

METHODS FOR HYBRID FLOW SHOP SCHEDULING AND A CASE STUDY

IN AN AEROSPACE COMPANY

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

 YİĞİTALP ÖZMEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

INDUSTRIAL ENGINEERING

SEPTEMBER 2019

Approval of the thesis:

METHODS FOR HYBRID FLOW SHOP SCHEDULING AND A CASE

STUDY IN AN AEROSPACE COMPANY

submitted by YİĞİTALP ÖZMEN in partial fulfillment of the requirements for the

degree of Master of Science in Industrial Engineering Department, Middle East

Technical University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Yasemin Serin

Head of Department, Industrial Engineering

Assoc. Prof. Dr. Sedef Meral

Supervisor, Industrial Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Canan Şerbetçioğlu

Industrial Engineering, METU

Assoc. Prof. Dr. Sedef Meral

Industrial Engineering, METU

Prof. Dr. Meral Azizoğlu

Industrial Engineering, METU

Assoc. Prof. Dr. Ferda Can Çetinkaya

Industrial Engineering, Çankaya University

Assist. Prof. Dr. Mustafa Kemal Tural

Industrial Engineering, METU

Date: 16.09.2019

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Surname:

Signature:

 Yiğitalp Özmen

v

ABSTRACT

METHODS FOR HYBRID FLOW SHOP SCHEDULING AND A CASE

STUDY IN AN AEROSPACE COMPANY

Özmen, Yiğitalp

Master of Science, Industrial Engineering

Supervisor: Assoc. Prof. Dr. Sedef Meral

September 2019, 157 pages

In this study, we address the scheduling problem in Hybrid Flow Shop (HFS) with

makespan objective. Since this problem is known to be NP-hard and an HFS is a

common environment in real-life manufacturing systems, several approximate

solution approaches have been proposed in the literature. Hence, we resort to some of

these such as MILP model, dispatching rules, Palmer, CDS, NEH, and Bottleneck

Heuristic. Due to the complexity of HFS scheduling problem, MILP model provides

only a near optimal solution by using CPLEX for the real problem which we are

inspired by the scheduling problem in the manufacturing of fuselage panels at an

aerospace company as a case study whose current hybrid job shop is converted to an

HFS by discrete event simulation to improve the output quality, lessen materials

handling and shorten the manufacturing lead time. The job sequences of these

approaches are simulated to compute makespan values of HFS scheduling problem.

Moreover, we propose a Constraint Programming (CP) model for solving HFS

scheduling problem to optimality for the real problem and test problems. We also

propose a Hybrid Algorithm (HA) and a Galactic Swarm Optimization (GSO) in order

not to be stuck in local optima for most of the test problems and to solve the real

problem for optimality within an acceptable computational time. While HA and GSO

vi

seem to be promising for solving most of the test problems to optimality, the CP model

outperforms the other approaches in the literature by solving all of them to optimality.

Keywords: Aerospace Industry, Constraint Programming, Galactic Swarm

Optimization, Hybrid Flow Shop, Scheduling

vii

ÖZ

MELEZ AKIŞ TİPİ ATÖLYE ÇİZELGELEMESİ İÇİN YÖNTEMLER VE

BİR HAVACILIK FİRMASINDA VAKA ANALİZİ

Özmen, Yiğitalp

Yüksek Lisans, Endüstri Mühendisliği

Tez Danışmanı: Doç. Dr. Sedef Meral

Eylül 2019, 157 sayfa

Bu çalışmada, Melez Akış-tipi Atölye (MAA) çizelgeleme problemini en büyük

tamamlanma zamanı amacı ile ele aldık. Bu problemin NP-zor ve bir MAA’nın gerçek

yaşam imalat sistemlerinde yaygın bir ortam olmasından dolayı literatürde birçok

yaklaşık çözüm yaklaşımları önerilmiştir. Dolayısıyla, KTDP modeli, dağıtım

kuralları, Palmer, CDS, NEH ve Darboğaz Sezgiseli gibi bunlardan bazılarına

başvurduk. MAA çizelgeleme probleminin karmaşık olmasından dolayı KTDP

CPLEX kullanarak gerçek problem için yalnızca optimale yakın bir sonuç sağlamıştır.

Mevcut durumdaki melez sipariş-tipi atölyesi çıktı kalitesini arttırmak, malzeme

elleçlemesini azaltmak ve üretim temin süresini kısaltmak için ayrık olaylı benzetim

aracılığıyla MAA’ya dönüştürülen bu vakayı bir havacılık firmasında üretilmekte olan

orta gövde panellerinin çizelgeleme probleminden ilham aldık. MAA çizelgeleme

probleminin en büyük tamamlanma zamanı değerlerinin hesaplanabilmesi için bu

çözüm yöntemlerinin iş sıralamaları simüle edilmiştir. Bundan başka, gerçek problem

ve test problemlerini optimal olarak çözebilen bir kesin yöntem olan Kısıt

Programlama (KP) modeli önerilmiştir. Ayrıca, test problemlerinin büyük bir

bölümünün yerel optimalde sıkışmamasını sağlayacak ve gerçek problemi makul bir

çözüm süresi içerisinde optimale yakın bir sonuç verecek şekilde çözebilen, bir Melez

Algoritma (MA) ve bir Galaktik Sürü Optimizasyonu (GSO) önerilmiştir. MA ve

viii

GSO, test problemlerinin büyük bir bölümünü optimal olarak çözebildiği için umut

verici görünmekte iken, KP modeli, bunların tamamını optimal olarak çözdüğü için

literatürdeki diğer çözüm yöntemlerinden daha iyi bir performans göstermiştir.

Anahtar Kelimeler: Havacılık Sanayii, Kısıt Programlama, Galaktik Sürü

Optimizasyonu, Melez Akış-tipi Atölye, Çizelgeleme

ix

To my beloved mother

x

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor Assoc. Prof. Dr. Sedef Meral for her

kind guidance, encouragement and advice throughout the study. I would like to

express my sincere appreciation for her motivation and friendly support in completing

the research.

I also appreciate the support of the engineers of Sheet Metal Manufacturing Planning,

my colleague, Mr. Semih Karatokuş, and my managers, Mr. Mehmet Şahan and Mr.

Arif Köksal for their patience.

I express my gratitude to my father İzzet Özmen for his endless love, moral support,

encouragement, and mentorship throughout my whole life.

Finally, I would like to thank my wife Gamze Özmen who is always right beside me

whenever I need. This study would not have been completed without her support,

motivation and everlasting love.

xi

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ ... vii

ACKNOWLEDGEMENTS ... x

TABLE OF CONTENTS .. xi

LIST OF TABLES .. xiii

LIST OF FIGURES .. xvi

LIST OF ABBREVIATIONS ... xix

CHAPTERS

1. INTRODUCTION .. 1

2. LITERATURE REVIEW.. 5

2.1. Framework and Notation ... 5

2.2. Review of the HFS Scheduling Studies .. 12

2.3. Summary of the Survey ... 19

3. PROBLEM DESCRIPTION ... 23

4. HFS SCHEDULING: MILP MODEL AND HEURISTICS 27

4.1. Mixed-Integer Linear Programming (MILP) Model 27

4.2. Dispatching Rules .. 31

4.3. Renowned Heuristic Algorithms .. 33

5. PROPOSED SOLUTION METHODS .. 47

5.1. Constraint Programming (CP) Model ... 48

5.2. Hybrid Algorithm (HA) ... 56

5.2.1. Global Lower Bound (GLB) .. 56

xii

5.2.2. First Available Machine (FAM) and Earliest Completion Time (ECT)

Strategies .. 61

5.2.3. Pseudo Code and Flowchart of the Hybrid Algorithm (HA)................... 63

5.3. Galactic Swarm Optimization (GSO) ... 67

5.3.1. GSO in HFS Scheduling .. 67

5.3.2. Pseudo Code of the GSO Metaheuristic ... 71

6. CASE STUDY IN THE AEROSPACE COMPANY....................................... 75

6.1. Products: Panels of Fuselage .. 77

6.2. Production Processes ... 80

6.2.1. Data Analysis .. 94

6.2.2. DES Model Design for an HFS Configuration 95

6.3. Computational Study ... 112

7. COMPUTATIONAL STUDY .. 117

8. CONCLUSION AND FURTHER RESEARCH ISSUES 129

REFERENCES .. 133

APPENDICES

A. Some Plots for the Collection, Analysis and Interpretation of the Data 143

B. MoMk Calculations for the Case Study .. 149

C. Processing Times of the Jobs .. 150

D. LEKIN Outputs and Excel Spreadsheets of Dispatching Rules 151

E. Outputs of the Renowned Heuristic Algorithms .. 155

xiii

LIST OF TABLES

TABLES

Table 2.1. Mathematical descriptions of objective function measures 10

Table 2.2. HFS scheduling problems: some examples for α|β|γ triplet representation

 .. 11

Table 2.3. Classification of the literature survey on HFS scheduling 20

Table 3.1. Performance characteristics depending on flow and job shops 23

Table 4.1. Example: Palmer’s heuristic for (F3||Cmax) problem 35

Table 4.2. Example: Completion times with Palmer’s heuristic for (F3||Cmax) problem

 .. 35

Table 4.3. CDS algorithm for (Fm||Cmax) problem .. 36

Table 4.4. Example: 1st iteration of the CDS algorithm for (F3||Cmax) problem 36

Table 4.5. Example: 2nd iteration of the CDS algorithm for (F3||Cmax) problem 37

Table 4.6. Example: 1st step of the NEH algorithm for (F3||Cmax) problem 39

Table 4.7. Example: 2nd step of the NEH algorithm for (F3||Cmax) problem 39

Table 4.8. Example: 3rd step of the NEH algorithm for (F3||Cmax) problem 39

Table 4.9. Example: 4th step of the NEH algorithm for (F3||Cmax) problem 40

Table 4.10. Example: 5th step of the NEH algorithm for (F3||Cmax) problem 40

Table 4.11. Example: 6th step of the NEH algorithm for (F3||Cmax) problem 41

Table 4.12. Example (HF3, P2, 1, P2||Cmax) problem for BH 43

Table 4.13. Example: Flow ratio table for each stage.. 43

Table 4.14. Example: Release times of jobs for the bottleneck stage 44

Table 4.15. Example: Due dates of jobs for the bottleneck stage 44

Table 4.16. Example: Table for scheduling the bottleneck stage 44

Table 4.17. Example: Scheduling the stage before the bottleneck stage 45

Table 4.18. Example: Final schedule with the BH .. 45

Table 5.1. Example: 1st iteration of CP ... 50

file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856498
file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856498

xiv

Table 5.2. Example: 2nd iteration of CP .. 50

Table 5.3. Example: 3rd iteration of CP .. 50

Table 5.4. Example: 4th, 5th and 6th iterations of CP .. 51

Table 5.5. Example: 7th iteration of CP... 52

Table 5.6. The example problem (HF3, P2||Cmax) ... 55

Table 5.7. Example: (HF3, P2||Cmax) problem for GLB computation 58

Table 5.8. Example: (HF3, P2||Cmax) problem job-based lower bound computation 58

Table 5.9. Example: (HF3, P2||Cmax) problem sum of the processing times of the jobs

 .. 58

Table 5.10. Example: (HF3, P2||Cmax) problem calculation of LB(1) 59

Table 5.11. Example: (HF3, P2||Cmax) problem calculation of LB(2) 59

Table 5.12. Example: (HF3, P2||Cmax) problem calculation of LB(3) 60

Table 5.13. Example: The application of FAM strategy for the first stage 61

Table 5.14. Example: The application of ECT job sequencing rule at stage 2 62

Table 5.15. Example: The application of SPV rule ... 70

Table 6.1. Panels of the center fuselage of Airbus A320 ... 78

Table 6.2. Operations routing for any panel manufacturing 78

Table 6.3. MoMk calculation for the cooling stage .. 96

Table 6.4. MoMk values in the HFS .. 98

Table 6.5. The results of the scheduling methods for the case study 113

Table 6.6. The completion times with the MILP model .. 113

Table 6.7. The start and end times of jobs with the CP model 114

Table 7.1. Results of test problems ... 119

Table 7.2. LB vs. GLB in the test problems .. 128

Table 0.1. MoMk calculation table .. 149

Table 0.2. The processing times of the jobs at each stage (hours) 150

Table 0.3. The job sequence with the STPT rule... 153

Table 0.4. The job sequence with the LTPT rule .. 154

Table 0.5. The job sequence with the Palmer’s heuristic 155

Table 0.6. The job sequence with the CDS algorithm ... 156

file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856541
file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856543
file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856547

xv

Table 0.7. The job sequence with the NEH algorithm ... 157

xvi

LIST OF FIGURES

FIGURES

Figure 1.1. The representation of the HFS configuration .. 2

Figure 3.1. Complexity hierarchy based on the shop configuration 24

Figure 3.2. Complexity hierarchy based on the shop configuration for the makespan

minimization .. 24

Figure 5.1. pulse vs. noOverlap in the CP model .. 53

Figure 5.2. The role of pulse cumulative function in the CP model for the HFS

scheduling problem .. 54

Figure 5.3. Gantt Chart of the example problem solution generated by CP Optimizer

 .. 55

Figure 5.4. Gannt chart of sequence J1-J3-J4-J2 .. 60

Figure 5.5. Gannt chart of sequence J3-J1-J4-J2 .. 60

Figure 5.6. The flowchart of the HA .. 66

Figure 6.1. Production stages 0 and 1 in Building B200 ... 82

Figure 6.2. Loaded pallet to be transported with the related work orders 83

Figure 6.3. Alkali clean vacuum manipulator with the fixed crane.......................... 84

Figure 6.4. Robotic cutting machine ... 86

Figure 6.5. Metallic manufacturing stages in Building B10 89

Figure 6.6. Surface operations in Building B20 .. 91

Figure 6.7. Surface operations in Building B220 .. 92

Figure 6.8. Painting process operations in Building B40 .. 93

Figure 6.9. The source module of the DES model .. 99

Figure 6.10. Initial sequence table of panel (skin) type inserted to source module .. 99

Figure 6.11. The resource module structure of heat treatment stage 100

Figure 6.12. Heat treatment stage backlog .. 100

Figure 6.13. Heat treatment stage processing times (hrs) table of panels 101

file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856564
file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856565
file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856566

xvii

Figure 6.14. Heat treatment stage with 2 parallel identical ovens 101

Figure 6.15. Heat treatment stage with the processing times table of panels 102

Figure 6.16. Heat treatment stage with failure distribution 102

Figure 6.17. Heat treatment stage with failure frequency and duration.................. 103

Figure 6.18. Failure settings of a resource in Tecnomatix Plant Simulation 14 104

Figure 6.19. The DES model in Tecnomatix Plant Simulation 14 105

Figure 6.20. 3D version of the DES model in Tecnomatix Plant Simulation 14 106

Figure 6.21. Event controller as one of the simulation settings 107

Figure 6.22. Summary report generated at the end of a simulation run.................. 107

Figure 6.23. The frame of shift calendar ... 108

Figure 6.24. The frame of bottleneck analyzer.. 109

Figure 6.25. The frame of bottleneck analyzer with its outcomes displayed on the

complete DES model ... 109

Figure 6.26. The drain module ... 111

Figure 0.1. The histogram of panel 2’s stretching stage processing time data from 2140

raw records .. 143

Figure 0.2. The best distribution with its mean=1.8920 hrs for panel 2’s stretching

stage processing time data .. 144

Figure 0.3. Breakdown duration plots of heat treatment stage before cleansing process

(2010-2017 data) .. 144

Figure 0.4. Breakdown duration plots of heat treatment stage after cleansing process

(2010-2017 data) .. 145

Figure 0.5. The histogram of heat treatment stage’s breakdown duration from 73

cleansed records (2010-2017 data) ... 145

Figure 0.6. The best distribution with its mean=4.3306 hours for heat treatment stage’s

breakdown duration (2010-2017 data) .. 146

Figure 0.7. Breakdown frequency plots of heat treatment stage before cleansing

process (2010-2017 data) ... 146

Figure 0.8. Breakdown frequency plots of heat treatment stage after cleansing process

(2010-2017 data) .. 147

file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856577
file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856578
file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856584

xviii

Figure 0.9. The histogram of heat treatment stage’s breakdown frequency from 73

cleansed records (2010-2017 data) ... 147

Figure 0.10. The best distribution with its mean=36.6027 days for heat treatment

stage’s breakdown frequency (2010-2017 data) .. 148

Figure 0.11. SPT rule performance table .. 151

Figure 0.12. LPT rule performance table .. 152

xix

LIST OF ABBREVIATIONS

ABBREVIATIONS

ACO: Ant Colony Optimization

ACS: Ant Colony System

AIS: Artificial Immune System

B&B: Branch and Bound

BH: Bottleneck Heuristic

CDS: Campbell, Dudek, and Smith

CP: Constraint Programming

𝐂𝐓: Cycle Time

DES: Discrete-Event Simulation

ECT: Earliest Completion Time

FAM: First Available Machine

FT: Finish Time

GA: Genetic Algorithm

GLB: Global Lower Bound

GSO: Galactic Swarm Optimization

HA: Hybrid Algorithm

HFS: Hybrid Flow Shop

HJS: Hybrid Job Shop

IH: Insertion Heuristic

LB: Lower Bound

LPT: Longest Processing Time

LS: Local Search

LTPT: Longest Total Processing Time

MILP: Mixed-Integer Linear Programming

MoM: Minimum number of Machines

xx

NEH: Nawaz, Enscore, and Ham

NP: Non-deterministic Polynomial time

OPL: Optimization Programming Language

PP: Parallel Processor

PSO: Particle Swarm Optimization

QIA: Quantum-inspired Immune Algorithm

SIRO: Service in Random Order

SPT: Shortest Processing Time

SPV: Smallest Position Value

STPT: Shortest Total Processing Time

TS: Tabu Search

WIP: Work-In-Process

1

CHAPTER 1

1. INTRODUCTION

Due to the global and competitive structure of aerospace and defense industry, it is

essential to realize both effective and efficient solutions for manufacturing processes

in order to move one step forward to gain an advantageous position in this race. In this

study, we are motivated by same planning and scheduling problems one of the

companies that has a worldwide reputation in this market with a wide range of

products offer. Among these products, one of the biggest shares belongs to the Airbus

A320 fuselage’s Section-18 and 19 panel parts. In order to manufacture these panels,

a remarkably long operations sequence is followed as the manufacturing routing.

Since the operations in this routing are carried out in several different manufacturing

facilities at the factory campus, some serious problems emerge very often namely,

abnormally long lead times, complex materials handling methods, and quality

degradation. Moreover, these problems disrupt the timely delivery of the panels and

thus the assembly schedule of them. Not only do they result in panel shortages, they

also give rise to over-production, and Work-In-Process (WIP) accumulation. On the

other hand, extra materials handling and WIP accumulation result in quality-related

problems due to the frictions among parts, requiring rework operations which may

sometimes result with scrapped parts.

Obviously, the type of layout observed in the manufacturing of the panel

parts/subassemblies is a process type layout; and the manufacturing process is

typically a Hybrid Job Shop (HJS). In this study, we propose an alternative

manufacturing process that is basically a flow shop but with parallel machines at some

or all stages of the shop. This type of flow shop is the Hybrid Flow Shop (HFS) which

is an extension of the traditional flow shop configuration. The major difference is that

2

in the traditional flow shop, each stage has only a single machine whereas in the HFS

configuration, at least one of the stages has more than one machine working in parallel.

Figure 1.1 is a pictorial representation of an HFS with k stages and a number of

variable machines (m) at each stage. But this added feature in the HFS brings about

extra complexity and thus difficulty in terms of scheduling compared to the traditional

flow shop. Hence, HFS scheduling problems have attracted an ever-increasing

attention from researchers since the 1970s. In 1988, HFS scheduling problem is shown

to be NP-complete, and, later, in 1996, NP-hard.

Figure 1.1. The representation of the HFS configuration

In addressing the HFS scheduling problem, MILP for small-to-medium size problems,

dispatching rules, and several heuristic algorithms for the large realistic problems are

applied in the studies in the literature. In this study, we propose a Constraint

Programming (CP) model, a Hybrid Algorithm (HA) as a heuristic method, and a

Galactic Swarm Optimization (GSO) as a metaheuristic approach. Both in HA and

GSO, we use First Available Machine (FAM) for assignment of machines and Earliest

Completion Time (ECT) for job sequences, especially chosen for an HFS scheduling

problem. The proposed methods are applied to the test problems provided by Carlier

3

and Neron (2001) in order to have a comparative analysis of all methods including

those in the literature for the HFS scheduling problem.

While HA heuristic and GSO metaheuristic solve the case problem and test problems

to near optimality within an acceptable computational time, CP model solves all

problems to optimality in a shorter computational time than the others, and hence

outperforms the others. Based on the results of the CP model, the proposed HA

heuristic and GSO metaheuristic seem to be promising in terms of both solution

quality and time for the case problem and test problems. Thus, these solution methods

seem to be applicable in other industries as well where the manufacturing process is

in the HFS configuration.

In the case study with the aerospace company under consideration, the current HJS

process is converted to an HFS process. To start with, the Minimum number of

Machines (MoM) required for each stage in the HFS configuration is determined by

means of simulation. Hence, a Discrete-Event Simulation (DES) model is developed

for the manufacturing of the panel parts in the new HFS. Then scheduling problem is

addressed for the HFS using the approaches proposed in the study.

Chapter 2 discusses the relevant studies in the literature about the HFS scheduling

problem. In Chapter 3 includes the problem description, while Chapter 4 presents the

MILP Model and the renowned heuristics for the HFS scheduling problem with its

assumptions. Chapter 5 describes the proposed solution methods including the CP

model, HA heuristic, and GSO metaheuristic with their structures and pseudo codes.

The case study in the aerospace company under consideration and computational study

are presented in Chapter 6 including the current production system at the company.

This chapter also covers the conversion of the HJS to HFS configuration at the

company by means of the discrete-event simulation modelling. Chapter 7 covers the

application of proposed solution methods to the test problems as a computational

study. Moreover, they are compared to the other solution methods developed earlier

4

in the literature in terms of both overall and average performances. Chapter 8 includes

the conclusion and further research issues emphasizing the important findings derived

from the results.

5

CHAPTER 2

2. LITERATURE REVIEW

2.1. Framework and Notation

In all scheduling problems, it is assumed that there is a finite number of jobs and

machines in the particular manufacturing environment as a system. Therefore, in order

to comprehend the variety of the systems in the literature, it is essential to understand

the general framework and notation used for describing the scheduling problems

similar to the descriptions of Pinedo (2016), and Ruiz and Vazquez-Rodriguez (2010).

In general, the number of machines is denoted by m while the number of jobs is

denoted by n. Usually, the index i refers to a machine while the index j refers to a job.

If job j is processed on machine k then the pair (j, k) is used in order to represent the

relationship between job j and machine k. Concordantly, the descriptions in the

following are the system’s components in which only the processing time is

indispensable for each type of system:

Processing time (pjk): It represents the processing time of job j on machine k.

Scheduling problems are classified by Graham et al. (1979) via a triplet α|β|γ, where

α field represents the machine environment referred to as the shop configuration, β

field describes a set of assumptions, constraints, job characteristics and restrictions

related to the problem, and γ field indicates the performance measures of concern. The

possible shop configurations represented in the α field are:

Single machine (1): The case of a single machine in shop configuration.

6

Identical parallel machines (Pm): m identical parallel machines in a single stage in

which job j is processed on any one of them.

Uniform parallel machines (Qm): m parallel machines with different speeds in a

single stage where the speed of the machine k is denoted by 𝑣𝑘.

Unrelated parallel machines (Rm): m different machines with different speeds in a

single stage where the speed of the process for job j executed on machine k is 𝑣𝑗𝑘 .

Flow shop (Fm): m serial machines on which each job has to be processed in the same

sequence. After a job is processed on machine k, it joins machine 𝑘 + 1’s queue which

is also called as buffer or backlog. If the queue of the machine is assumed to behave

according to First-In First-Out (FIFO) discipline, then a flow shop is referred to as a

permutation flow shop and it is denoted by prmu in β field.

Flexible flow shop (HFc): A hybrid version of the traditional flow shop and parallel

machine environments. Instead of m serial machines, flexible flow shop consists of c

serial stages in which at least one of them has more than one identical, uniform or

unrelated machines in parallel. In the literature, flexible flow shops have been widely

known as Hybrid Flow Shop (HFS) or Multi-Processor Flow Shop (MPFS). Each job

has the same routing.

The possible entries in the β field that represents the features of the system are as

follows:

Due date (dj): Job j’s planned completion date which is agreed upon by both the

customer and the supplier.

Release date (rj): Job j’s ready time which is also job j’s arrival time at the system.

7

Preemption (prmp): Interrupting a job being processed on a machine without waiting

its finish time in order to load a different job.

Precedence constraints (prec): Constraints taken into account when there are

predecessor or successor relationships among the jobs.

Sequence dependent setup times (ssd): If setup times depend on the sequence of jobs

then ssd is taken into account in completion time calculations. If setup times are not

sequence dependent, then they are represented as snsd and included in the processing

times.

Job families (fmls): n jobs belong to F different job families. There is a setup time

denoted by sgh between the job families g and h while there are no setup times among

the jobs in the same family.

Batch processing (batch): A machine processes a number of the same or different

jobs in series.

Unavailability (unavail): Usually machines are not always available because of

breakdowns (brkdwn), shift changes or scheduled maintenances.

Machine eligibility restrictions (Mj): In parallel machines (Pm) environment, if all

m machines are not capable of processing job j, then the capable ones that process job

j are denoted by Mj.

Blocking (block): In a flow shop environment, if the buffer between two successive

stages, then blocking may occur, not allowing the upstream machine to release a

completed job, therefore, preventing it from processing the next job.

8

No-wait (nwt): In a flow shop environment, a job is not allowed to wait between two

consecutive machines/stages. Therefore, the starting time of a job at the first

machine/stage is delayed in order to make this job go on without waiting for any next

machines/stages. Moreover, it is understood that under nwt constraint, the shop

operates according to First-In First-Out (FIFO) discipline.

Recirculation (rcrc): A job visits a machine, a stage or a work center more than once.

Size (sizejk): In an HFS environment, at each production stage k, one operation of job

j (opjk) is simultaneously processed on sizejk parallel machines without preemption

during the required processing time of job j.

The γ field represents the objective function measure which usually tries to minimize

a function of the completion times of jobs. Therefore, the common γ entries related to

the objective function are the followings:

Maximum completion time (Cmax): Makespan that is the completion time of the last

job. Minimizing the makespan is equivalent to maximizing the utilization of

machine/s.

Maximum flow time (Fmax): Flow time of a job is completion time minus release

time. The biggest value among the flow times of all jobs represents the maximum flow

time.

Maximum lateness (Lmax): Lateness value of a job can be obtained by subtracting due

date from completion time. The biggest lateness value among all jobs represents the

maximum lateness. If lateness has a positive value for a job, then it means that the job

is completed late and it is tardy. On the other hand, if it has a negative value for a job,

then the job is completed early. If lateness value is equal to 0, then the job is completed

on time.

9

Maximum tardiness (Tmax): Jobs’ non-negative lateness values. The biggest

tardiness value among all jobs is the maximum tardiness.

Maximum earliness (Emax): Earliness value of a job is due date minus completion

time. It is either positive or equal to 0 in order to ensure that the job is completed either

early or on time. The biggest earliness value among all represents the maximum

earliness.

Total/average completion time (C̅): Either summation or average of all completion

times of jobs.

Total/average weighted completion time (C̅w): Either summation or average of all

weighted completion times of jobs.

Total/average flow time (F̅): Either summation or average of all flow times of jobs.

Total/average weighted flow time (F̅w): Either summation or average of all weighted

flow times of jobs.

Total/average tardiness (T̅): Either summation or average of all tardiness values of

jobs.

Total/average weighted tardiness (T̅w): Either summation or average of all weighted

tardiness values of jobs.

Total/average earliness (E̅): Either the summation or average of earliness values of

jobs.

10

Total/average weighted earliness (E̅w): Either summation or average of all weighted

earliness values of jobs.

Number of tardy jobs (U): Number of jobs completed later than their due dates.

Total weighted number of tardy jobs (Uw): Summation of all weighted tardy jobs.

Usually, these weights are represented by total holding or inventory costs.

