model in order to observe the job sequences under the

condition of machine breakdowns.

Since the scheduling methods with the symbol * do not use the FAM and ECT
strategies, for the first stage, the job sequences obtained from them are not inserted to
the DES model source module. Therefore, there are no related Cmax values for them at

the end of a simulation run in the DES model also using the FAM and ECT strategies.
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Table 6.5. The results of the scheduling methods for the case study

Current Solution Methods

Proposed Solution Methods

CPLEX| LEKIN FAM and ECT CP Optimizer FAE'\é?”d
X - BH*
o % * - = )
5 | E|E|BIE|E|E|8|E 5 < |2
S 7] 4 %) n - S (@) b (@) o
Q
e
| 2018 |328733.13|3178|33.03 | 3259 | 32,53 | 31.08 | 29.76 | 32553 28.98 2029 | 2934
[
g
)
S
‘;’ 8485.21 1 1 0.168 | 0.199 | 0.171 | 0.199 | 0.169 | 0.185 | 0.258 51.63 303.26 | 601.74
o
@)
()]
L
o
g 34.96 | 37.84 | 37.67 | 36.74 | 34.59 | 33.32 32.29 32.42
§
$

MILP model is solved in 8485.21 seconds via CPLEX to near-optimality where

relative MILP gap is equal to 1.2 % (a stopping criterion to obtain the best feasible

solution), since the HFS scheduling problem is NP-hard in the strong sense (Table

6.6). This means that the obtained solution is very close to the optimal. On the other

hand, the CP model solves the problem to optimality within a very short computational
time (Table 6.7). Both MILP and CP models are measured in terms of Cmax and CPU

times. Therefore, the roles of the other solution methods have vital importance to

determine the job sequence in order to obtain the best makespan value.

Table 6.6. The completion times with the MILP model

Job, j Cj19
1 24.00
2 20.90
3 20.67

Continued on next page
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Table 6.6 — Continued from previous stage

Job, j Cj19
4 24.40
5 28.80
6 24.20
7 22.84
8 25.96
-
10 27.58
11 28.30
12 28.58
13 27.97

Table 6.7. The start and end times of jobs with the CP model

Job, j | Stage, k| Start End
1 19 [ 2372 | 2393
2 19 | 2318 | 23.42
3 19 [ 2763 | 27.78
4 19 | 2812 | 2832
5 19 | 2223 | 2247
6 19 [ 2703 | 27.23
7 19 [ 2052 | 20.70
8 19 [ 2513 | 25.38
9 19 | 2860 [H2808N
10 19 | 2668 | 27.03
11 19 [ 2778 | 28.12
12 19 [ 2832 | 2860
13 19 [ 2723 | 27.63

The job sequences of the dispatching rules (SPT & LPT) are obtained by LEKIN 3.3
with ease and their Cmax Values are recorded. The results of the other algorithms SIRO,
STPT, LTPT, CDS, Palmer and NEH are derived via MS Office Excel 2019
spreadsheets and their job sequences plugged into FAM and ECT strategies via
MATLAB R2018b. The job sequences of CDS, Palmer and NEH are also presented
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in Appendices (Appendix E). Moreover, in order to implement the NEH algorithm,
DES model is reduced to the traditional flow shop for getting makespan values of
partial job sequences in NEH algorithm. Cmax values of the renowned heuristic
algorithms are also recorded. Furthermore, BH is coded via MATLAB R2018b and
its Cmax Value is also recorded with CPU time. According to this algorithm, the
bottleneck stage is stage 12 and whole scheduling process is executed according to

this stage based on the rules of BH as explained in Chapter 4.

Consequently, CP provides the optimal solution. The second-best solution method is
MILP model. However, to supply this good solution, MILP model spends a
remarkable amount of time. The third best and the fourth best solution methods are
our proposed approaches which are HA and GSO. HA is set to a million iteration to
yield this result. On the other hand, the setup of GSO has already been explained in
detail in Chapter 5. Both of them provide promising results in terms of both
effectiveness and efficiency with a good balance between solution quality and time.
All solution methods are run on the computer with Intel® Core™ i5-8265U CPU @
1.60 GHz 1.80 GHz and 7.82 / 8.00 GB RAM with 64-bit operating system.

