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ABSTRACT 

 

METHODS FOR HYBRID FLOW SHOP SCHEDULING AND A CASE 

STUDY IN AN AEROSPACE COMPANY 

 

Özmen, Yiğitalp 

Master of Science, Industrial Engineering 

Supervisor: Assoc. Prof. Dr. Sedef Meral 

 

September 2019, 157 pages 

 

In this study, we address the scheduling problem in Hybrid Flow Shop (HFS) with 

makespan objective. Since this problem is known to be NP-hard and an HFS is a 

common environment in real-life manufacturing systems, several approximate 

solution approaches have been proposed in the literature. Hence, we resort to some of 

these such as MILP model, dispatching rules, Palmer, CDS, NEH, and Bottleneck 

Heuristic. Due to the complexity of HFS scheduling problem, MILP model provides 

only a near optimal solution by using CPLEX for the real problem which we are 

inspired by the scheduling problem in the manufacturing of fuselage panels at an 

aerospace company as a case study whose current hybrid job shop is converted to an 

HFS by discrete event simulation to improve the output quality, lessen materials 

handling and shorten the manufacturing lead time. The job sequences of these 

approaches are simulated to compute makespan values of HFS scheduling problem. 

Moreover, we propose a Constraint Programming (CP) model for solving HFS 

scheduling problem to optimality for the real problem and test problems. We also 

propose a Hybrid Algorithm (HA) and a Galactic Swarm Optimization (GSO) in order 

not to be stuck in local optima for most of the test problems and to solve the real 

problem for optimality within an acceptable computational time. While HA and GSO 
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seem to be promising for solving most of the test problems to optimality, the CP model 

outperforms the other approaches in the literature by solving all of them to optimality. 

 

Keywords: Aerospace Industry, Constraint Programming, Galactic Swarm 

Optimization, Hybrid Flow Shop, Scheduling   
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ÖZ 

 

MELEZ AKIŞ TİPİ ATÖLYE ÇİZELGELEMESİ İÇİN YÖNTEMLER VE 

BİR HAVACILIK FİRMASINDA VAKA ANALİZİ 

 

Özmen, Yiğitalp 

Yüksek Lisans, Endüstri Mühendisliği 

Tez Danışmanı: Doç. Dr. Sedef Meral 

 

Eylül 2019, 157 sayfa 

 

Bu çalışmada, Melez Akış-tipi Atölye (MAA) çizelgeleme problemini en büyük 

tamamlanma zamanı amacı ile ele aldık. Bu problemin NP-zor ve bir MAA’nın gerçek 

yaşam imalat sistemlerinde yaygın bir ortam olmasından dolayı literatürde birçok 

yaklaşık çözüm yaklaşımları önerilmiştir. Dolayısıyla, KTDP modeli, dağıtım 

kuralları, Palmer, CDS, NEH ve Darboğaz Sezgiseli gibi bunlardan bazılarına 

başvurduk. MAA çizelgeleme probleminin karmaşık olmasından dolayı KTDP 

CPLEX kullanarak gerçek problem için yalnızca optimale yakın bir sonuç sağlamıştır. 

Mevcut durumdaki melez sipariş-tipi atölyesi çıktı kalitesini arttırmak, malzeme 

elleçlemesini azaltmak ve üretim temin süresini kısaltmak için ayrık olaylı benzetim 

aracılığıyla MAA’ya dönüştürülen bu vakayı bir havacılık firmasında üretilmekte olan 

orta gövde panellerinin çizelgeleme probleminden ilham aldık. MAA çizelgeleme 

probleminin en büyük tamamlanma zamanı değerlerinin hesaplanabilmesi için bu 

çözüm yöntemlerinin iş sıralamaları simüle edilmiştir. Bundan başka, gerçek problem 

ve test problemlerini optimal olarak çözebilen bir kesin yöntem olan Kısıt 

Programlama (KP) modeli önerilmiştir. Ayrıca, test problemlerinin büyük bir 

bölümünün yerel optimalde sıkışmamasını sağlayacak ve gerçek problemi makul bir 

çözüm süresi içerisinde optimale yakın bir sonuç verecek şekilde çözebilen, bir Melez 

Algoritma (MA) ve bir Galaktik Sürü Optimizasyonu (GSO) önerilmiştir. MA ve 
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GSO, test problemlerinin büyük bir bölümünü optimal olarak çözebildiği için umut 

verici görünmekte iken, KP modeli, bunların tamamını optimal olarak çözdüğü için 

literatürdeki diğer çözüm yöntemlerinden daha iyi bir performans göstermiştir.  

 

Anahtar Kelimeler: Havacılık Sanayii, Kısıt Programlama, Galaktik Sürü 

Optimizasyonu, Melez Akış-tipi Atölye, Çizelgeleme 

 



 

 

 

ix 

 

To my beloved mother 



 

 

 

x 

 

ACKNOWLEDGEMENTS 

 

First of all, I would like to thank my supervisor Assoc. Prof. Dr. Sedef Meral for her 

kind guidance, encouragement and advice throughout the study. I would like to 

express my sincere appreciation for her motivation and friendly support in completing 

the research. 

I also appreciate the support of the engineers of Sheet Metal Manufacturing Planning, 

my colleague, Mr. Semih Karatokuş, and my managers, Mr. Mehmet Şahan and Mr. 

Arif Köksal for their patience. 

I express my gratitude to my father İzzet Özmen for his endless love, moral support, 

encouragement, and mentorship throughout my whole life.  

Finally, I would like to thank my wife Gamze Özmen who is always right beside me 

whenever I need. This study would not have been completed without her support, 

motivation and everlasting love. 

 

 

 

 

 

 

 

 

 

 



 

 

 

xi 

 

TABLE OF CONTENTS 

 

ABSTRACT ............................................................................................................ v 

ÖZ  ....................................................................................................................... vii 

ACKNOWLEDGEMENTS ..................................................................................... x 

TABLE OF CONTENTS ........................................................................................ xi 

LIST OF TABLES ................................................................................................ xiii 

LIST OF FIGURES .............................................................................................. xvi 

LIST OF ABBREVIATIONS ............................................................................... xix 

CHAPTERS 

1. INTRODUCTION ............................................................................................ 1 

2. LITERATURE REVIEW.................................................................................. 5 

2.1. Framework and Notation ............................................................................... 5 

2.2. Review of the HFS Scheduling Studies ........................................................ 12 

2.3. Summary of the Survey ............................................................................... 19 

3. PROBLEM DESCRIPTION ........................................................................... 23 

4. HFS SCHEDULING: MILP MODEL AND HEURISTICS ............................ 27 

4.1. Mixed-Integer Linear Programming (MILP) Model ..................................... 27 

4.2. Dispatching Rules ........................................................................................ 31 

4.3. Renowned Heuristic Algorithms .................................................................. 33 

5. PROPOSED SOLUTION METHODS ............................................................ 47 

5.1. Constraint Programming (CP) Model ........................................................... 48 

5.2. Hybrid Algorithm (HA) ............................................................................... 56 

5.2.1. Global Lower Bound (GLB) .................................................................. 56 



 

 

 

xii 

 

5.2.2. First Available Machine (FAM) and Earliest Completion Time (ECT) 

Strategies ........................................................................................................ 61 

5.2.3. Pseudo Code and Flowchart of the Hybrid Algorithm (HA)................... 63 

5.3. Galactic Swarm Optimization (GSO) ........................................................... 67 

5.3.1. GSO in HFS Scheduling ........................................................................ 67 

5.3.2. Pseudo Code of the GSO Metaheuristic ................................................. 71 

6. CASE STUDY IN THE AEROSPACE COMPANY....................................... 75 

6.1. Products: Panels of Fuselage ........................................................................ 77 

6.2. Production Processes ................................................................................... 80 

6.2.1. Data Analysis ........................................................................................ 94 

6.2.2. DES Model Design for an HFS Configuration ....................................... 95 

6.3. Computational Study ................................................................................. 112 

7. COMPUTATIONAL STUDY ...................................................................... 117 

8. CONCLUSION AND FURTHER RESEARCH ISSUES .............................. 129 

REFERENCES .................................................................................................... 133 

APPENDICES 

A. Some Plots for the Collection, Analysis and Interpretation of the Data .......... 143 

B. MoMk Calculations for the Case Study .......................................................... 149 

C. Processing Times of the Jobs ........................................................................ 150 

D. LEKIN Outputs and Excel Spreadsheets of Dispatching Rules ...................... 151 

E. Outputs of the Renowned Heuristic Algorithms ............................................ 155 

 

 



 

 

 

xiii 

 

LIST OF TABLES 

 

TABLES 

 

Table 2.1. Mathematical descriptions of objective function measures ..................... 10 

Table 2.2. HFS scheduling problems: some examples for α|β|γ triplet representation

 .............................................................................................................................. 11 

Table 2.3. Classification of the literature survey on HFS scheduling ...................... 20 

Table 3.1. Performance characteristics depending on flow and job shops ............... 23 

Table 4.1. Example: Palmer’s heuristic for (F3||Cmax) problem ............................... 35 