The objective function measures based on the review of Ruiz and Vazquez-Rodriguez

(2010) are commonly used in scheduling problems (Table 2.1).

Table 2.1. Mathematical descriptions of objective function measures

Notation Description Meaning

Cmax max
j

Cj maximum completion time

Fmax max
j

(Cj- rj) maximum flow time

Lmax max
j

Lj maximum lateness

Tmax max
j

Tj maximum tardiness

Emax max
j

Ej maximum earliness

C̅ ∑Cj n⁄ total/average completion time

C̅w ∑wjCj n⁄ total/average weighted completion time

F̅ ∑Fj n⁄ total/average flow time

F̅w ∑wjFj n⁄ total/average weighted flow time

T̅ ∑𝑇𝑗 𝑛⁄ total/average tardiness

T̅w ∑wjTj n⁄ total/average weighted tardiness

U ∑Uj number of tardy jobs

Uw ∑wjUj total weighted number of tardy jobs

E̅ ∑Ej n⁄ total/average earliness

E̅w ∑wjEj n⁄ total/average weighted earliness

Different HFS scheduling problems can be represented by the α|β|γ triplet as in Table

2.2.

11

T
r
ip

le
t

n
o
ta

ti
o
n

α

 d
e
sc

r
ip

ti
o
n

β

 d
e
sc

ri
p

ti
o
n

γ

d
e
sc

ri
p

ti
o
n

(H
F

2
,

1
,

P
2

||C
m

a
x)

2
-s

ta
g

e
H

F
S

 w
it

h
 a

 s
in

g
le

m
ac

h
in

e
in

 t
h

e
fi

rs
t

st
ag

e

an
d

 t
w

o
 p

ar
al

le
l

id
en

ti
ca

l

m
ac

h
in

es
 i
n

 t
h

e
se

co
n

d

st
ag

e

-
M

in
im

iz
e

C
m

a
x

(H
F

c,
 P

m
|n

w
t|

C
m

a
x)

c-

st
ag

e
H

F
S

 w
it

h
 m

 p
ar

al
le

l
id

en
ti

ca
l

m
ac

h
in

es
 i
n

 e
ac

h

st
ag

e

N
o
-w

ai
t

co
n

st
ra

in
t

M
in

im
iz

e
C

m
a

x

(H
F

2
,

P
m

|n
o

-i
d

le
|T̅

,U
)

2
-s

ta
g

e
H

F
S

 w
it

h
 m

 p
ar

al
le

l

id
en

ti
ca

l
m

ac
h

in
es

 i
n

 e
ac

h

st
ag

e

N
o
 i

d
le

 t
im

e
o
n

 m
ac

h
in

es

M
in

im
iz

e
σ

T
j
an

d
 σ

U
j

(H
F

c,
 R

m
|b

a
tc

h
,
fm

ls
,

s g
h
,

u
n

a
va

il
,

r j
,
M

j,

sk
ip

|𝛼
C̅

w
+

β
T̅

w
)

c-
st

ag
e

H
F

S
 w

it
h

 m
 p

ar
al

le
l

u
n

re
la

te
d
 m

ac
h

in
es

 i
n

 e
ac

h

st
ag

e

B
at

ch
,
jo

b
 f

am
il

ie
s,

 s
eq

u
en

ce
 d

ep
en

d
en

t

se
tu

p
 t

im
es

,
m

ac
h
in

e
u
n
av

ai
la

b
il

it
ie

s,

re
le

as
e

ti
m

es
 a

n
d
 m

ac
h

in
e

el
ig

ib
il

it
y

re
st

ri
ct

io
n

s.
 I

n
 a

d
d
it

io
n
,
so

m
e

jo
b
s

m
ay

sk
ip

 s
o
m

e
st

ag
es

M
in

im
iz

e
σ

w
jC

j
an

d

σ
w

jT
j

(H
F

c,
 Q

m
|r

cr
c,

 t
im

e

w
in

d
o

w
,

fm
ls

,
M

j|C
m

a
x)

c-
st

ag
e

H
F

S
 w

it
h

 m
 p

ar
al

le
l

u
n

if
o
rm

 m
ac

h
in

es
 i

n
 e

ac
h

st
ag

e

R
ec

ir
cu

la
ti

on
,
ti

m
e

w
in

d
o
w

,
jo

b
 f

am
il

ie
s

an
d

 m
ac

h
in

e
el

ig
ib

il
it

y
re

st
ri

ct
io

n
s

M
in

im
iz

e
C

m
a

x

(H
F

c,
 R

m
|b

u
ff

er
,

b
lo

ck
|C

m
a

x)

c-
st

ag
e

H
F

S
 w

it
h

 m
 p

ar
al

le
l

u
n

re
la

te
d
 m

ac
h

in
es

 i
n

 e
ac

h

st
ag

e

B
lo

ck
in

g
 m

ay
 o

cc
u
r

d
u
e

to
 t

h
e

li
m

it
ed

b
u

ff
er

M

in
im

iz
e

C
m

a
x

T
ab

le
 2

.2
.

H
F

S
 s

ch
ed

u
li

n
g
 p

ro
b
le

m
s:

 s
o

m
e

e
x
a
m

p
le

s
fo

r
α

|β
|γ

 t
ri

p
le

t
re

p
re

se
n
ta

ti
o

n

12

2.2. Review of the HFS Scheduling Studies

In this section we review the studies about the HFS scheduling problems.

As the first algorithm, Branch and Bound (B&B) algorithm is proposed for an HFS

problem (HF2, 1, P2||Cmax) by Rao (1970).

B&B is applied again to an HFS problem (HF2, P2, 1||Cmax) by Arthanary and

Ramaswamy (1971). Later, Gupta (1988) proves that this problem is strongly NP-hard

and he proposes a heuristic algorithm.

B&B is applied again by Salvador (1973) to a more generalized HFS problem (HFc,

Pm|nwt|Cmax) for small instances. Later, B&B algorithm is applied again to a similar

HFS problem (HFc, Pm||Cmax) by Brah and Hunsucker (1991).

For the first time, dispatching rules are studied by Paul (1979) for an HFS problem

(HF2, Pm|no-idle|T̅, U).

Dispatching rules are applied by Narasimhan and Panwalkar (1984) for an HFS

problem (HF2, 1, R2||idleness, waiting).

Wittrock (1985) studies an HFS problem (HF3, Pm|skip|Cmax), with different

methods, including LP, Longest Processing Time (LPT) as a dispatching rule, and a

dynamic balancing algorithm as a heuristic approach.

Kochhar and Morris (1987) study an HFS problem (HFc, Pm|snsd, block, skip,

brkdwn|F̅), by applying dispatching rules and heuristic algorithms such as myopic

method and Local Search (LS) approach.

13

Due to the exhaustive computational time of B&B algorithms, Sriskandarajah and

Sethi (1989) propose dispatching rule-based heuristic algorithm for an HFS problem

(HF2, Pm||Cmax) in order to observe its worst and average cost performances in a short

period of time.

A real-world problem, a paper industry, is studied by Sherali et al. (1990) as an HFS

problem (HF2, P10, P12||allocation, sequence) via a mathematical model.

Two HFS problems (HFc, Pm|prmu|F̅) and (HF2, Pm||F̅) are studied by Rajendran

and Chaudhuri (1992). They apply B&B algorithm to the first problem and heuristic

algorithm to the second problem. For the purpose of comparison, they also apply

Shortest Processing Time (SPT) as a dispatching rule to the second problem in order

to determine which method is superior. In terms of both solution’s quality and

computational time performance, their heuristic algorithm has better results than SPT

rule.

A real-world problem, packaging industry’s scheduling problem is considered as a

(HFc, Rm|ssd|T̅
w) problem by Adler et al. (1993) and a five-step heuristic algorithm is

developed in order to minimize the total priority-based tardiness (also known as the

total weighted tardiness).

Lee and Vairaktarakis (1994) apply the first error bound analysis to an HFS problem

(HF2, Pm||Cmax).

Chen (1995) uses a worst-case performance ratio for two HFS problems, (HF2, 1,

Pm||Cmax) and (HF2, Pm, 1||Cmax), by classifying some of the heuristics proposed

earlier for makespan minimization in the literature.

Hoogeveen et al. (1996) show that an HFS problem (HF2, Pm|prmp|Cmax) is NP-hard

in the strong sense.

14

Gupta et al. (1997) work on an HFS problem (HF2, Pm, 1||Cmax) using B&B and

heuristic algorithms (both constructive and improvement) from the literature with a

new LB calculated for experimental test problems.

Nowicki and Smutnicki (1998) apply Tabu Search (TS) to an HFS problem (HFc,

Pm||Cmax) by considering tabu restrictions and search diversification while creating

the tabu list and developing neighborhood search strategy.

Brah and Loo (1999) study an HFS problem (HFc, Pm||Cmax, F̅) by applying

regression analysis to determine the performance of Campbell, Dudek, and Smith

(1970) heuristic (CDS) algorithm, Nawaz, Enscore and Ham (1983) heuristic (NEH)

algorithm, Hundal and Rajgopal (1988) modified Palmer heuristic algorithm, Yang,

Pegden, and Enscore (1984) combined heuristic algorithm and Ho (1995) heuristic

algorithm. Moreover, with regression analysis, they find out that job characteristics,

number of jobs, number of stages and parallel identical machines, have significant

effects on the quality of the results obtained.

A real-world problem, concrete blocks production as a building industry, is studied by

Grabowski and Pempera (2000) as an HFS problem (HFc, Pm|nwt|Cmax). They apply

TS metaheuristic algorithm to the problem. Their algorithm seems to be promising in

terms of balancing the trade-off between the solution time and the quality of the

solutions obtained.

An HFS problem (HFc, Pm||Cmax) is studied by Neron et al. (2001). They observe that

their branching schemes are effective for small to medium size instances, but not for

larger instances.

An HFS problem (HFc, Pm||E̅w+T̅w+C̅w+𝑑̅jw) is studied by Gupta et al. (2002) with

different problem characteristics, controllable processing times, varying between a

minimum and a maximum value depending on the use of a continuously divisible

15

resource, and assignable weighted due dates, which are not a priori given but can be

fixed by a decision-maker in return for a due date assignment cost. This cost is one of

the objective measures constituting a cost function in terms of the penalty cost. For

this problem, they develop constructive heuristic algorithms as dispatching rules based

on insertion techniques and improvement heuristic algorithms as LS methods based

on shifting neighborhood procedures.

Kurz and Askin (2003) study an HFS problem (HFc, Pm|ssd|Cmax) by exploring cyclic,

multiple insertion, and Johnson’s Rule-based heuristics and comparing the

performance of these heuristics through evaluating them on a set of test problems

whose data are generated as an experimental design.

Similar to the genetic algorithm (GA) as an evolutionary algorithm, Artificial Immune

System (AIS), a smart problem-solving technique, is proposed by Engin and Doyen

(2004) for an HFS problem (HFc, Pm||Cmax). Their experimental results show that AIS

is an effective and efficient method that can be used for real-life industrial problems.

Moreover, their AIS heuristic is hybridized with some other heuristic algorithms.

Oguz and Ercan (2005) propose a GA with its four different versions for an HFS

problem (HFc, Pm|sizejk|Cmax). They check the deviation of these GAs from the LB

value inspired by the previous studies in the literature in order to find the GA with the

best genetic operators among all. They also add that the best GA outperforms the TS

algorithm of Oguz et al. (2004).

A real-world problem, similar to fabric manufacturing as a textile industry, the

production process of ceramic tiles is considered as an HFS scheduling problem (HFc,

Rm|ssd, Mj|Cmax) by Ruiz and Maroto (2006) through developing a GA algorithm with

four new crossover operators. After designing extensive experimental datasets, they

calibrate their algorithm and compare it to nine other metaheuristic algorithms

introduced earlier in the literature.

16

For an HFS problem (HF3, Rm|prec, ssd, block|Cmax), Chen et al. (2007) propose a TS

metaheuristic algorithm, a mathematical model and a LB.

Ruiz et al. (2008) develop a mathematical model for a realistic HFS problem (HFc,

Rm|skip, ssd, time lag, rm, Mj, prec|Cmax) and also test the model for medium size

instances. However, for real medium and especially large instances, they develop six

heuristic algorithms, five of which are based on dispatching rules and one of which is

inspired from the earlier studies. For benchmarking purposes, they develop a

Classification Tree as a Machine Learning (ML) technique by using advanced

statistical tools.

Naderi et al. (2009) propose a metaheuristic algorithm, namely Hybrid Simulated

Annealing (HSA), for a realistic HFS problem (HFc, Pm|ssd, transportation time|F̅,

T̅), by comparing the performance of HSA to well-known dispatching rules and the

adaptations of some metaheuristic algorithms introduced earlier in the literature of

HFS without transportation times. According to their experimental assessment, HSA

outperforms the solution methods in the literature that they include in their

comparisons.

Dugardin et al. (2010) develop three metaheuristics as Strength Pareto Evolutionary

Algorithm (SPEA), Non-dominating Sorting GA (NSGA) and Lorenz NSGA (L-

NSGA) and an exact algorithm for an HFS problem (HFc, Pm|rcrc|U, capacity

utilization). They examine the performances of these three metaheuristic algorithms

by using a DES model. Their exact method is a full enumeration technique that is used

for small instances only to obtain optimal solutions, as expected, in order to determine

the solution qualities of these three metaheuristic algorithms. The computational

results of the DES model show that SPEA and NSGA are outperformed by L-NSGA

whose solutions are very close to the optimal solutions yielded by the full enumeration

technique.

17

An Efficient GA (EGA) with Neighborhood Based Mutation (NBM) is proposed by

Engin et al. (2011) for an HFS problem (HFc, Pm||Cmax) through comparing it to the

GA without NBM and a parallel greedy heuristic algorithm. It is observed that EGA

performs better than the GA and parallel greedy heuristic algorithm in terms of

solution quality for the test problems.

Liao et al. (2012) develop a metaheuristic algorithm, Particle Swarm Optimization

(PSO) with a Bottleneck Heuristic (BH) to completely manipulate the bottleneck stage

and also with a SA heuristic to avoid stucking in local optima (PSO-SA-BH), for an

HFS problem (HFc, Pm||Cmax) through comparing it to PSO and PSO-SA in order to

find the best PSO variant. As a result, PSO-SA-BH is chosen as the best one for the

purpose of further comparison. Then, PSO-SA-BH is compared to Quantum-inspired

Immune Algorithm (QIA), Ant Colony Optimization (ACO), AIS and B&B

algorithms. According to the experimental results, PSO-SA-BH performs better than

QIA, ACO and AIS in terms of both effectiveness and efficiency, and better than B&B

algorithm in terms of efficiency, and the same in terms of effectiveness.

Luo et al. (2013) develop a metaheuristic algorithm, Multi-Objective ACO

(MOACO), for an HFS problem (HFc, Qm||Cmax, electric power cost) with the

presence of Time-Of-Use (TOU) electricity prices as an energy consumption approach

in the context of green manufacturing. In the light of computational experiments’

results, even though MOACO is worse than SPEA and NSGA in terms of efficiency,

it outperforms them in terms of effectiveness.

Marichelvam et al. (2014) develop metaheuristic algorithms, Cuckoo Search (CS) and

Improved CS (ICS) for an HFS problem (HFc, Pm||Cmax) by comparing CS and ICS

to GA, SA, ACO, PSO and an existing constructive heuristic algorithm which is also

used to generate initial solutions for ICS in order to obtain optimal or near optimal

solutions quickly. Computational results show that not only does ICS provide optimal

18

results with minimum CPU time, but also it is superior to the other metaheuristic

algorithms in terms of both effectiveness and efficiency.

Li and Pan (2015) propose a novel hybrid algorithm, combining TS and Artificial Bee

Colony (ABC), (TABC) to solve an HFS problem (HFc, Rm|buffer, block|Cmax).

According to the experimental results, TABC performs better than the five existing

heuristic algorithms in the literature for most of the instances in terms of both

effectiveness and efficiency.

A realistic HFS problem (HFc, Rm|batch, fmls, sgh, unavail, rj, Mj, skip|𝛼C̅w+βT̅w) is

studied by Shahvari and Logendran (2016) through a mathematical model solved via

CPLEX for small instances to obtain optimal/upper and LBs, and developing several

TS based metaheuristic algorithms due to NP-hardness of the medium and especially

large instances in the strong sense. According to the comparative numerical results,

TS with Path-Relinking (TS/PR) based batch scheduling is promising and performs

well most of the time for small to large instances in terms of effectiveness and

especially efficiency.

According to the study of Chamnanlor et al. (2017), a metaheuristic algorithm, GA

hybridized with ACO (GACO), for an HFS problem (HFc, Qm|rcrc, time window,

fmls, Mj|Cmax) and a mathematical model are presented. GACO is compared to GA

and ACO in terms of computational results showing that GACO has the best results

compared to the other two.

Li et al. (2018) develop Energy-Aware Multi-objective Optimization Algorithm (EA-

MOA) for an HFS problem (HFc, Pm|ssd|Cmax, total energy consumption). Comparing

EA-MOA to several efficient heuristic algorithms in the literature, the experimental

results show that EA-MOA’s robustness and efficiency are promising.

19

2.3. Summary of the Survey

It is obvious that shop configurations vary in terms of the number of stages, the

number of machines at the stages and the similarity/dissimilarity of the machines at

any stage. On the other hand, shop characteristics and the objective function measures

cannot be classified so easily as the shop configurations. Therefore, each HFS

scheduling problem is considered according to its shop characteristics and the

objective function measures. Solution methods can be classified in four main groups,

namely, exact, heuristic, hybrid, and other methods, like in the classification of Ribas

et al. (2010)’s review paper. Exact methods solve HFS scheduling problems to

optimality, while the others do not guarantee optimality all the time owing to the

parameters of the problems such as the size of the problem instance. B&B algorithm

and mathematical modelling are good examples for the exact method. On the other

hand, commonly used dispatching rules are good examples for constructive heuristic

algorithms, while the frequently used metaheuristic GA is a good example for an

improvement heuristic algorithm. Furthermore, any combined versions of these

methods such as Column Generation (CG) with GA or with SA, and Dynamic

Programming (DP) with Lagrangian Relaxation (LR) are good examples for the

hybrid algorithms. Finally, good examples for the other methods are DES models or

expert systems. In order to simplify the comprehension, any combinations among

exact, heuristic, hybrid and the other solution methods are considered as hybrid

algorithms. To summarize the literature survey in the previous section, Table 2.3 is

developed based on this classification.

20

Table 2.3. Classification of the literature survey on HFS scheduling

Authors &

Year

Objective

Function

Measures

Number

of Stages

(c>3)

Machines

Type at a

Stage

Solution Methods

Exact Heuristic Hybrid Other

Rao (1970) Cmax 2 P X

Arthanary and
Ramaswamy

(1971)
Cmax 2 P X

Salvador (1973) Cmax c P X

Paul (1979) T̅, U 2 P X

Narasimhan and
Panwalkar

(1984)

idleness,
waiting

2 R X

Wittrock (1985) Cmax 3 P X X

Kochhar and
Morris (1987)

F̅ c P X

Gupta (1988) Cmax 2 P X

Sriskandarajah
and Sethi

(1989)
Cmax 2 P X

Sherali et al.
(1990)

allocation,
sequence

2 P X

Brah and
Hunsucker

(1991)
Cmax c P X

Rajendran and
Chaudhuri

(1992)
F̅

2

P

 X

c X

Continued on next page

21

Table 2.3. – Continued from previous page

Authors &

Year

Objective

Function

Measures

Number

of Stages

(c>3)

Machines

Type at a

Stage

Solution Methods

Exact Heuristic Hybrid Other

Adler et al.
(1993)

T̅w c R X

Lee and
Vairaktarakis

(1994)
Cmax 2 P X

Chen (1995) Cmax 2 P X

Hoogeveen et
al. (1996)

Cmax 2 P X

Gupta et al.
(1997)

Cmax 2 P X X

Nowicki and
Smutnicki

(1998)
Cmax c P X

Brah and Loo
(1999)

Cmax, F̅ c P X X

Grabowski and
Pempera (2000)

Cmax c P X

Neron et al.
(2001)

Cmax c P X

Gupta et al.

(2002)

E̅w, T̅w, C̅w

and d̅j
w

c P X

Kurz and Askin
(2003)

Cmax c P X

Engin and
Doyen (2004)

Cmax c P X

Oguz and Ercan
(2005)

Cmax c P X

Ruiz and
Maroto (2006)

Cmax c R X

Continued on next page

22

Table 2.3. – Continued from previous page

Authors &

Year

Objective

Function

Measures

Number

of Stages

(c>3)

Machines

Type at a

Stage

Solution Methods

Exact Heuristic Hybrid Other

Chen et al.
(2007)

Cmax 3 R X X

Ruiz et al.
(2008)

Cmax c R X X X

Naderi et al.
(2009)

F̅, T̅ c P X

Dugardin et al.
(2010)

U, capacity
utilization

c P X X X X

Engin et al.
(2011)

Cmax c P X

Liao et al.
(2012)

Cmax c P X

Luo et al.
(2013)

Cmax, electric
power cost

c Q X

Marichelvam et
al. (2014)

Cmax c P X

Li and Pan
(2015)

Cmax c R X

Shahvari and
Logendran

(2016)
C̅w, T̅w c R X X

Chamnanlor et
al. (2017)

Cmax c Q X X

Li et al. (2018)
Cmax, total

energy
consumption

c P X

23

CHAPTER 3

3. PROBLEM DESCRIPTION

In this study, we are motivated by the production planning and scheduling issues in

the job shop of center fuselage panels’ manufacturing at the aerospace company under

consideration. However, since an HFS configuration has more characteristics (Table

3.1) (Askin et al., 1993) better than an HJS environment, in this study, HFS scheduling

problem is considered.

Table 3.1. Performance characteristics depending on flow and job shops

Characteristic Flow Shop Job Shop

Lead time Low High

WIP Low High

Skill level Choice High

Product flexibility Low High

Demand flexibility Medium High

Machine utilization High Medium-low

Worker utilization High High

Unit production cost Low High

As it is seen on Table 3.1, two of the major contributing factors why HFS scheduling

problem is considered in this study are lower lead time and WIP accumulation. Other

than these, lower unit production cost is another beneficial feature of an HFS

configuration as a layout type of the manufacturing process. Moreover, higher

machine and worker utilizations can be positively considered in terms of efficiency in

the manufacturing process. Because the machines in an HFS configuration are orderly

COMPLEXITY

24

located in the manufacturing site, capacity increase can easily be adjusted. In this way,

machine/worker utilizations, skill level, and demand flexibility can also be adjusted

with ease. Due to the fact that a certain type of products is considered for addressing

an HFS scheduling problem in this study, lower product flexibility and moderate

demand flexibility cause no negative effect on the manufacturing process.

Due to the fact that HFS scheduling is a complex problem which is proven to be NP-

hard in the strong sense, it is also difficult to solve this problem. In order to understand

the complexity level of HFS scheduling problem and its place among the other shop

configurations, Figures 3.1 and 3.2 are presented (Pinedo, 2016).

Figure 3.1. Complexity hierarchy based on the shop configuration

Figure 3.2. Complexity hierarchy based on the shop configuration for the makespan

minimization

C
O

M
P

L
E

X
IT

Y

C
O

M
P

L
E

X
IT

Y

25

As it is seen on Figure 3.1, the only shop configurations, more complex than the HFS,

are the unrelated parallel machines and the HJS as expected. Furthermore, on Figure

3.2, for the makespan minimization, scheduling the HFS and the job shop

configurations is harder. Especially, the HFS scheduling problem is harder than 2-

stage flow shop scheduling problem for the makespan minimization.

As an extended version of a traditional flow shop, an HFS has a more complex

structure, due to the number of machines at a stage. Therefore, according to the study

by Brah (1988), there are too many paths, shown on Equation (3.1), in order to obtain

a schedule for an HFS scheduling problem (HFc||𝐶𝑚𝑎𝑥).

∏(
n-1

mk-1
)

c

k=1

n!

mk!
 (3.1)

On the other hand, a permutation flow shop has (n!) and a non-permutation flow shop

has (n!)m paths for a schedule. Hence, compared to permuation and non-permutation

flow shops, HFS scheduling problem is obviously harder to be solved to optimality.

Because of the motivations stated above, in this study, several renowned solution

approaches in the literature are applied to the HFS scheduling problem. After the

application of these approaches, it is observed that there is a room for improvement to

obtain better solutions for the HFS scheduling problem. For this purpose, three

solution approaches, a Constraint Programming (CP) model as an exact method, a

Hybrid Algorithm (HA) as a heuristic method, and a Galactic Swarm Optimization

(GSO) as a metaheuristic method, are proposed.

In the following chapters, we focus on the renowned methods for the HFS scheduling

problem.

27

CHAPTER 4

4. HFS SCHEDULING: MILP MODEL AND HEURISTICS

Due to the NP-hardness nature of the HFS scheduling problem, exact solution methods

remain insufficient to obtain both effective and efficient solutions for medium and

especially large problem instances. Hence, several heuristic methods are proposed in

terms of effectiveness and efficiency. As reviewed in Chapter 2, these heuristics are

either used as a single heuristic or as a mix of them in a hybrid way. In this chapter,

first, we formulate the HFS scheduling problem as a Mixed-Integer Linear

Programming (MILP) model and then discuss the dispatching rules as heuristics.

Finally, we discuss the renowned heuristics for the HFS scheduling problem.

4.1. Mixed-Integer Linear Programming (MILP) Model

This section presents the MILP model for an HFS scheduling problem based on the

model of Ruiz and Vazquez-Rodriguez (2010). Before describing this model,

following assumptions are made:

• All jobs and all machines are available at time zero. Therefore, there are no

release dates constraints for the jobs.

• Parallel machines are identical at each stage. Therefore, there is no machine

eligibility constraint for the jobs.

• A machine at a stage processes only one operation at a time and a job is

processed by only one machine at a stage at a time. Therefore, partial

processings are not allowed.

28

• Setup times are not sequence dependent. Therefore, they are included in the

processing times of the jobs at each stage.

• Preemption is not allowed. Therefore, before loading the next job, current job

on the machine is to be finished.

• The buffer between two consecutive stages has unlimited capacity. Therefore,

blocking does not occur.

• Problem data are deterministic and known a priori. Therefore, the routings of

the jobs are known, the number of parallel identical machines at a given stage

is fixed and the processing times of the jobs are deterministic. There are no

specific due date constraints related to the jobs, that is, all the jobs are assumed

to have a common due date. Since the importance of the jobs is the same, the

weights of the jobs are set to “1”.

• A job may skip a given stage. This is represented by equaling this job’s

processing time to “0” at this stage.

• There are no predecessor and successor relationships among the jobs.

Therefore, the sequence of the jobs can be altered as required.

• All machines are always available. Therefore, there are no breakdown, shift

change, and scheduled maintenance constraints related to the machines.

• Batch processing of a certain job is not possible due to the high cost of tool

requirements.

29

• There are no no-wait constraints for the jobs. However, there are also no

technical constraints to make the jobs stop.

• A job does not visit a given stage more than once. Therefore, there are no

recirculation constraints related to the jobs.

• Job sequencing is allowed to change from one stage to another, that is, non-

permutation schedules are allowed.