According to the simulation runs results for the HFS scheduling problem represented
as (HFc, Pm|skip, unavail(brkdwn)|Cmax) configuration, the proposed HA and GSO
yield the best results among other solution methods using FAM and ECT strategies,

which is parallel to their solutions in (HFc, Pm|skip|Cmax) configuration.
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CHAPTER 7

COMPUTATIONAL STUDY

In order to assess the performance of the proposed CP, HA, and GSO, we use the test
problems of Carlier and Neron (2001) and we compare the proposed algorithms
against PSO of Liao et al. (2012), QIA of Niu et al. (2009), AIS of Engin and Doyen
(2004), GA of Besbes et al. (2006), ACO and Ant Colony System (ACS) of Khalouli
et al. (2009), and B&B of Carlier and Neron (2001).

The test problems vary from 10 jobs and 5 stages to 15 jobs and 10 stages. Processing
times of the jobs are uniformly distributed between 3 and 20. The notation used for

problem description is defined below through an example problem, that is, j10c5a2.

j10: 10 jobs.

c5: 5 stages.

a: number of parallel identical machines at the stages.

2: index of a problem instance.

The number of parallel identical machines at the stages varies according to the “letter”

before the index of an instance for a given problem:

e a: there is a single machine in the middle stage and there are three machines

at other stages.
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e D: there is a single machine at the first stage and there are three machines at

the other stages.

e C: there are two machines at the middle stage and there are three machines at

the other stages.

e d: there are three machines at all stages.

We solve 76 test problems and report the Cmax values together with CPU times in Table
7.1. Instance 60 is discarded from the test runs because it has a structural fault.

However, the indices of instances remain the same for comparison purposes.

For the algorithms with the symbol *, only the makespan values of them are reported
in their papers. Furthermore, the problem instances in bold represent harder problems.
The letter a in “CPU” column means that the solution of the instance could not be
reached within 1600 seconds. The letter b in “CPU” column means that B&B could
not reach the optimal solution within 1600 seconds. The letter ¢ in “CPU” column
means that the solution, which B&B reaches, is not optimal, and also, this solution is

not reached within 1600 seconds.

Since j10c5a* type problems are easy to solve, all algorithms yield the optimal
solution in a short time. HA is slightly better than the other two proposed solution
methods in terms of only solution time for all instances. However, solution times of

the proposed algorithms are acceptable, since they are all below 1600 seconds.
Like j10c5a*, j10c5b* type problems are also easy to solve. Therefore, all algortihms

yield the optimal solutions for all problems. The difference occurs in solution times

on average, again, and PSO is slightly better than the other algorithms.
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However, the solution times of the proposed algorithms, CP, HA, and GSO, are

acceptable, since they are below 1600 seconds.

j10c5c¢c* type problems are one of the hardest problem group. PSO, B&B and CP reach
optimality for all instances. On the other hand, HA could not solve only j10c5c3
instance to optimality. Moreover, GSO solves only j10c5c¢1 to optimality. However,
the solutions of the problems that HA and GSO could not solve to optimality, are only
1 time unit away from the optimal solution. Therefore, the results of HA and GSO are
still promising and their solution times are below 1600 seconds. Furthermore, CP is
faster than PSO for j10c5c¢3 instance. CP is dominantly better than the other solution
algorithms. For every instance, HA is better than QIA. For only instance 16, GSO
performs equal to QIA, for other instances, GSO is better than QIA. For instance 14,
HA and GSO perform also better than AIS and GA, since they solve this instance
within a solution time below 1600 seconds. For instance 19, HA and GSO performs
better than GA, since they reach a promising solution only 1 unit away from the

optimal solution within 1600 seconds for this instance.

Like j10c5c*, j10c5d* type problems are one of the hardest group. Despite the fact
that they are hard to solve, HA and GSO could not solve only j10c5d2 and j10c5d5
instances to optimality. However, since their makespan values are only 1 unit away
from the optimal solution, both HA and GSO are promising in terms of effectiveness
and efficiency. PSO, B&B and CP solve all instances to optimality. For instance 18,
HA and GSO perform also better than B&B in terms of the solution time. For instance
19, HA and GSO perform better than ACO in terms of solution quality. For instance
20, HA is faster than B&B. For instance 23, HA and GSO perform faster than B&B

to reach optimality.

j10c10a* is another easy problem type whose instances are all solved to optimality by

all algorithms. Since the solution times of the proposed solution methods are below
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1600 seconds, the solutions provided are acceptable, and hence, CP, HA, and GSO are
still promising.