Table 4.2. Example: Completion times with Palmer’s heuristic for (F3||Cmax) problem

 .............................................................................................................................. 35 

Table 4.3. CDS algorithm for (Fm||Cmax) problem .................................................. 36 

Table 4.4. Example: 1st iteration of the CDS algorithm for (F3||Cmax) problem ....... 36 

Table 4.5. Example: 2nd iteration of the CDS algorithm for (F3||Cmax) problem ...... 37 

Table 4.6. Example: 1st step of the NEH algorithm for (F3||Cmax) problem ............. 39 

Table 4.7. Example: 2nd step of the NEH algorithm for (F3||Cmax) problem ............ 39 

Table 4.8. Example: 3rd step of the NEH algorithm for (F3||Cmax) problem ............. 39 

Table 4.9. Example: 4th step of the NEH algorithm for (F3||Cmax) problem ............. 40 

Table 4.10. Example: 5th step of the NEH algorithm for (F3||Cmax) problem ........... 40 

Table 4.11. Example: 6th step of the NEH algorithm for (F3||Cmax) problem ........... 41 

Table 4.12. Example (HF3, P2, 1, P2||Cmax) problem for BH ................................. 43 

Table 4.13. Example: Flow ratio table for each stage.............................................. 43 

Table 4.14. Example: Release times of jobs for the bottleneck stage ...................... 44 

Table 4.15. Example: Due dates of jobs for the bottleneck stage ............................ 44 

Table 4.16. Example: Table for scheduling the bottleneck stage ............................. 44 

Table 4.17. Example: Scheduling the stage before the bottleneck stage .................. 45 

Table 4.18. Example: Final schedule with the BH .................................................. 45 

Table 5.1. Example: 1st iteration of CP ................................................................... 50 

file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856498
file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856498


 

 

 

xiv 

 

Table 5.2. Example: 2nd iteration of CP .................................................................. 50 

Table 5.3. Example: 3rd iteration of CP .................................................................. 50 

Table 5.4. Example: 4th, 5th and 6th iterations of CP ................................................ 51 

Table 5.5. Example: 7th iteration of CP................................................................... 52 

Table 5.6. The example problem (HF3, P2||Cmax) ................................................... 55 

Table 5.7. Example: (HF3, P2||Cmax) problem for GLB computation ...................... 58 

Table 5.8. Example: (HF3, P2||Cmax) problem job-based lower bound computation 58 

Table 5.9. Example: (HF3, P2||Cmax) problem sum of the processing times of the jobs

 .............................................................................................................................. 58 

Table 5.10. Example: (HF3, P2||Cmax) problem calculation of LB(1) ...................... 59 

Table 5.11. Example: (HF3, P2||Cmax) problem calculation of LB(2) ...................... 59 

Table 5.12. Example: (HF3, P2||Cmax) problem calculation of LB(3) ...................... 60 

Table 5.13. Example: The application of FAM strategy for the first stage .............. 61 

Table 5.14. Example: The application of ECT job sequencing rule at stage 2 ......... 62 

Table 5.15. Example: The application of SPV rule ................................................. 70 

Table 6.1. Panels of the center fuselage of Airbus A320 ......................................... 78 

Table 6.2. Operations routing for any panel manufacturing .................................... 78 

Table 6.3. MoMk calculation for the cooling stage .................................................. 96 

Table 6.4. MoMk values in the HFS ........................................................................ 98 

Table 6.5. The results of the scheduling methods for the case study ..................... 113 

Table 6.6. The completion times with the MILP model ........................................ 113 

Table 6.7. The start and end times of jobs with the CP model ............................... 114 

Table 7.1. Results of test problems ....................................................................... 119 

Table 7.2. LB vs. GLB in the test problems .......................................................... 128 

Table 0.1. MoMk calculation table ........................................................................ 149 

Table 0.2. The processing times of the jobs at each stage (hours) ......................... 150 

Table 0.3. The job sequence with the STPT rule................................................... 153 

Table 0.4. The job sequence with the LTPT rule .................................................. 154 

Table 0.5. The job sequence with the Palmer’s heuristic ....................................... 155 

Table 0.6. The job sequence with the CDS algorithm ........................................... 156 

file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856541
file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856543
file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856547


 

 

 

xv 

 

Table 0.7. The job sequence with the NEH algorithm ........................................... 157 

 



 

 

 

xvi 

 

LIST OF FIGURES 

 

FIGURES 

 

Figure 1.1. The representation of the HFS configuration .......................................... 2 

Figure 3.1. Complexity hierarchy based on the shop configuration ......................... 24 

Figure 3.2. Complexity hierarchy based on the shop configuration for the makespan 

minimization .......................................................................................................... 24 

Figure 5.1. pulse vs. noOverlap in the CP model .................................................... 53 

Figure 5.2. The role of pulse cumulative function in the CP model for the HFS 

scheduling problem ................................................................................................ 54 

Figure 5.3. Gantt Chart of the example problem solution generated by CP Optimizer

 .............................................................................................................................. 55 

Figure 5.4. Gannt chart of sequence J1-J3-J4-J2 .................................................... 60 

Figure 5.5. Gannt chart of sequence J3-J1-J4-J2 .................................................... 60 

Figure 5.6. The flowchart of the HA ...................................................................... 66 

Figure 6.1. Production stages 0 and 1 in Building B200 ......................................... 82 

Figure 6.2. Loaded pallet to be transported with the related work orders ................ 83 

Figure 6.3. Alkali clean vacuum manipulator with the fixed crane.......................... 84 

Figure 6.4. Robotic cutting machine ....................................................................... 86 

Figure 6.5. Metallic manufacturing stages in Building B10 .................................... 89 

Figure 6.6. Surface operations in Building B20 ...................................................... 91 

Figure 6.7. Surface operations in Building B220 .................................................... 92 

Figure 6.8. Painting process operations in Building B40 ........................................ 93 

Figure 6.9. The source module of the DES model .................................................. 99 

Figure 6.10. Initial sequence table of panel (skin) type inserted to source module .. 99 

Figure 6.11. The resource module structure of heat treatment stage ...................... 100 

Figure 6.12. Heat treatment stage backlog ............................................................ 100 

Figure 6.13. Heat treatment stage processing times (hrs) table of panels ............... 101 

file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856564
file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856565
file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856566


 

 

 

xvii 

 

Figure 6.14. Heat treatment stage with 2 parallel identical ovens .......................... 101 

Figure 6.15. Heat treatment stage with the processing times table of panels ......... 102 

Figure 6.16. Heat treatment stage with failure distribution ................................... 102 

Figure 6.17. Heat treatment stage with failure frequency and duration.................. 103 

Figure 6.18. Failure settings of a resource in Tecnomatix Plant Simulation 14 ..... 104 

Figure 6.19. The DES model in Tecnomatix Plant Simulation 14 ......................... 105 

Figure 6.20. 3D version of the DES model in Tecnomatix Plant Simulation 14 .... 106 

Figure 6.21. Event controller as one of the simulation settings ............................. 107 

Figure 6.22. Summary report generated at the end of a simulation run.................. 107 

Figure 6.23. The frame of shift calendar ............................................................... 108 

Figure 6.24. The frame of bottleneck analyzer...................................................... 109 

Figure 6.25. The frame of bottleneck analyzer with its outcomes displayed on the 

complete DES model ........................................................................................... 109 

Figure 6.26. The drain module ............................................................................. 111 

Figure 0.1. The histogram of panel 2’s stretching stage processing time data from 2140 

raw records .......................................................................................................... 143 

Figure 0.2. The best distribution with its mean=1.8920 hrs for panel 2’s stretching 

stage processing time data .................................................................................... 144 

Figure 0.3. Breakdown duration plots of heat treatment stage before cleansing process 

(2010-2017 data) .................................................................................................. 144 

Figure 0.4. Breakdown duration plots of heat treatment stage after cleansing process 

(2010-2017 data) .................................................................................................. 145 

Figure 0.5. The histogram of heat treatment stage’s breakdown duration from 73 

cleansed records (2010-2017 data) ....................................................................... 145 

Figure 0.6. The best distribution with its mean=4.3306 hours for heat treatment stage’s 

breakdown duration (2010-2017 data) .................................................................. 146 

Figure 0.7. Breakdown frequency plots of heat treatment stage before cleansing 

process (2010-2017 data) ..................................................................................... 146 

Figure 0.8. Breakdown frequency plots of heat treatment stage after cleansing process 

(2010-2017 data) .................................................................................................. 147 

file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856577
file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856578
file:///C:/Users/YİĞİTALP%20ÖZMEN/Desktop/Jüri%20sonrası/Thesis%20Template%20-%20v2.0%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya%20-%20Kopya.docm%23_Toc22856584


 

 

 

xviii 

 

Figure 0.9. The histogram of heat treatment stage’s breakdown frequency from 73 

cleansed records (2010-2017 data) ....................................................................... 147 

Figure 0.10. The best distribution with its mean=36.6027 days for heat treatment 

stage’s breakdown frequency (2010-2017 data) .................................................... 148 

Figure 0.11. SPT rule performance table .............................................................. 151 

Figure 0.12. LPT rule performance table .............................................................. 152 