According to the practical situations, these assumptions may slightly change for the

different variants of the HFS scheduling problems. The MILP model based on these

assumptions is presented below:

The MILP model

Sets

J: number of jobs: j={1, …, n}

K: number of stages: k={1, …, c}

L: number of parallel identical machines at stage k: l={1, …, mk}

Parameters

pjk: processing time of job j at stage k

M=∑∑mk

c

k=1

n

j=1

p
jk

 a big number

Decision Variables

cjk: completion time of job j at stage k

30

y
jkl
 = {1, if job j is scheduled at the l

th
 machine of stage k

0, otherwise

xjrk = {
1, if job j precedes job r at stage k
0, otherwise

Cmax: maximum completion time of the jobs at the last stage

Objective Function

minimize Cmax (4.1)

Constraints

subject to

∑ y
jkl

mk

l=1

=1 ∀j∈J, ∀k∈K (4.2)

cj,k-1+pjk≤cjk ∀j∈J, ∀k∈K: k>1 (4.3)

pj1≤cj1 ∀j∈J (4.4)

cjk+prk-M(3-xjrk-yjkl-yrkl)≤crk ∀j∈J, ∀r∈J: j<r, ∀l∈L (4.5)

crk+pjk-M(2+xjrk-yjkl-yrkl)≤cjk ∀j∈J, ∀r∈J: j<r, ∀l∈L (4.6)

cjc≤Cmax ∀j∈J (4.7)

yjkl∈{0, 1} ∀j∈J, ∀k∈K, ∀l∈L (4.8)

xjrk∈{0, 1} ∀j∈J, ∀r∈J, ∀k∈K (4.9)

cjk≥0 ∀j∈J, ∀k∈K (4.10)

Cmax≥0 (4.11)

The objective function (4.1) tries to minimize the maximum completion time at the

end of the last stage also known as the makespan. Constraint (4.2) ensures that each

31

job is scheduled on exactly one machine of a given stage. Constraint (4.3) calculates

the completion time of a job at the end of a stage by adding the processing time of this

job in this stage to the completion time of this job at the end of the previous stage. In

constraint (4.4), the completion time of a job at the end of the first stage is at least

equal to the processing time of a job in the first stage. Constraints (4.5) and (4.6)

prevent any two jobs from overlapping when they are scheduled to the same machine

of a given stage. Constraint (4.7) determines the makespan value by checking the

completion times of the jobs at the end of the last stage. Sign constraints (4.8) and

(4.9) shows the domains of the binary decision variables, whereas sign constraints

(4.10) and (4.11) shows the domains of the continuous decision variables.

Being one of the exact methods, MILP may not provide the optimal solution for each

problem instance, especially for real-life size instances. Hence, the application of other

methods like dispatching rules and heuristics gains more importance in manufacturing

industry where HFS environment is very common.

4.2. Dispatching Rules

Dispatching rules have been studied for HFS since 1979. They are also known as

construction heuristic algorithms generating initial solutions to be improved later via

improvement heuristic algorithms. They are very simple to implement and also fast

for making quick decisions in scheduling. They usually yield relatively good solutions

in a reasonable time. Moreover, they provide optimal solutions for some special cases.

Furthermore, they are classified as static and dynamic rules where dynamic rules are

time dependent. In this study we use the following dispatching rules.

Service in Random Order (SIRO): A simple static dispatching rule frequently used

in practice does not try to optimize any measure (Pinedo, 2016). For example, SIRO

can be hybridized with First Available Machine (FAM) and Earliest Completion Time

(ECT) strategies for job sequencing at a stage.

32

Shortest Processing Time (SPT): This simple static dispatching rule tries to

minimize the average time (waiting time+processing time) that a job spends in the

system, especially for a single machine, based on scheduling jobs according to non-

decreasing order of their pjk values (Pinedo, 2016). For example, SPT schedules the

jobs according to non-decreasing order of jobs’ processing times at each stage.

Shortest Total Processing Time (STPT): This static dispatching rule tries to

minimize the average time based on scheduling jobs according to non-decreasing

order of their total processing times thru the shop shown on Equation (4.12) (Alharkan,

2005).

∑ p
jk

c

k=1

 ∀j∈J (4.12)

For example, STPT can be hybridized with FAM and ECT strategies for job

sequencing at a stage.

Longest Processing Time (LPT): A static dispatching rule which tries to minimize

the makespan, especially for a single machine, based on scheduling jobs according to

non-increasing order of their pjk values (Pinedo, 2016). For example, LPT schedules

the jobs according to the non-increasing order of jobs’ processing times at each stage.

Longest Total Processing Time (LTPT): This static dispatching rule tries to

minimize the makespan based on scheduling jobs according to non-increasing order

of their total processing times thru the shop (Alharkan, 2005).

For example, LTPT can be hybridized with FAM and ECT strategies for job

sequencing at a stage.

33

4.3. Renowned Heuristic Algorithms

Some heuristic algorithms in the literature are observed to be effective and efficient in

terms of generating good solutions particularly for flow shop configurations.

Moreover, they are also applied in HFS configurations for comparison purposes with

other solution methods in the literature. In this study, in order to apply these algorithms

(except Bottleneck Heuristic (BH)) with FAM and ECT strategies, the HFS

configuration is reduced down to a traditional flow shop configuration through

distributing the processing time of a job at each stage equally based on the number of

parallel identical machines at that stage as in Equation (4.13).

p̅
jk

=
p

jk

mk

 ∀j∈J, ∀k∈K (4.13)

In Equation (4.13), p̅
jk

 is equal to the average processing time of job j at stage k in a

traditional flow shop, as reduced from the HFS configuration.

In this study following we use the renowned heuristic algorithms for generating

relatively good solutions in an acceptable amount of time:

Johnson’s Algorithm: The most popular heuristic algorithm which yields the optimal

solution for the flow shop problem (F2||Cmax) according to the study of Johnson

(1954). This algorithm also solves (F3||Cmax) problem to optimality, if one of the

conditions in Expression (4.14) is satisfied (Alharkan, 2005).

Either, min(pj1)≥max(pj2) or min(pj3)≥max(pj2) ∀j∈J (4.14)

It is understood that there is no bottleneck condition for the second machine, i.e., it is

dominated either by the first and/or the third machine. If at least either of these

conditions is satisfied, the processing times of the jobs on the first and the second

34

machines are summed for creating the first dummy machine. Then, for creating the

second dummy machine, the processing times of the jobs on the second and the third

machines are summed. By this way, (F3||Cmax) problem is converted to (F2||Cmax)

problem to be solved optimally. Similar to the three-machine flow shop adaptation,

Johnson’s algorithm is also applied to (Fm||Cmax), if one of the conditions in

Expression (4.15) is satisfied (Puaar, 2017).

Either, min(pj1)≥max(pj2, pj3, …, pj,m−1) or min(pjm)≥ (pj2, pj3, …, pj,m−1) ∀j∈J (4.15)

The processing times of the jobs from machine 1 to machine m-1 and the processing

times of the jobs from machine 2 to machine m are summed in order to create two

dummy machines for converting the original problem to (F2||Cmax) configuration to be

solved to optimality by the Johnson’s algorithm with the iterations which are the same

as the iterations in the algorithm for the two-machine flow shop problem, if one of the

conditions above is satisfied. However, even if none of the conditions above is

satisfied, Johnson’s algorithm is still applied as a constructive heuristic algorithm

yielding not an optimal but a relatively good initial solution.

Palmer’s Heuristic: This is another popular and easy to implement algorithm as a

constructive heuristic for (Fm||Cmax) problem in order to generate a relatively good

initial solution according to the study of Palmer (1965). Palmer’s heuristic consists of

two steps as described below:

• Step 1: Calculate slope Aj for jth job for (Fm||Cmax) problem (Equation (4.16)).

Aj=-∑[m-(2×k-1)]×p
jk

m

k=1

 ∀j∈J (4.16)

• Step 2: Schedule the jobs based on sequencing them in a non-increasing order

according to Aj values.

35

In order to understand how Palmer’s heuristic functions, the following example is used

for illustration:

Table 4.1. Example: Palmer’s heuristic for (F3||Cmax) problem

j k
1 2 3

Aj
−(3− (2×1−1)) − (3− (2×2−1)) − (3− (2×3−1))

1 3 8 (p12) 10 14

2 12 9 12 0

3 8 6 13 10

4 12 10 16 8

Table 4.2. Example: Completion times with Palmer’s heuristic for (F3||Cmax)

problem

j k 1 2 3

1 3 11 21

3 11 17 34

4 23 33 50

2 35 44 62

Since the example problem is solved to optimality (Cmax=62) with the Johnson’s

algorithm, it is seen that Palmer’s algorithm has also given the optimum Cmax.

Campbell, Dudek, and Smith (CDS) Algorithm: Actually, this is m−1 times

application of the Johnson’s algorithm to the subproblems of (Fm||Cmax) problem in

order to find which subproblem/s provide the best Cmax value according to the study

of Campbell et al. (1970). Therefore, it is understood that in order to solve (Fm||Cmax)

problem by the CDS algorithm, the number of iterations is equal to m−1 (Table 4.3).

36

Table 4.3. CDS algorithm for (Fm||Cmax) problem

Iteration
Left column:

Sum of processing times

Right column:

Sum of processing times

1 pj1 pjm

2 pj1+ pj2 pj,m−1+pjm

3 pj1+ pj2+ pj3 pj,m−2+ pj,m−1+pjm

… … …

m-1 pj1+ pj2+ pj3+…+pj,m−1 pj2+…+ pj,m−2+ pj,m−1+pjm

At each iteration, there are two dummy machines where (Fm||Cmax) problem is

converted to a (F2||Cmax) subproblem to be solved to optimality via the Johnson’s

algorithm. Totally m−1 many (F2||Cmax) subproblems are solved. As a result, the

subproblem with the best Cmax value is chosen in order to derive the best schedule for

(Fm||Cmax) problem. The following example illustrates the CDS algorithm:

• Iteration 1: Create two dummy machines with the first and the last machines

for the application of the Johnson’s algorithm (Table 4.4):

Table 4.4. Example: 1st iteration of the CDS algorithm for (F3||Cmax) problem

j k 𝒑𝒋𝟏 𝒑𝒋𝟑 Sequences Completion times

1 3 10 1 3 2 4 j k 1 2 3

2 12 12 1 3 11 21

3 8 13 1 3 4 2 3 11 17 34

4 12 16 2 23 32 46
 4 35 45 62

 j k 1 2 3

 1 3 11 21
 3 11 17 34
 4 23 33 50

 2 35 44 62

37

• Iteration 2: Create two dummy machines with pj1+pj2 and pj2+pj3 for the

application of the Johnson’s algorithm (Table 4.5):

Table 4.5. Example: 2nd iteration of the CDS algorithm for (F3||Cmax) problem

j k pj1+pj2 pj2+pj3 Sequences Completion times

1 11 18 1 3 2 4 j k 1 2 3

2 21 21 1 3 11 21

3 14 19 1 3 4 2 3 11 17 34

4 22 26 2 23 32 46
 4 35 45 62

 j k 1 2 3

 1 3 11 21
 3 11 17 34
 4 23 33 50

 2 35 44 62

Coincidentally, the optimal solution is found at the first iteration due to the fact

that the Johnson’s algorithm condition is satisfied. If none of the conditions is

satisfied, one (alternative best sequences may be obtained) of the iterations

provides the best sequence with the best Cmax value.

The CDS algorithm is a good constructive heuristic, since it checks the variants of two

dummy machines’ structures. When the Johnson’s algorithm condition is not satisfied,

it is expected that the CDS algorithm yields better results, due to the fact that the CDS

algorithm provides several sequences.

Nawaz, Enscore, and Ham (NEH) Algorithm: As an iterative insertion heuristic,

the NEH algorithm calculates Cmax value for each insertion in each iteration (Nawaz

et al., 1983). NEH algorithm consists of the following steps:

38

• Step 1: Calculate total work content for each job (Equation (4.17)).

Tj=∑ p
jk

m

k=1

 ∀j∈J (4.17)

• Step 2: Sequence the jobs in non-increasing order of Tj values.

• Step 3: Select the first two jobs and calculate Cmax values for partial schedules

based on the positions of these jobs in the schedule (Sequence 1: 1st-2nd, and

sequence 2: 2nd-1st). Choose the partial schedule with the best Cmax value.

• Step 4: Pick the next job from the list. Insert this job into all possible positions

of the partial schedule. Calculate Cmax values for the new partial schedules

based on the position of this job in the schedule. Suppose sequence 2 is the

best partial schedule. Then sequence 1’: 3rd-2nd-1st, sequence 2’: 2nd-3rd-1st, and

sequence 3’: 2nd-1st-3rd.

• Step 5: Choose the partial schedule in Step 4 with the best Cmax value.

• Step 6: Follow this procedure from Step 4, until there is no job unsequenced.

When all jobs are sequenced, stop the algorithm.

The following example illustrates the NEH algorithm:

• Step 1: See Table 4.6.

• Step 2: See Table 4.7.

39

Table 4.6. Example: 1st step of the NEH algorithm for (F3||Cmax) problem

j k 1 2 3 Tj

1 3 8 10 21

2 12 9 12 33

3 8 6 13 27

4 12 10 16 38

Table 4.7. Example: 2nd step of the NEH algorithm for (F3||Cmax) problem

j k 1 2 3 Tj

4 12 10 16 38

2 12 9 12 33

3 8 6 13 27

1 3 8 10 21

• Step 3: See Table 4.8.

Table 4.8. Example: 3rd step of the NEH algorithm for (F3||Cmax) problem

Completion times Completion times

j k 1 2 3 j k 1 2 3

4 12 22 38 2 12 21 33

2 24 33 50 4 24 34 50

In this step, there are two partial schedules which are alternative to each other.

From now on, remainder steps of NEH algorithm are followed based on these

two partial schedules.

• Step 4: See Table 4.9.

• Step 5: See Table 4.10.

40

Table 4.9. Example: 4th step of the NEH algorithm for (F3||Cmax) problem

Completion times Completion times

j k 1 2 3 j k 1 2 3

3 8 14 27 3 8 14 27

4 20 30 46 2 20 29 41

2 32 41 58 4 32 42 58

j k 1 2 3 j k 1 2 3

4 12 22 38 2 12 21 33

3 20 28 51 3 20 27 46

2 32 41 63 4 32 42 62

j k 1 2 3 j k 1 2 3

4 12 22 38 2 12 21 33

2 24 33 50 4 24 34 50

3 32 39 63 3 32 40 63

Table 4.10. Example: 5th step of the NEH algorithm for (F3||Cmax) problem

Completion times Completion times

j k 1 2 3 j k 1 2 3

3 8 14 27 3 8 14 27

4 20 30 46 2 20 29 41

2 32 41 58 4 32 42 58

• Step 6: See Table 4.11.

As it is seen in Table 4.11, the NEH algorithm provides alternative optimal

solutions for this particular problem.

Although the NEH algorithm is more time consuming than the CDS algorithm

for the same example problem, it is expected that the NEH algorithm provides

better solution than the CDS algorithm when Johnson’s algorithm condition is

41

not satisfied. It is obvious that, due to its iterative insertion method, the NEH

algorithm produces relatively better solutions.

Table 4.11. Example: 6th step of the NEH algorithm for (F3||Cmax) problem

Completion times Completion times

j k 1 2 3 j k 1 2 3

1 3 11 21 1 3 11 21

3 11 17 34 3 11 17 34

4 23 33 50 2 23 32 46

2 35 44 62 4 35 45 62

j k 1 2 3 j k 1 2 3

3 8 14 27 3 8 14 27

1 11 22 37 1 11 22 37

4 23 33 53 2 23 32 49

2 35 44 65 4 35 45 65

j k 1 2 3 j k 1 2 3

3 8 14 27 3 8 14 27

4 20 30 46 2 20 29 41

1 23 38 56 1 23 37 51

2 35 47 68 4 35 47 67

j k 1 2 3 j k 1 2 3

3 8 14 27 3 8 14 27

4 20 30 46 2 20 29 41

2 32 41 58 4 32 42 58

1 35 49 68 1 35 50 68

Bottleneck Heuristic (BH): According to the study of Paternina Arboleda et al.

(2008), it is also called Theory of Constraints (TOC)-based heuristic for an HFS

scheduling problem. The steps of this heuristic are described below:

Step 1: Identify the bottleneck stage:

42

• For each stage k, the flow ratio is computed (Equation (4.18)).

FRk=∑
p

jk

mk

n

j=1

 ∀k∈K (4.18)

• Stage with the maximum FRk value is chosen as the bottleneck stage. Let b

denote the bottleneck stage.

• Release time of job j for stage b is calculated (Equation (4.19)).

Rj=∑ p
jk

b-1

k=1

 ∀j∈J (4.19)

• Due date of job j for stage b is calculated (Equation (4.20)).

Dj=∑FRk- ∑ p
jk

c

k=b+1

c

k=1

 ∀j∈J (4.20)

Step 2: Sequence the bottleneck stage:

• Schedule the jobs in non-decreasing order of Rj. If there is a tie, rank the jobs

in non-decreasing order of Dj. If there is a tie again, rank the jobs in non-

decreasing order of processing times.

• Schedule the jobs on the machines of the bottleneck stage according to the

preceding ranking.

Step 3: Sequence the non-bottleneck stages:

43

• Stages before the bottleneck stage b: Schedule the jobs in non-decreasing order

of Dj. If there is a tie, rank the jobs in non-decreasing order of Rj. If there is a

tie again, rank the jobs in non-decreasing order of processing times.

• Stages after the bottleneck stage b: Schedule the jobs according to FAM and

ECT strategies.

In order to comprehend BH, following problem is used as an example (Table 4.12):

Table 4.12. Example (HF3, P2, 1, P2||Cmax) problem for BH

j c 1 2 3

1 3 8 10

2 12 9 12

3 8 6 13

4 12 10 16

PP 2 1 2

Step 1: See Tables 4.13, 4.14, and 4.15.

Table 4.13. Example: Flow ratio table for each stage

c 1 2 3

FRk 17.5 33 25.5

• According to Table 4.13, stage 2 is identified as the bottleneck stage.

Step 2: See Table 4.16.

44

Table 4.14. Example: Release times of jobs for the bottleneck stage

j Rj

1 3

2 12

3 8

4 12

Table 4.15. Example: Due dates of jobs for the bottleneck stage

j Dj

1 66

2 64

3 63

4 60

Table 4.16. Example: Table for scheduling the bottleneck stage

Stage 2 PP 1

j PP 1 Rj Dj pj2 start finish

1 [1] 3 66 8 3 11

2 [4] 12 64 9 27 36

3 [2] 8 63 6 11 17

4 [3] 12 60 10 17 27

Step 3: See Table 4.17.

• Since stage 3 is scheduled according to FAM and ECT strategies, the job

sequence for this stage is J1-J3-J4-J2. Therefore, the final schedule is shown

in Table 4.18.

This example problem is solved by the proposed CP model (in Chapter 5

below) to optimality, and the optimal makespan value is found to be 48.

45

Hence, BH provides the optimal solution for this example problem as seen in

the table.

Table 4.17. Example: Scheduling the stage before the bottleneck stage

Stage 1 PP 1 PP 2

j PP 1 PP 2 Rj Dj pj1 start finish start finish

1 [1] 0 3 3 0 3

2 [4] 0 27 12 8 20

3 [2] 0 11 8 0 8

4 [3] 0 17 12 3 15

Table 4.18. Example: Final schedule with the BH

Completion times

j c 1 2 3

1 3 11 21

3 8 17 30

4 15 27 43

2 20 36 48

PP 2 1 2

In the following chapter, we discuss the solution approaches that we propose in this

study:

o A Constraint Programming (CP) model as an exact method

o A Hybrid Algorithm (HA) as a heuristic method

o A Galactic Swarm Optimization (GSO) as a metaheuristic method

47

CHAPTER 5

5. PROPOSED SOLUTION METHODS

We propose a Constraint Programming (CP) model, a Hybrid Algorithm (HA), and a

Galactic Swarm Optimization (GSO) metaheuristic algorithm in order to provide

stabilized efficiency and especially effectiveness for HFS scheduling problems.

Different from the MILP model in terms of definitions, but the same in terms of the

assumptions, in the CP model, instead of binary and continuous decision variables,

the processing time of a job at a stage is modelled as an interval length decision

variable having the size of the processing time of the job at the stage. Moreover, the

relationships between these operations are modeled with precedence constraints. The

assignments of these operations to parallel identical machines at each stage are

modeled with the cumulative function of the CP model as a resource constraint. This

CP model is inspired by the model based on the study of Laborie et al. (2011).

Furthermore, we propose a Hybrid Algorithm (HA) that consists of three phases. In

the first phase, the HA calculates a Global Lower Bound (GLB) value as in the study

of Santos et al. (1995) in order to measure the quality of the solution. In the second

phase, in order to obtain the random order of the jobs determined initially at the

beginning of the first stage, two dispatching rules, FAM and ECT, particularly

powerful for HFS scheduling are used at the beginning of each stage. The reason why

these dispatching rules FAM as a machine allocation strategy and ECT as a job

sequencing strategy at each stage are chosen is that FAM maximizes machine

utilization and ECT minimizes job idleness simultaneously in order to shorten the

makespan. By this way, the schedule which is generated by the algorithm approaches

to a non-delay schedule for the purpose of obtaining near optimal or optimal makespan

48

value if possible. The makespan value is then compared to the GLB. If the makespan

is observed to be equal to the GLB, then the optimal schedule is obtained. Most of the

time, this case is observed for small to some medium instances within an acceptable

computational time. The larger the problem size, the more difficult the problem

becomes due to the NP-hardness property of the HFS scheduling problem. On the

other hand, if the makespan value is observed to be close to the GLB, then a near-

optimal schedule is obtained with a makespan value within a relatively acceptable gap

from the GLB value. This case is commonly observed for the problems of medium to

large sizes. In medium size instances, the gap from the GLB is relatively smaller than

the gap in large size instances. Therefore, it is obvious that the larger the problem size

is, the bigger the gap is. In the third and last phase of the HA, the sequence of this

generated schedule with the best available makespan value for the test problem is

recorded for comparison purposes.

We propose another solution method for the HFS scheduling problem which is a new

metaheuristic approach inspired by the motion of stars and superclusters inside

galaxies, based on the study of Muthiah-Nakarajan and Noel (2016). This

metaheuristic is called Galactic Swarm Optimization (GSO) which balances

exploration and exploitation phases for a proper global search. In this chapter, GSO is

explained in detail with all of its phases. Similar to HA, GSO also uses FAM and ECT

strategies to form its cost function in order to compute the makespan value for a given

HFS scheduling problem. Similar to the HA, the performance of GSO varies according

to the problem instance size in terms of effectiveness and efficiency.

In the following sections, we elaborate more on these three methods proposed.

5.1. Constraint Programming (CP) Model

The CP model (Laborie et al., 2011) is a new method to find solutions for scheduling

and other combinatorial optimization problems. In order to deal with the complexity

49

of real-world problems for especially large-scale scheduling problems, the CP model

becomes a powerful and invaluable tool. Rather than using an imperative

programming language, the CP model uses a declarative programming language

which simplifies the scheduling of jobs to machines with resource constraints. The

automatic search algorithm of the CP model is complete, and it uses Tree Search

(Depth First) and Constraint Propagation. This automatic search algorithm starts with

first reducing the set of possible values in the domain of decision variables according

to constraint propagations. When any further reduction is not possible in the domain

of decision variables, the CP model backtracks according to depth search and starts

the whole procedure in order to find a feasible or a better solution for the objective

function value.

The following example is used as an illustration for understanding the CP model with

its depth search and constraint propagation strategies based on Google OR-Tools

(2018):

How can 4 queens be placed on a 4x4 chessboard so that no two of them attack each

other? (In chess, a queen can attack horizontally, vertically, and diagonally.)

Placing the first queen in the upper left corner reduces the domain of the objective

functions with the application of constraint propagation. Then, the second queen is

placed and thus the domain of the objective functions is reduced again with constraint

propagation. After placing the third queen, it is seen that this solution is infeasible due

to constraint propagation according to the location of the third queen shown in Table

5.1.

Due to the fact that the solution above is infeasible, the location of the second queen

is changed. Constraint propagation is repeated according to the new location of the

second queen. After placing the third queen, it is seen that this solution is infeasible

50

due to constraint propagation according to the new location of the third queen shown

in Table 5.2.

Table 5.1. Example: 1st iteration of CP

Q X X X Q X X X Q X X X

X X X X Q X X X Q X

X X X X X X X X X X

X X X X X X Q X X

Table 5.2. Example: 2nd iteration of CP

Q X X X Q X X X Q X X X

X X X X X Q X X X Q

X X X X X X Q X X

X X X X X X X X X

Since an infeasible solution is encountered again, the location of the second queen is

changed once more. Constraint propagation is applied again according to the new

location of the second queen. After placing the third queen, it is seen that this solution

is infeasible due to constraint propagation according to the new location of the third

queen shown in Table 5.3.

Table 5.3. Example: 3rd iteration of CP

Q X X X Q X X X Q X X X

X X X X X X X X Q

X X X Q X X X Q X X

X X X X X X X X X X

Because the third iteration of the CP approach yields an infeasible solution, in the

fourth, fifth and sixth iterations, the second queen is placed at new available locations.

51

However, a feasible solution is not reached in any of the iterations. By this iterative

manner, depth search is completed for the first location of the first queen as shown in

Table 5.4.

Table 5.4. Example: 4th, 5th and 6th iterations of CP

4th

Q X X X Q X X X Q X X X

X X X X X X X X X X

X X X X X Q X X X Q

X X X X X X Q X X

5th

Q X X X Q X X X Q X X X

X X X X X X X Q X

X X X X X X X X X

X X X Q X X X Q X X

6th

Q X X X Q X X X Q X X X

X X X X X X X X Q

X X X X X X X X X X

X X X X Q X X X Q X

In the seventh iteration, the first queen is placed to the intersection of the first row and

the second column as its new location. According to this new location of the first

queen, the second queen is placed at the first available location. By placing each queen

at the available location, constraint propagation is applied according to these

placements. Then, the third queen is placed at the available location. After the last

constraint propagation is completed according to the location of the third queen, the

fourth queen is placed at the final position as shown in Table 5.5.

By synchronously using depth search and constraint propagation, the CP approach

drastically decreases the memory usage and the solution time. Therefore, the CP

approach seems to be promising, when MILP model is inefficient to optimally solve

especially real-life size instances.

52

Table 5.5. Example: 7th iteration of CP

X Q X X X Q X X X Q X X X Q X X

X X X X X X Q X X X Q X X X Q

 X X X X X Q X X X Q X X X

 X X X X X X X X Q X

For our HFS scheduling problem, following expressions are used in the CP model to

represent the corresponding expressions described in the MILP model:

The CP model

Sets

J: number of jobs: j={1, …, n}

K: number of stages: k={1, …, c}

L: number of parallel identical machines at each stage: l={1, …, mk}

Parameters

pjk: processing time of job j at stage k

Decision Variables

opjk: the interval length of job j’s operation time at stage k

Objective Function

minimize max
j∈J

(endOf(opjk)) (5.1)

53

Constraints

subject to

endBeforeStart(opj,k−1, opjk) ∀j∈J, ∀k∈K: k>1 (5.2)

∑ pulse(op
jk

,1)≤mk

n

j=1

 ∀k∈K (5.3)

In this CP model, decision variable is described as an interval. The functions endOf

and endBeforeStart, represent the precedence relationships of the interval length

decision variables. Finally, pulse is the critical function representing the number of

parallel identical machines as a resource constraint which is a cumulative function of

the CP model. If this problem were a traditional flow shop scheduling problem, instead

of constraint (5.3) of the CP model, constraint (5.4) would be used in the CP model.

noOverlap(opjk) ∀j∈J, ∀k∈K (5.4)

In the CP model, the difference between the constraint (5.3) model and the constraint

(5.4) is illustrated in Figure 5.1.

pulse

noOverlap

Figure 5.1. pulse vs. noOverlap in the CP model

Pulse makes operations of the jobs overlap at a given stage on the parallel identical

machines. On the other hand, the function noOverlap sequences the operations of jobs

for a given stage without overlapping. If the problem were a traditional flow shop,

noOverlap does exactly what is expected from it. However, our problem is an HFS

Stage 1

Stage 1

54

scheduling problem and thus we actually want the operations of jobs to overlap at a

given stage until the parallel identical machines at this stage are filled up with these

operations. Figure 5.2 shows that how exactly pulse works for the HFS scheduling

problem with two jobs (j=1, 2) at stage 1 having two parallel identical machines (PP

1 and PP 2).

Figure 5.2. The role of pulse cumulative function in the CP model for the HFS

scheduling problem

Due to the fact that opjk is the interval length decision variable, it takes only positive

integer values which cover (4.4), (4.10), and (4.11) domain constraints in the MILP

model. Moreover, in order to describe this interval length decision variable, the

processing times of the jobs whose units of measure are hours are converted to

minutes. Since the allocations of jobs to machines are performed with a depth search

and constraint propagation in the CP model, (4.8) and (4.9) sign constraints in the

MILP model are satisfied after the optimal solution of the CP model is obtained.

Objective function (5.1) in the CP model corresponds to objective function (4.1) in

the MILP model, covers the constraint (4.7) and tries to minimize the makespan.