Like j10c10a*, j10c10b* type problems are easy to solve, and they are solved to

optimality by all algorithms (except QIA) within a solution time of 1600 seconds.

One of the hardest problem types, j10c10c*, could not be solved optimality with ease.
Instance 36 is solved to optimality by only CP and almost optimal solutions are
reached by HA and GSO within a solution time below 1600 seconds. Therefore, even
though PSO, AIS, and GA reach the makespan value equal to 115 for instance 36, they
could not reach this solution within 1600 seconds. CP also solves instance 37 to
optimality while the other algorithms, except B&B, fail to do so. However, for
instance 37, PSO’s solutions are better than HA and GSO. Nevertheless, PSO could
not reach its solution within 1600 seconds and the solutions of HA and GSO are only
2 units away from PSO’s solution and only 3 units away from CP’s solution which is
optimal. Moreover, HA and GSO reach their solutions within 1600 seconds for
instance 37. Instance 38 is the only problem in this set to be solved to optimality by
all solution methods except ACO, ACS, and B&B. However, PSO, AlS, and GA could
not reach to optimality within 1600 seconds. Therefore, for this instance, it can be said
that the proposed solution methods are better than PSO. Instance 39 is solved to
optimality by only CP. On the other hand, PSO, AIS, GA, HA and GSO reach a
solution which is only 1 unit far from the optimal solution. However, PSO, AlS, and
GA reach the same solution but in a larger time than 1600 seconds for this instance.
Therefore, it can be said that the proposed solution methods perform better than PSO,
AIS and GA for this instance. Instance 40 is solved to optimality by only PSO and CP.
However, PSO could not reach its solution within 1600 seconds for this instance.
Therefore, the proposed CP model is better than PSO for this instance. Moreover, HA
and GSO reach a solution only 1 unit far from the optimal solution within 1600
seconds. Therefore, the proposed HA heuristic and GSO metaheuristic still seem

promising. Instance 41 is solved to optimality by only CP, while PSO, AIS, GA, HA,
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and GSO reach a solution only 2 units far from the optimal solution. While HA and
GSO reach their solutions within 1600 seconds, the other algorithms could not reach
the same solution within 1600 seconds. Therefore, for this instance, CP is the superior
method, and HA and GSO perform better than PSO only in terms of efficiency. CP is
superior to others in terms of both effectiveness and efficiency. Both HA and GSO are
better than AIS and GA in terms of only solution time, since they reach the same
solution with the same gap from the optimal solution provided by CP. For instances
38, 39, and 41, HA and GSO perform better than ACO. While CP is superior to all of
the solution methods again, HA and GSO are better than ACS and B&B for all of the
instances except the instance 37, since B&B provides the optimal solution within 1600
seconds. However, for other instances, B&B provides solutions which are not optimal
within solution times higher than 1600 seconds. According to the results, GSO and
especially CP are promising.

Another easy problem type j15c5a* is solved to optimality by all solution methods.
By the increase in the number of jobs from 10 to 15, the solution time of GSO
increases. However, since the solution times of GSO are below 1600 seconds, GSO is

still promising.

Like j15c5a*, j15¢c5b* type problems are also easy to solve. Therefore, all of the

solution methods solve all of the instances to optimality in short computational times.

Another group of the hardest problems is j15c5¢* type problem. Only instance 59 is
solved to optimality by all of the solution methods. On the other hand, other instances
are solved to optimality by only PSO and CP. PSO uses too much time to solve
instance 55, while the proposed CP model solves it in a very short time. Moreover,
PSO could not reach the optimal solution for instance 58 within 1600 seconds, while
CP could solve it in 7 seconds only. Therefore, it can be said that for these instances,
CP is better than PSO in general. On the other hand, HA and GSO provide promising