 



 

 

 

xix 

 

LIST OF ABBREVIATIONS 

 

ABBREVIATIONS 

 

ACO: Ant Colony Optimization 

ACS: Ant Colony System 

AIS: Artificial Immune System 

B&B: Branch and Bound 

BH: Bottleneck Heuristic 

CDS: Campbell, Dudek, and Smith 

CP: Constraint Programming 

𝐂𝐓: Cycle Time 

DES: Discrete-Event Simulation 

ECT: Earliest Completion Time 

FAM: First Available Machine 

FT: Finish Time 

GA: Genetic Algorithm 

GLB: Global Lower Bound 

GSO: Galactic Swarm Optimization 

HA: Hybrid Algorithm 

HFS: Hybrid Flow Shop 

HJS: Hybrid Job Shop 

IH: Insertion Heuristic 

LB: Lower Bound 

LPT: Longest Processing Time 

LS: Local Search 

LTPT: Longest Total Processing Time 

MILP: Mixed-Integer Linear Programming 

MoM: Minimum number of Machines 



 

 

 

xx 

 

NEH: Nawaz, Enscore, and Ham 

NP: Non-deterministic Polynomial time 

OPL: Optimization Programming Language 

PP: Parallel Processor 

PSO: Particle Swarm Optimization 

QIA: Quantum-inspired Immune Algorithm 

SIRO: Service in Random Order 

SPT: Shortest Processing Time 

SPV: Smallest Position Value 

STPT: Shortest Total Processing Time 

TS: Tabu Search 

WIP: Work-In-Process 



 

 

 

1 

 

CHAPTER 1  

 

1. INTRODUCTION 

 

Due to the global and competitive structure of aerospace and defense industry, it is 

essential to realize both effective and efficient solutions for manufacturing processes 

in order to move one step forward to gain an advantageous position in this race. In this 

study, we are motivated by same planning and scheduling problems one of the 

companies that has a worldwide reputation in this market with a wide range of 

products offer. Among these products, one of the biggest shares belongs to the Airbus 

A320 fuselage’s Section-18 and 19 panel parts. In order to manufacture these panels, 

a remarkably long operations sequence is followed as the manufacturing routing. 

Since the operations in this routing are carried out in several different manufacturing 

facilities at the factory campus, some serious problems emerge very often namely, 

abnormally long lead times, complex materials handling methods, and quality 

degradation. Moreover, these problems disrupt the timely delivery of the panels and 

thus the assembly schedule of them. Not only do they result in panel shortages, they 

also give rise to over-production, and Work-In-Process (WIP) accumulation. On the 

other hand, extra materials handling and WIP accumulation result in quality-related 

problems due to the frictions among parts, requiring rework operations which may 

sometimes result with scrapped parts.  

 

Obviously, the type of layout observed in the manufacturing of the panel 

parts/subassemblies is a process type layout; and the manufacturing process is 

typically a Hybrid Job Shop (HJS). In this study, we propose an alternative 

manufacturing process that is basically a flow shop but with parallel machines at some 

or all stages of the shop. This type of flow shop is the Hybrid Flow Shop (HFS) which 

is an extension of the traditional flow shop configuration. The major difference is that 
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in the traditional flow shop, each stage has only a single machine whereas in the HFS 

configuration, at least one of the stages has more than one machine working in parallel. 

Figure 1.1 is a pictorial representation of an HFS with k stages and a number of 

variable machines (m) at each stage. But this added feature in the HFS brings about 

extra complexity and thus difficulty in terms of scheduling compared to the traditional 

flow shop. Hence, HFS scheduling problems have attracted an ever-increasing 

attention from researchers since the 1970s. In 1988, HFS scheduling problem is shown 

to be NP-complete, and, later, in 1996, NP-hard.  

 

 

 

Figure 1.1. The representation of the HFS configuration 

 

In addressing the HFS scheduling problem, MILP for small-to-medium size problems, 

dispatching rules, and several heuristic algorithms for the large realistic problems are 

applied in the studies in the literature. In this study, we propose a Constraint 

Programming (CP) model, a Hybrid Algorithm (HA) as a heuristic method, and a 

Galactic Swarm Optimization (GSO) as a metaheuristic approach. Both in HA and 

GSO, we use First Available Machine (FAM) for assignment of machines and Earliest 

Completion Time (ECT) for job sequences, especially chosen for an HFS scheduling 

problem. The proposed methods are applied to the test problems provided by Carlier 
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and Neron (2001) in order to have a comparative analysis of all methods including 

those in the literature for the HFS scheduling problem. 

 

While HA heuristic and GSO metaheuristic solve the case problem and test problems 

to near optimality within an acceptable computational time, CP model solves all 

problems to optimality in a shorter computational time than the others, and hence 

outperforms the others. Based on the results of the CP model, the proposed HA 

heuristic and GSO metaheuristic seem to be promising in terms of both solution 

quality and time for the case problem and test problems. Thus, these solution methods 

seem to be applicable in other industries as well where the manufacturing process is 

in the HFS configuration. 

 

In the case study with the aerospace company under consideration, the current HJS 

process is converted to an HFS process. To start with, the Minimum number of 

Machines (MoM) required for each stage in the HFS configuration is determined by 

means of simulation. Hence, a Discrete-Event Simulation (DES) model is developed 

for the manufacturing of the panel parts in the new HFS. Then scheduling problem is 

addressed for the HFS using the approaches proposed in the study. 

 

Chapter 2 discusses the relevant studies in the literature about the HFS scheduling 

problem. In Chapter 3 includes the problem description, while Chapter 4 presents the 

MILP Model and the renowned heuristics for the HFS scheduling problem with its 

assumptions. Chapter 5 describes the proposed solution methods including the CP 

model, HA heuristic, and GSO metaheuristic with their structures and pseudo codes. 

The case study in the aerospace company under consideration and computational study 

are presented in Chapter 6 including the current production system at the company. 

This chapter also covers the conversion of the HJS to HFS configuration at the 

company by means of the discrete-event simulation modelling. Chapter 7 covers the 

application of proposed solution methods to the test problems as a computational 

study. Moreover, they are compared to the other solution methods developed earlier 
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in the literature in terms of both overall and average performances. Chapter 8 includes 

the conclusion and further research issues emphasizing the important findings derived 

from the results. 



 

 

 

5 

 

CHAPTER 2  

 

2. LITERATURE REVIEW 

 

2.1. Framework and Notation 

 

In all scheduling problems, it is assumed that there is a finite number of jobs and 

machines in the particular manufacturing environment as a system. Therefore, in order 

to comprehend the variety of the systems in the literature, it is essential to understand 

the general framework and notation used for describing the scheduling problems 

similar to the descriptions of Pinedo (2016), and Ruiz and Vazquez-Rodriguez (2010). 

In general, the number of machines is denoted by m while the number of jobs is 

denoted by n. Usually, the index i refers to a machine while the index j refers to a job. 

If job j is processed on machine k then the pair (j, k) is used in order to represent the 

relationship between job j and machine k. Concordantly, the descriptions in the 

following are the system’s components in which only the processing time is 

indispensable for each type of system: 

 

Processing time (pjk): It represents the processing time of job j on machine k.  

 

Scheduling problems are classified by Graham et al. (1979) via a triplet α|β|γ, where 

α field represents the machine environment referred to as the shop configuration, β 

field describes a set of assumptions, constraints, job characteristics and restrictions 

related to the problem, and γ field indicates the performance measures of concern. The 

possible shop configurations represented in the α field are: 

 

Single machine (1): The case of a single machine in shop configuration. 
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Identical parallel machines (Pm): m identical parallel machines in a single stage in 

which job j is processed on any one of them. 

 

Uniform parallel machines (Qm): m parallel machines with different speeds in a 

single stage where the speed of the machine k is denoted by 𝑣𝑘. 

 

Unrelated parallel machines (Rm): m different machines with different speeds in a 

single stage where the speed of the process for job j executed on machine k is 𝑣𝑗𝑘 .  

 

Flow shop (Fm): m serial machines on which each job has to be processed in the same 

sequence. After a job is processed on machine k, it joins machine 𝑘 + 1’s queue which 

is also called as buffer or backlog. If the queue of the machine is assumed to behave 

according to First-In First-Out (FIFO) discipline, then a flow shop is referred to as a 

permutation flow shop and it is denoted by prmu in β field.  

 

Flexible flow shop (HFc): A hybrid version of the traditional flow shop and parallel 

machine environments. Instead of m serial machines, flexible flow shop consists of c 

serial stages in which at least one of them has more than one identical, uniform or 

unrelated machines in parallel. In the literature, flexible flow shops have been widely 

known as Hybrid Flow Shop (HFS) or Multi-Processor Flow Shop (MPFS). Each job 

has the same routing.  

 

The possible entries in the β field that represents the features of the system are as 

follows: 

 

Due date (dj): Job j’s planned completion date which is agreed upon by both the 

customer and the supplier.  

 

Release date (rj): Job j’s ready time which is also job j’s arrival time at the system.  
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Preemption (prmp): Interrupting a job being processed on a machine without waiting 

its finish time in order to load a different job. 