Constraint (5.2) in the CP model is similar to constraint (4.3) in MILP model and

covers it. Constraint (5.3) in the CP model covers constraints (4.2), (4.5), and (4.6) in

the MILP model. Constraint (5.3) allows the jobs to be scheduled one by one up to the

number of parallel identical machines at a given stage. Therefore, the number of jobs

processed in parallel at a given stage never exceeds the number of parallel identical

machines at that stage.

In order to understand the CP model, the example HFS scheduling problem in the

study of Santos et al. (1995) is optimally solved with this CP model. The example

PP 1

PP 2
Stage 1

55

problem is represented in Table 5.6 and a Gantt Chart generated by the CP Optimizer

of IBM ILOG CPLEX 12.6 is shown in Figure 5.3.

Table 5.6. The example problem (HF3, P2||Cmax)

j c 1 2 3

1 3 5 9

2 7 1 4

3 2 7 4

4 8 2 2

5 6 3 7

PP 2 2 2

Figure 5.3. Gantt Chart of the example problem solution generated by CP Optimizer

At the first stage, jobs 1 and 2 are scheduled to the two parallel identical machines,

concurrently. Interval [1][1] (op11) is represented with [stage][job] structure to obtain

stage-based Gantt Chart from the CP Optimizer of IBM ILOG CPLEX 12.6. After job

1 is completed on the first machine of the first stage, on this machine, job 5 is

scheduled. Job 3 and 4 are scheduled consecutively, after job 2 is completed on the

56

second machine of the first stage. At the second stage, jobs 1 and 2 are scheduled to

parallel identical machines. After job 1 is completed on the first machine and job 2 is

completed on the second machine at the second stage, jobs 3 and 5 are scheduled to

these machines, concurrently. After the completion of job 4 at the first stage, it can be

scheduled to either one of the machines at the second stage, however, according to

FAM strategy, it is scheduled on the second machine at the second stage. At the last

stage, again, jobs 1 and 2 are scheduled to the parallel identical machines,

concurrently. After job 1 is completed on the first machine at the last stage, job 3 is

scheduled. Jobs 5 and then 4 are scheduled to the second machine at the last stage,

after job 2 is completed. By this way, the schedule having the shortest length (21 units)

is obtained for this example problem, which is (HF3, P2||Cmax) of Santos et al. (1995).

5.2. Hybrid Algorithm (HA)

We propose an HA inspired by the GLB of Santos et al. (1995). With the inclusion of

the GLB, the solution quality of HA heuristic is always under control, even though the

job sequence is randomly generated. In the following sections, we explain the concept

of the HA in detail.

5.2.1. Global Lower Bound (GLB)

The development of the GLB value is executed by a stage-based approach. For each

stage, the lower bound value is denoted by LB(k), k=1, …, c. Moreover, there is also

a job-based lower bound which is denoted by LB(0). Then the GLB value is equal to

the maximum value of a set consisting of LB(0) and LB(k) values for all k=1, …, c.

LB(0) and LB(k) are explained in Equations (5.5) and (5.6).

LB(0)= max
j∈J

(∑ p
jk

c

k=1

) (5.5)

57

LB(k)=
1

mk

×(∑LSAjk

mk

j=1

+∑ p
jk

n

j=1

+∑RSAjk

mk

j=1

) ∀k∈K (5.6)

LSA is the left-hand side total processing times for jobs from stage 1 to k−1 sequenced

in non-decreasing order represented by Equation (5.6.1). Moreover, RSA is the right-

hand side total processing times for jobs from stage k+1 to c sequenced in non-

decreasing order represented by Equation (5.6.2).

LSAjk=∑ p
jk'

k-1

k
'
=1

 else 0 if k=1 ∀j∈J, ∀k∈K: 1<k≤c (5.6.1)

RSAjk= ∑ p
jk'

 else 0 if k=c

c

k
'
=k+1

 ∀j∈J, ∀k∈K: 1≤k<c (5.6.2)

Equation (5.5) represents the calculation of the job-based lower bound value which is

equal to the maximum of all job-based lower bound values. Equation (5.6) shows all

of the stage-based lower bound values’ calculations. If the processing times of the jobs

are integer, then LB(𝑘) value is simply rounded up. Finally, the GLB is the maximum

value of a set consisting of LB(0) and LB(𝑘) values as in Equation (5.7).

GLB=max [LB(0), max
k∈K

(LB(k))] (5.7)

For better comprehension, the following example (Table 5.7) is used to illustrate the

computation of the GLB:

• Step 1: LB(0) computation (Table 5.8).

• Step 2: Sum of the processing times of the jobs for each stage (Table 5.9).

58

Table 5.7. Example: (HF3, P2||Cmax) problem for GLB computation

j c 1 2 3

1 3 8 10

2 12 9 12

3 8 6 13

4 12 10 16

PP 2 2 2

Table 5.8. Example: (HF3, P2||Cmax) problem job-based lower bound computation

j c 1 2 3 𝐋𝐁(𝟎)

1 3 8 10 21

2 12 9 12 33

3 8 6 13 27

4 12 10 16 38

PP 2 2 2

Table 5.9. Example: (HF3, P2||Cmax) problem sum of the processing times of the

jobs

j c 1 2 3

1 3 8 10

2 12 9 12

3 8 6 13

4 12 10 16

Total 35 33 51

PP 2 2 2

• Step 3: Lower bound calculations for each stage (Tables 5.10, 5.11, and 5.12).

59

LB(1)=(1/2)×[0+35+(18+19)]=36

Table 5.10. Example: (HF3, P2||Cmax) problem calculation of LB(1)

j c 1 2+3 j c 1 2+3

1 3 18 1 3 18

2 12 21 3 8 19

3 8 19 2 12 21

4 12 26 4 12 26

Total 35 Total 35

PP 2 PP 2

LB(2)=(1/2)×[(3+8)+33+(10+12)]=33

Table 5.11. Example: (HF3, P2||Cmax) problem calculation of LB(2)

j c 1 2 3 j c 1 2 3 j c 1 2 3

1 3 8 10 1 3 8 10 1 3 8 10

2 12 9 12 3 8 6 13 2 12 9 12

3 8 6 13 2 12 9 12 3 8 6 13

4 12 10 16 4 12 10 16 4 12 10 16

Total 33 Total 33 Total 33

PP 2 PP 2 PP 2

LB(3)=(1/2)×[(11+14)+51+0]=38

• Step 4: Global lower bound calculation.

GLB=max(38, max(36, 33, 38))=38

The schedules in Figures 5.4 and 5.5 are generated by the proposed HA in order to

show the lowest gap value possible.

60

These schedules makespan values’ gap away from the GLB is calculated as in

Equation (5.8).

Table 5.12. Example: (HF3, P2||Cmax) problem calculation of LB(3)

j c 1+2 3 j c 1+2 3

1 11 10 1 11 10

2 21 12 3 14 13

3 14 13 2 21 12

4 22 16 4 22 16

Total 51 Total 51

PP 2 PP 2

Figure 5.4. Gannt chart of sequence J1-J3-J4-J2

Figure 5.5. Gannt chart of sequence J3-J1-J4-J2

Gap=
Cmax-GLB

GLB
 (5.8)

For these schedules, gap value is equal to 7.89 %. Since the optimal makespan value

is greater than or equal to the GLB value, there is a probability that this gap is zero.

k PP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

1

2

1

2

1

2

2

1

3

4

2

1

2

3

1

3

4

2

1

3

4

k PP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

1

2

1

2

1

2

2
1 4

3 2

3
1 4

3 2

1
1 4

3 2

61

Therefore, this problem is also solved with the CP model, and the makespan value is

found that it is equal to 41 which is thr optimal solution for this problem.

5.2.2. First Available Machine (FAM) and Earliest Completion Time (ECT)

Strategies

FAM is a dynamic strategy that is always chasing the machines at a stage to see the

machine with the earliest finish time among the parallel identical machines for a given

stage. Therefore, FAM simply outperforms other methods for machine allocation to

jobs, since FAM is a dynamic strategy depends on the time. By means of FAM

strategy, machine utilization increases. Table 5.13 is used to illustrate the FAM

dispatching rule.

Table 5.13. Example: The application of FAM strategy for the first stage

Stage 1 J3-J1-J4-J2

PP FT

1 → J3 8

2 → J1 3

2 → J4 15

1 → J3 8

1 → J2 20

2 → J4 15

For job sequence J3-J1-J4-J2, finish times at machine 1 and 2 are respectively equal

to p31=8 and p11=3 for the first stage. In order to process job 4 at stage 1, the machine

with minimum finish time is selected. Therefore, job 4 is loaded to machine 2 after it

completes the processing of J1. New finish time for machine 2 is equal to 3+p41=15.

According to the sequence, job 2 is the last job to be processed at stage 1. For this

purpose, job 2 is loaded to machine 1 after it completes the processing of job 3, since

62

machine 1 has the minimum finish time (8≤15) compared to machine 2’s finish time

which is now equal to 15. At the end, machine 1’s finish time is updated. The finish

time of machine 1 is now equal 8+p21=20.

ECT is the job sequencing strategy at the beginning of each stage after FAM

dispatching rule is applied at the previous stage. The aim of ECT job sequencing rule

is to minimize job waiting time. In this way, with FAM and ECT rules applied together

to an HFS problem, the makespan value is tried to be decreased as much as possible.

Based on the definition of a non-delay schedule, with this proposed Hybrid Algorithm

(HA), the makespan value of any HFS problem approaches to the optimal solution as

much as possible. ECT job sequencing rule is illustrated through an example in Table

5.14.

Table 5.14. Example: The application of ECT job sequencing rule at stage 2

FAM FAM

Stage 1 Completion times Stage 2 Completion times

3 8 ECT 1 11

1 3 → 3 14

4 15 4 25

2 20 2 29

PP 2 PP 2

For job sequence J3-J1-J4-J2, the completion times of the jobs at the end of the first

stage are calculated according to FAM dispatching rule. As a result, job 1 has the

shortest completion time at the end of the first stage, despite the fact that it is scheduled

to the first stage at the 2nd order of the sequence. Using the ECT job sequencing rule,

the order of jobs changes and thus updates as J1-J3-J4-J2 at the beginning of the

second stage. Since, coincidentally, the completion times of the jobs result in a non-

decreasing order at the end of the second stage, ECT keeps this same sequence at the

63

beginning of the third stage. Ties are broken with the machine having the lowest index

for FAM dispatching rule and with the job having the lowest index for ECT rule.

The gap value determines how good the generated schedule’s makespan value is. The

sequence of the jobs at the beginning of the first stage is selected randomly, the fitness

of which depends on how far the makespan value is from the GLB. Therefore, in order

to ensure that the proposed algorithm is not stuck in the local optima, the job sequence

at the first stage is randomly generated for each iteration as a random search method.

In the first iteration, for a given HFS problem, the GLB value is calculated. Then, by

using randomly generated sequence at the first stage, makespan value is calculated

with FAM and ECT strategies for this problem. After that, calculated makespan value

is checked whether it is equal to the GLB value or not. If it is equal to the GLB value,

then the solution reached is certainly optimal. Otherwise, the gap value is calculated,

and the next iteration is initiated. In the next iteration, for a new randomly generated

sequence at the first stage, new makespan value is calculated. If this new makespan

value is smaller than GLB(1+Gap) value, this new sequence is accepted as a better

solution, thus, gap value is updated for the next iteration according to this new

makespan value. This loop continues until the stopping criterion is reached. In the HA,

the stopping criterion is the number of iterations. This gap strategy is the reason why

this proposed HA is powerful and easy to implement for any variant of HFS

scheduling problems.

5.2.3. Pseudo Code and Flowchart of the Hybrid Algorithm (HA)

The proposed HA for (HFc, Pm||Cmax) problems is presented in the following pseudo

code where π represents the sequence of the jobs.

Hybrid Algorithm (HA)

1: Load HFS problem data

2: Calculate LB(0) job-based LB

3: Calculate LSA

64

Hybrid Algorithm (HA) (cont’d)

4: Calculate RSA
5: Calculate LB(k) stage-based LB

6: GLB=max(LB(0), LB(k))

7: Initialization: generate π randomly

8: Scheduling the first stage:

9: For j=1:m1

10: Allocate the empty machines for the jobs up to m1

11: Find the completion times of jobs up to m1

12: Find the FTs of machines

13: EndFor

14: For j=m1+1:n

15: Find the machine with the minimum FT
16: Allocate the FAM for the remaining jobs

17: Find the completion times of remaining jobs

18: Update the FTs of machines

19: EndFor

20: Scheduling the other stages:

21: For k=2:c

22: Apply the ECT based on the completion times of jobs at the previous stage

23: Based on the ECT, reorder the jobs which is a new sequence at the current stage

24: For j=1:mk

25: Allocate the empty machines for the jobs up to mk

26: Find the completion times of jobs up to mk
27: Find the FTs of machines

28: EndFor

29: For j=mk+1:n

30: Find the machine with the minimum FT

31: Allocate the FAM for the remaining jobs

32: Find the completion times of remaining jobs

33: Update the FTs of machines

34: EndFor

35: EndFor

36: Calculate 𝐶𝑚𝑎𝑥

37: If Cmax=GLB then Cmax is optimal and STOP
38: Else Gap=(Cmax−GLB)/GLB

39: Set the counter and the number of iterations

40: do

41: Initialization: generate π’ randomly

42: Scheduling the first stage:

43: For j=1:m1

44: Allocate the empty machines for the jobs up to m1

45: Find the completion times of jobs up to m1

46: Find the FTs of machines

47: EndFor

48: For j=m1+1:n
49: Find the machine with the minimum FT

50: Allocate the FAM for the remaining jobs

51: Find the completion times of remaining jobs

52: Update the FTs of machines

53: EndFor

54: Scheduling the other stages:

55: For k=2:c

65

Hybrid Algorithm (HA) (cont’d)

56: Apply the ECT based on the completion times of jobs at the previous stage
57: Based on the ECT, reorder the jobs which is a new sequence at the current stage

58: For j=1:mk

59: Allocate the empty machines for the jobs up to mk

60: Find the completion times of jobs up to mk

61: Find the FTs of machines

62: EndFor

63: For j=mk+1:n

64: Find the machine with the minimum FT

65: Allocate the FAM for the remaining jobs

66: Find the completion times of remaining jobs

67: Update the FTs of machines
68: EndFor

69: EndFor

70: Calculate Cmax’

71: If Cmax’<GLB(1+Gap)

72: Cmax= Cmax’

73: Gap=(Cmax−GLB)/GLB

74: EndIf

75: While counter<iteration

76: EndIf

77: Return Cmax

78: STOP

The flowchart of the proposed HA heuristic is as well presented in Figure 5.6.

66

Figure 5.6. The flowchart of the HA

67

5.3. Galactic Swarm Optimization (GSO)

GSO is a new evolutionary based metaheuristic algorithm inspired by the motion of

stars and super-clusters inside galaxies in order to find the global optima of a given

optimization problem based on the study by Muthiah-Nakarajan and Noel (2016). This

metaheuristic consists of two levels, adjusting the balance between exploration

(diversification) and exploitation (intensification) phases for a given optimization

problem. In many metaheuristic algorithms, in order to explore better solutions or in

other words not to be stuck in local optima while exploiting, a lot of parameter

optimization processes are required. For instance, in GA, the number of iterations,

population size, crossover and mutation rates, and the selection strategy should be

considered carefully. On the other hand, the structure of GSO has already been

designed to manage the trade-off between diversification and intensification.

Moreover, GSO is such a flexible metaheuristic that, in its two phases, different types

of metaheuristic algorithms can be used such as GA, TS, ACO and SA.

5.3.1. GSO in HFS Scheduling

In this study, in the levels of GSO metaheuristic, PSO method by Eberhart and

Kennedy (1995) is used in order to let the stars and the super-clusters in the galaxy

find better solutions. Like particles in PSO, in GSO, each star and super-cluster has its

own position and velocity values. In the first level of GSO, in order to update the

velocity of a star s at time t+1 Equation (5.9) is used.

vxs
t+1=w1vxs

t +c1r1(pxs
t -xs

t)+c2r2(g
xs
t -xs

t) (5.9)

In Equation (5.10), 𝐿 represents the number of iterations in the first level of GSO and

k represents the current iteration value. In Equation (5.9), c1 is the cognitive

acceleration coefficient which makes star s to learn from its best personal position

where p
xs
t is equal to the best personal position of star s at time t and xs

t is equal to the

68

position of star s at time t. Similarly, c2 is the social acceleration coefficient which

makes stars s learn from the global best position where g
xs
t is equal to the global best

position at time t. In Equation (5.9), r1 and r2 are uniformly distributed random

numbers between 0 and 1. In Equation (5.9), w1 is the inertia weight determining the

balance between local and global searches. In the first level of GSO, 𝑤 is linearly

decreasing according to the Equation (5.10). After calculating vxs
t+1, the position of star

s at time t+1 is computed via Equation (5.11).

w1=1-k/(L1+1) (5.10)

xs
t+1=xs

t +vxs
t+1 (5.11)

After completing the first level, or in other words, the exploration phase, the second

level of GSO is initiated. Global best positions from the first level are passed to the

second level of GSO in order to form a super-cluster. Now, the exploitation phase is

starting with the application of PSO once again to the stars in this super-cluster. From

now on, the position of star s in super-cluster at time t is represented by y
s
t . Similarly,

the velocity of star s in super-cluster at time t is represented by vys
t . Therefore, Equation

(5.12) is the new velocity update equation.

vys
t+1=w2vys

t +c3r3 (p
ys
t -y

s
t)+c4r4(g

ys
t -y

s
t) (5.12)

In Equation (5.13), k is the current iteration value whereas L2 is the number of

iterations in the second level of GSO. Similar to c1 and c2 in the first level, c3 and c4

are cognitive and social acceleration coefficients in the second level of GSO,

respectively. r3 and r4 are random numbers between 0 and 1. Like w1 in the first level,

w2 is the inertia weight in the second level of GSO. It also decreases linearly according

to the Equation (5.13). After calculatingvys
t+1, in order to compute the position of star s

in super-cluster, Equation (5.14) is used.

69

w2=1-k/(L2+1) (5.13)

y
s
t+1=y

s
t +vys

t+1 (5.14)

In this study, initial position and velocity values are generated randomly according to

the Equations (5.15) and (5.16) based on the study of Taşgetiren et al. (2007).

xs
0=xmin+(xmax-xmin)rand() (5.15)

vxs
0 =vmin+(vmax-vmin)rand() (5.16)

In Equation (5.15), xmin=0, xmax=4and in Equation (5.16), vmin=−4, vmax=4. On the other

hand, continuous velocity values are restricted in the range [−4, 4]. vys
0 is also restricted

in the same range. Moreover, and again based on the study of Taşgetiren et al. (2007),

c1, c2, c3, and c4 are equal to 2. Furthermore, w1 and w2 values start from “1” and they

decrease linearly according to the number of iterations in the first and the second levels

of the GSO based on the Equations (5.10) and (5.13), respectively. However, they are

never to be decreased below 0.4. The number of iterations in the first level of the GSO,

L1 is equal to the number of jobs n. Similarly, the number of stars in each cluster inside

the galaxy is also equal to the number of jobs n. However, in order to increase

diversification, the number of clusters in the galaxy is set to n+5. Similarly, the number

of iterations in the second level of the GSO, L2 is also set to n+5.

Since the position values of stars are continuous but not discrete, they turn out to be

insufficient to represent the decision variables for a combinatorial optimization

problem. Due to the fact that HFS scheduling problem is a combinatorial optimization

problem with the positions of the jobs as its decision variables, Smallest Position

Value (SPV) rule based on the study of Taşgetiren et al. (2007) is applied to the

position values of stars. In order to comprehend how SPV works, Table 5.15 is used

for an illustrative example:

70

Table 5.15. Example: The application of SPV rule

Job 1 2 3 4 5

Position values 2.922 −2.574 −1.426 1.251 2.402

Job Position 5 1 2 3 4

Job Sequence (𝝅) 2 3 4 5 1

According to the updated position values in Table 5.15, job 2 has the smallest position

value. Therefore, its job position is equal to 1. Job 2 is followed by job 3 having the

second smallest position value. Hence, it takes the job position 2. The third smallest

position value belongs to job 4. Thus, job position 3 belongs to it. Job 5 has the fourth

smallest position value and, so, it takes the job position 4. Finally, job 1 has the largest

position value among all. Therefore, it takes the last job position. By this way, we have

a candidate job sequence for stage 1 to be evaluated.

Similar to the HA, the GSO uses FAM and ECT in order to form its cost function.

Therefore, the makespan value of each job permutation 𝜋 alternative is calculated in

the same way.

At the end of the second iteration in the GSO, in order to improve the solution quality

without hindering the solution time, Insertion Heuristic (IH) and Local Search (LS)

methods are applied to the global solution obtained. By this way, it is thought that if

there is a chance for improvement, then global solution can be improved. In the IH, a

job is inserted to different job positions one by one by swapping the job in that

position. If the new job permutation is better than the previous one in terms of

makespan value, global job permutation is updated, thus, new job permutation is made

to be equal to it. This process continues until each job is inserted to each job position

except inserted job’s current job position. Therefore, the number of iterations for the

IH is determined by the number of jobs n. When a better job permutation is obtained,

the procedure goes on by trying the next job instead of restarting. Otherwise, solution

time is extended, if the procedure is restarted when encountered with a better

71

permutation. The IH builds up its search method based on providing a better

permutation. Otherwise, it keeps the previous permutation as the global solution and,

naturally, it tries to improve this solution. After the IH is completed, swap mutation

which is randomly changing two jobs’ positions at a time, is applied to the latest global

solution as an LS method. The number of iterations in the LS is equal to 𝐿 which is

thought to be sufficient to obtain a better permutation, if possible, without hindering

the solution time. The GSO is a powerful metaheuristic providing a good global

solution. Therefore, the IH and LS methods have a slight effect on that solution.

However, solution time is not drastically hindered by these methods, hence, they are

still applied to that solution in order to find hopefully a better one.

In the next section of the proposed GSO metaheuristic, pseudo code of the approach

is presented in order to clarify the mechanism of this method.

5.3.2. Pseudo Code of the GSO Metaheuristic

In order to clarify the proposed GSO for (HFc, Pm||Cmax) problem, the following

pseudo code is designed.

Galactic Swarm Optimization (GSO)

1: Initialization: xmin=0, xmax=4, vmin=-4, vmax=4, c1=c2=c3=c4=2

2: For 1:n+5

3: For 1:𝑛

4: Randomly generate xs
0 & p

xs
0 ~rand(xmin, xmax) and vxs

0 ~rand(vmin, vmax)

5: Apply SPV to xs
0 and p

xs
0

6: If Cmax(xs
0)<Cmax(p

xs
0)

7: p
xs
0 =xs

0

8: EndIf

9: EndFor

10: g
xs
0 =p

xs
0 (1)

11: For 2:n

12: If Cmax(p
xs
0)<Cmax(g

xs
0)

13: g
xs
0 =p

xs
0

14: EndIf

15: EndFor

16: EndFor

72

Galactic Swarm Optimizaton (GSO) (cont’d)

17: galaxy=g
xs
0 (1)

18: For 2:n+5

19: If Cmax(g
xs
0)<Cmax(galaxy)

20: galaxy=g
xs
0

21: EndIf

22: EndFor

23: Level 1 (Exploration):

24: For 1:n+5

25: For 0:L1-1
26: Equation (5.10) and check w1<0.4 condition

27: For 1:n

28: r1 & r2~rand()

29: Equation (5.9) and restrict vxs
t+1~[-4, 4]

30: Equation (5.11) and apply SPV xs
t+1

31: If Cmax(xs
t+1)<Cmax(p

xs
t+1)

32: p
xs
t+1=xs

t+1

33: If Cmax(p
xs
t+1)<Cmax(gxs

t+1)

34: g
xs
t+1=p

xs
t+1

35: If Cmax(g
xs
t+1)<Cmax(galaxy)

36: galaxy=g
xs
t+1

37: EndIf

38: EndIf

39: EndIf

40: EndFor

41: EndFor

42: EndFor

43: Forming the super-cluster and initialization: vmin=-4, vmax=4

44: For 1:n+5

45: y
s
0=g

xs
t+1

46: vys
0 ~rand(vmin, vmax)

47: p
ys
0 =y

s
0

48: EndFor

49: Level 2 (Exploitation):

50: For 0:L2-1

51: Equation (5.13) and check w2<0.4 condition

52: For 1:n+5

53: r3 & r4~rand()

54: Equation (5.12) and restrict vys
t+1~[-4, 4]

55: Equation (5.14) where galaxy=g
ys
t+1 and apply SPV y

s
t+1

56: If Cmax(y
s
t+1)<Cmax(p

ys
t+1)

57: p
ys
t+1=y

s
t+1

58: If Cmax(p
ys
t+1)<Cmax(galaxy)

59: galaxy=p
ys
t+1

60: EndIf

61: EndIf

62: EndFor

63: EndFor

64: Return galaxy

73

Galactic Swarm Optimization (GSO) (cont’d)

65: Initialization of the Insertin Heuristic (IH):

66: galaxy_copy=galaxy

67: For i=1:n

68: For j=1:n

69: If i≠j

70: galaxy(j)=galaxy_copy(i)

71: galaxy(i)=galaxy_copy(j)

72: If Cmax(galaxy)<Cmax(galaxy_copy)

73: galaxy_copy=galaxy (update)

74: Else galaxy=galaxy_copy (reset)

75: EndIf

76: EndIf

77: EndFor

78: EndFor

79: Initialization of the Local Search (LS) (Swap mutation):

80: For 1:L2

81: r=randperm(length(galaxy_copy)) (random permutation of jobs’ indices)

82: g=galaxy_copy (copy galaxy_copy)

83: g([r(1) r(2)])=galaxy_copy([r(2) r(1)]) (randomly select two indices to swap jobs on them)

84: If Cmax(g)<Cmax(galaxy_copy)

85: galaxy_copy=g
86: EndIf

87: EndFor

88: Return galaxy_copy

89: STOP

75

CHAPTER 6

6. CASE STUDY IN THE AEROSPACE COMPANY

In this chapter, we attempt to propose a Hybrid Flow Shop (HFS) configuration to the

company which is currently operating as a Hybrid Job Shop (HJS). Furthermore, we

present alternative methods to schedule the designed HFS so as to meet the demand

for the required panels of the A320 fuselage.

For the case study, first of all, an HFS configuration is required to be designed. Since

the current manufacturing environment is an HJS with longer lead times and complex

material handling systems, an HFS configuration turns out to be necessary for shorter

lead times and less complex material handling systems than the previous one. In this

chapter, for better comprehension of these problems in the case study, the current

manufacturing system operating as an HJS is explained in detail.

In order to convert the current HJS manufacturing environment to an HFS

configuration, firstly, all required data such as demand, capacity, production and

machine availability information are collected.

Secondly, after data collection is completed, in the data analysis and interpretation,

due to the fact that processing times and machine availability data are stochastic, we

fit each of them to the distribution with the best goodness value. Before fitting machine

availability data to the best distribution, we cleanse them from the outliers falling far

away from the conglomerated values according to their plots. Since processing times

data are less polluted with the outliers considered as negligible according to their plots,

we directly fit each of processing times data to the best available distribution by

skipping the data cleansing process.

76

Thirdly, after data analysis and interpretation are completed, Cycle Time (CT) is

calculated according to demand and capacity data. The source module of Discrete-

Event Simulation (DES) model creates each type of panel according to this cycle time.

From production data, routes of the parts are obtained to be realized in DES model as

an HFS configuration. The processing times of the jobs and the breakdowns of the

machines are defined in DES model according to the outputs of data analysis and

interpretation.

Then, with Minimum number of Machines (MoM) calculation for each stage, the

number of parallel identical machines is determined for each stage according to the

results from the DES model. By this way, HJS environment is converted to an HFS

configuration. In MoM calculations, if demand per year is satisfied for each type of

panel, then there is no need for an additional machine for any stage. However, if there

is a bottleneck stage and/or demand is not satisfied then, the number of parallel

identical machines is increased by one unit for this stage according to the results of

DES model runs.

After the conversion of HJS to an HFS configuration by means of the DES model, the

job sequences obtained by the solution methods are inserted to the source module.

Then DES model is run for a single production of each panel (job) in order to obtain

the makespan value of each job sequence inserted to the source module. The solution

method for HFS scheduling problem that gives the best makespan value identifies the

best solution method for the case study.