solutions within acceptable amounts of time.
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Another hard problem group is j15¢5d*. Both PSO and CP solve all of the instances
to optimality. However, PSO could not reach these solutions within 1600 seconds.
Therefore, CP is better than PSO for these instances. On the other hand, HA and GSO
find solutions only 1 unit or 2 units far from the optimal solution within 1600 seconds.
Thus, they are still promising solution methods. GSO is better than HA for instance
64, while HA is better than GSO for instance 65. CP is the best solution method in
terms of both effectiveness and efficiency as expected, since CP solves all of the
instances to optimality. On the other hand, HA and GSO are better than ACO for the
instances 57, 61, 62, 63, 64, and 65. Moreover, GSO is also better than AIS and HA
for the instance 64 in terms of efficiency compared to AIS and in terms of
effectiveness compared to HA. HA and GSO are better than ACS and B&B for the
instances 57, 58, 62, 63, 64, and 65.

Although the number of stages increases, since a type configuration is easy to solve,
all of the instances in j15c10a* group are solved to optimality by all solution methods.
Due to the increments in both the number of jobs and stages, GSO requires more time
to solve the problems. However, since the solution time is below 1600 seconds for all

instances, GSO still seems to be promising.

Similar to j15c10a*, j15¢10b* type problems are also easy to solve, because b type
configuration is easy to solve. All of the solution methods reach optimality within
solution times below 1600 seconds. Therefore, the proposed solution methods are still

promising.
Since PSO is stronger than at least one of QIA, AIS, GA, ACO, ACS, and B&B for

hard cases (c and d type configurations), the proposed solution methods are also better
than at least one of QIA, AIS, GA, ACO, ACS, and B&B for these cases.
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According to the results of the computational study, the proposed solution methods

seem to be promising even for hard problem instances.

Moreover, regardless of the problem type, CP provides optimal solution for all
problem instances. Furthermore, HA and GSO never violate 1600 seconds rule and
provide optimal solutions for most of the instances. Another important deduction is
that if the bottleneck stage is explicitly shown, the problem becomes easier to solve.
For example, a and b type configurations have a single machine in the middle and the
first stages, respectively. If the processing times of the jobs do not vary drastically
from stage to stage, it is expected that the stage having one machine is the bottleneck.
Since, for these configurations, it is easy to identify the bottleneck stage, the problem
is open to manipulation, and thus, it becomes easier to solve. On the other hand, if the
bottleneck stage is hard to spot like in configurations ¢ and d, it becomes harder to
obtain the optimal solution . Briefly, it can be said that an HFS scheduling problem
could be easier to solve, if one of the stages has only one machine. So, there is a high
probability that the stages having only one machine are candidates to be the
bottleneck. Nevertheless, the impact of the jobs’ processing times should not be
underestimated while identifying the bottleneck stage as explained in Chapter 4 as one
of the steps for BH.

According to Table 7.2, for most of the instances, LB (Neron et al., 2001) is equal to
GLB (Santos et al., 1995). However, LB is better than GLB when LB is not equal to
GLB. Therefore, it can be said that LB is strong enough to represent HFS problems.
On the other hand, since, for most of the instances, LB is equal to GLB and it is simple
to calculate GLB in terms of method and time, GLB is also useful lower bound to
represent HFS problems and thus, it can easily be used as a part of an algorithm like

in our proposed heuristic solution method HA.
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Table 7.2. LB vs. GLB in the test problems

Comparison | Number of test problems | %
GLB>LB 5 6.58
LB>GLB 24 31.58
GLB=LB 47 61.84
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CHAPTER 8

CONCLUSION AND FURTHER RESEARCH ISSUES

Although the HFS scheduling problem is NP-hard in the strong sense, HFS
configuration is still a good and common choice for having a flexible production
system, when many problems related to the deliveries of products are encountered in
industry. Obviously, these problems are caused by lack of quality and longer lead
times due to insufficient capacity and materials handling systems. Also, HFS
configuration is can be improved either from product layout when conventional flow
shop production is not sufficient or from process layout by means of separating parts
with relatively high demand that have similar manufacturing routings. In this study,
motivated by the HJS in fuselage’s panel production in the aerospace company, we
propose a DES-based framwework that helps in improving the existing HJS
configuration towards an HFS configuration. The DES model thus developed for an
HFS can be used at least for determining the number of parallel identical machines at
each stage. The DES tool can help in designing an HFS to streamline the material flow
for some parts/products that are similar in their processing requirements, based on
expected demand volumes and cycle time as well. The DES model developed
especially fits well for (HFc, Pm|skip, unavail(brkdwn)|Cmax) problem environment.
For the scheduling problem in HFS, we propose a CP model, an HA heuristic and a
GSO metaheuristic with an IH and an LS algorithm as alternatives to the available
solution methods in the literature. It is shown that the proposed solution methods yield
better results in terms of effectiveness compared to these solution methods and in
terms of efficiency compared to MILP model. The proposed solution methods also
provide better results for the case study as a large instance, when compared to the
renowned heuristic algorithms in the literature. Since each iteration is tried to be