 

Precedence constraints (prec): Constraints taken into account when there are 

predecessor or successor relationships among the jobs. 

 

Sequence dependent setup times (ssd): If setup times depend on the sequence of jobs 

then ssd is taken into account in completion time calculations. If setup times are not 

sequence dependent, then they are represented as snsd and included in the processing 

times. 

 

Job families (fmls): n jobs belong to F different job families. There is a setup time 

denoted by sgh between the job families g and h while there are no setup times among 

the jobs in the same family.  

 

Batch processing (batch): A machine processes a number of the same or different 

jobs in series. 

 

Unavailability (unavail): Usually machines are not always available because of 

breakdowns (brkdwn), shift changes or scheduled maintenances. 

 

Machine eligibility restrictions (Mj): In parallel machines (Pm) environment, if all 

m machines are not capable of processing job j, then the capable ones that process job 

j are denoted by Mj. 

 

Blocking (block): In a flow shop environment, if the buffer between two successive 

stages, then blocking may occur, not allowing the upstream machine to release a 

completed job, therefore, preventing it from processing the next job.  
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No-wait (nwt): In a flow shop environment, a job is not allowed to wait between two 

consecutive machines/stages. Therefore, the starting time of a job at the first 

machine/stage is delayed in order to make this job go on without waiting for any next 

machines/stages. Moreover, it is understood that under nwt constraint, the shop 

operates according to First-In First-Out (FIFO) discipline. 

 

Recirculation (rcrc): A job visits a machine, a stage or a work center more than once. 

 

Size (sizejk): In an HFS environment, at each production stage k, one operation of job 

j (opjk) is simultaneously processed on sizejk parallel machines without preemption 

during the required processing time of job j. 

 

The γ field represents the objective function measure which usually tries to minimize 

a function of the completion times of jobs. Therefore, the common γ entries related to 

the objective function are the followings: 

 

Maximum completion time (Cmax): Makespan that is the completion time of the last 

job. Minimizing the makespan is equivalent to maximizing the utilization of 

machine/s. 

 

Maximum flow time (Fmax): Flow time of a job is completion time minus release 

time. The biggest value among the flow times of all jobs represents the maximum flow 

time. 

 

Maximum lateness (Lmax): Lateness value of a job can be obtained by subtracting due 

date from completion time. The biggest lateness value among all jobs represents the 

maximum lateness. If lateness has a positive value for a job, then it means that the job 

is completed late and it is tardy. On the other hand, if it has a negative value for a job, 

then the job is completed early. If lateness value is equal to 0, then the job is completed 

on time. 
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Maximum tardiness (Tmax): Jobs’ non-negative lateness values. The biggest 

tardiness value among all jobs is the maximum tardiness. 

 

Maximum earliness (Emax): Earliness value of a job is due date minus completion 

time. It is either positive or equal to 0 in order to ensure that the job is completed either 

early or on time. The biggest earliness value among all represents the maximum 

earliness. 

 

Total/average completion time (C̅): Either summation or average of all completion 

times of jobs. 

 

Total/average weighted completion time (C̅w): Either summation or average of all 

weighted completion times of jobs.  

 

Total/average flow time (F̅): Either summation or average of all flow times of jobs. 

 

Total/average weighted flow time (F̅w): Either summation or average of all weighted 

flow times of jobs. 

 

Total/average tardiness (T̅): Either summation or average of all tardiness values of 

jobs. 

 

Total/average weighted tardiness (T̅w): Either summation or average of all weighted 

tardiness values of jobs. 

 

Total/average earliness (E̅): Either the summation or average of earliness values of 

jobs. 
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Total/average weighted earliness (E̅w): Either summation or average of all weighted 

earliness values of jobs. 

 

Number of tardy jobs (U): Number of jobs completed later than their due dates. 

 

Total weighted number of tardy jobs (Uw): Summation of all weighted tardy jobs. 

Usually, these weights are represented by total holding or inventory costs.  

 

The objective function measures based on the review of Ruiz and Vazquez-Rodriguez 

(2010) are commonly used in scheduling problems (Table 2.1). 

 

Table 2.1. Mathematical descriptions of objective function measures 

 

Notation Description Meaning 

Cmax max
j

Cj maximum completion time 

Fmax max
j

(Cj- rj) maximum flow time 

Lmax max
j

Lj maximum lateness 

Tmax max
j

Tj maximum tardiness 

Emax max
j

Ej maximum earliness 

C̅ ∑Cj n⁄  total/average completion time 

C̅w ∑wjCj n⁄  total/average weighted completion time 

F̅ ∑Fj n⁄  total/average flow time 

F̅w ∑wjFj n⁄  total/average weighted flow time 

T̅ ∑𝑇𝑗 𝑛⁄  total/average tardiness 

T̅w ∑wjTj n⁄  total/average weighted tardiness 

U ∑Uj number of tardy jobs 

Uw ∑wjUj total weighted number of tardy jobs 

E̅ ∑Ej n⁄  total/average earliness 

E̅w ∑wjEj n⁄  total/average weighted earliness 

 

Different HFS scheduling problems can be represented by the α|β|γ triplet as in Table 

2.2. 
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2.2. Review of the HFS Scheduling Studies 

 

In this section we review the studies about the HFS scheduling problems. 

 

As the first algorithm, Branch and Bound (B&B) algorithm is proposed for an HFS 

problem (HF2, 1, P2||Cmax) by Rao (1970).  

 

B&B is applied again to an HFS problem (HF2, P2, 1||Cmax) by Arthanary and 

Ramaswamy (1971). Later, Gupta (1988) proves that this problem is strongly NP-hard 

and he proposes a heuristic algorithm. 

 

B&B is applied again by Salvador (1973) to a more generalized HFS problem (HFc, 

Pm|nwt|Cmax) for small instances. Later, B&B algorithm is applied again to a similar 

HFS problem (HFc, Pm||Cmax) by Brah and Hunsucker (1991). 

 

For the first time, dispatching rules are studied by Paul (1979) for an HFS problem 

(HF2, Pm|no-idle|T̅, U). 

 

Dispatching rules are applied by Narasimhan and Panwalkar (1984) for an HFS 

problem (HF2, 1, R2||idleness, waiting). 

 

Wittrock (1985) studies an HFS problem (HF3, Pm|skip|Cmax), with different 

methods, including LP, Longest Processing Time (LPT) as a dispatching rule, and a 

dynamic balancing algorithm as a heuristic approach. 

 

Kochhar and Morris (1987) study an HFS problem (HFc, Pm|snsd, block, skip, 

brkdwn|F̅), by applying dispatching rules and heuristic algorithms such as myopic 

method and Local Search (LS) approach. 
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Due to the exhaustive computational time of B&B algorithms, Sriskandarajah and 

Sethi (1989) propose dispatching rule-based heuristic algorithm for an HFS problem 

(HF2, Pm||Cmax) in order to observe its worst and average cost performances in a short 

period of time.  

   

A real-world problem, a paper industry, is studied by Sherali et al. (1990) as an HFS 

problem (HF2, P10, P12||allocation, sequence) via a mathematical model. 

 

Two HFS problems (HFc, Pm|prmu|F̅) and (HF2, Pm||F̅) are studied by Rajendran 

and Chaudhuri (1992). They apply B&B algorithm to the first problem and heuristic 

algorithm to the second problem. For the purpose of comparison, they also apply 

Shortest Processing Time (SPT) as a dispatching rule to the second problem in order 

to determine which method is superior. In terms of both solution’s quality and 

computational time performance, their heuristic algorithm has better results than SPT 

rule. 

 

A real-world problem, packaging industry’s scheduling problem is considered as a 

(HFc, Rm|ssd|T̅
w) problem by Adler et al. (1993) and a five-step heuristic algorithm is 

developed in order to minimize the total priority-based tardiness (also known as the 

total weighted tardiness). 

 

Lee and Vairaktarakis (1994) apply the first error bound analysis to an HFS problem 

(HF2, Pm||Cmax). 

 

Chen (1995) uses a worst-case performance ratio for two HFS problems, (HF2, 1, 

Pm||Cmax) and (HF2, Pm, 1||Cmax), by classifying some of the heuristics proposed 

earlier for makespan minimization in the literature. 

 

Hoogeveen et al. (1996) show that an HFS problem (HF2, Pm|prmp|Cmax) is NP-hard 

in the strong sense. 
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Gupta et al. (1997) work on an HFS problem (HF2, Pm, 1||Cmax) using B&B and 

heuristic algorithms (both constructive and improvement) from the literature with a 

new LB calculated for experimental test problems. 

 

Nowicki and Smutnicki (1998) apply Tabu Search (TS) to an HFS problem (HFc, 

Pm||Cmax) by considering tabu restrictions and search diversification while creating 

the tabu list and developing neighborhood search strategy. 