In order to understand how an HFS configuration is converted from HJS environment

by means of the DES model, the phases of this process are explained explicitly in the

following sections.

77

6.1. Products: Panels of Fuselage

The company is Turkey’s technology leader in design, development, modernization,

manufacturing, integration, and life cycle support of integrated aerospace systems

with a remarkable number of products from fixed and rotary wing air platforms to

Unmanned Air Vehicles (UAV)s and satellites.

The company, ranking among the top hundred global companies in aerospace and

defense industry, based its business on six strategic areas which are Aerostructure,

Aircraft, Helicopter, UAV Systems, Space Systems, and National Combat Aircraft

groups with the provision of related integrated logistics support.

Today, the company is conducting A320 Section-18 Panels (ABS) of Fuselage and

AIRBUS-PAG SA Section-19 Shells & Barrel (S19) Programs which are two of the

projects under the Aerostructure Group.

The main and strategic assembly parts (load items) of these two programs are the

panels. Before completion of the assembly process, the panels are called “skins”

(detail parts) in the manufacturing area. In ABS project, there are seven types of panels

which are upper, lower 1, lower 2, left forward side, right forward side, left rear side,

and right rear side skins. On the other hand, in S19 project, there are six types of panels

which are upper middle, upper left, upper right, lower left, lower right and lower

middle skins. In skin manufacturing, the batch size of each panel is equal to one, due

to the difficulties of materials handling in Hybrid Job Shop (HJS) configuration, the

size of panels being too big to be maneuvered in an HJS configuration, and in the

assembly of the fuselage, the usage of each panel is only one unit. Table 6.1 lists the

panels making up the center fuselage of Airbus A320 with the potential annual demand

values.

78

Table 6.1. Panels of the center fuselage of Airbus A320

 Panels of

Sections

Project

ABS
Description

Annual

Demand

F
in

a
l

P
ro

d
u

ct
:

A
ir

b
u

s
A

3
2
0

S
u

b
-a

se
em

b
ly

 P
a
rt

:
C

en
te

r
F

u
se

la
g
e

S
ec

ti
o
n

-1
8

1

S18

UPPER SKIN

960

2 LOWER SKIN 1

3 LOWER SKIN 2

4 LEFT FORWARD SIDE SKIN

5 RIGHT FORWARD SIDE SKIN

6 LEFT REAR SIDE SKIN

7 RIGHT REAR SIDE SKIN

S
ec

ti
o
n

-1
9

8

S19

UPPER MIDDLE SKIN

720

9 UPPER LEFT SKIN

10 UPPER RIGHT SKIN

11 LOWER LEFT SKIN

12 LOWER RIGHT SKIN

13 LOWER MIDDLE SKIN

In order to manufacture the panels, several operations (each corresponding to a

separate stage of manufacturing) must be performed on the panels taking into account

the precedence relationships among these operations. Except the raw material issue,

in order to manufacture a single panel, 19 sequential operations shown on Table 6.2

are performed.

Table 6.2. Operations routing for any panel manufacturing

Stage No Stage Name

0 Raw Material Issue (Cycle Time)

1 First Cut

2 Roll

3 Clean Ops1 (Alkali Clean1 & Vapor Degrease1)

4 Heat Treatment

5 Refrigerator

6 Stretch Press

Continued on next page

79

Table 6.2. – Continued from previous page

Stage No Stage Name

7 Clean Ops2 (Alkali Clean2 & Vapor Degrease2)

8 Deburr1, Drill Hole & Remove Tab

9 Mechanic Mill

10 Vapor Degrease3

11 Hand Form

12 Deburr2 & Hand Finish

13 Conductivity, Dimensional & Hardness Inspection

14 Pre-Penetrant Etch Ops

15 Non-Destructive Penetrant Inspection

16 Mask & Wet Blast & Surface Inspection Ops

17 Tartaric Sulfuric Acid Anodize Ops

18 Paint Ops

19 Paint Inspection

One of the major problems is that the panels are carried out and in five different

buildings in order to manufacture them. If the revisit is counted as well, total number

of buildings that panels visit is six. Moreover, complex materials handling is used both

during operations and transportation among buildings. Due to the fact that the physical

manufacturing area is too large to control, there are lots of quality and coordination

problems that cause assembly line to stop occasionally.

Furthermore, due to the lack of quality, some of the operations, especially manual

finish tasks require more time than their standard processing times. Therefore, any

excessive work on the panels extends the manufacturing lead time which causes

unplanned stoppages and bottlenecks not only in the assembly line, but also in the

manufacturing process itself. Because the panels are manufactured in an HJS

environment, there is always accumulating WIP in front of the machines. These WIP

accumulations make a stack of parts where they scrap each other by scratching. Since

the panels have bigger sizes, unbalanced WIP accumulations in both manufacturing

and assembly areas hinder the movement of the other parts. Also, they affect the

quality of other parts, negatively, because of the frictions.

80

Another disadvantage of the existing HJS configuration in panel manufacturing is that

it is almost impossible to purchase and locate new machines in parallel to the existing

ones without altering the layout. The HJS configuration currently has almost no free

space to make small adjustments such as paralleling the bottleneck machines and

installing smart materials handling methods including conveyor belts, Automated

Guided Vehicles (AGV) or Automated Storage-Retrieval Systems (AS-RS) rather

than local cranes, carts, trolleys and dollies. Paralleling machines is useful for not only

handling bottleneck operations, but also offering volume flexibility and streamlining

the operations in the form of a flow line in case of increasing demand and product

variety.

In this case study, we first address the conversion of the current HJS environment as

an HFS configuration and then the scheduling of manufacturing in this converted HFS

configuration:

- A Discrete-Event Simulation (DES) model is developed and utilized so as to

obtain the minimum number of parallel identical machines at each

manufacturing stage in the HFS, taking into account the practical restrictions

and the expected demand value.

- For the HFS scheduling problem part of the case study, we utilize several

solution methods for scheduling the HFS with the objective of minimizing the

makespan, expecting a growing demand for panels in the near future.

6.2. Production Processes

For each panel, the production process starts with issuing related raw material. The

specification of raw material, such as the measure of raw material already matching

with its required stock size to manufacture the panels and whether heat treatment has

already been applied to raw material or not, affects the first cut and heat treatment

81

processes. Briefly, under both conditions, first cut and heat treatment operations are

not required in order to prepare raw material for metallic manufacturing. However,

there is a slight difference among the panels 1, 2 and 3. While both operations are not

applied to panel 1, only first cut operation is applied to panels 2 and 3. On the other

hand, these conditions are not valid for the other panels. But, if stock-sized material

has already been available, raw material is sometimes provided without first cut

process for S19 panels 9, 10, 11, and 12 under the condition of urgent demand.

However, most of the time, this approach is impractical due to the high price of raw

material.

After the completion of the issuance of raw material, production goes on with first cut

operations. In this operation, firstly, raw material is loaded to the related manual

cutting machine from its pallet. After that, with the help of saw and ruler on the

machine, raw material is cut in order to bring its dimensional measures to the required

stock size. In the final phase of first cut operations, stock-sized raw material is

unloaded from the machine and loaded to an empty pallet previously prepared with

the help of a forklift and a hooked crane during cutting operation until all of the empty

pallets are loaded with materials one by one. These operations form stages 0 and 1 that

are executed in Building 200 (B200) where the warehouse of raw material and first

cut machines are located. These stages are shown on the partial layout of B200 in

Figure 6.1.

After the completion of the first cut operations, the pallets filled with the panels shown

in Figure 6.2 are loaded to a truck with the support of a forklift in order to transport

stock-sized materials from one location to another, because first cut operations are

performed in a different building which is the main warehouse of the raw materials.

Even though the first cut operations are under the roof of metallic manufacturing, the

other operations belonging to this class are still performed in a different building

which is the structural manufacturing and assembly facility.

82

Figure 6.1. Production stages 0 and 1 in Building B200

83

Therefore, a transportation operation is required, however, if current HJS environment

is converted to an HFS configuration, this waste can be eliminated.

Figure 6.2. Loaded pallet to be transported with the related work orders

When transportation operation is completed, the chips on the panels are removed by

alkali clean and rinse tanks with the help of vacuum manipulator shown in Figure 6.3.

On the other hand, if current HJS environment were converted to HFS configuration,

excessive materials handling tools and motions waste would have been removed.

First, with the vacuum manipulator, the panel is lifted from the pallet and loaded to an

empty transportation cart previously prepared. Then, by the moving crane,

transportation cart is sinked into alkali clean tank and then it is lifted and sinked into

rinse tank, in succession. By this way, cleansing operations are completed before the

heat treatment process which is the succeeding stage.

Now, the panels are located on transportation carts as a batch whose quantity varies

from 4 to 8 according to their thickness value. The panels are first loaded to oven

84

loading apparatus with the help of a vacuum manipulator and fixed crane, due to the

fact that this process is performed while the panels are still flat.

Figure 6.3. Alkali clean vacuum manipulator with the fixed crane

And again, with the help of the moving crane, oven loading apparatus is lifted and

loaded to oven in order to make the panels reach their required finish condition in a

predetermined period of oven time. After dwelling time is up, oven loading apparatus

is removed from oven via the moving crane. Then, the panels are reloaded to

transportation carts via vacuum manipulator and fixed crane. At the final stage of this

process, transportation carts are transferred to the refrigerator by technicians,

manually, in order to complete cooling process of the panels for a predetermined

period of cooling time. This transportation requires materials handling manually

which can be reduced or even eliminated in an HFS environment.

85

Before removing transportation carts from the refrigerator manually after the

completion of the cooling process, the related stretch form tool is loaded to the stretch

form machine with the help of the mega crane. Each panel has its own unique stretch

form tool which is designed, manufactured, and dedicated to the panel’s particular

geometric structure. In an HFS conversion, there needs to be more than one stretch

form machine. However, batch size of each panel type must be one only due to the

high cost of stretch form tools. By this way, excessive tool cost is eliminated.

Furthermore, in order to initiate assembly operations of the fuselage without stopping,

each type of panel is to be completed in the same manufacturing line, one after the

other.

The panels, removed from the refrigerator, are loaded to the stretch form machine one

by one after each panel’s stretch process is completed. But, this time, due to the fact

that the panels are formed, they are transferred from regular transportation carts to the

formed panels’ transportation carts when the panels are unloaded from the stretch

machine with the help of the mega crane. After that, alkali clean and rinse processes

are repeated. However, because the materials handling is slightly different from

previous process, loading and unloading processes also differ. Because different types

of transportation carts require different types of materials handling systems, non-

value-added costs drastically increase. Therefore, an HFS conversion is thought to

decrease the non-value-added costs in terms of automated materials handling systems

implementation.

With the completion of cleansing process, transportation carts are transferred to

drilling and removing tab area in order to prepare the panels for mechanical milling

process. In order to connect the panels to related milling fixture on mechanical milling

machine, the panels are drilled. With the help of fixed crane and robotic cutting

machine shown in Figure 6.4. Although the tabs of the panels are required for the

stretching process, they are actually excess materials on the panels which are removed

for further processes. Therefore, the tabs of the panels are removed with the help of

86

the same machine. Then, again, the panels are unloaded from the robotic cutting

machine and loaded to the formed panels’ transportation carts with the help of the

fixed crane.

After transporting the panels to the mechanical milling machine, with the help of the

fixed crane, the panels are loaded to the mechanical milling machine. There are two

entrance doors each with its own fixed crane at both sides of the machine. A panel is

loaded to its milling fixture which is slided into the machine from a door with the help

of constant crane. While the loaded panel is processed by the machine, without waiting

for the completion time of this panel’s milling process, the other panel is prepared

outside of the machine (external setup) and loaded to its milling fixture which is slided

into the machine from the other door with the help of the opposite fixed crane after

unloading the processed panel.

Figure 6.4. Robotic cutting machine

87

By this way, loading and unloading operations of the panels are following each other

without leaving the machine idle. Due to the fact that it takes too much time to process

a single panel on this machine, this external setup operation is pretty useful for

increasing the daily output. After converting the HJS environment to an HFS

configuration, it may not be feasible to parallel this milling machine due to the high

cost of it. Similar to the stretch form machine, batch size must be again equal to 1 in

order to avoid excessive milling fixture tool cost.

After the completion of mechanical milling process, alkali cleaning and rinsing

processes are repeated. Then, for hand forming and deburring operations, the panels

are transported to hand finish area. If there is a forming problem on the panel, it is

corrected by manual hammering. After hammering operation, chips from previous

operations and traces from hammering operation are deburred in order to increase the

surface quality of the panels for incoming dimensional inspection which also checks

the surface quality and the correction of the panel. Hand finish processes are applied

to both sides of a panel with the help of specially designed carts according to the

panel’s form and geometric structure.

Firstly, inner area of the panel is deburred and dimensionally inspected. After that,

outer area of the panel is deburred and dimensionally inspected. By this way, hand

finish and dimensional inspection processes are completed consecutively.

Before transporting parts to the facility of chemical processes, parts are loaded to the

building-to-building transportation carts for further processes.

The manufacturing stages above are all located in Building 10 (B10) which is the core

facility including both manufacturing and assembly operations. The sequence of the

stages executed in B10 is shown on its partial layout in Figure 6.5.

88

As it can be seen in Figure 6.5, the HJS environment causes a lot of non-value-added

activities adversely affecting the lead time and the quality of the panels. Therefore, an

HFS configuration must be implemented in order to decrease materials handling

complexity and thus lowering lead times and improving quality.

After the panels are transported to the chemical processes facility, they are loaded to

the white carts with the help of the moving crane and manual labor for further

processes. By this way, empty building-to-building carts are sent back for maintaining

the loop between metallic production in the structural manufacturing facility and

surface preparation in the chemical processes facility.

At this point of the manufacturing process, the panels are in another building which is

the third different facility named as Building 20 (B20). Converting HJS the

environment to an HFS configuration, wastes resulting from waiting, transportation,

and quality can be decreased by eliminating the panel movements among buildings

via different types of transportation carts. Especially, quality defects may be reduced,

some of which cause a panel to be reworked for unpredictable rework times increasing

manufacturing lead time or even stopping a panel which leads to a shortage in the

assembly line depending on the severity of error. Some of these defects can be

tolerable and corrected by rework process whereas some of them can make a panel

totally scrap and permanently useless.

Before non-destructive inspection, which is also called penetrant inspection, pre-

penetrant etch operation is applied to the panels in order to increase the surface quality.

Since this is a chemical process, rinse operation must also be applied afterwards. These

two consecutive operations have their own tanks in which the panels are sinked into

one by one with the help of the moving crane in order to meet the required dwelling

times.

89

Figure 6.5. Metallic manufacturing stages in Building B10

90

After pre-penetrant etch and its rinse operation, the panels are sinked into infiltration

liquid for penetrant inspection. After completion of penetrant inspection, the panels

are transported to wet blast operation area. In this process, the panels are put into a

cabinet with a spraying system, one by one after masking process is completed.

After surface quality is satisfied with surface inspection, for other chemical processes,

the panels are ready to be transported to another building which is the fourth different

facility named as Building 220 (B220) and has much bigger tanks than the tanks of

B20. In this facility, tartaric sulfuric acid anodize with its rinse operation, sealant with

its rinse operation and drying in oven operation are applied to the panels, successively.

Surface operations applied to the panels are shown in Figures 6.6 and 6.7, on the

partial layouts of B20 and B220, respectively.

All of the operations related to the painting process are applied to the panels in the

painting process facility which is the fifth and the final building utilized in the

manufacturing process of the panels. Painting process operations are executed in

Building 40 (B40) as shown in Figure 6.8.

After all painting operations are completed, under the condition that the panels are

suitable for the assembly line according to the final inspection, they are sent back to

B10 where assembly of the panels takes place, including riveting and mating,

packaging and final inspection. Assembly of the panels so as to obtain the center

fuselage is out of the scope of this study.

91

F
ig

u
re

 6
.6

.
S

u
rf

ac
e

o
p
er

at
io

n
s

in
 B

u
il

d
in

g
 B

2
0

92

F
ig

u
re

 6
.7

.
S

u
rf

ac
e

o
p
er

at
io

n
s

in
 B

u
il

d
in

g
 B

2
2
0

93

F
ig

u
re

 6
.8

.
P

ai
n
ti

n
g
 p

ro
ce

ss
 o

p
er

at
io

n
s

in
 B

u
il

d
in

g
 B

4
0

94

6.2.1. Data Analysis

The relevant data are collected with the help of Structural Query Language (SQL)

from RDBMS. Related tables are connected to each other with the SQL queries in

SAP Business Objects Crystal Reports 2008. Moreover, in order to retrieve the unit

processing times of each panel in each stage for all occurrences, some functions are

developed. Query codes with the syntax of Microsoft Object Linking and Embedding,

DataBase (OLE DB) Provider for SQL Server and the functions with related attributes

from the tables of RDBMS are compiled by Crystal Reports.

All of the outputs having overall 143,119 raw records are exported to MS Office Excel

2016 as a single spreadsheet for each panel type in a given stage with the average of

processing times per quantity in a work order. Manufacturing stages 3, 4, 5, 7, 10, and

17 are metallurgical surface operations and they have standard processing times

according to the specifications of the panels based on their manufacturing data

packages. Similarly, machine failure data are obtained from JAVA-based Materials

Requirement Planning (MRP) in ERP system.

All of the outputs having overall 1936 raw records are exported to MS Office Excel

2016 as spreadsheets for the stages 3, 4, 6, 7, 9, 10, 15, and 18. Upon collection of raw

data related to unit processing times of panels for each stage and machine availability

of each stage, data analysis and interpretation phase follow.

Two types of data, processing times and machine availability, are required to be

analyzed due to their uncertainty. Since outliers heavily affect machine availability, in

order to get realistic breakdown information from this data, we cleanse them through

plotting. By this way, total of 1936 raw records are cleansed and reduced to 1143

meaningful data. In detail, machine availability data are reduced from 103 to 98 for

stages 3, 7, and 10, from 101 to 73 for stage 4, from 500 to 276 for stage 9, from 118

95

to 107 for stage 15, and from 829 to 304 for stage 18. On the other hand, the number

of machine availability data for stage 6 remain the same and equal 285.

Machine availability data are related to breakdown occurrences. Breakdown

occurrences are interpreted by both durations and frequencies for the stages at the

same time. By this way, necessary information about breakdowns is obtained for the

DES model developed for the company’s case scenario. The completion of data

cleansing process is followed by fitting the data to one of the available distributions

with the best goodness value in MATLAB R2018b.

After fitting the data to the best available distribution according to data’s pattern

observed on histogram, by using this distribution’s parameter values, we calculate its

mean to be determined as a processing time for each type of panel at each stage. This

analysis is executed for the processing times of all panels at all stages of

manufacturing.

A sample of data interpretations are accessible in Appendices (Appendix A). These

data interpretations derived by the MATLAB function of Sheppard (2012) are used as

the processing times of the panels at the manufacturing stages and the failures of

parallel identical machines at the stages in the DES model’s resource modules.

6.2.2. DES Model Design for an HFS Configuration

In order to start developing the DES model, first, the cycle time per panel is calculated

based on Equation 6.1 according to the most demanded panel.

CT= ⌊
300 days

960×13 units×types
×

3 shifts

days
×

7.5 hrs

shifts
×

60 min

hrs
⌋=

32 min

units×types
 (6.1)

96

Assembling the highest annual demand of fuselage which is 960 is supported by the

resource capacity, i.e, 300 working days each with 3 shifts lasting 7.5 hours. Since the

fuselage requires 13 types of panels, CT is calculated based on (960x13) panels/year.

After that, CT in Equation 6.1 is rounded down to the largest integer to be introduced

as an interval value having minutes as its unit of measure for the source module.

Moreover, by being rounded down, CT value ensures that each type of panel can be

manufactured during the cycle time.

For determining the number of parallel identical machines at each stage k, MoMk is

calculated based on Equation (6.2).

MoMk= ⌈
σ p

jk
n
j=1 ×Dj

Ck

⌉ ∀k∈K (6.2)

Dj represents the demand of panel j per year. Ck identifies the yearly capacity of a

machine at stage k. The example in Table 6.3 shows how

MoMk value is calculated for the cooling stage.

As it is observed in Table 6.1, in order to satisfy the yearly demand of panels, given

the capacity of the cooling machine (refrigerator), the cooling stage requires at least 5

refrigerators.

Table 6.3. MoMk calculation for the cooling stage

REFRIGERATOR

panel, j p
jk

 (hrs) Dj (per year) p
jk
×Dj Ck (300 days × 3 shifts × 7.5 hrs) MoMk

1 0 960 0 6750 0

2 0 960 0 6750 0

3 0 960 0 6750 0

Comtinued on next page

97

Table 6.3. – Continued from previous page

REFRIGERATOR

panel, j p
jk

 (hrs) Dj (per year) p
jk
×Dj Ck (300 days × 3 shifts × 7.5 hrs) MoMk

4 4 960 3840 6750 0.57

5 4 960 3840 6750 0.57

6 4 960 3840 6750 0.57

7 4 960 3840 6750 0.57

8 4 720 2880 6750 0.43

9 4 720 2880 6750 0.43

10 4 720 2880 6750 0.43

11 4 720 2880 6750 0.43

12 4 720 2880 6750 0.43

13 4 720 2880 6750 0.43

 4.84

 rounded up 5

Similarly, MoMk calculations for the the other stages are accessible in Appendices

(Appendix B). After a few runs with the DES model developed in Tecnomatix Plant

Simulation 14, MoMk values are updated iteratively with adjusted the Dj values and,

as a result, the minimum number of parallel identical machines for each stage is

determined in order to satisfy the highest annual demand. Table 6.4 lists the number

of parallel identical machines for each stage as obtained from the DES model of the

suggested HFS configuration for panel production in the company.

All of the required data are obtained now in order to illustrate the DES model

physically.

DES model design starts with the creation of its source module shown in Figure 6.9.

By changing “Mobile Unit (MU) selection” area from “Sequence Cyclical” to

“Sequence”, the DES model is run for a single unit production of each panel.

98

Table 6.4. MoMk values in the HFS

k Stage MoMk

1 FIRST CUT 1

2 ROLL 1

3 CLEAN OPS1 (ALKALI CLEAN1 & VAPOR DEGREASE1) 1

4 HEAT TREATMENT 2

5 REFRIGERATOR 7

6 STRETCH PRESS 6

7 CLEAN OPS2 (ALKALI CLEAN2 & VAPOR DEGREASE2) 1

8 DEBURR1, DRILL HOLE & REMOVE TAB 3

9 MECHANIC MILL 7

10 VAPOR DEGREASE3 1

11 HAND FORM 1

12 DEBURR2 & HAND FINISH 6

13 CONDUCTIVITY, DIMENSIONAL & HARDNESS INSPECTION 2

14 PRE-PENETRANT ETCH OPS 1

15 NON-DESTRUCTIVE PENETRANT INSPECTION 2

16 MASK & WET BLAST & SURFACE INSPECTION OPS 1

17 TARTARIC SULFURIC ACID ANODIZE OPS 1

18 PAINT OPS 5

19 PAINT INSPECTION 1

This option is used for measuring the makespan values of different job (panel)

sequences obtained by different scheduling methods. On the other hand, “Sequence

Cyclical” option is only used for running the DES model based on the predetermined

simulation length which is equal to 300 days according to CT calculation in order to

determine the minimum number of parallel identical machines for each stage. Job

sequence is altered via the panel type table shown in Figure 6.10. After creating the

source module, stages are created as the resource modules, having determined the

number of parallel identical machines at each stage. Each resource module represents

the corresponding stage with an infinite buffer for WIP accumulation.

99

Figure 6.9. The source module of the DES model

Figure 6.10. Initial sequence table of panel (skin) type inserted to source module

100

Figures 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, and 6.17 are used to illustrate one of the

resource modules, heat treatment stage, of the DES model with its infinite

(capacity=500 panels) buffer (backlog of jobs).

Figure 6.11. The resource module structure of heat treatment stage

Figure 6.12. Heat treatment stage backlog

101

Figure 6.13. Heat treatment stage processing times (hrs) table of panels

Figure 6.14. Heat treatment stage with 2 parallel identical ovens

102

Figure 6.15. Heat treatment stage with the processing times table of panels

Figure 6.16. Heat treatment stage with failure distribution

103

Figure 6.17. Heat treatment stage with failure frequency and duration

Some of the stages are skipped by some of the panels (Figure 6.13). Processing times

of all panels at the stages are listed in Appendices (Appendix C).

After calculating the mean values of processing times of the panels for each stage

based on the fit distribution, the mean processing times are inserted to the resource

modules with panel type tables rather than the stochastic counterparts, since the

processing times are assumed as deterministic in the DES model. However, fitting

them to the best available distributions is only used for data analysis and interpretation

phase in order to cleanse the data collected via SQL queries from RDBMS to obtain

meaningful values from them based on the mean values of the best available

distributions.

In the DES model designed with Tecnomatix Plant Simulation 14, Weibull

distribution is exponentiated to obtain exponential distribution via Equation (6.3).

104

f(x)=
k

λ
(
x

λ
)

k-1

e-(x λ⁄)k
 x≥0 is the pdf of Weibull distribution (6.3)

When k=1 in the pdf of the Weibull Distribution f(x)=λ-1e-xλ
-1

 is the pdf of the

exponential distribution. The failure of the resource occurs in Tecnomatix Plant

Simulation 14 according to the Figure 6.18 for given start (a resource begins

operating), duration (a failure occurs), and interval (a resource begins operating again)

values based on the study by Bangsow (2015).

Figure 6.18. Failure settings of a resource in Tecnomatix Plant Simulation 14

The physical appearance of the DES model designed with Tecnomatix Plant

Simulation 14 is shown in Figures 6.19 and 6.20.

First of all, event controller shown in Figure 6.21 determines the simulation speed and

length. Simulation length is set as 300 days. Moreover, it generates a report which

summarizes the simulation after a run is completed. The summary report of a DES

model run is shown in Figure 6.22. The summary report gives statistics like which

panel is drained by which drain module, mean life time of each panel, throughput of

each panel, utilization percentages of production, transport and storage to derive

value-added percentage with its portion bar. Summary report is used for checking the

throughput for each panel at the end of simulation run in order to determine whether

the simulated HFS configuration has sufficient capacity to satisfy panels’ annual

demand or not. The reason why value-added is low is that we try to find the minimum

number of parallel identical machines utilized at each stage by providing infinite

buffers between stages in order to satisfy panels’ demand per year.

105

F
ig

u
re

 6
.1

9
.
T

h
e

D
E

S
 m

o
d
e
l

in
 T

ec
n
o

m
at

ix
 P

la
n
t

S
im

u
la

ti
o

n
 1

4

106

F
ig

u
re

 6
.2

0
.
3
D

 v
er

si
o

n
 o

f
th

e
D

E
S

 m
o

d
e
l

in
 T

ec
n
o

m
at

ix
 P

la
n
t

S
im

u
la

ti
o

n
 1

4

107

Figure 6.21. Event controller as one of the simulation settings

Figure 6.22. Summary report generated at the end of a simulation run

Therefore, storage has the highest utilization percentage due to the fact that buffers

are highly utilized at all times during a simulation run. Another reason why value-

added is low is that the processing times among stages vary drastically. While some

of the operations last for hours, the others last for minutes, resulting in unbalances

among the stages causing bulky WIP accumulation.

108

Secondly, shift calendar determines the number of shifts with hours for working days

required. In the simulation run, there are 3 shifts, each of them with 7.5 hours in total

300 day/year. The frame of shift calendar is shown in Figure 6.23.

Figure 6.23. The frame of shift calendar

Finally, bottleneck analyzer shows the utilizations of the resource modules. It helps us

to identify the bottleneck resources so that we can increase the number of identical

parallel machines at a particular bottleneck stage. This tool and MoMk values support

each other by feedbacking one another iteratively based on the simulation runs results

and at the end of the iterations, the minimum number of parallel identical machines,

required for each stage, is determined. Figure 6.24 shows the bottleneck analyzer with

its outcome. In order to determine the exact MoMk values, the utilizations of the stages

obtained from bottleneck analyzer’s outcome shown on Figure 6.24 are used with the

precalculated MoMk values. For example, the stage with the highest utilization is the

candidate whose number of parallel identical machines is increased by one based on

simulation the runs results and its precalculated MoMk value. Bottleneck analyzer also

helps to configure its outcome with its frame for different options as shown in Figure

6.25.