completely independent from the other iterations, HA is ensured to be not stuck in
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local optima with its random search strategy. Furthermore, HA’s random search
strategy is supported with the hybridization of a machine allocation rule FAM and a
job sequencing rule ECT that are particularly effective for HFS scheduling problems.
By this way, the same permutation schedule through the stages is prevented and the
schedule is tried to be made as close as possible to a non-delay structure. Since the
optimal schedule is located in a subset of a non-delay schedule set, by the use of HA,
it is aimed to have optimal schedules for any problem instances, if possible. If not, a
strong GLB, inspired by a previous study in the literature, is calculated in order to
cope with the large instance sizes for which getting the optimal solution is not possible
within a polynomial time. With the guidance of GLB in HA, the results show that a
and b type configurations are solved to optimality, while ¢ and d type configurations

(hard ones) are solved to near-optimality.

On the other hand, CP model has its own unique structure. Since it has a declarative
programming language rather than an imperative programming language like MILP
model has, it becomes easy to model an HFS scheduling problem by constraint
programming. Moreover, CP model’s constraint propagation and depth first search
techniques accelarate the reduction process of decision variables domain. Thus, CP
model is highy efficient. Furthermore, CP model is the strongest method among all
solution methods covered in this study regardless of its simplicity. Therefore, we
highly recommend the use of the CP model, since it is the key to solve HFS scheduling
problems to optimality. Because it is proven that HFS scheduling problems are
strongly NP-hard, what CP model provides is absolutely incredible. CP model’s
unmatched power is shown with both the case study and test problems by comparing
it to other solution methods developed earlier in the literature and here in this study.
Therefore, we address our proposed CP model as one of exact approaches including

B&B and MILP model to solve the HFS scheduling problems to optimality.

The other proposed solution method is the GSO method enhanced with both IH and

LS algorithms. GSO’s exploration and exploitation phases are developed carefully in
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order to escape from local optima. The parameter setup of GSO is inspired by the
study published earlier in the literature. The performance of GSO is promising, due to
the fact that it yields good solutions for the case study and test problems in terms of
both effectiveness and efficiency. The GSO method is the first one which effectively

and efficiently applies GSO to HFS scheduling problems.

Due to the fact that this study is inspired by a case study in an aerospace company, not
only are these proposed solution methods useful for researchers to make them extend
for further studies, but also they are so capable that they are adaptive for other real-

world scenarios in different industries for practitioners.

Similar to the literature, in this study, the objective is also minimizing the makespan.
However, real world scenarios require more than one objective, not only the makespan
but also energy consumption rates and especially cost items. Therefore, there is a
potential that this study can be extended to cover these objectives at the same time as
a Multi-Criteria Decision Making (MCDM) problem or one by one as smaller
subproblems. However, these real world scenario objectives, like energy consumption
rates and cost items, include the usage of electricity power and the cost of inventory

holding or more. Measuring these objectives is not easy for most of the cases.