 

Brah and Loo (1999) study an HFS problem (HFc, Pm||Cmax, F̅) by applying 

regression analysis to determine the performance of Campbell, Dudek, and Smith 

(1970) heuristic (CDS) algorithm, Nawaz, Enscore and Ham (1983) heuristic (NEH) 

algorithm, Hundal and Rajgopal (1988) modified Palmer heuristic algorithm, Yang, 

Pegden, and Enscore (1984) combined heuristic algorithm and Ho (1995) heuristic 

algorithm. Moreover, with regression analysis, they find out that job characteristics, 

number of jobs, number of stages and parallel identical machines, have significant 

effects on the quality of the results obtained. 

 

A real-world problem, concrete blocks production as a building industry, is studied by 

Grabowski and Pempera (2000) as an HFS problem (HFc, Pm|nwt|Cmax). They apply 

TS metaheuristic algorithm to the problem. Their algorithm seems to be promising in 

terms of balancing the trade-off between the solution time and the quality of the 

solutions obtained. 

 

An HFS problem (HFc, Pm||Cmax) is studied by Neron et al. (2001). They observe that 

their branching schemes are effective for small to medium size instances, but not for 

larger instances. 

 

An HFS problem (HFc, Pm||E̅w+T̅w+C̅w+𝑑̅jw) is studied by Gupta et al. (2002) with 

different problem characteristics, controllable processing times, varying between a 

minimum and a maximum value depending on the use of a continuously divisible 
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resource, and assignable weighted due dates, which are not a priori given but can be 

fixed by a decision-maker in return for a due date assignment cost. This cost is one of 

the objective measures constituting a cost function in terms of the penalty cost. For 

this problem, they develop constructive heuristic algorithms as dispatching rules based 

on insertion techniques and improvement heuristic algorithms as LS methods based 

on shifting neighborhood procedures. 

 

Kurz and Askin (2003) study an HFS problem (HFc, Pm|ssd|Cmax) by exploring cyclic, 

multiple insertion, and Johnson’s Rule-based heuristics and comparing the 

performance of these heuristics through evaluating them on a set of test problems 

whose data are generated as an experimental design. 

 

Similar to the genetic algorithm (GA) as an evolutionary algorithm, Artificial Immune 

System (AIS), a smart problem-solving technique, is proposed by Engin and Doyen 

(2004) for an HFS problem (HFc, Pm||Cmax). Their experimental results show that AIS 

is an effective and efficient method that can be used for real-life industrial problems. 

Moreover, their AIS heuristic is hybridized with some other heuristic algorithms. 

 

Oguz and Ercan (2005) propose a GA with its four different versions for an HFS 

problem (HFc, Pm|sizejk|Cmax). They check the deviation of these GAs from the LB 

value inspired by the previous studies in the literature in order to find the GA with the 

best genetic operators among all. They also add that the best GA outperforms the TS 

algorithm of Oguz et al. (2004). 

 

A real-world problem, similar to fabric manufacturing as a textile industry, the 

production process of ceramic tiles is considered as an HFS scheduling problem (HFc, 

Rm|ssd, Mj|Cmax) by Ruiz and Maroto (2006) through developing a GA algorithm with 

four new crossover operators. After designing extensive experimental datasets, they 

calibrate their algorithm and compare it to nine other metaheuristic algorithms 

introduced earlier in the literature.  
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For an HFS problem (HF3, Rm|prec, ssd, block|Cmax), Chen et al. (2007) propose a TS 

metaheuristic algorithm, a mathematical model and a LB. 

 

Ruiz et al. (2008) develop a mathematical model for a realistic HFS problem (HFc, 

Rm|skip, ssd, time lag, rm, Mj, prec|Cmax) and also test the model for medium size 

instances. However, for real medium and especially large instances, they develop six 

heuristic algorithms, five of which are based on dispatching rules and one of which is 

inspired from the earlier studies. For benchmarking purposes, they develop a 

Classification Tree as a Machine Learning (ML) technique by using advanced 

statistical tools. 

 

Naderi et al. (2009) propose a metaheuristic algorithm, namely Hybrid Simulated 

Annealing (HSA), for a realistic HFS problem (HFc, Pm|ssd, transportation time|F̅, 

T̅), by comparing the performance of HSA to well-known dispatching rules and the 

adaptations of some metaheuristic algorithms introduced earlier in the literature of 

HFS without transportation times. According to their experimental assessment, HSA 

outperforms the solution methods in the literature that they include in their 

comparisons. 

 

Dugardin et al. (2010) develop three metaheuristics as Strength Pareto Evolutionary 

Algorithm (SPEA), Non-dominating Sorting GA (NSGA) and Lorenz NSGA (L-

NSGA) and an exact algorithm for an HFS problem (HFc, Pm|rcrc|U, capacity 

utilization). They examine the performances of these three metaheuristic algorithms 

by using a DES model. Their exact method is a full enumeration technique that is used 

for small instances only to obtain optimal solutions, as expected, in order to determine 

the solution qualities of these three metaheuristic algorithms. The computational 

results of the DES model show that SPEA and NSGA are outperformed by L-NSGA 

whose solutions are very close to the optimal solutions yielded by the full enumeration 

technique. 

 



 

 

 

17 

 

An Efficient GA (EGA) with Neighborhood Based Mutation (NBM) is proposed by 

Engin et al. (2011) for an HFS problem (HFc, Pm||Cmax) through comparing it to the 

GA without NBM and a parallel greedy heuristic algorithm. It is observed that EGA 

performs better than the GA and parallel greedy heuristic algorithm in terms of 

solution quality for the test problems. 

 

Liao et al. (2012) develop a metaheuristic algorithm, Particle Swarm Optimization 

(PSO) with a Bottleneck Heuristic (BH) to completely manipulate the bottleneck stage 

and also with a SA heuristic to avoid stucking in local optima (PSO-SA-BH), for an 

HFS problem (HFc, Pm||Cmax) through comparing it to PSO and PSO-SA in order to 

find the best PSO variant. As a result, PSO-SA-BH is chosen as the best one for the 

purpose of further comparison. Then, PSO-SA-BH is compared to Quantum-inspired 

Immune Algorithm (QIA), Ant Colony Optimization (ACO), AIS and B&B 

algorithms. According to the experimental results, PSO-SA-BH performs better than 

QIA, ACO and AIS in terms of both effectiveness and efficiency, and better than B&B 

algorithm in terms of efficiency, and the same in terms of effectiveness. 

 

Luo et al. (2013) develop a metaheuristic algorithm, Multi-Objective ACO 

(MOACO), for an HFS problem (HFc, Qm||Cmax, electric power cost) with the 

presence of Time-Of-Use (TOU) electricity prices as an energy consumption approach 

in the context of green manufacturing. In the light of computational experiments’ 

results, even though MOACO is worse than SPEA and NSGA in terms of efficiency, 

it outperforms them in terms of effectiveness. 

 

Marichelvam et al. (2014) develop metaheuristic algorithms, Cuckoo Search (CS) and 

Improved CS (ICS) for an HFS problem (HFc, Pm||Cmax) by comparing CS and ICS 

to GA, SA, ACO, PSO and an existing constructive heuristic algorithm which is also 

used to generate initial solutions for ICS in order to obtain optimal or near optimal 

solutions quickly. Computational results show that not only does ICS provide optimal 
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results with minimum CPU time, but also it is superior to the other metaheuristic 

algorithms in terms of both effectiveness and efficiency. 

 

Li and Pan (2015) propose a novel hybrid algorithm, combining TS and Artificial Bee 

Colony (ABC), (TABC) to solve an HFS problem (HFc, Rm|buffer, block|Cmax). 

According to the experimental results, TABC performs better than the five existing 

heuristic algorithms in the literature for most of the instances in terms of both 

effectiveness and efficiency. 

 

A realistic HFS problem (HFc, Rm|batch, fmls, sgh, unavail, rj, Mj, skip|𝛼C̅w+βT̅w) is 

studied by Shahvari and Logendran (2016) through a mathematical model solved via 

CPLEX for small instances to obtain optimal/upper and LBs, and developing several 

TS based metaheuristic algorithms due to NP-hardness of the medium and especially 

large instances in the strong sense. According to the comparative numerical results, 

TS with Path-Relinking (TS/PR) based batch scheduling is promising and performs 

well most of the time for small to large instances in terms of effectiveness and 

especially efficiency. 

 

According to the study of Chamnanlor et al. (2017), a metaheuristic algorithm, GA 

hybridized with ACO (GACO), for an HFS problem (HFc, Qm|rcrc, time window, 

fmls, Mj|Cmax) and a mathematical model are presented. GACO is compared to GA 

and ACO in terms of computational results showing that GACO has the best results 

compared to the other two. 

 

Li et al. (2018) develop Energy-Aware Multi-objective Optimization Algorithm (EA-

MOA) for an HFS problem (HFc, Pm|ssd|Cmax, total energy consumption). Comparing 

EA-MOA to several efficient heuristic algorithms in the literature, the experimental 

results show that EA-MOA’s robustness and efficiency are promising. 