109

Figure 6.24. The frame of bottleneck analyzer

Figure 6.25. The frame of bottleneck analyzer with its outcomes displayed on the

complete DES model

110

Another useful tool is the drain module which helps to measure the effectiveness of

the HFS scheduling methods the sequences of which are inserted to DES model source

module. Drain module provides detailed statistics table for each type of panel. Figure

6.26 shows the drain module frame with its statistics table.

As it is seen in Figure 6.26, with time attribute, the makespan for a given sequnce is

obtained by sorting this attribute in descending order at the end of the simulation run.

Therefore, at the end of simulation run, in time attribute, panel with the highest

completion time value determines the makespan for a sequence inserted to DES model

source module.

111

F
ig

u
re

 6
.2

6
.
T

h
e

d
ra

in
 m

o
d
u

le

112

6.3. Computational Study

So far, data retrieval from RDBMS, processing the retrieved data and designing the

DES model based on these data are covered. Having obtained an HFS configuration

for the panel productşon for the fuselage under consideration, scheduling the HFS

becomes the issue. Therefore, this section covers all aspects of the computational

study on scheduling the HFS which is supported by the DES model in detail. For this

purpose, several different software packages are used for different solution methods.

MILP and CP models are coded via Optimization Programming Language (OPL) in

IBM ILOG CPLEX 12.6. Dispatching rules are applied with LEKIN 3.3 and

MATLAB R2018b. The renowned heuristic algorithms are implemented with both

MS Excel 2019 and MATLAB R2018b. The proposed HA heuristic and GSO

metaheuristic methods are coded in MATLAB R2018b. Moreover, LEKIN outputs

and Excel spreadsheets of dispatching rules are provided also in Appendices

(Appendix D). In this phase, the results of the computational studies with the case HFS

scheduling problem are shared.

The HFS scheduling problem in the case study consists of 13 jobs and 19 stages some

of which have more than one identical machine in parallel. Table 6.5 shows that the

makespan values obtained from the scheduling methods some of whose job sequences

are also inserted to the DES model in order to observe the job sequences under the

condition of machine breakdowns.

Since the scheduling methods with the symbol * do not use the FAM and ECT

strategies, for the first stage, the job sequences obtained from them are not inserted to

the DES model source module. Therefore, there are no related Cmax values for them at

the end of a simulation run in the DES model also using the FAM and ECT strategies.

113

Table 6.5. The results of the scheduling methods for the case study

Current Solution Methods Proposed Solution Methods

CPLEX LEKIN FAM and ECT

BH*

CP Optimizer
FAM and

ECT

M
IL

P
*

S
P

T
*

L
P

T
*

S
IR

O

S
T

P
T

L
T

P
T

P
a
lm

er

C
D

S

N
E

H

C
P

*

H
A

G
S

O

C
m
a
x

 (
h

rs
)

29.18 32.87 33.13 31.78 33.03 32.59 32.53 31.08 29.76 32.53 28.98 29.29 29.34

C
P

U
 (

se
c)

8485.21 1 1 0.168 0.199 0.171 0.199 0.169 0.185 0.258 51.63 303.26 601.74

C
m
a
x
 (

h
rs

)
D

E
S

- - - 34.96 37.84 37.67 36.74 34.59 33.32 - - 32.29 32.42

MILP model is solved in 8485.21 seconds via CPLEX to near-optimality where

relative MILP gap is equal to 1.2 % (a stopping criterion to obtain the best feasible

solution), since the HFS scheduling problem is NP-hard in the strong sense (Table

6.6). This means that the obtained solution is very close to the optimal. On the other

hand, the CP model solves the problem to optimality within a very short computational

time (Table 6.7). Both MILP and CP models are measured in terms of Cmax and CPU

times. Therefore, the roles of the other solution methods have vital importance to

determine the job sequence in order to obtain the best makespan value.

Table 6.6. The completion times with the MILP model

Job, j cj19

1 24.00

2 20.90

3 20.67

Continued on next page

114

Table 6.6 – Continued from previous stage

Job, j cj19

4 24.40

5 28.80

6 24.20

7 22.84

8 25.96

9 29.18

10 27.58

11 28.30

12 28.58

13 27.97

Table 6.7. The start and end times of jobs with the CP model

Job, j Stage, k Start End

1 19 23.72 23.93

2 19 23.18 23.42

3 19 27.63 27.78

4 19 28.12 28.32

5 19 22.23 22.47

6 19 27.03 27.23

7 19 20.52 20.70

8 19 25.13 25.38

9 19 28.60 28.98

10 19 26.68 27.03

11 19 27.78 28.12

12 19 28.32 28.60

13 19 27.23 27.63

The job sequences of the dispatching rules (SPT & LPT) are obtained by LEKIN 3.3

with ease and their Cmax values are recorded. The results of the other algorithms SIRO,

STPT, LTPT, CDS, Palmer and NEH are derived via MS Office Excel 2019

spreadsheets and their job sequences plugged into FAM and ECT strategies via

MATLAB R2018b. The job sequences of CDS, Palmer and NEH are also presented

115

in Appendices (Appendix E). Moreover, in order to implement the NEH algorithm,

DES model is reduced to the traditional flow shop for getting makespan values of

partial job sequences in NEH algorithm. Cmax values of the renowned heuristic

algorithms are also recorded. Furthermore, BH is coded via MATLAB R2018b and

its Cmax value is also recorded with CPU time. According to this algorithm, the

bottleneck stage is stage 12 and whole scheduling process is executed according to

this stage based on the rules of BH as explained in Chapter 4.

Consequently, CP provides the optimal solution. The second-best solution method is

MILP model. However, to supply this good solution, MILP model spends a

remarkable amount of time. The third best and the fourth best solution methods are

our proposed approaches which are HA and GSO. HA is set to a million iteration to

yield this result. On the other hand, the setup of GSO has already been explained in

detail in Chapter 5. Both of them provide promising results in terms of both

effectiveness and efficiency with a good balance between solution quality and time.

All solution methods are run on the computer with Intel® Core™ i5-8265U CPU @

1.60 GHz 1.80 GHz and 7.82 / 8.00 GB RAM with 64-bit operating system.

According to the simulation runs results for the HFS scheduling problem represented

as (HFc, Pm|skip, unavail(brkdwn)|Cmax) configuration, the proposed HA and GSO

yield the best results among other solution methods using FAM and ECT strategies,

which is parallel to their solutions in (HFc, Pm|skip|Cmax) configuration.

117

CHAPTER 7

7. COMPUTATIONAL STUDY

In order to assess the performance of the proposed CP, HA, and GSO, we use the test

problems of Carlier and Neron (2001) and we compare the proposed algorithms

against PSO of Liao et al. (2012), QIA of Niu et al. (2009), AIS of Engin and Doyen

(2004), GA of Besbes et al. (2006), ACO and Ant Colony System (ACS) of Khalouli

et al. (2009), and B&B of Carlier and Neron (2001).

The test problems vary from 10 jobs and 5 stages to 15 jobs and 10 stages. Processing

times of the jobs are uniformly distributed between 3 and 20. The notation used for

problem description is defined below through an example problem, that is, j10c5a2.

• j10: 10 jobs.

• c5: 5 stages.

• a: number of parallel identical machines at the stages.

• 2: index of a problem instance.

The number of parallel identical machines at the stages varies according to the “letter”

before the index of an instance for a given problem:

• a: there is a single machine in the middle stage and there are three machines

at other stages.

118

• b: there is a single machine at the first stage and there are three machines at

the other stages.

• c: there are two machines at the middle stage and there are three machines at

the other stages.

• d: there are three machines at all stages.

We solve 76 test problems and report the Cmax values together with CPU times in Table

7.1. Instance 60 is discarded from the test runs because it has a structural fault.

However, the indices of instances remain the same for comparison purposes.

For the algorithms with the symbol *, only the makespan values of them are reported

in their papers. Furthermore, the problem instances in bold represent harder problems.

The letter a in “CPU” column means that the solution of the instance could not be

reached within 1600 seconds. The letter b in “CPU” column means that B&B could

not reach the optimal solution within 1600 seconds. The letter c in “CPU” column

means that the solution, which B&B reaches, is not optimal, and also, this solution is

not reached within 1600 seconds.

Since j10c5a* type problems are easy to solve, all algorithms yield the optimal

solution in a short time. HA is slightly better than the other two proposed solution

methods in terms of only solution time for all instances. However, solution times of

the proposed algorithms are acceptable, since they are all below 1600 seconds.

Like j10c5a*, j10c5b* type problems are also easy to solve. Therefore, all algortihms

yield the optimal solutions for all problems. The difference occurs in solution times

on average, again, and PSO is slightly better than the other algorithms.

119

P
S

O

Q
IA

*

A
IS

G

A

A
C

O
*

A

C
S

*

B
&

B

C
P

H

A

G
S

O

N
o

In

st
a

n
c
e

C
m
a
x

C
P

U

C
m
a
x

C
m
a
x

C
P

U

C
m
a
x

C
P

U

C
m
a
x

C
m
a
x

C
m
a
x

C
P

U

C
m
a
x

C
P

U

C
m
a
x

C
P

U

C
m
a
x

C
P

U

1

j1
0

c5
a

2

8
8

0
.0

0

8
8

8
8

0
.0

5

8
8

0
.2

3

8
8

8
8

8
8

1
3

8
8

2
.3

5

8
8

0
.1

0

8
8

2
4

2
.9

9

2

j1
0

c5
a

3

1
1

7

0
.0

0

1
1

7

1
1

7

0
.1

4

1
1

7

0
.0

4

1
1

7

1
1

7

1
1

7

7

1
1

7

1
.6

6

1
1

7

0
.1

1

1
1

7

2
4

2
.7

6

3

j1
0

c5
a

4

1
2

1

0
.0

0

1
2

1

1
2

1

0
.1

7

1
2

1

0
.1

2

1
2

1

1
2

1

1
2

1

6

1
2

1

1
.4

6

1
2

1

0
.1

1

1
2

1

2
4

5
.9

9

4

j1
0

c5
a

5

1
2

2

0
.0

1

1
2

2

1
2

2

0
.9

1

1
2

2

0
.1

8

1
2

2

1
2

2

1
2

2

1
1

1
2

2

1
.1

0

1
2

2

0
.1

6

1
2

2

2
4

3
.4

7

5

j1
0

c5
a

6

1
1

0

0
.7

1

1
1

0

1
1

0

3
.5

8

1
1

0

0
.2

5

1
1

0

1
1

0

1
1

0

6

1
1

0

1
.1

7

1
1

0

0
.2

1

1
1

0

2
4

5
.0

4

A

v
e
r
a
g

e

1
1

1
.6

0

0
.1

5

1
1

1
.6

0

1
1

1
.6

0

0
.9

7

1
1

1
.6

0

0
.1

6

1
1

1
.6

0

1
1

1
.6

0

1
1

1
.6

0

8
.6

0

1
1

1
.6

0

1
.5

5

1
1

1
.6

0

0
.1

4

1
1

1
.6

0

2
4

4
.0

5

6

j1
0

c5
b

1

1
3

0

0
.0

0

1
3

0

1
3

0

0
.1

4

1
3

0

0
.0

3

1
3

0

1
3

0

1
3

0

1
3

1
3

0

1
.0

2

1
3

0

0
.1

8

1
3

0

2
4

4
.9

4

7

j1
0

c5
b

2

1
0

7

0
.0

0

1
0

7

1
0

7

0
.8

0

1
0

7

0
.0

5

1
0

7

1
0

7

1
0

7

6

1
0

7

1
.1

6

1
0

7

0
.1

8

1
0

7

2
5

5
.9

3

8

j1
0

c5
b

3

1
0

9

0
.0

1

1
0

9

1
0

9

0
.5

2

1
0

9

0
.5

1

1
0

9

1
0

9

1
0

9

9

1
0

9

1
.1

5

1
0

9

0
.1

9

1
0

9

2
4

4
.6

4

9

j1
0

c5
b

4

1
2

2

0
.2

5

1
2

2

1
2

2

1
.6

6

1
2

2

0
.3

4

1
2

2

1
2

2

1
2

2

6

1
2

2

1
.1

4

1
2

2

0
.1

6

1
2

2

2
4

9
.2

1

1
0

j1
0

c5
b

5

1
5

3

0
.0

0

1
5

3

1
5

3

0
.1

2

1
5

3

0
.2

8

1
5

3

1
5

3

1
5

3

6

1
5

3

1
.0

7

1
5

3

0
.1

6

1
5

3

2
5

0
.4

9

1
1

j1
0

c5
b

6

1
1

5

0
.0

0

1
1

5

1
1

5

0
.1

4

1
1

5

0
.0

2

1
1

5

1
1

5

1
1

5

1
1

1
1

5

1
.0

9

1
1

5

0
.1

7

1
1

5

2
4

7
.0

8

A

v
e
r
a
g

e

1
2

2
.6

7

0
.0

5

1
2

2
.6

7

1
2

2
.6

7

0
.5

6

1
2

2
.6

7

0
.2

1

1
2

2
.6

7

1
2

2
.6

7

1
2

2
.6

7

8
.5

0

1
2

2
.6

7

1
.1

1

1
2

2
.6

7

0
.1

7

1
2

2
.6

7

2
4

8
.7

1

1
2

j1
0

c
5

c
1

6
8

0
.3

3

6
9

6
8

3
1

.6
2

6
8

0
.3

8

6
8

6
8

6
8

2
8

6
8

1
.6

0

6
8

5
.8

3

6
8

2
5

7
.4

6

1
3

j1
0

c
5

c
2

7
4

0
.5

4

7
6

7
4

4
.1

4

7
4

4
.4

1

7
5

7
5

7
4

1
9

7
4

2
.2

9

7
4

6
.6

2

7
5

2
4

7
.5

9

1
4

j1
0

c
5

c
3

7
1

3
7

.0
0

7
4

7
2

a
7

2

a
7

2

7
2

7
1

2
4

0

7
1

1
.6

8

7
2

1
.5

5

7
2

2
3

6
.1

3

1
5

j1
0

c
5

c
4

6
6

0
.2

2

7
5

6
6

2
.6

4

6
6

1
.3

5

6
6

6
6

6
6

1
0

1
7

6
6

2
.7

7

6
6

2
1

.0
6

6
7

2
5

3
..
8

7
3

1
6

j1
0

c
5

c
5

7
8

0
.1

2

7
9

7
8

1
3

.8
3

7
8

0
.5

7

7
8

7
8

7
8

4
2

7
8

1
.6

9

7
8

6
.5

0

7
9

2
5

2
.8

9

1
7

j1
0

c
5

c
6

6
9

0
.4

1

7
2

6
9

1
2

.1
4

6
9

0
.8

4

6
9

6
9

6
9

4
8

6
5

 (
b
)

6
9

2
.8

8

6
9

9
.9

7

7
0

2
4

2
.8

5

A

v
e
r
a
g

e

7
1

6
.4

3

7
4

.1
7

7
1

.1
7

a

7
1

.1
7

a

7
1

.3
3

7
1

.3
3

7
1

1
0

3
5

.1
7

7
1

2
.1

5

7
1

.1
7

8
.5

9

7
1

.8
3

2
4

7
.3

8

T
ab

le
 7

.1
.

R
es

u
lt

s
o

f
te

st
 p

ro
b
le

m
s

C
o

n
ti

n
u

ed
 o

n
 n

ex
t

p
a

g
e

120

P
S

O

Q
IA

*

A
IS

G

A

A
C

O
*

A

C
S

*

B
&

B

C
P

H

A

G
S

O

N
o

In

st
a

n
c
e

C
m
a
x

C
P

U

C
m
a
x

C
m
a
x

C
P

U

C
m
a
x

C
P

U

C
m
a
x

C
m
a
x

C
m
a
x

C
P

U

C
m
a
x

C
P

U

C
m
a
x

C
P

U

C
m
a
x

C
P

U

1
8

j1
0

c
5

d
1

6
6

0
.1

9

6
9

6
6

4
.8

9

6
6

0
.1

8

6
6

6
6

6
6

6
4

9
0

 (
b
)

6
6

1
.9

4

6
6

4
.2

4

6
6

2
3

9
.5

6

1
9

j1
0

c
5

d
2

7
3

1
.1

6

7
6

7
3

3
1

.1
6

7
4

a

7
5

7
3

7
3

2
6

1
7

 (
b
)

7
3

2
.1

7

7
4

2
.0

6

7
4

2
5

2
.9

6

2
0

j1
0

c
5

d
3

6
4

0
.1

0

6
8

6
4

1
4

.7
8

6
4

0
.1

8

6
4

6
4

6
4

4
8

1

6
4

3
.5

1

6
4

7
.2

5

6
4

2
7

9
.4

7

2
1

j1
0

c
5

d
4

7
0

0
.3

4

7
5

7
0

4
.5

0

7
0

0
.1

9

7
0

7
0

7
0

3
9

3

7
0

2
.3

7

7
0

2
3

.9
0

7
0

2
6

1
.7

2

2
2

j1
0

c
5

d
5

6
6

0
.5

2

7
1

6
6

1
4

4
5

.6
4

6
6

3
.4

1

6
6

6
6

6
6

1
6

2
7

 (
b
)

6
6

2
.5

2

6
7

1
2

.5
3

6
7

2
5

9
.1

4

2
3

j1
0

c
5

d
6

6
2

0
.3

8

6
4

6
2

7
.6

1

6
2

0
.4

8

6
2

6
2

6
2

6
8

6
1

 (
b
)

6
2

2
.0

4

6
2

5
.8

1

6
2

2
4

0
.9

7

A

v
e
r
a
g

e

6
6

.8
3

0
.4

5

7
0

.5
0

6
6

.8
3

2
5

1
.4

3

6
7

0
.8

9

6
7

.1
7

6
6

.8
3

6
6

.8
3

3
0

7
8

.1
7

 (
b
)

6
6

.8
3

2
.4

3

6
7

.1
7

9
.3

0

6
7

.1
7

2
5

5
.6

4

2
4

j1
0

c1
0

a
1

1
3

9

0
.0

6

1
3

9

1
3

9

1
.1

9

1
3

9

0
.2

3

1
3

9

1
3

9

1
3

9

4
1

1
3

9

1
.3

1

1
3

9

0
.9

8

1
3

9

2
8

9
.6

2

2
5

j1
0

c1
0

a
2

1
5

8

0
.8

7

1
5

8

1
5

8

1
7

.7
8

1
5

8

0
.5

3

1
5

8

1
5

8

1
5

8

2
1

1
5

8

1
.2

2

1
5

8

3
2

.1
3

1
5

8

2
8

3
.7

8

2
6

j1
0

c1
0

a
3

1
4

8

0
.0

2

1
4

8

1
4

8

0
.5

3

1
4

8

0
.3

9

1
4

8

1
4

8

1
4

8

5
8

1
4

8

1
.1

8

1
4

8

0
.6

6

1
4

8

2
8

3
.0

9

2
7

j1
0

c1
0

a
4

1
4

9

0
.0

9

1
4

9

1
4

9

1
.7

7

1
4

9

0
.3

2

1
4

9

1
4

9

1
4

9

2
1

1
4

9

1
.2

0

1
4

9

0
.3

0

1
4

9

2
9

2
.6

2

2
8

j1
0

c1
0

a
5

1
4

8

0
.1

0

1
4

8

1
4

8

0
.5

6

1
4

8

0
.1

9

1
4

8

1
4

8

1
4

8

3
6

1
4

8

2
.3

4

1
4

8

0
.1

9

1
4

8

2
8

6
.3

5

2
9

j1
0

c1
0

a
6

1
4

6

0
.2

4

1
4

6

1
4

6

3
.5

6

1
4

6

0
.5

7

1
4

6

1
4

6

1
4

6

2
0

1
4

6

1
.8

6

1
4

6

8
.0

6

1
4

6

2
8

6
.7

6

A

v
e
r
a
g

e

1
4

8

0
.2

3

1
4

8

1
4

8

4
.2

3

1
4

8

0
.3

7

1
4

8

1
4

8

1
4

8

3
2

.8
3

1
4

8

1
.5

2

1
4

8

7
.0

5

1
4

8

2
8

7
.0

3

3
0

j1
0

c1
0

b
1

1
6

3

0
.0

1

-
1

6
3

0
.1

9

1
6

3

0
.7

3

1
6

3

1
6

3

1
6

3

3
6

1
6

3

1
.3

6

1
6

3

0
.1

7

1
6

3

2
8

4
.5

7

3
1

j1
0

c1
0

b
2

1
5

7

0
.2

2

-
1

5
7

0
.6

9

1
5

7

0
.2

2

1
5

7

1
5

7

1
5

7

6
6

1
5

7

1
.2

9

1
5

7

0
.3

8

1
5

7

2
8

7
.4

9

3
2

j1
0

c1
0

b
3

1
6

9

0
.0

1

-
1

6
9

0
.0

3

1
6

9

0
.2

8

1
6

9

1
6

9

1
6

9

1
9

1
6

9

1
.3

5

1
6

9

0
.1

6

1
6

9

2
9

8
.9

4

3
3

j1
0

c1
0

b
4

1
5

9

0
.0

2

-
1

5
9

0
.1

1

1
5

9

0
.2

5

1
5

9

1
5

9

1
5

9

2
0

1
5

9

1
.3

7

1
5

9

0
.1

7

1
5

9

2
8

7
.4

0

3
4

j1
0

c1
0

b
5

1
6

5

0
.0

4

-
1

6
5

0
.0

3

1
6

5

0
.5

0

1
6

5

1
6

5

1
6

5

3
3

1
6

5

1
.3

7

1
6

5

0
.7

6

1
6

5

2
8

8
.0

1

3
5

j1
0

c1
0

b
6

1
6

5

0
.0

6

-
1

6
5

0
.3

9

1
6

5

0
.1

0

1
6

5

1
6

5

1
6

5

3
4

1
6

5

1
.3

7

1
6

5

0
.2

2

1
6

5

2
8

7
.6

8

A

v
e
r
a
g

e

1
6

3

0
.0

6

-
1

6
3

0
.2

4

1
6

3

0
.3

5

1
6

3

1
6

3

1
6

3

3
4

.6
7

1
6

3

1
.3

5

1
6

3

0
.3

1

1
6

3

2
8

9
.0

1

T
ab

le
 7

.1
.

–
 C

o
n
ti

n
u
ed

 f
ro

m
 p

re
vi

o
u
s

p
a
g
e

C
o

n
ti

n
u

ed
 o

n
 n

ex
t

p
a

g
e

121

P
S

O

Q
IA

*

A
IS

G

A

A
C

O
*

A

C
S

*

B
&

B

C
P

H

A

G
S

O

N
o

In

st
a

n
c
e

C
m
a
x

C
P

U

C
m
a
x

C
m
a
x

C
P

U

C
m
a
x

C
P

U

C
m
a
x

C
m
a
x

C
m
a
x

C
P

U

C
m
a
x

C
P

U

C
m
a
x

C
P

U

C
m
a
x

C
P

U

3
6

j1
0

c
1

0
c1

1

1
5

a

-
1

1
5

a

1
1

5

a

1
1

5

1
1

6

1
2

7

c

1
1

4

4
.2

1

1
1

5

7
.7

4

1
1

5

2
3

8
.6

5

3
7

j1
0

c
1

0
c2

1

1
7

a

-
1

1
9

a

1
1

9

a

1
1

9

1
1

9

1
1

6

1
1

0
0

1
1

6

1
.9

0

1
1

9

4
.5

3

1
1

9

2
5

9
.2

0

3
8

j1
0

c
1

0
c3

1

1
6

a
-

1
1

6

a
1

1
6

a

1
1

8

1
1

9

1
3

3

c
1

1
6

3
.4

9

1
1

6

1
5

.6
0

1
1

6

2
5

9
.2

2

3
9

j1
0

c
1

0
c4

1

2
0

a

-
1

2
0

a

1
2

0

a

1
2

3

1
2

4

1
3

5

c

1
1

9

6
.5

8

1
2

0

2
.2

9

1
2

0

2
7

2
.1

9

4
0

j1
0

c
1

0
c5

1

2
5

a

-
1

2
6

a

1
2

6

a

1
2

6

1
2

9

1
4

5

c

1
2

5

5
.6

0

1
2

6

9
7

.5
9

1
2

6

2
7

4
.6

8

4
1

j1
0

c
1

0
c6

1

0
6

a

-
1

0
6

a

1
0

6

a

1
0

8

1
0

9

1
1

2

c

1
0

4

6
.0

4

1
0

6

1
2

.2
8

1
0

6

2
4

6
.5

4

A

v
e
r
a
g

e

1
1

6
.5

0

a

-
1

1
7

a

1
1

7

a

1
1

8
.1

7

1
1

9
.3

3

1
2

8

c

1
1

5
.6

7

4
.6

4

1
1

7

2
3

.3
4

1
1

7

2
5

8
.4

2

4
2

j1
5

c5
a

1

1
7

8

0
.0

6

-
1

7
8

1
.0

9

1
7

8

0
.1

2

1
7

8

1
7

8

1
7

8

1
8

1
7

8

2
.1

7

1
7

8

0
.1

9

1
7

8

7
6

8
.9

9

4
3

j1
5

c5
a

2

1
6

5

0
.0

1

-
1

6
5

0
.2

5

1
6

5

0
.1

7

1
6

5

1
6

5

1
6

5

3
5

1
6

5

1
.3

4

1
6

5

0
.1

6

1
6

5

7
7

0
.0

5

4
4

j1
5

c5
a

3

1
3

0

0
.0

1

-
1

3
0

0
.2

5

1
3

0

0
.1

2

1
3

0

1
3

0

1
3

0

3
4

1
3

0

1
.2

9

1
3

0

0
.2

3

1
3

0

8
4

8
.8

2

4
5

j1
5

c5
a

4

1
5

6

0
.0

1

-
1

5
6

1
.3

9

1
5

6

0
.2

7

1
5

6

1
5

6

1
5

6

2
1

1
5

6

1
.4

9

1
5

6

0
.1

8

1
5

6

8
7

3
.6

5

4
6

j1
5

c5
a

5

1
6

4

0
.0

0

-
1

6
4

0
.2

7

1
6

4

0
.1

4

1
6

4

1
6

4

1
6

4

3
4

1
6

4

1
.3

5

1
6

4

0
.1

6

1
6

4

7
9

8
.9

4

4
7

j1
5

c5
a

6

1
7

8

0
.0

1

-
1

7
8

0
.2

7

1
7

8

0
.2

7

1
7

8

1
7

8

1
7

8

3
8

1
7

8

1
.4

9

1
7

8

0
.2

2

1
7

8

8
1

1
.2

7

A

v
e
r
a
g

e

1
6

1
.8

3

0
.0

2

-
1

6
1

.8
3

0
.5

9

1
6

1
.8

3

0
.1

8

1
6

1
.8

3

1
6

1
.8

3

1
6

1
.8

3

3
0

1
6

1
.8

3

1
.5

2

1
6

1
.8

3

0
.1

9

1
6

1
.8

3

8
1

1
.9

5

4
8

j1
5

c5
b

1

1
7

0

0
.0

0

-
1

7
0

0
.2

2

1
7

0

0
.0

7

1
7

0

1
7

0

1
7

0

1
6

1
7

0

1
.2

1

1
7

0

0
.2

1

1
7

0

7
4

9
.1

0

4
9

j1
5

c5
b

2

1
5

2

0
.0

1

-
1

5
2

0
.2

2

1
5

2

0
.0

6

1
5

2

1
5

2

1
5

2

2
5

1
5

2

1
.4

4

1
5

2

0
.1

7

1
5

2

7
7

1
.0

5

5
0

j1
5

c5
b

3

1
5

7

0
.0

3

-
1

5
7

0
.2

3

1
5

7

0
.6

0

1
5

7

1
5

7

1
5

7

1
5

1
5

7

1
.3

6

1
5

7

0
.2

0

1
5

7

7
7

6
.8

8

5
1

j1
5

c5
b

4

1
4

7

0
.0

0

-
1

4
7

0
.2

5

1
4

7

0
.1

7

1
4

7

1
4

9

1
4

7

3
7

1
4

7

1
.3

9

1
4

7

0
.2

2

1
4

7

7
7

9
.5

5

5
2

j1
5

c5
b

5

1
6

6

0
.0

9

-
1

6
6

1
.9

7

1
6

6

0
.8

9

1
6

6

1
6

6

1
6

6

2
0

1
6

6

1
.3

2

1
6

6

0
.2

8

1
6

6

7
7

2
.6

9

5
3

j1
5

c5
b

6

1
7

5

0
.0

2

-
1

7
5

0
.6

1

1
7

5

0
.0

8

1
7

5

1
7

5

1
7

5

2
3

1
7

5

1
.3

9

1
7

5

0
.1

6

1
7

5

7
7

2
.1

8

A

v
e
r
a
g

e

1
6

1
.1

7

0
.0

2

-
1

6
1

.1
7

0
.5

8

1
6

1
.1

7

0
.3

1

1
6

1
.1

7

1
6

1
.5

0

1
6

1
.1

7

2
2

.6
7

1
6

1
.1

7

1
.3

5

1
6

1
.1

7

0
.2

1

1
6

1
.1

7

7
7

0
.2

4

T
ab

le
 7

.1
.