Other than the objective functions, there is an another potential for an extension in the
constraints of the HFS configuration. Rather than s,,., included in the processing times
of the jobs, s,; may be used to represent the setup times where setup changeovers
depend on the sequence of the jobs. Furthermore, for much smaller but more products,
there is a possibility to cover them with a group technology method in order to form
product families for batching them in the HFS configuration. By this way, new
objectives arise such as the number of tool changeovers between consecutive batch
families or the batch family with the maximum completion time. Nevertheless,
approximately 60% of the literature, the makespan is the most common objective

function in HFS scheduling problems.
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With the advancements in technology, solution methods are enhanced or hybridized
with different techniques in order to improve the solution quality. In this study, the
proposed HA guided with GLB and GSO that are enhanced with IH and LS focus on
the exploration of different regions for a predetermined number of iterations as a
diversification strategy hybridized with the DES model with its parameters CT and
MoM. Since HA and GSO dynamically improve the makespan according to FAM and
ECT strategies, they are also addressed as hybrid solution methods. Moreover, rather
than metaheuristics, hyper-heurisctic is the new kid on the block which seeks to select,
combine, generate or adapt several simpler heuristics with the contribution of Machine
Learning (ML) techniques. The advantage of hyper-heuristics is that they do not try
to solve the problem directly like a metaheuristic whose search region is bounded.
Instead, they try to find the best metaheuristic, for example, the one which yields the
better results among others. Hence, we address this study’s approach as a hyper-
heuristic, beacuse with the design of the DES model, several solution methods can be
simulated in almost-real HFS environment including uncertainty sources as well and

the best among them all can be selected as the best scheduling method.
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APPENDICES

A. Some Plots for the Collection, Analysis and Interpretation of the Data

Processing Times Data

Probability Density Function
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Figure 0.1. The histogram of panel 2’s stretching stage processing time data from

2140 raw records
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Property = Yalue

- mu 05161

- sigma 0.2685
DistributionMame 'Log-Logistic’
EE‘ MumParameters 2
PararmeterMames 1 cell
ParameterDescription 1x2 cell

EE| ParameterValues [0.5161,0.2685]
EE| Truncation [1
IsTruncated 0

Eﬂ ParameterCovariance [0,0:0.07]
ParameterlsFixed 1x? logical
EE‘ InputData []

Figure 0.2. The best distribution with its mean=1.8920 hrs for panel 2’s stretching

stage processing time data

Machine Breakdown Data

Breakdown duration(hrs) for Oven(b)
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Figure 0.3. Breakdown duration plots of heat treatment stage before cleansing
process (2010-2017 data)
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Breakdown duration(hrs) for Oven(a)

Figure 0.4. Breakdown duration plots of heat treatment stage after cleansing process
(2010-2017 data)
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Figure 0.5. The histogram of heat treatment stage’s breakdown duration from 73
cleansed records (2010-2017 data)
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Property ~ Value

- beta 2.8078

Eﬂ gamma 1.0415

ﬁ Distributio... 'Birnbaum-Saunders’
1 NumPara... 2

@ Parameter... Tx2 cell

@ Parameter... 1x2 cell

Ea Parameter... [2.8078,1.0415]
Eﬂ Truncation [7

@ IsTruncated 0O

Eﬂ Parameter... [0,0;0,0]

|+ Parameterl... 7x2 logical

Eﬂ InputData [7

Figure 0.6. The best distribution with its mean=4.3306 hours for heat treatment
stage’s breakdown duration (2010-2017 data)

Breakdown frequency(days) for Oven(b)

Figure 0.7. Breakdown frequency plots of heat treatment stage before cleansing
process (2010-2017 data)
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Breakdown frequency(days) for Oven(a)

Figure 0.8. Breakdown frequency plots of heat treatment stage after cleansing
process (2010-2017 data)
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Figure 0.9. The histogram of heat treatment stage’s breakdown frequency from 73
cleansed records (2010-2017 data)
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Property Value

HH mu 36.6027

c |0 DistributionMame ‘Exponential’
[ MumParameters 1

Iﬂl ParameterMames 1x1 cell

3] ParameterDescription 11 cell

Hj ParameterValues 36.6027
ijjTruncatil:m []

Iil IsTruncated

Hj ParameterCovariance
Iﬂ ParameterlsFixed

Hj InputData

==

Figure 0.10. The best distribution with its mean=36.6027 days for heat treatment
stage’s breakdown frequency (2010-2017 data)
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MoMy Calculations for the Case Study
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C. Processing Times of the Jobs

Table 0.2. The processing times of the jobs at each stage (hours)
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1.62

1.02
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D. LEKIN Outputs and Excel Spreadsheets of Dispatching Rules

SPT (Cmax in minutes)