 

 



 

 

 

19 

 

2.3. Summary of the Survey 

 

It is obvious that shop configurations vary in terms of the number of stages, the 

number of machines at the stages and the similarity/dissimilarity of the machines at 

any stage. On the other hand, shop characteristics and the objective function measures 

cannot be classified so easily as the shop configurations. Therefore, each HFS 

scheduling problem is considered according to its shop characteristics and the 

objective function measures. Solution methods can be classified in four main groups, 

namely, exact, heuristic, hybrid, and other methods, like in the classification of Ribas 

et al. (2010)’s review paper. Exact methods solve HFS scheduling problems to 

optimality, while the others do not guarantee optimality all the time owing to the 

parameters of the problems such as the size of the problem instance. B&B algorithm 

and mathematical modelling are good examples for the exact method. On the other 

hand, commonly used dispatching rules are good examples for constructive heuristic 

algorithms, while the frequently used metaheuristic GA is a good example for an 

improvement heuristic algorithm. Furthermore, any combined versions of these 

methods such as Column Generation (CG) with GA or with SA, and Dynamic 

Programming (DP) with Lagrangian Relaxation (LR) are good examples for the 

hybrid algorithms. Finally, good examples for the other methods are DES models or 

expert systems. In order to simplify the comprehension, any combinations among 

exact, heuristic, hybrid and the other solution methods are considered as hybrid 

algorithms. To summarize the literature survey in the previous section, Table 2.3 is 

developed based on this classification. 
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Table 2.3. Classification of the literature survey on HFS scheduling 

 

Authors & 

Year 

Objective 

Function 

Measures 

Number 

of Stages 

(c>3) 

Machines 

Type at a 

Stage 

Solution Methods 

Exact Heuristic Hybrid Other 

Rao (1970) Cmax 2 P X    

Arthanary and 
Ramaswamy 

(1971) 
Cmax 2 P X    

Salvador (1973) Cmax c P X    

Paul (1979) T̅, U 2 P  X   

Narasimhan and 
Panwalkar 

(1984) 

idleness, 
waiting 

2 R  X   

Wittrock (1985) Cmax 3 P X X   

Kochhar and 
Morris (1987) 

F̅ c P  X   

Gupta (1988) Cmax 2 P  X   

Sriskandarajah 
and Sethi 

(1989) 
Cmax 2 P  X   

Sherali et al. 
(1990) 

allocation, 
sequence 

2 P X    

Brah and 
Hunsucker 

(1991) 
Cmax c P X    

Rajendran and 
Chaudhuri 

(1992) 
F̅ 

2 

P 

 X   

c X    

Continued on next page 
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Table 2.3. – Continued from previous page 

Authors & 

Year 

Objective 

Function 

Measures 

Number 

of Stages 

(c>3) 

Machines 

Type at a 

Stage 

Solution Methods 

Exact Heuristic Hybrid Other 

Adler et al. 
(1993) 

T̅w c R  X   

Lee and 
Vairaktarakis 

(1994) 
Cmax 2 P  X   

Chen (1995) Cmax 2 P  X   

Hoogeveen et 
al. (1996) 

Cmax 2 P  X   

Gupta et al. 
(1997) 

Cmax 2 P X X   

Nowicki and 
Smutnicki 

(1998) 
Cmax c P   X  

Brah and Loo 
(1999) 

Cmax, F̅ c P  X X  

Grabowski and 
Pempera (2000) 

Cmax c P  X   

Neron et al. 
(2001) 

Cmax c P X    

Gupta et al. 

(2002) 

E̅w, T̅w, C̅w 

and d̅j
w 

c P  X   

Kurz and Askin 
(2003) 

Cmax c P  X   

Engin and 
Doyen (2004) 

Cmax c P  X   

Oguz and Ercan 
(2005) 

Cmax c P  X   

Ruiz and 
Maroto (2006) 

Cmax c R  X   

Continued on next page 
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Table 2.3. – Continued from previous page 

Authors & 

Year 

Objective 

Function 

Measures 

Number 

of Stages 

(c>3) 

Machines 

Type at a 

Stage 

Solution Methods 

Exact Heuristic Hybrid Other 

Chen et al. 
(2007) 

Cmax 3 R X X   

Ruiz et al. 
(2008) 

Cmax c R X X  X 

Naderi et al. 
(2009) 

F̅, T̅ c P  X   

Dugardin et al. 
(2010) 

U, capacity 
utilization 

c P X X X X 

Engin et al. 
(2011) 

Cmax c P  X   

Liao et al. 
(2012) 

Cmax c P   X  

Luo et al. 
(2013) 

Cmax, electric 
power cost 

c Q  X   

Marichelvam et 
al. (2014) 

Cmax c P  X   

Li and Pan 
(2015) 

Cmax c R   X  

Shahvari and 
Logendran 

(2016) 
C̅w, T̅w c R X  X  

Chamnanlor et 
al. (2017) 

Cmax c Q X  X  

Li et al. (2018) 
Cmax, total 

energy 
consumption 

c P  X   
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CHAPTER 3  

 

3. PROBLEM DESCRIPTION 

 

In this study, we are motivated by the production planning and scheduling issues in 

the job shop of center fuselage panels’ manufacturing at the aerospace company under 

consideration. However, since an HFS configuration has more characteristics (Table 

3.1) (Askin et al., 1993) better than an HJS environment, in this study, HFS scheduling 

problem is considered. 

 

Table 3.1. Performance characteristics depending on flow and job shops 

 

Characteristic Flow Shop Job Shop 

Lead time Low High 

WIP Low High 

Skill level Choice High 

Product flexibility Low High 

Demand flexibility Medium High 

Machine utilization High Medium-low 

Worker utilization High High 

Unit production cost Low High 

 

 

As it is seen on Table 3.1, two of the major contributing factors why HFS scheduling 

problem is considered in this study are lower lead time and WIP accumulation. Other 

than these, lower unit production cost is another beneficial feature of an HFS 

configuration as a layout type of the manufacturing process. Moreover, higher 

machine and worker utilizations can be positively considered in terms of efficiency in 

the manufacturing process. Because the machines in an HFS configuration are orderly 

COMPLEXITY 
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located in the manufacturing site, capacity increase can easily be adjusted. In this way, 

machine/worker utilizations, skill level, and demand flexibility can also be adjusted 

with ease. Due to the fact that a certain type of products is considered for addressing 

an HFS scheduling problem in this study, lower product flexibility and moderate 

demand flexibility cause no negative effect on the manufacturing process. 

    

Due to the fact that HFS scheduling is a complex problem which is proven to be NP-

hard in the strong sense, it is also difficult to solve this problem. In order to understand 

the complexity level of HFS scheduling problem and its place among the other shop 

configurations, Figures 3.1 and 3.2 are presented (Pinedo, 2016). 

 

 

 

Figure 3.1. Complexity hierarchy based on the shop configuration 

   

 

 

Figure 3.2. Complexity hierarchy based on the shop configuration for the makespan 

minimization 
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As it is seen on Figure 3.1, the only shop configurations, more complex than the HFS, 

are the unrelated parallel machines and the HJS as expected. Furthermore, on Figure 

3.2, for the makespan minimization, scheduling the HFS and the job shop 

configurations is harder. Especially, the HFS scheduling problem is harder than 2-

stage flow shop scheduling problem for the makespan minimization. 

 

As an extended version of a traditional flow shop, an HFS has a more complex 

structure, due to the number of machines at a stage. Therefore, according to the study 

by Brah (1988), there are too many paths, shown on Equation (3.1), in order to obtain 

a schedule for an HFS scheduling problem (HFc||𝐶𝑚𝑎𝑥). 

 

∏(
n-1

mk-1
)

c

k=1

n!

mk!
 (3.1) 

 

On the other hand, a permutation flow shop has (n!) and a non-permutation flow shop 

has (n!)m paths for a schedule. Hence, compared to permuation and non-permutation 

flow shops, HFS scheduling problem is obviously harder to be solved to optimality.    

 

Because of the motivations stated above, in this study, several renowned solution 

approaches in the literature are applied to the HFS scheduling problem. After the 

application of these approaches, it is observed that there is a room for improvement to 

obtain better solutions for the HFS scheduling problem. For this purpose, three 

solution approaches, a Constraint Programming (CP) model as an exact method, a 

Hybrid Algorithm (HA) as a heuristic method, and a Galactic Swarm Optimization 

(GSO) as a metaheuristic method, are proposed. 

 

In the following chapters, we focus on the renowned methods for the HFS scheduling 

problem. 
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CHAPTER 4  

 

4. HFS SCHEDULING: MILP MODEL AND HEURISTICS 

 

Due to the NP-hardness nature of the HFS scheduling problem, exact solution methods 

remain insufficient to obtain both effective and efficient solutions for medium and 

especially large problem instances.  Hence, several heuristic methods are proposed in 

terms of effectiveness and efficiency. As reviewed in Chapter 2, these heuristics are 

either used as a single heuristic or as a mix of them in a hybrid way. In this chapter, 

first, we formulate the HFS scheduling problem as a Mixed-Integer Linear 

Programming (MILP) model and then discuss the dispatching rules as heuristics. 

Finally, we discuss the renowned heuristics for the HFS scheduling problem. 

 

4.1. Mixed-Integer Linear Programming (MILP) Model 

 

This section presents the MILP model for an HFS scheduling problem based on the 

model of Ruiz and Vazquez-Rodriguez (2010). Before describing this model, 

following assumptions are made: 

 

• All jobs and all machines are available at time zero. Therefore, there are no 

release dates constraints for the jobs. 