–
 C

o
n
ti

n
u
ed

 f
ro

m
 p

re
vi

o
u
s

p
a
g
e

C
o
n
ti

n
u
ed

 o
n
 n

ex
t

p
a
g
e

122

P
S

O

Q
IA

*

A
IS

G

A

A
C

O
*

A

C
S

*

B
&

B

C
P

H

A

G
S

O

N
o

In

st
a

n
c
e

C
m
a
x

C
P

U

C
m
a
x

C
m
a
x

C
P

U

C
m
a
x

C
P

U

C
m
a
x

C
m
a
x

C
m
a
x

C
P

U

C
m
a
x

C
P

U

C
m
a
x

C
P

U

C
m
a
x

C
P

U

5
4

j1
5

c
5

c
1

8
5

4
.2

1

-
8

5

7
7

4
.4

8

8
5

4
0

.0
8

8
5

8
5

8
5

2
1

3
1

 (
b
)

8
5

3
.5

4

8
6

5
3

2
.9

3

8
6

7
7

0
.8

3

5
5

j1
5

c
5

c
2

9
0

1
1

9
8

-
9

1

a

9
1

a

9
0

9
1

9
0

1
8

4

9
0

4
.0

5

9
2

3
4

8
.4

8

9
2

7
7

3
.5

0

5
6

j1
5

c
5

c
3

8
7

2
.4

0

-
8

7

1
6

.4
4

8
7

3
.5

5

8
7

8
7

8
7

2
0

2

8
7

3
.9

7

8
9

1
7

.3
1

8
9

7
7

5
.1

1

5
7

j1
5

c
5

c
4

8
9

2
.2

1

-
8

9

3
1

6
.9

4

8
9

2

9
1

9
2

9
0

c

8
9

3
.1

7

9
0

2
0

0
.0

2

9
0

7
7

9
.2

1

5
8

j1
5

c
5

c
5

7
4

a

-
7

4

a

7
4

a

7
7

8
0

8
4

c

7
4

6
.2

8

7
7

3
2

.8
3

7
7

7
8

8
.8

0

5
9

j1
5

c
5

c
6

9
1

0
.1

9

-
9

1

1
8

.8
0

9
1

0
.3

9

9
1

9
1

9
1

5
7

9
1

1
.9

0

9
1

2
6

.6
1

9
1

8
0

7
.4

2

A

v
e
r
a
g

e

8
6

a

-
8

6
.1

7

a

8
6

.1
7

a

8
6

.8
3

8
7

.6
7

8
7

.8
3

c

8
6

3
.8

2

8
7

.5
0

1
9

3
.0

3

8
7

.5
0

7
8

2
.4

8

6
1

j1
5

c
5

d
2

8
4

a

-
8

4

a

8
4

a

8
8

8
6

8
5

c

8
4

5
7

.7
0

8
6

1
0

0
.1

9

8
6

8
4

3
.8

3

6
2

j1
5

c
5

d
3

8
2

a

-
8

3

a

8
3

a

8
6

8
9

9
6

c

8
2

7
2

.3
3

8
4

4
4

7
.7

9

8
4

9
0

5
.3

0

6
3

j1
5

c
5

d
4

8
4

a

-
8

4

a

8
4

a

8
8

9
0

1
0

1

c

8
4

8
6

5
.5

2

8
6

2
7

1
.2

7

8
6

8
8

0
.4

9

6
4

j1
5

c
5

d
5

7
9

a
-

8
0

a
7

9

a
8

4

8
5

9
7

c
7

9

7
6

.8
3

8
1

3
.8

7

8
0

8
7

9
.3

0

6
5

j1
5

c
5

d
6

8
1

a

-
8

2

a

8
1

a

8
4

8
7

8
7

c

8
1

2
2

.4
0

8
2

1
.2

2

8
3

8
8

1
.6

1

A

v
e
r
a
g

e

8
2

a

-
8

2
.6

0

a

8
2

.2
0

a

8
6

8
7

.4
0

9
3

.2
0

c

8
2

2
1

8
.9

6

8
3

.8
0

1
6

4
.8

7

8
3

.8
0

8
7

8
.1

1

6
6

j1
5

c1
0

a
1

2
3

6

0
.0

2

2
3

6

2
3

6

0
.5

7

2
3

6

0
.0

3

2
3

6

2
3

6

2
3

6

4
0

2
3

6

2
.1

5

2
3

6

0
.2

2
1

2
3

6

9
8

6
.5

4

6
7

j1
5

c1
0

a
2

2
0

0

0
.2

1

2
0

0

2
0

0

2
9

.5
2

2
0

0

0
.9

1

2
0

0

2
0

0

2
0

0

1
5

4

2
0

0

1
.4

4

2
0

0

0
.4

3
9

2
0

0

9
8

7
.1

5

6
8

j1
5

c1
0

a
3

1
9

8

0
.1

7

1
9

8

1
9

8

4
.3

1

1
9

8

1
.8

6

1
9

8

1
9

8

1
9

8

4
5

1
9

8

2
.1

2

1
9

8

0
.7

1
7

1
9

8

9
8

9
.9

6

6
9

j1
5

c1
0

a
4

2
2

5

0
.0

7

2
2

5

2
2

5

1
1

.5
0

2
2

5

0
.9

1

2
2

5

2
2

7

2
2

5

7
8

2
2

5

1
.6

4

2
2

5

0
.5

2
7

2
2

5

9
9

8
.1

3

7
0

j1
5

c1
0

a
5

1
8

2

0
.5

1

1
8

2

1
8

2

1
.8

4

1
8

2

0
.1

9

1
8

2

1
8

2

1
8

3

c

1
8

2

1
.5

3

1
8

2

0
.6

5
1

1
8

2

1
0

1
2

.3
7

7
1

j1
5

c1
0

a
6

2
0

0

0
.4

7

2
0

0

2
0

0

1
.7

2

2
0

0

0
.9

3

2
0

0

2
0

0

2
0

0

4
4

2
0

0

1
.9

4

2
0

0

0
.7

8
6

2
0

0

9
3

0
.5

5

A

v
e
r
a
g

e

2
0

6
.8

3

0
.2

4

2
0

6
.8

3

2
0

6
.8

3

8
.2

4

2
0

6
.8

3

0
.8

1

2
0

6
.8

3

2
0

7
.1

7

2
0

7
.0

0

c

2
0

6
.8

3

1
.8

0

2
0

6
.8

3

0
.5

6

2
0

6
.8

3

9
8

4
.1

2

7
2

j1
5

c1
0

b
1

2
2

2

0
.0

2

2
2

2

2
2

2

2
.6

6

2
2

2

0
.0

4

2
2

2

2
2

2

2
2

2

7
0

2
2

2

1
.8

3

2
2

2

0
.4

2

2
2

2

1
0

5
7

.0
3

7
3

j1
5

c1
0

b
2

1
8

7

0
.0

1

1
8

7

1
8

7

0
.4

8

1
8

7

0
.3

3

1
8

7

1
8

7

1
8

7

8
0

1
8

7

1
.7

5

1
8

7

0
.2

7

1
8

7

1
0

9
1

.7
9

7
4

j1
5

c1
0

b
3

2
2

2

0
.0

1

2
2

2

2
2

2

0
.4

4

2
2

2

0
.0

2

2
2

2

2
2

2

2
2

2

8
0

2
2

2

1
.5

0

2
2

2

0
.2

2

2
2

2

1
0

7
2

.7
6

7
5

j1
5

c1
0

b
4

2
2

1

0
.0

1

2
2

1

2
2

1

0
.4

5

2
2

1

0
.0

3

2
2

1

2
2

1

2
2

1

8
4

2
2

1

1
.7

4

2
2

1

0
.2

1

2
2

1

1
0

7
6

.2
2

7
6

j1
5

c1
0

b
5

2
0

0

0
.1

4

2
0

0

2
0

0

0
.4

7

2
0

0

0
.7

7

2
0

0

2
0

0

2
0

0

8
4

2
0

0

1
.6

5

2
0

0

0
.4

0

2
0

0

1
0

7
8

.7
0

7
7

j1
5

c1
0

b
6

2
1

9

0
.0

1

2
1

9

2
1

9

0
.4

5

2
1

9

0
.0

2

2
1

9

2
1

9

2
1

9

6
7

2
1

9

1
.9

4

2
1

9

0
.1

9

2
1

9

1
0

8
4

.4
6

A

v
e
r
a
g

e

2
1

1
.8

3

0
.0

3

2
1

1
.8

3

2
1

1
.8

3

0
.8

2

2
1

1
.8

3

0
.2

0

2
1

1
.8

3

2
1

1
.8

3

2
1

1
.8

3

7
7

.5
0

2
1

1
.8

3

1
.7

4

2
1

1
.8

3

0
.2

8

2
1

1
.8

3

1
0

7
6

.8
3

T
ab

le
 7

.1
.

–
 C

o
n
ti

n
u
ed

 f
ro

m
 p

re
vi

o
u
s

p
a
g
e

123

However, the solution times of the proposed algorithms, CP, HA, and GSO, are

acceptable, since they are below 1600 seconds.

j10c5c* type problems are one of the hardest problem group. PSO, B&B and CP reach

optimality for all instances. On the other hand, HA could not solve only j10c5c3

instance to optimality. Moreover, GSO solves only j10c5c1 to optimality. However,

the solutions of the problems that HA and GSO could not solve to optimality, are only

1 time unit away from the optimal solution. Therefore, the results of HA and GSO are

still promising and their solution times are below 1600 seconds. Furthermore, CP is

faster than PSO for j10c5c3 instance. CP is dominantly better than the other solution

algorithms. For every instance, HA is better than QIA. For only instance 16, GSO

performs equal to QIA, for other instances, GSO is better than QIA. For instance 14,

HA and GSO perform also better than AIS and GA, since they solve this instance

within a solution time below 1600 seconds. For instance 19, HA and GSO performs

better than GA, since they reach a promising solution only 1 unit away from the

optimal solution within 1600 seconds for this instance.

Like j10c5c*, j10c5d* type problems are one of the hardest group. Despite the fact

that they are hard to solve, HA and GSO could not solve only j10c5d2 and j10c5d5

instances to optimality. However, since their makespan values are only 1 unit away

from the optimal solution, both HA and GSO are promising in terms of effectiveness

and efficiency. PSO, B&B and CP solve all instances to optimality. For instance 18,

HA and GSO perform also better than B&B in terms of the solution time. For instance

19, HA and GSO perform better than ACO in terms of solution quality. For instance

20, HA is faster than B&B. For instance 23, HA and GSO perform faster than B&B

to reach optimality.

j10c10a* is another easy problem type whose instances are all solved to optimality by

all algorithms. Since the solution times of the proposed solution methods are below

124

1600 seconds, the solutions provided are acceptable, and hence, CP, HA, and GSO are

still promising.

Like j10c10a*, j10c10b* type problems are easy to solve, and they are solved to

optimality by all algorithms (except QIA) within a solution time of 1600 seconds.

One of the hardest problem types, j10c10c*, could not be solved optimality with ease.

Instance 36 is solved to optimality by only CP and almost optimal solutions are

reached by HA and GSO within a solution time below 1600 seconds. Therefore, even

though PSO, AIS, and GA reach the makespan value equal to 115 for instance 36, they

could not reach this solution within 1600 seconds. CP also solves instance 37 to

optimality while the other algorithms, except B&B, fail to do so. However, for

instance 37, PSO’s solutions are better than HA and GSO. Nevertheless, PSO could

not reach its solution within 1600 seconds and the solutions of HA and GSO are only

2 units away from PSO’s solution and only 3 units away from CP’s solution which is

optimal. Moreover, HA and GSO reach their solutions within 1600 seconds for

instance 37. Instance 38 is the only problem in this set to be solved to optimality by

all solution methods except ACO, ACS, and B&B. However, PSO, AIS, and GA could

not reach to optimality within 1600 seconds. Therefore, for this instance, it can be said

that the proposed solution methods are better than PSO. Instance 39 is solved to

optimality by only CP. On the other hand, PSO, AIS, GA, HA and GSO reach a

solution which is only 1 unit far from the optimal solution. However, PSO, AIS, and

GA reach the same solution but in a larger time than 1600 seconds for this instance.

Therefore, it can be said that the proposed solution methods perform better than PSO,

AIS and GA for this instance. Instance 40 is solved to optimality by only PSO and CP.

However, PSO could not reach its solution within 1600 seconds for this instance.

Therefore, the proposed CP model is better than PSO for this instance. Moreover, HA

and GSO reach a solution only 1 unit far from the optimal solution within 1600

seconds. Therefore, the proposed HA heuristic and GSO metaheuristic still seem

promising. Instance 41 is solved to optimality by only CP, while PSO, AIS, GA, HA,

125

and GSO reach a solution only 2 units far from the optimal solution. While HA and

GSO reach their solutions within 1600 seconds, the other algorithms could not reach

the same solution within 1600 seconds. Therefore, for this instance, CP is the superior

method, and HA and GSO perform better than PSO only in terms of efficiency. CP is

superior to others in terms of both effectiveness and efficiency. Both HA and GSO are

better than AIS and GA in terms of only solution time, since they reach the same

solution with the same gap from the optimal solution provided by CP. For instances

38, 39, and 41, HA and GSO perform better than ACO. While CP is superior to all of

the solution methods again, HA and GSO are better than ACS and B&B for all of the

instances except the instance 37, since B&B provides the optimal solution within 1600

seconds. However, for other instances, B&B provides solutions which are not optimal

within solution times higher than 1600 seconds. According to the results, GSO and

especially CP are promising.

Another easy problem type j15c5a* is solved to optimality by all solution methods.

By the increase in the number of jobs from 10 to 15, the solution time of GSO

increases. However, since the solution times of GSO are below 1600 seconds, GSO is

still promising.

Like j15c5a*, j15c5b* type problems are also easy to solve. Therefore, all of the

solution methods solve all of the instances to optimality in short computational times.

Another group of the hardest problems is j15c5c* type problem. Only instance 59 is

solved to optimality by all of the solution methods. On the other hand, other instances

are solved to optimality by only PSO and CP. PSO uses too much time to solve

instance 55, while the proposed CP model solves it in a very short time. Moreover,

PSO could not reach the optimal solution for instance 58 within 1600 seconds, while

CP could solve it in 7 seconds only. Therefore, it can be said that for these instances,

CP is better than PSO in general. On the other hand, HA and GSO provide promising

solutions within acceptable amounts of time.

126

Another hard problem group is j15c5d*. Both PSO and CP solve all of the instances

to optimality. However, PSO could not reach these solutions within 1600 seconds.

Therefore, CP is better than PSO for these instances. On the other hand, HA and GSO

find solutions only 1 unit or 2 units far from the optimal solution within 1600 seconds.

Thus, they are still promising solution methods. GSO is better than HA for instance

64, while HA is better than GSO for instance 65. CP is the best solution method in

terms of both effectiveness and efficiency as expected, since CP solves all of the

instances to optimality. On the other hand, HA and GSO are better than ACO for the

instances 57, 61, 62, 63, 64, and 65. Moreover, GSO is also better than AIS and HA

for the instance 64 in terms of efficiency compared to AIS and in terms of

effectiveness compared to HA. HA and GSO are better than ACS and B&B for the

instances 57, 58, 62, 63, 64, and 65.

Although the number of stages increases, since a type configuration is easy to solve,

all of the instances in j15c10a* group are solved to optimality by all solution methods.

Due to the increments in both the number of jobs and stages, GSO requires more time

to solve the problems. However, since the solution time is below 1600 seconds for all

instances, GSO still seems to be promising.

Similar to j15c10a*, j15c10b* type problems are also easy to solve, because b type

configuration is easy to solve. All of the solution methods reach optimality within

solution times below 1600 seconds. Therefore, the proposed solution methods are still

promising.

Since PSO is stronger than at least one of QIA, AIS, GA, ACO, ACS, and B&B for

hard cases (c and d type configurations), the proposed solution methods are also better

than at least one of QIA, AIS, GA, ACO, ACS, and B&B for these cases.

127

According to the results of the computational study, the proposed solution methods

seem to be promising even for hard problem instances.

Moreover, regardless of the problem type, CP provides optimal solution for all

problem instances. Furthermore, HA and GSO never violate 1600 seconds rule and

provide optimal solutions for most of the instances. Another important deduction is

that if the bottleneck stage is explicitly shown, the problem becomes easier to solve.

For example, a and b type configurations have a single machine in the middle and the

first stages, respectively. If the processing times of the jobs do not vary drastically

from stage to stage, it is expected that the stage having one machine is the bottleneck.

Since, for these configurations, it is easy to identify the bottleneck stage, the problem

is open to manipulation, and thus, it becomes easier to solve. On the other hand, if the

bottleneck stage is hard to spot like in configurations c and d, it becomes harder to

obtain the optimal solution . Briefly, it can be said that an HFS scheduling problem

could be easier to solve, if one of the stages has only one machine. So, there is a high

probability that the stages having only one machine are candidates to be the

bottleneck. Nevertheless, the impact of the jobs’ processing times should not be

underestimated while identifying the bottleneck stage as explained in Chapter 4 as one

of the steps for BH.

According to Table 7.2, for most of the instances, LB (Neron et al., 2001) is equal to

GLB (Santos et al., 1995). However, LB is better than GLB when LB is not equal to

GLB. Therefore, it can be said that LB is strong enough to represent HFS problems.

On the other hand, since, for most of the instances, LB is equal to GLB and it is simple

to calculate GLB in terms of method and time, GLB is also useful lower bound to

represent HFS problems and thus, it can easily be used as a part of an algorithm like

in our proposed heuristic solution method HA.

128

Table 7.2. LB vs. GLB in the test problems

Comparison Number of test problems %

GLB>LB 5 6.58

LB>GLB 24 31.58

GLB=LB 47 61.84

129

CHAPTER 8

8. CONCLUSION AND FURTHER RESEARCH ISSUES

Although the HFS scheduling problem is NP-hard in the strong sense, HFS

configuration is still a good and common choice for having a flexible production

system, when many problems related to the deliveries of products are encountered in

industry. Obviously, these problems are caused by lack of quality and longer lead

times due to insufficient capacity and materials handling systems. Also, HFS

configuration is can be improved either from product layout when conventional flow

shop production is not sufficient or from process layout by means of separating parts

with relatively high demand that have similar manufacturing routings. In this study,

motivated by the HJS in fuselage’s panel production in the aerospace company, we

propose a DES-based framwework that helps in improving the existing HJS

configuration towards an HFS configuration. The DES model thus developed for an

HFS can be used at least for determining the number of parallel identical machines at

each stage. The DES tool can help in designing an HFS to streamline the material flow

for some parts/products that are similar in their processing requirements, based on

expected demand volumes and cycle time as well. The DES model developed

especially fits well for (HFc, Pm|skip, unavail(brkdwn)|Cmax) problem environment.

For the scheduling problem in HFS, we propose a CP model, an HA heuristic and a

GSO metaheuristic with an IH and an LS algorithm as alternatives to the available

solution methods in the literature. It is shown that the proposed solution methods yield

better results in terms of effectiveness compared to these solution methods and in

terms of efficiency compared to MILP model. The proposed solution methods also

provide better results for the case study as a large instance, when compared to the

renowned heuristic algorithms in the literature. Since each iteration is tried to be

completely independent from the other iterations, HA is ensured to be not stuck in

130

local optima with its random search strategy. Furthermore, HA’s random search

strategy is supported with the hybridization of a machine allocation rule FAM and a

job sequencing rule ECT that are particularly effective for HFS scheduling problems.

By this way, the same permutation schedule through the stages is prevented and the

schedule is tried to be made as close as possible to a non-delay structure. Since the

optimal schedule is located in a subset of a non-delay schedule set, by the use of HA,

it is aimed to have optimal schedules for any problem instances, if possible. If not, a

strong GLB, inspired by a previous study in the literature, is calculated in order to

cope with the large instance sizes for which getting the optimal solution is not possible

within a polynomial time. With the guidance of GLB in HA, the results show that a

and b type configurations are solved to optimality, while c and d type configurations

(hard ones) are solved to near-optimality.

On the other hand, CP model has its own unique structure. Since it has a declarative

programming language rather than an imperative programming language like MILP

model has, it becomes easy to model an HFS scheduling problem by constraint

programming. Moreover, CP model’s constraint propagation and depth first search

techniques accelarate the reduction process of decision variables domain. Thus, CP

model is highy efficient. Furthermore, CP model is the strongest method among all

solution methods covered in this study regardless of its simplicity. Therefore, we

highly recommend the use of the CP model, since it is the key to solve HFS scheduling

problems to optimality. Because it is proven that HFS scheduling problems are

strongly NP-hard, what CP model provides is absolutely incredible. CP model’s

unmatched power is shown with both the case study and test problems by comparing

it to other solution methods developed earlier in the literature and here in this study.

Therefore, we address our proposed CP model as one of exact approaches including

B&B and MILP model to solve the HFS scheduling problems to optimality.

The other proposed solution method is the GSO method enhanced with both IH and

LS algorithms. GSO’s exploration and exploitation phases are developed carefully in

131

order to escape from local optima. The parameter setup of GSO is inspired by the

study published earlier in the literature. The performance of GSO is promising, due to

the fact that it yields good solutions for the case study and test problems in terms of

both effectiveness and efficiency. The GSO method is the first one which effectively

and efficiently applies GSO to HFS scheduling problems.

Due to the fact that this study is inspired by a case study in an aerospace company, not

only are these proposed solution methods useful for researchers to make them extend

for further studies, but also they are so capable that they are adaptive for other real-

world scenarios in different industries for practitioners.

Similar to the literature, in this study, the objective is also minimizing the makespan.

However, real world scenarios require more than one objective, not only the makespan

but also energy consumption rates and especially cost items. Therefore, there is a

potential that this study can be extended to cover these objectives at the same time as

a Multi-Criteria Decision Making (MCDM) problem or one by one as smaller

subproblems. However, these real world scenario objectives, like energy consumption

rates and cost items, include the usage of electricity power and the cost of inventory

holding or more. Measuring these objectives is not easy for most of the cases.

Other than the objective functions, there is an another potential for an extension in the

constraints of the HFS configuration. Rather than snsd included in the processing times

of the jobs, ssd may be used to represent the setup times where setup changeovers

depend on the sequence of the jobs. Furthermore, for much smaller but more products,

there is a possibility to cover them with a group technology method in order to form

product families for batching them in the HFS configuration. By this way, new

objectives arise such as the number of tool changeovers between consecutive batch

families or the batch family with the maximum completion time. Nevertheless,

approximately 60% of the literature, the makespan is the most common objective

function in HFS scheduling problems.

132

With the advancements in technology, solution methods are enhanced or hybridized

with different techniques in order to improve the solution quality. In this study, the

proposed HA guided with GLB and GSO that are enhanced with IH and LS focus on

the exploration of different regions for a predetermined number of iterations as a

diversification strategy hybridized with the DES model with its parameters CT and

MoMk. Since HA and GSO dynamically improve the makespan according to FAM and

ECT strategies, they are also addressed as hybrid solution methods. Moreover, rather

than metaheuristics, hyper-heurisctic is the new kid on the block which seeks to select,

combine, generate or adapt several simpler heuristics with the contribution of Machine

Learning (ML) techniques. The advantage of hyper-heuristics is that they do not try

to solve the problem directly like a metaheuristic whose search region is bounded.

Instead, they try to find the best metaheuristic, for example, the one which yields the

better results among others. Hence, we address this study’s approach as a hyper-

heuristic, beacuse with the design of the DES model, several solution methods can be

simulated in almost-real HFS environment including uncertainty sources as well and

the best among them all can be selected as the best scheduling method.

133

REFERENCES

Adler, L., Fraiman, N., Kobacker, E., Pinedo, M., Plotnicoff, J.C., and Wu T. P.

(1993). BPSS: a scheduling support system for the packaging industry. Operations

Research, 41(4), 641–648.

Alharkan, I. M. (2005). Algorithms for sequencing and scheduling. Industrial

Engineering Department, College of Engineering, King Saud University, Riyadh,

Saudi Arabia.

Arthanary, T. S. and Ramaswamy, K. G. (1971). An extension of two machine

sequencing problem. OPSEARCH: The Journal of the Operational Research Society

of India, 8(4), 10–22.

Askin, R. G. and Standridge, C. R. (1993). Modeling and analysis of manufacturing

systems. John Wiley.

Bangsow, S. (2015). Tecnomatix plant simulation modeling and programming by

means of examples. Springer, 109.

Besbes, W., Loukil, T., and Teghem, J. (2006). Using genetic algorithm in the

multiprocessor flow shop to minimize the makespan. Proceedings of the International

Conference on Service Systems and Service Management, 1228–1233.

Brah, S. A. (1988). Scheduling in a flow shop with multiple processors. University of

Houston, Houston, TX, Unpublished Ph.D. Dissertation, 30-33.

134

Brah, S. A. and Hunsucker, J. L. (1991). Branch and bound algorithm for the flow-

shop with multiple processors. European Journal of Operational Research, 51(1), 88–

99.

Brah, S. A. and Loo, L. L. (1999). Heuristics for scheduling in a flow shop with

multiple processors. European Journal of Operational Research, 113(1), 113–122.

Campbell, H. G., Dudek, R. A., and Smith, M. L. (1970). A heuristic algorithm for the

n job, m machine sequencing problem. Management Science, 16(10), 630–637.

Carlier, J. and Neron, E. (2001). An exact method for solving the multiprocessor

flowshop, R.A.I.R.O: Operations Research, 34, 1–25.

Chamnanlor, C., Sethanan, K., Gen, M., and Chien, C. F. (2017). Embedding ant

system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with

time window constraints. Journal of Intelligent Manufacturing, 28(8), 1915–1931.

Chen, B. (1995). Analysis of classes of heuristics for scheduling a two-stage flow-

shop with parallel machines at one stage. Journal of the Operational Research Society,

46(2), 234–244.

Chen, L., Bostel, N., Dejax, P., Cai, J. C., and Xi, L. F. (2007). A tabu search algorithm

for the integrated scheduling problem of container handling systems in a maritime

terminal. European Journal of Operational Research, 181(1), 40–58.

Dugardin, F., Yalaoui, F., and Amodeo, L. (2010). New multi-objective method to

solve reentrant hybrid flow shop scheduling problem. European Journal of

Operational Research, 203(1), 22–31.

135

Eberhart, R. C. and Kennedy, J. (1995). A new optimizer using particle swarm theory.

Proceedings of the Sixth International on Micro Machines and Human Science, 39–

43.

Engin, O. and Doyen, A. (2004). A new approach to solve hybrid flow shop scheduling

problems by artificial immune system. Future Generation Computer Systems, 20(6),

1083–1095.

Engin, O., Ceran, G., and Yilmaz, M. K. (2011). An efficient genetic algorithm for

hybrid flow shop scheduling with multiprocessor task problems. Applied Soft

Computing, 11(3), 3056–3065.

Google OR-Tools. (2018). https://developers.google.com/optimization/cp/queens.

Grabowski, J. and Pempera, J. (2000). Sequencing of jobs in some production system.

European Journal of Operational Research, 125(3), 535–550.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1979).

Optimization and approximation in deterministic sequencing and scheduling: A

survey. Annals of Discrete Mathematics, 5, 287–326.

Gupta J. N. D. (1988). Two-stage, hybrid flow shop scheduling problem. Journal of

the Operational Research Society, 39(4), 359–364.