#* Shop Perfomance

~SPT-

Running Time |1

Makespan |1972
max. Tardiness |1972
Number of Late jobs |13
Total Flow Time |17669
Total Tardiness | 17669
Total Weighted Flow Time | 17669
Total Weighted Tardiness |17669

Close Help

Figure 0.11. SPT rule performance table
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LPT (Cmax in minutes)

| #* Shop Perfomance
-LPT-

: Running Time |1]

Makespan | 1988

max. Tardiness |1988

Number of Late jobs |13

Total Flow Time |21168

Total Tardiness |21168

Total Weighted Flow Time |21168

Total Weighted Tardiness |21168

Close Help

Figure 0.12. LPT rule performance table
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STPT

Table 0.3. The job sequence with the STPT rule

j 3 2 1 6 4 7 5 8 10 9 12 13 11
1 0.44 | 0.42 | 0.00 [ 0.00 | 0.00 | 0.00 | 0.00 | 0.63 0.90 0.74 0.92 0.52 1.04
2 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.96 0.00
3 0.00 | 0.00 | 025 | 025 | 0.25 | 0.25 | 0.25 | 0.25 0.25 0.25 0.25 0.25 0.25
4 0.00 | 0.00 | 0.00 [ 1.00 | 1.00 | 1.00 | 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00
5 0.00 | 0.00 | 0.00 | 4.00 | 400 | 4.00 | 4.00 | 4.00 4.00 4.00 4.00 4.00 4.00
6 185 | 1.89 | 2.01 | 247 | 255 | 256 | 254 | 222 3.26 3.17 3.43 231 3.36
7 025 | 025 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 0.25 0.25 0.25 0.25 0.25
8 0.00 | 0.00 | 000 | 1.72 | 165 | 1.69 | 1.60 | 1.77 1.49 1.30 1.18 1.09 1.79
9 083 | 086 | 1.30 | 3.54 | 3.69 | 358 | 3.67 | 3.30 3.50 3.48 3.90 3.33 5.20
10 025 | 025 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00
11 043 | 075 | 1.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.00 0.00 0.00 1.47 0.00
12 114 | 245 | 241 | 286 | 278 | 278 | 2.87 | 3.62 3.94 4.69 3.81 3.75 4.74
13 012 | 015 | 0.16 | 0.83 | 0.85 | 0.79 | 0.85 | 0.52 0.58 0.70 0.62 0.54 0.59
14 0.00 | 0.00 [ 0.00 | 0.65 | 0.62 | 0.65 | 0.68 | 0.65 0.65 0.65 0.65 0.65 0.65
15 0.00 | 0.00 | 0.00 | 0.84 | 0.94 | 0.88 | 0.92 | 0.68 0.68 0.69 0.74 0.70 0.89
16 0.61 | 0.62 | 0.59 | 0.00 | 0.00 | 0.56 | 0.66 | 0.00 0.00 0.00 0.00 0.00 0.00
17 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 0.40 0.40 0.40 0.40 0.40
18 1.02 | 162 | 1.34 | 154 | 142 | 133 | 147 | 3.98 3.42 3.09 3.42 4.37 3.47
19 014 | 023 | 0.21 | 0.20 | 0.20 | 0.18 | 0.22 | 0.25 0.34 0.38 0.28 0.39 0.33
Total 7.48 | 9.89 | 10.32 | 20.30 | 20.35 | 20.65 | 21.13 | 23.52 | 24.66 | 24.79 | 24.85 | 2598 | 27.96
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LTPT