 

• Parallel machines are identical at each stage. Therefore, there is no machine 

eligibility constraint for the jobs. 

 

• A machine at a stage processes only one operation at a time and a job is 

processed by only one machine at a stage at a time. Therefore, partial 

processings are not allowed.  
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• Setup times are not sequence dependent. Therefore, they are included in the 

processing times of the jobs at each stage. 

 

• Preemption is not allowed. Therefore, before loading the next job, current job 

on the machine is to be finished. 

 

• The buffer between two consecutive stages has unlimited capacity. Therefore, 

blocking does not occur. 

 

• Problem data are deterministic and known a priori. Therefore, the routings of 

the jobs are known, the number of parallel identical machines at a given stage 

is fixed and the processing times of the jobs are deterministic. There are no 

specific due date constraints related to the jobs, that is, all the jobs are assumed 

to have a common due date. Since the importance of the jobs is the same, the 

weights of the jobs are set to “1”.  

 

• A job may skip a given stage. This is represented by equaling this job’s 

processing time to “0” at this stage. 

 

• There are no predecessor and successor relationships among the jobs. 

Therefore, the sequence of the jobs can be altered as required. 

 

• All machines are always available. Therefore, there are no breakdown, shift 

change, and scheduled maintenance constraints related to the machines.  

 

• Batch processing of a certain job is not possible due to the high cost of tool 

requirements. 
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• There are no no-wait constraints for the jobs. However, there are also no 

technical constraints to make the jobs stop. 

 

• A job does not visit a given stage more than once. Therefore, there are no 

recirculation constraints related to the jobs. 

 

• Job sequencing is allowed to change from one stage to another, that is, non-

permutation schedules are allowed.  

 

According to the practical situations, these assumptions may slightly change for the 

different variants of the HFS scheduling problems. The MILP model based on these 

assumptions is presented below: 

 

The MILP model 

 

Sets 

 

J: number of jobs: j={1, …, n} 

K: number of stages: k={1, …, c} 

L: number of parallel identical machines at stage k: l={1, …, mk} 

 

Parameters 

 

pjk: processing time of job j at stage k 

M=∑∑mk

c

k=1

n

j=1

p
jk

 a big number 

 

Decision Variables 

 

cjk: completion time of job j at stage k 
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y
jkl
 = {1, if job j is scheduled at the l

th
 machine of stage k                       

0, otherwise                                                                                   
 

xjrk  = {
1, if job j precedes job r at stage k             
0, otherwise                                               

 

Cmax: maximum completion time of the jobs at the last stage 

 

Objective Function 

 

minimize Cmax (4.1) 

 

Constraints 

 

subject to   

   

∑ y
jkl

mk

l=1

=1 ∀j∈J, ∀k∈K (4.2) 

   

cj,k-1+pjk≤cjk ∀j∈J, ∀k∈K: k>1 (4.3) 

   

pj1≤cj1 ∀j∈J (4.4) 

   

cjk+prk-M(3-xjrk-yjkl-yrkl)≤crk ∀j∈J, ∀r∈J: j<r, ∀l∈L (4.5) 

   

crk+pjk-M(2+xjrk-yjkl-yrkl)≤cjk ∀j∈J, ∀r∈J: j<r, ∀l∈L (4.6) 

   

cjc≤Cmax ∀j∈J (4.7) 

   

yjkl∈{0, 1} ∀j∈J, ∀k∈K, ∀l∈L (4.8) 

   

xjrk∈{0, 1} ∀j∈J, ∀r∈J, ∀k∈K (4.9) 

   

cjk≥0 ∀j∈J, ∀k∈K (4.10) 

   

Cmax≥0  (4.11) 

 

The objective function (4.1) tries to minimize the maximum completion time at the 

end of the last stage also known as the makespan. Constraint (4.2) ensures that each 
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job is scheduled on exactly one machine of a given stage. Constraint (4.3) calculates 

the completion time of a job at the end of a stage by adding the processing time of this 

job in this stage to the completion time of this job at the end of the previous stage. In 

constraint (4.4), the completion time of a job at the end of the first stage is at least 

equal to the processing time of a job in the first stage. Constraints (4.5) and (4.6) 

prevent any two jobs from overlapping when they are scheduled to the same machine 

of a given stage. Constraint (4.7) determines the makespan value by checking the 

completion times of the jobs at the end of the last stage. Sign constraints (4.8) and 

(4.9) shows the domains of the binary decision variables, whereas sign constraints 

(4.10) and (4.11) shows the domains of the continuous decision variables. 

 

Being one of the exact methods, MILP may not provide the optimal solution for each 

problem instance, especially for real-life size instances. Hence, the application of other 

methods like dispatching rules and heuristics gains more importance in manufacturing 

industry where HFS environment is very common. 

 

4.2. Dispatching Rules 

 

Dispatching rules have been studied for HFS since 1979. They are also known as 

construction heuristic algorithms generating initial solutions to be improved later via 

improvement heuristic algorithms. They are very simple to implement and also fast 

for making quick decisions in scheduling. They usually yield relatively good solutions 

in a reasonable time. Moreover, they provide optimal solutions for some special cases. 

Furthermore, they are classified as static and dynamic rules where dynamic rules are 

time dependent. In this study we use the following dispatching rules. 

 

Service in Random Order (SIRO): A simple static dispatching rule frequently used 

in practice does not try to optimize any measure (Pinedo, 2016). For example, SIRO 

can be hybridized with First Available Machine (FAM) and Earliest Completion Time 

(ECT) strategies for job sequencing at a stage. 
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Shortest Processing Time (SPT): This simple static dispatching rule tries to 

minimize the average time (waiting time+processing time) that a job spends in the 

system, especially for a single machine, based on scheduling jobs according to non-

decreasing order of their pjk values (Pinedo, 2016). For example, SPT schedules the 

jobs according to non-decreasing order of jobs’ processing times at each stage. 

 

Shortest Total Processing Time (STPT): This static dispatching rule tries to 

minimize the average time based on scheduling jobs according to non-decreasing 

order of their total processing times thru the shop shown on Equation (4.12) (Alharkan, 

2005). 

 

∑ p
jk

c

k=1

 ∀j∈J (4.12) 

 

For example, STPT can be hybridized with FAM and ECT strategies for job 

sequencing at a stage. 

 

Longest Processing Time (LPT): A static dispatching rule which tries to minimize 

the makespan, especially for a single machine, based on scheduling jobs according to 

non-increasing order of their pjk values (Pinedo, 2016). For example, LPT schedules 

the jobs according to the non-increasing order of jobs’ processing times at each stage. 

 

Longest Total Processing Time (LTPT): This static dispatching rule tries to 

minimize the makespan based on scheduling jobs according to non-increasing order 

of their total processing times thru the shop (Alharkan, 2005). 

For example, LTPT can be hybridized with FAM and ECT strategies for job 

sequencing at a stage. 
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4.3. Renowned Heuristic Algorithms 

 

Some heuristic algorithms in the literature are observed to be effective and efficient in 

terms of generating good solutions particularly for flow shop configurations. 

Moreover, they are also applied in HFS configurations for comparison purposes with 

other solution methods in the literature. In this study, in order to apply these algorithms 

(except Bottleneck Heuristic (BH)) with FAM and ECT strategies, the HFS 

configuration is reduced down to a traditional flow shop configuration through 

distributing the processing time of a job at each stage equally based on the number of 

parallel identical machines at that stage as in Equation (4.13). 

 

p̅
jk

=
p

jk

mk

 ∀j∈J, ∀k∈K (4.13) 

 

In Equation (4.13), p̅
jk

 is equal to the average processing time of job j at stage k in a 

traditional flow shop, as reduced from the HFS configuration. 

 

In this study following we use the renowned heuristic algorithms for generating 

relatively good solutions in an acceptable amount of time: 

 

Johnson’s Algorithm: The most popular heuristic algorithm which yields the optimal 

solution for the flow shop problem (F2||Cmax) according to the study of Johnson 

(1954). This algorithm also solves (F3||Cmax) problem to optimality, if one of the 

conditions in Expression (4.14) is satisfied (Alharkan, 2005). 

 

Either, min(pj1)≥max(pj2) or min(pj3)≥max(pj2) ∀j∈J (4.14) 
 

It is understood that there is no bottleneck condition for the second machine, i.e., it is 

dominated either by the first and/or the third machine. If at least either of these 

conditions is satisfied, the processing times of the jobs on the first and the second 
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machines are summed for creating the first dummy machine. Then, for creating the 

second dummy machine, the processing times of the jobs on the second and the third 

machines are summed. By this way, (F3||Cmax) problem is converted to (F2||Cmax) 

problem to be solved optimally. Similar to the three-machine flow shop adaptation, 

Johnson’s algorithm is also applied to (Fm||Cmax), if one of the conditions in 

Expression (4.15) is satisfied (Puaar, 2017). 