Gupta, J. N. D., Hariri, A. M. A., and Potts, C. N. (1997). Scheduling a two-stage

hybrid flow shop with parallel machines at the first stage. Annals of Operations

Research, 69, 171–191.

https://developers.google.com/optimization/cp/queens

136

Gupta, J. N. D., Kruger, K., Lauff, V., Werner, F., and Sotskov, Y. N. (2002).

Heuristics for hybrid flow shops with controllable processing times and assignable

due dates. Computers & Operations Research, 29(10), 1417–1439.

Ho, J. C. (1995). Flowshop sequencing with mean flowtime objective. European

Journal of Operational Research, 81, 571–578.

Hoogeveen, J. A., Lenstra, J. K., and Veltman, B. (1996). Preemptive scheduling in a

two-stage multiprocessor flow shop is NP-hard. European Journal of Operational

Research, 89(1), 172–175.

Hundal, T. S., and Rajgopal, J., (1988). An extension of Palmer's heuristic for the

flow-shop scheduling problem. International Journal of Production Research, 26 (6),

1119–1124.

Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup

times included. Naval Research Logistic Quarterly, 1(1), 61–68.

Khalouli, S., Ghedjati, F., and Hamzaoui, A. (2009). An integrated ant colony

optimization algorithm for the hybrid flow shop scheduling problem. Proceedings of

International Conference on Computers & Industrial Engineering, 554–559.

Kochhar, S. and Morris, R. J. T. (1987). Heuristic methods for flexible flow line

scheduling. Journal of Manufacturing Systems, 6(4), 299–314.

Kurz, M. E. and Askin, R. G. (2003). Comparing scheduling rules for flexible flow

lines. International Journal of Production Economics, 85(3), 371–388.

Laborie, P., Rogerie, J., Shaw, P., Vilím, P., and Katai, F. (2011). Interval-based

language for modeling scheduling problems: An extension to constraint programming.

Applied Optimization, 111–143.

137

Lee, C. Y. and Vairaktarakis, G. L. (1994). Minimizing makespan in hybrid

flowshops. Operations Research Letters, 16(3), 149–158.

Li, J. and Pan, Q. (2015). Solving the large-scale hybrid flow shop scheduling problem

with limited buffers by a hybrid artificial bee colony algorithm. Information Sciences,

316, 487–502.

Li, J., Sang, H., Han, Y., Wang, C., and Gao, K. (2018). Efficient multi-objective

optimization algorithm for hybrid flow shop scheduling problems with setup energy

consumptions. Journal of Cleaner Production, 181, 584–598.

Liao, C. J., Tjandradjaja, E., and Chung T. P. (2012). An approach using particle

swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling

problem. Applied Soft Computing, 12(6), 1755–1764.

Luo H., Du, B., Huang, G. Q., Chen, H., and Li, X. (2013). Hybrid flow shop

scheduling considering machine electricity consumption cost. International Journal

of Production Economics, 146(2), 423–439.

Marichelvam, M. K., Prabaharan, T., and Yang, X. S. (2014). Improved cuckoo search

algorithm for hybrid flow shop scheduling problems to minimize makespan. Applied

Soft Computing, 19, 93–101.

Muthiah-Nakarajan, V. and Noel, M. M. (2016). Galactic swarm optimization: A new

global optimization metaheuristic inspired by galactic motion. Applied Soft

Computing, 38, 771–787.

138

Naderi, B., Zandieh, M., Khaleghi Ghoshe Balagh, A., and Roshanaei, V. (2009). An

improved simulated annealing for hybrid flowshops with sequence-dependent setup

and transportation times to minimize total completion time and total tardiness. In press

at Expert Systems with Applications.

Narasimhan, S. L. and Panwalkar, S. S. (1984). Scheduling in a two-stage

manufacturing process. International Journal of Production Research, 22(4), 555–

564.

Nawaz, M., Enscore Jr., E. E., and Ham, I. (1983). A heuristic algorithm for the m-

machine, n-job flow-shop sequencing problem. Omega, 11(1), 91–95.

Neron, E., Baptiste, P., and Gupta, J. N. D. (2001). Solving hybrid flow shop problem

using energetic reasoning and global operations. Omega-International Journal of

Management Science, 29(6), 501–511.

Niu, Q., Zhou, T., and Ma, S. (2009). A quantum-inspired immune algorithm for

hybrid flow shop with makespan criterion. Journal of Universal Computer Science,

15, 765–785.

Nowicki, E. and Smutnicki, C. (1998). The flow shop with parallel machines: A tabu

search approach. European Journal of Operational Research, 106(2-3), 226–253.

Oguz, C. and Ercan, M. (2005). A genetic algorithm for hybrid flow-shop scheduling

with multiprocessor tasks. Journal of Scheduling, 8(4), 323–351.

Oguz, C., Zinder, Y. Do, V. H., Janiak, A., and Lichtenstein, M. (2004). Hybrid flow-

shop scheduling problems with multiprocessor task systems. European Journal of

Operational Research, 152, 115–131.

139

Palmer, D. S. (1965). Sequencing jobs through a multi-stage process in the minimum

total time: A quick method of obtaining a near optimum. Operational Research

Quarterly, 16(1), 101.

Paternina Arboleda, C. D., Montoya Torres, J. R., Acero Dominguez, M. J., and

Herrera Hernandez, M. C. (2008). Scheduling jobs on k-stage flexible flow-shop.

Annals of Operations Research, 164, 29–40.

Paul, R. J. (1979). Production scheduling problem in the glass-container industry.

Operations Research, 27(2), 290–302.

Pinedo, M. L. (2016). Scheduling: Theory, algorithms, and systems, 5th edition, 13–

19.

Puaar, P. (2017). Job Sequencing - 9 Processing 'n' jobs on 'm' machines Part 1 of 2

Conditions and Job order.

Rajendran, C. and Chaudhuri, D. (1992). A multistage parallel-processor flowshop

problem with minimum flowtime. European Journal of Operational Research, 57(1),

111–122.

Rao, T. B. K. (1970). Sequencing in the order a, b, with multiplicity of machines for

a single operation. OPSEARCH: Journal of the Operational Research Society of India,

7, 135–144.

Ribas, I., Leisten, r., and Framiñan, J. (2010). Review and classification of hybrid flow

shop scheduling problems from a production system and a solutions procedure

perspective. Computers & Operations Research, 37(8), 1439–1454.

140

Ruiz, R. and Maroto, C. (2006). A genetic algorithm for hybrid flowshops with

sequence dependent setup times and machine eligibility. European Journal of

Operational Research, 169(3), 781–800.

Ruiz, R. and Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling

problem. European Journal of Operational Research, 205(1), 1–18.

Ruiz, R., Serifoglu, F. S., and Urlings, T. (2008). Modeling realistic hybrid flexible

flowshop scheduling problems. Computers & Operations Research, 35(4), 1151–

1175.

Salvador, M. S. (1973). A solution to a special case of flow shop scheduling problems.

Lecture Notes in Economics and Mathematical Systems, 86, 83–91.

Santos, D. L., Hunsucker, J. L., and Deal, D. E. (1995). Global lower bounds for flow

shops with multiple processors. European Journal of Operational Research, 80(1),

112–120.

Shahvari, O. and Logendran, R. (2016). Hybrid flow shop batching and scheduling

with a bi-criteria objective. International Journal of Production Economics, 179, 239

– 258.

Sheppard., M. (2012). A MATLAB function: allfitdist. MIT Lincoln Laboratory.

Sherali, H. D., Sarin, S. C., and Kodialam, M. S. (1990). Models and algorithms for a

two-stage production process. Production Planning & Control, 1(1), 27–39.

Sriskandarajah, C. and Sethi, S. P. (1989). Scheduling algorithms for flexible

flowshops: Worst and average case performance. European Journal of Operational

Research, 43(2), 143–160.

141

Taşgetiren, M. F., Liang, Y. C., Sevkli, M., and Gencyilmaz, G. (2007). A particle

swarm optimization algorithm for makespan and total flowtime minimization in the

permutation flowshop sequencing problem. European Journal of Operational

Research, 177(3), 1930–1947.

Wittrock, R. J. (1985). Scheduling algorithms for flexible flow lines. IBM Journal of

Research and Development, 29(4), 401–412.

Yang, B. P., Pegden, C. D., and Enscore, E. (1984). A survey and evaluation of static

flowshop scheduling heuristics. International Journal of Production Research, 22 (1),

127–141.

143

APPENDICES

A. Some Plots for the Collection, Analysis and Interpretation of the Data

Processing Times Data

Figure 0.1. The histogram of panel 2’s stretching stage processing time data from

2140 raw records

144

Figure 0.2. The best distribution with its mean=1.8920 hrs for panel 2’s stretching

stage processing time data

Machine Breakdown Data

Figure 0.3. Breakdown duration plots of heat treatment stage before cleansing

process (2010-2017 data)

145

Figure 0.4. Breakdown duration plots of heat treatment stage after cleansing process

(2010-2017 data)

Figure 0.5. The histogram of heat treatment stage’s breakdown duration from 73

cleansed records (2010-2017 data)

146

Figure 0.6. The best distribution with its mean=4.3306 hours for heat treatment

stage’s breakdown duration (2010-2017 data)

Figure 0.7. Breakdown frequency plots of heat treatment stage before cleansing

process (2010-2017 data)

147

Figure 0.8. Breakdown frequency plots of heat treatment stage after cleansing

process (2010-2017 data)

Figure 0.9. The histogram of heat treatment stage’s breakdown frequency from 73

cleansed records (2010-2017 data)

148

Figure 0.10. The best distribution with its mean=36.6027 days for heat treatment

stage’s breakdown frequency (2010-2017 data)

149

B. MoMk Calculations for the Case Study

k

j

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

su
m

[(
p
jk

×
D
j)

/C
k
]

M
o
M

k

F
in

a
l

M
o
M

k

(D
E

S
)

p
1
k
×
D

1

p
2
k
×
D
2

p
3
k
×
D
3

p

4
k
×
D
4

p

5
k
×
D
5

p

6
k
×
D
6

p

7
k
×
D
7

p

8
k
×
D
8

p

9
k
×
D
9

p

1
0
k
×
D
1
0

p

1
1
k
×
D
1
1

p

1
2
k
×
D
1
2

p

1
3
k
×
D

1
3

1

0
.0

4
4

1
.0

4
6

2
.0

0
.0

0
.0

0
.0

0
.0

6
6

1
.5

7
7

7
.0

9
4

5
.0

1
0

9
2

.0

9
6

6
.0

5
4

6
.0

0
.8

7

1

1

2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

1
0

0
8

.0

0
.1

5

1

1

3

2
6

2
.5

0
.0

0
.0

2
6

2
.5

2
6

2
.5

2
6

2
.5

2
6

2
.5

2
6

2
.5

2
6

2
.5

2
6

2
.5

2
6

2
.5

2
6

2
.5

2
6

2
.5

0
.4

3

1

1

4

0
.0

0
.0

0
.0

1
0

5
0

.0

1
0

5
0

.0

1
0

5
0

.0

1
0

5
0

.0

1
0

5
0

.0

1
0

5
0

.0

1
0

5
0

.0

1
0

5
0

.0

1
0

5
0

.0

1
0

5
0

.0

1
.5

6

2

2

5

0
.0

0
.0

0
.0

4
2

0
0

.0

4
2

0
0

.0

4
2

0
0

.0

4
2

0
0

.0

4
2

0
0

.0

4
2

0
0

.0

4
2

0
0

.0

4
2

0
0

.0

4
2

0
0

.0

4
2

0
0

.0

6
.2

2

7

7

6

2
1

1
0

.5

1
9

8
4

.5

1
9

4
2

.5

2
6

7
7

.5

2
6

6
7

.0

2
5

9
3

.5

2
6

8
8

.0

2
3

3
1

.0

3
3

2
8

.5

3
4

2
3

.0

3
5

2
8

.0

3
6

0
1

.5

2
4

2
5

.5

5
.2

3

6

6

7

2
6

2
.5

2
6

2
.5

2
6

2
.5

0
.0

0
.0

0
.0

0
.0

2
6

2
.5

2
6

2
.5

2
6

2
.5

2
6

2
.5

2
6

2
.5

2
6

2
.5

0
.3

5

1

1

8

0
.0

0
.0

0
.0

1
7

3
2

.5

1
6

8
0

.0

1
8

0
6

.0

1
7

7
4

.5

1
8

5
8

.5

1
3

6
5

.0

1
5

6
4

.5

1
8

7
9

.5

1
2

3
9

.0

1
1

4
4

.5

2
.3

8

3

3

9

1
3

6
5

.0

9
0

3
.0

8
7

1
.5

3
8

7
4

.5

3
8

5
3

.5

3
7

1
7

.0

3
7

5
9

.0

3
4

6
5

.0

3
6

5
4

.0

3
6

7
5

.0

5
4

6
0

.0

4
0

9
5

.0

3
4

9
6

.5

6
.2

5

7

7

1
0

2
6

2
.5

2
6

2
.5

2
6

2
.5

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.1

2

1

1

1
1

1
2

0
7

.5

7
8

7
.5

4
5

1
.5

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

1
5

4
3

.5

0
.5

9

1

1

1
2

2
5

3
0

.5

2
5

7
2

.5

1
1

9
7

.0

2
9

1
9

.0

3
0

1
3

.5

3
0

0
3

.0

2
9

1
9

.0

3
8

0
1

.0

4
9

2
4

.5

4
1

3
7

.0

4
9

7
7

.0

4
0

0
0

.5

3
9

3
7

.5

6
.5

1

7

6

1
3

1
6

8
.0

1
5

7
.5

1
2

6
.0

8
9

2
.5

8
9

2
.5

8
7

1
.5

8
2

9
.5

5
4

6
.0

7
3

5
.0

6
0

9
.0

6
1

9
.5

6
5

1
.0

5
6

7
.0

1
.1

4

2

2

1
4

0
.0

0
.0

0
.0

6
5

1
.0

7
1

4
.0

6
8

2
.5

6
8

2
.5

6
8

2
.5

6
8

2
.5

6
8

2
.5

6
8

2
.5

6
8

2
.5

6
8

2
.5

1
.0

1

2

1

1
5

0
.0

0
.0

0
.0

9
8

7
.0

9
6

6
.0

8
8

2
.0

9
2

4
.0

7
1

4
.0

7
2

4
.5

7
1

4
.0

9
3

4
.5

7
7

7
.0

7
3

5
.0

1
.2

4

2

2

1
6

6
1

9
.5

6
5

1
.0

6
4

0
.5

0
.0

6
9

3
.0

0
.0

5
8

8
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.4

7

1

1

1
7

4
2

0
.0

4
2

0
.0

4
2

0
.0

4
2

0
.0

4
2

0
.0

4
2

0
.0

4
2

0
.0

4
2

0
.0

4
2

0
.0

4
2

0
.0

4
2

0
.0

4
2

0
.0

4
2

0
.0

0
.8

1

1

1

1
8

1
4

0
7

.0

1
7

0
1

.0

1
0

7
1

.0

1
4

9
1

.0

1
5

4
3

.5

1
6

1
7

.0

1
3

9
6

.5

4
1

7
9

.0

3
2

4
4

.5

3
5

9
1

.0

3
6

4
3

.5

3
5

9
1

.0

4
5

8
8

.5

4
.9

0

5

5

1
9

2
2

0
.5

2
4

1
.5

1
4

7
.0

2
1

0
.0

2
3

1
.0

2
1

0
.0

1
8

9
.0

2
6

2
.5

3
9

9
.0

3
5

7
.0

3
4

6
.5

2
9

4
.0

4
0

9
.5

0
.5

2

1

1

T
ab

le
 0

.1
.
M

o
M

k
ca

lc
u

la
ti

o
n
 t

ab
le

150

C. Processing Times of the Jobs

Table 0.2. The processing times of the jobs at each stage (hours)

k j
1 2 3 4 5 6 7 8 9 10 11 12 13

p
1k

 p
2k

 p
3k

 p
4k

 p
5k

 p
6k

 p
7k

 p
8k

 p
9k

 p
10k

 p
11k

 p
12k

 p
13k

1 0 0.42 0.44 0 0 0 0 0.63 0.74 0.9 1.04 0.92 0.52

2 0 0 0 0 0 0 0 0 0 0 0 0 0.96

3 0.25 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

4 0 0 0 1 1 1 1 1 1 1 1 1 1

5 0 0 0 4 4 4 4 4 4 4 4 4 4

6 2.01 1.89 1.85 2.55 2.54 2.47 2.56 2.22 3.17 3.26 3.36 3.43 2.31

7 0.25 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25

8 0 0 0 1.65 1.6 1.72 1.69 1.77 1.3 1.49 1.79 1.18 1.09

9 1.3 0.86 0.83 3.69 3.67 3.54 3.58 3.3 3.48 3.5 5.2 3.9 3.33

10 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0

11 1.15 0.75 0.43 0 0 0 0 0 0 0 0 0 1.47

12 2.41 2.45 1.14 2.78 2.87 2.86 2.78 3.62 4.69 3.94 4.74 3.81 3.75

13 0.16 0.15 0.12 0.85 0.85 0.83 0.79 0.52 0.7 0.58 0.59 0.62 0.54

14 0 0 0 0.62 0.68 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65

15 0 0 0 0.94 0.92 0.84 0.88 0.68 0.69 0.68 0.89 0.74 0.7

16 0.59 0.62 0.61 0 0.66 0 0.56 0 0 0 0 0 0

17 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

18 1.34 1.62 1.02 1.42 1.47 1.54 1.33 3.98 3.09 3.42 3.47 3.42 4.37

19 0.21 0.23 0.14 0.2 0.22 0.2 0.18 0.25 0.38 0.34 0.33 0.28 0.39

151

D. LEKIN Outputs and Excel Spreadsheets of Dispatching Rules

SPT (Cmax in minutes)

Figure 0.11. SPT rule performance table

152

LPT (Cmax in minutes)

Figure 0.12. LPT rule performance table

153

STPT

Table 0.3. The job sequence with the STPT rule

k j 3 2 1 6 4 7 5 8 10 9 12 13 11

1 0.44 0.42 0.00 0.00 0.00 0.00 0.00 0.63 0.90 0.74 0.92 0.52 1.04

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.00

3 0.00 0.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

4 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5 0.00 0.00 0.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

6 1.85 1.89 2.01 2.47 2.55 2.56 2.54 2.22 3.26 3.17 3.43 2.31 3.36

7 0.25 0.25 0.25 0.00 0.00 0.00 0.00 0.25 0.25 0.25 0.25 0.25 0.25

8 0.00 0.00 0.00 1.72 1.65 1.69 1.60 1.77 1.49 1.30 1.18 1.09 1.79

9 0.83 0.86 1.30 3.54 3.69 3.58 3.67 3.30 3.50 3.48 3.90 3.33 5.20

10 0.25 0.25 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 0.43 0.75 1.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.47 0.00

12 1.14 2.45 2.41 2.86 2.78 2.78 2.87 3.62 3.94 4.69 3.81 3.75 4.74

13 0.12 0.15 0.16 0.83 0.85 0.79 0.85 0.52 0.58 0.70 0.62 0.54 0.59

14 0.00 0.00 0.00 0.65 0.62 0.65 0.68 0.65 0.65 0.65 0.65 0.65 0.65

15 0.00 0.00 0.00 0.84 0.94 0.88 0.92 0.68 0.68 0.69 0.74 0.70 0.89

16 0.61 0.62 0.59 0.00 0.00 0.56 0.66 0.00 0.00 0.00 0.00 0.00 0.00

17 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40

18 1.02 1.62 1.34 1.54 1.42 1.33 1.47 3.98 3.42 3.09 3.42 4.37 3.47

19 0.14 0.23 0.21 0.20 0.20 0.18 0.22 0.25 0.34 0.38 0.28 0.39 0.33

Total 7.48 9.89 10.32 20.30 20.35 20.65 21.13 23.52 24.66 24.79 24.85 25.98 27.96

154

LTPT

Table 0.4. The job sequence with the LTPT rule

k j 11 13 12 9 10 8 5 7 4 6 1 2 3

 1 1.04 0.52 0.92 0.74 0.90 0.63 0.00 0.00 0.00 0.00 0.00 0.42 0.44

2 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.00 0.00

4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00

5 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 0.00 0.00 0.00

6 3.36 2.31 3.43 3.17 3.26 2.22 2.54 2.56 2.55 2.47 2.01 1.89 1.85

7 0.25 0.25 0.25 0.25 0.25 0.25 0.00 0.00 0.00 0.00 0.25 0.25 0.25

8 1.79 1.09 1.18 1.30 1.49 1.77 1.60 1.69 1.65 1.72 0.00 0.00 0.00

9 5.20 3.33 3.90 3.48 3.50 3.30 3.67 3.58 3.69 3.54 1.30 0.86 0.83

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.25 0.25

11 0.00 1.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.15 0.75 0.43

12 4.74 3.75 3.81 4.69 3.94 3.62 2.87 2.78 2.78 2.86 2.41 2.45 1.14

13 0.59 0.54 0.62 0.70 0.58 0.52 0.85 0.79 0.85 0.83 0.16 0.15 0.12

14 0.65 0.65 0.65 0.65 0.65 0.65 0.68 0.65 0.62 0.65 0.00 0.00 0.00

15 0.89 0.70 0.74 0.69 0.68 0.68 0.92 0.88 0.94 0.84 0.00 0.00 0.00

16 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.56 0.00 0.00 0.59 0.62 0.61

17 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40

18 3.47 4.37 3.42 3.09 3.42 3.98 1.47 1.33 1.42 1.54 1.34 1.62 1.02

19 0.33 0.39 0.28 0.38 0.34 0.25 0.22 0.18 0.20 0.20 0.21 0.23 0.14

Total 27.96 25.98 24.85 24.79 24.66 23.52 21.13 20.65 20.35 20.30 10.32 9.89 7.48

155

E. Outputs of the Renowned Heuristic Algorithms

Palmer’s Heuristic (Results after flow shop reduction)

j

k

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1

5

1
6

1
7

1
8

1
9

 A

j
−

(m
−

(2
×

k
−

1
))

-1
8

-1

6

-1
4

-1

2

-1
0

-8

-6

-4

-2

0

2

4

6

8

1
0

1

2

1
4

1
6

1
8

1

0
.0

0

.0

-3
.5

0
.0

0
.0

-2

.7

-1
.5

0
.0

-0

.4

0
.0

2
.3

1
.6

0
.5

0
.0

0

.0

7
.1

5

.6

4
.3

3

.8

1
7

.1

5

-7
.6

0

.0

0
.0

0
.0

0
.0

-2

.5

-1
.5

0
.0

-0

.3

0
.0

1
.5

1
.6

0
.5

0
.0

0

.0

7
.4

5

.6

5
.2

4

.1

1
4

.9

2

-7
.9

0

.0

0
.0

0
.0

0
.0

-2

.5

-1
.5

0
.0

-0

.2

0
.0

0
.9

0
.8

0
.4

0
.0

0

.0

7
.3

5

.6

3
.3

2

.5

1
4

.1

7

0
.0

0

.0

-3
.5

-6

.0

-5
.7

-3

.4

0
.0

-2

.2

-1
.1

0
.0

0
.0

1
.9

2
.6

5
.0

4

.7

0
.0

5

.6

4
.5

3

.6

1
1

.7

3

0
.0

0

.0

-3
.5

-6

.0

-5
.7

-3

.4

0
.0

-2

.1

-1
.1

0
.0

0
.0

1
.9

2
.6

5
.4

4

.6

7
.9

5

.6

4
.7

4

.0

8
.6

6

0
.0

0
.0

-3

.5

-6
.0

-5

.7

-3
.3

0

.0

-2
.3

-1

.0

0
.0

0

.0

1
.9

2

.5

5
.2

4
.2

0
.0

5
.6

4
.9

3
.6

6
.1

4

0
.0

0

.0

-3
.5

-6

.0

-5
.7

-3

.4

0
.0

-2

.3

-1
.0

0
.0

0
.0

1
.9

2
.4

5
.2

4

.4

6
.7

5

.6

4
.3

3

.2

5
.9

8

-1
1

.3

0
.0

-3

.5

-6
.0

-5

.7

-3
.0

-1

.5

-2
.4

-0

.9

0
.0

0
.0

2
.4

1
.6

5
.2

3

.4

0
.0

5

.6

1
2

.7

4
.5

1

.1

9

-1
3

.3

0
.0

-3

.5

-6
.0

-5

.7

-4
.2

-1

.5

-1
.7

-1

.0

0
.0

0
.0

3
.1

2
.1

5
.2

3

.5

0
.0

5

.6

9
.9

6

.8

-0
.8

1
3

-1
6
.2

0
.0

-3

.5

-6
.0

-5

.7

-4
.4

-1

.5

-2
.0

-1

.0

0
.0

0

.0

2
.6

1

.7

5
.2

3
.4

0
.0

5
.6

1
0
.9

6
.1

-4

.6

1
0

-1
8

.7

0
.0

-3

.5

-6
.0

-5

.7

-4
.5

-1

.5

-2
.4

-1

.5

0
.0

0
.0

3
.2

1
.8

5
.2

4

.5

0
.0

5

.6

1
1

.1

5
.9

-4

.6

1
2

-1
6

.6

0
.0

-3

.5

-6
.0

-5

.7

-4
.6

-1

.5

-1
.6

-1

.1

0
.0

0
.0

2
.5

1
.9

5
.2

3

.7

0
.0

5

.6

1
0

.9

5
.0

-5

.7

1
1

-9
.4

-1

5
.4

-3

.5

-6
.0

-5

.7

-3
.1

-1

.5

-1
.5

-1

.0

0
.0

2
.9

2
.5

1
.6

5
.2

3

.5

0
.0

5

.6

1
4

.0

7
.0

-6

.6

T
ab

le
 0

.5
.
T

h
e

jo
b
 s

eq
u
e
n
c
e

w
it

h
 t

h
e

P
a
lm

er
’s

 h
eu

ri
st

ic

156

CDS Algorithm (Results after flow shop reduction)

Table 0.6. The job sequence with the CDS algorithm

Iteration
Job position

Cmax
1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 4 5 6 7 13 9 10 11 12 8 2 3 33.12

2 1 4 5 6 7 2 8 9 10 12 13 11 3 32.53

3 1 4 5 6 7 2 3 8 9 10 12 11 13 33.55

4 1 2 3 4 5 6 7 8 13 11 10 9 12 32.57

5 1 2 3 4 5 6 7 13 11 8 10 9 12 32.47

6 1 2 3 6 5 4 7 8 13 11 10 9 12 32.57

7 1 2 3 6 5 4 7 8 13 11 9 10 12 32.57

8 1 2 3 5 4 6 7 8 9 11 13 10 12 32.92

9 1 2 3 5 6 4 7 13 11 9 10 12 8 32.92

10 1 2 3 5 6 4 7 13 11 9 10 12 8 32.92

11 3 2 1 5 6 4 7 8 9 13 11 12 10 33.17

12 3 2 1 5 4 6 7 8 13 11 9 10 12 32.82

13 3 2 1 7 6 4 5 8 13 11 9 10 12 32.82

14 3 2 1 4 7 6 5 13 11 9 10 12 8 33.17

15 3 2 1 6 7 4 5 8 13 11 9 10 12 32.82

16 3 2 1 6 4 7 8 5 9 10 12 11 13 33.85

17 2 1 6 4 7 8 5 9 10 12 13 11 3 32.82

18 1 6 4 7 5 13 11 9 10 12 8 2 3 32.67

157

NEH Algorithm (Results after flow shop reduction)

Table 0.7. The job sequence with the NEH algorithm

j Tj
Iteration

Job Position

13 9.30 1 2 3 4 5 6 7 8 9 10 11 12 13

11 8.11 1 11 13

10 7.37 2 11 13 10

12 7.34 3 11 13 12 10

9 7.29 4 11 13 12 10 9

8 6.93 5 11 8 13 12 10 9

5 6.42 6 11 5 8 13 12 10 9

7 6.18 7 11 5 8 13 7 12 10 9

4 5.69 8 4 11 5 8 13 7 12 10 9

6 5.68 9 4 11 5 8 6 13 7 12 10 9

1 4.37 10 4 11 5 8 6 13 1 7 12 10 9

2 4.17 11 4 11 5 8 6 13 1 7 12 10 9 2

3 3.40 12 4 11 5 8 6 13 1 7 12 10 9 3 2