Table 0.4. The job sequence with the LTPT rule

j 11 13 12 9 10 8 5 7 4 6 1 2 3
1 1.04 0.52 092 | 0.74 | 090 | 0.63 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.42 | 0.44
2 0.00 0.96 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
3 0.25 0.25 025 | 025 | 025 | 025|025 | 025|025 | 025 | 0.25 | 0.00 | 0.00
4 1.00 1.00 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00
5 4.00 4.00 400 | 400 | 400 | 400 | 400 | 4.00 | 4.00 | 400 | 0.00 | 0.00 | 0.00
6 3.36 2.31 343 | 317 | 326 | 222 | 254 | 256 | 255 | 2.47 | 201 | 1.89 | 1.85
7 0.25 0.25 025 | 025 | 025 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | 0.25 | 0.25
8 1.79 1.09 118 | 130 | 149 | 177 | 160 | 1.69 | 1.65 | 1.72 | 0.00 | 0.00 | 0.00
9 5.20 3.33 390 | 348 | 350 | 330 | 367 | 358 | 3.69 | 3.54 | 1.30 | 0.86 | 0.83
10 0.00 0.00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | 0.25 | 0.25
11 0.00 1.47 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.15 | 0.75 | 0.43
12 4.74 3.75 381 | 469 | 3.94 | 362|287 | 278 | 278 | 286 | 241 | 245 | 1.14
13 0.59 0.54 062 | 070 | 058 | 0.52 | 0.85 | 0.79 | 0.85 | 0.83 | 0.16 | 0.15 | 0.12
14 0.65 0.65 0.65 | 065 | 0.65 | 0.65 | 0.68 | 0.65 | 0.62 | 0.65 | 0.00 | 0.00 | 0.00
15 0.89 0.70 0.74 | 069 | 068 | 0.68 | 0.92 | 0.88 | 0.94 | 0.84 | 0.00 | 0.00 | 0.00
16 0.00 0.00 0.00 | 0.00 | 0.00 | 0.00 | 0.66 | 0.56 | 0.00 | 0.00 | 0.59 | 0.62 | 0.61
17 0.40 0.40 0.40 | 040 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40
18 3.47 4.37 342 | 309 | 342 | 398 | 147 | 133 | 142 | 154 | 1.34 | 1.62 | 1.02
19 0.33 0.39 028 | 038 | 034 | 025022018 |0.20 | 020 | 021|023 |0.14
Total 27.96 | 25.98 | 24.85 | 24.79| 24.66 |23.52|21.13|20.65|20.35|20.30|10.32| 9.89 | 7.48
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E. Outputs of the Renowned Heuristic Algorithms

Palmer’s Heuristic (Results after flow shop reduction)
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CDS Algorithm (Results after flow shop reduction)

Table 0.6. The job sequence with the CDS algorithm

Iteration -Job position Crmax
1/2[3]4]5]6 [ 7[8[9]10]11]12]13
1 1/4]5]6[7]13] 9 |10|11|12|8 [ 2] 3] 33.12
2 1l4]sl6[7] 289 |10]12[13]11] 3| 3253
3 1la]sl6[7] 2389 10[12]11]13] 3355
4 112]3]4]5]6 7|8 |13|11|10] 9 [12] 3257
5 12345671311810912i
6 112]3]6(5]4 7|8 |13|11|10] 9 [12] 3257
7 112]3]6(5]4 7|8 |13|11|9[10]12] 3257
8 112[3|5(4]6 7|89 |11]13]10]12] 32.92
9 112]3]5]6] 4 7 [13]11]9 [10]12] 8| 32.92
10 112]3]5]6] 4 |7 [13]11]9 [10]12] 8 | 32.92
11 3[2|1]5|6] 4|7 ]8]9]13]11]12]10] 33.17
12 3[2|1]5|4] 6|78 [13]11]9 [10]|12] 32.82
13 3[2l1]7]6] 4|58 [13]11]9 [10|12] 32.82
14 3[2l1]al7] 6|5 [13[11]9 [10[12] 8| 33.17
15 3l2l1]6|7] 4|58 [13]11]9 [10|12] 32.82
16 3l2|1]6|4] 78[5 ]9 [10[12|11]13] 33.85
17 2(1l6]al7] 8|59 [10[12]13|11]|3 | 32.82
18 1/6]4al7[5]13]11| 9 |10[12|8 [ 2] 3] 3267

156




NEH Algorithm (Results after flow shop reduction)
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Table 0.7. The job sequence with the NEH algorithm
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teration Job Position
112(3(4]5|6(7|8]9|10(11|12|13

1 1113

2 111310

3 1113]12|10

4 11(13]12|10( 9

5 1118 |13|12(10]| 9

6 11/5(8|13(12|10| 9

7 1158|137 (12|10 9

8 41111 5|8 (13| 7 |12|10| 9

9 41111 5|8 |6 (13| 7 (12/10| 9

10 41111 5|8 |6 (13|17 (12|10 9

11 4111158 |6 (13|17 (12|10, 9| 2
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