 

Either, min(pj1)≥max(pj2, pj3, …, pj,m−1) or min(pjm)≥ (pj2, pj3, …, pj,m−1) ∀j∈J (4.15) 

 

The processing times of the jobs from machine 1 to machine m-1 and the processing 

times of the jobs from machine 2 to machine m are summed in order to create two 

dummy machines for converting the original problem to (F2||Cmax) configuration to be 

solved to optimality by the Johnson’s algorithm with the iterations which are the same 

as the iterations in the algorithm for the two-machine flow shop problem, if one of the 

conditions above is satisfied. However, even if none of the conditions above is 

satisfied, Johnson’s algorithm is still applied as a constructive heuristic algorithm 

yielding not an optimal but a relatively good initial solution. 

 

Palmer’s Heuristic: This is another popular and easy to implement algorithm as a 

constructive heuristic for (Fm||Cmax) problem in order to generate a relatively good 

initial solution according to the study of Palmer (1965). Palmer’s heuristic consists of 

two steps as described below: 

 

• Step 1: Calculate slope Aj for jth job for (Fm||Cmax) problem (Equation (4.16)). 

 

Aj=-∑[m-(2×k-1)]×p
jk

m

k=1

  ∀j∈J (4.16) 

 

• Step 2: Schedule the jobs based on sequencing them in a non-increasing order 

according to Aj values. 
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In order to understand how Palmer’s heuristic functions, the following example is used 

for illustration:   

 

Table 4.1. Example: Palmer’s heuristic for (F3||Cmax) problem 

 

j  k 
1 2 3 

Aj  
−(3− (2×1−1)) − (3− (2×2−1)) − (3− (2×3−1)) 

1 3 8 (p12) 10 14 

2 12 9 12 0 

3 8 6 13 10 

4 12 10 16 8 

 

Table 4.2. Example: Completion times with Palmer’s heuristic for (F3||Cmax) 

problem 

 

j   k 1 2 3 

1 3 11 21 

3 11 17 34 

4 23 33 50 

2 35 44 62 

 

Since the example problem is solved to optimality (Cmax=62) with the Johnson’s 

algorithm, it is seen that Palmer’s algorithm has also given the optimum Cmax. 

 

Campbell, Dudek, and Smith (CDS) Algorithm: Actually, this is m−1 times 

application of the Johnson’s algorithm to the subproblems of (Fm||Cmax) problem in 

order to find which subproblem/s provide the best Cmax value according to the study 

of Campbell et al. (1970). Therefore, it is understood that in order to solve (Fm||Cmax) 

problem by the CDS algorithm, the number of iterations is equal to m−1 (Table 4.3). 
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Table 4.3. CDS algorithm for (Fm||Cmax) problem 

 

Iteration 
Left column: 

Sum of processing times 

Right column: 

Sum of processing times 

1 pj1 pjm 

2 pj1+ pj2 pj,m−1+pjm 

3 pj1+ pj2+ pj3 pj,m−2+ pj,m−1+pjm 

… … … 

m-1 pj1+ pj2+ pj3+…+pj,m−1 pj2+…+ pj,m−2+ pj,m−1+pjm 

 

At each iteration, there are two dummy machines where (Fm||Cmax) problem is 

converted to a (F2||Cmax) subproblem to be solved to optimality via the Johnson’s 

algorithm. Totally m−1 many (F2||Cmax) subproblems are solved. As a result, the 

subproblem with the best Cmax value is chosen in order to derive the best schedule for 

(Fm||Cmax) problem. The following example illustrates the CDS algorithm: 

 

• Iteration 1: Create two dummy machines with the first and the last machines 

for the application of the Johnson’s algorithm (Table 4.4): 

 

Table 4.4. Example: 1st iteration of the CDS algorithm for (F3||Cmax) problem 

 

j k 𝒑𝒋𝟏 𝒑𝒋𝟑  Sequences  Completion times 

1 3 10  1 3 2 4  j   k 1 2 3 

2 12 12       1 3 11 21 

3 8 13  1 3 4 2  3 11 17 34 

4 12 16       2 23 32 46 
         4 35 45 62 
             

         j    k 1 2 3 

         1 3 11 21 
         3 11 17 34 
         4 23 33 50 

         2 35 44 62 
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• Iteration 2: Create two dummy machines with pj1+pj2 and pj2+pj3 for the 

application of the Johnson’s algorithm (Table 4.5): 

 

Table 4.5. Example: 2nd iteration of the CDS algorithm for (F3||Cmax) problem 

 

j  k pj1+pj2 pj2+pj3  Sequences  Completion times 

1 11 18  1 3 2 4  j   k 1 2 3 

2 21 21       1 3 11 21 

3 14 19  1 3 4 2  3 11 17 34 

4 22 26       2 23 32 46 
         4 35 45 62 

             
         j   k 1 2 3 

         1 3 11 21 
         3 11 17 34 
         4 23 33 50 

         2 35 44 62 

 

Coincidentally, the optimal solution is found at the first iteration due to the fact 

that the Johnson’s algorithm condition is satisfied. If none of the conditions is 

satisfied, one (alternative best sequences may be obtained) of the iterations 

provides the best sequence with the best Cmax value. 

 

The CDS algorithm is a good constructive heuristic, since it checks the variants of two 

dummy machines’ structures. When the Johnson’s algorithm condition is not satisfied, 

it is expected that the CDS algorithm yields better results, due to the fact that the CDS 

algorithm provides several sequences.  

 

Nawaz, Enscore, and Ham (NEH) Algorithm: As an iterative insertion heuristic, 

the NEH algorithm calculates Cmax value for each insertion in each iteration (Nawaz 

et al., 1983). NEH algorithm consists of the following steps: 
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• Step 1: Calculate total work content for each job (Equation (4.17)). 

 

Tj=∑ p
jk

m

k=1

 ∀j∈J (4.17) 

 

• Step 2: Sequence the jobs in non-increasing order of Tj values. 

 

• Step 3: Select the first two jobs and calculate Cmax values for partial schedules 

based on the positions of these jobs in the schedule (Sequence 1: 1st-2nd, and 

sequence 2: 2nd-1st). Choose the partial schedule with the best Cmax value. 

 

• Step 4: Pick the next job from the list. Insert this job into all possible positions 

of the partial schedule. Calculate Cmax values for the new partial schedules 

based on the position of this job in the schedule. Suppose sequence 2 is the 

best partial schedule. Then sequence 1’: 3rd-2nd-1st, sequence 2’: 2nd-3rd-1st, and 

sequence 3’: 2nd-1st-3rd.  

 

• Step 5: Choose the partial schedule in Step 4 with the best Cmax value. 

 

• Step 6: Follow this procedure from Step 4, until there is no job unsequenced.  

 

When all jobs are sequenced, stop the algorithm. 

 

The following example illustrates the NEH algorithm: 

 

• Step 1: See Table 4.6. 

 

• Step 2: See Table 4.7. 
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Table 4.6. Example: 1st step of the NEH algorithm for (F3||Cmax) problem 

 

j  k 1 2 3  Tj 

1 3 8 10 21 

2 12 9 12 33 

3 8 6 13 27 

4 12 10 16 38 

 

Table 4.7. Example: 2nd step of the NEH algorithm for (F3||Cmax) problem 

 

j k 1 2 3  Tj 

4 12 10 16 38 

2 12 9 12 33 

3 8 6 13 27 

1 3 8 10 21 

 

• Step 3: See Table 4.8. 

 

Table 4.8. Example: 3rd step of the NEH algorithm for (F3||Cmax) problem 

 

Completion times  Completion times 

j    k 1 2 3  j    k 1 2 3 

4 12 22 38  2 12 21 33 

2 24 33 50  4 24 34 50 

 

In this step, there are two partial schedules which are alternative to each other. 

From now on, remainder steps of NEH algorithm are followed based on these 

two partial schedules. 

 

• Step 4: See Table 4.9. 

 

• Step 5: See Table 4.10. 
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Table 4.9. Example: 4th step of the NEH algorithm for (F3||Cmax) problem 

 

Completion times  Completion times 

j    k 1 2 3  j    k 1 2 3 

3 8 14 27  3 8 14 27 

4 20 30 46  2 20 29 41 

2 32 41 58  4 32 42 58 
         

j    k 1 2 3  j    k 1 2 3 

4 12 22 38  2 12 21 33 

3 20 28 51  3 20 27 46 

2 32 41 63  4 32 42 62 
         

j    k 1 2 3  j    k 1 2 3 

4 12 22 38  2 12 21 33 

2 24 33 50  4 24 34 50 

3 32 39 63  3 32 40 63 

 

Table 4.10. Example: 5th step of the NEH algorithm for (F3||Cmax) problem 

 

Completion times  Completion times 

j    k 1 2 3  j    k 1 2 3 

3 8 14 27  3 8 14 27 

4 20 30 46  2 20 29 41 

2 32 41 58  4 32 42 58 

 

• Step 6: See Table 4.11. 

 

As it is seen in Table 4.11, the NEH algorithm provides alternative optimal 

solutions for this particular problem.  

 

Although the NEH algorithm is more time consuming than the CDS algorithm 

for the same example problem, it is expected that the NEH algorithm provides 

better solution than the CDS algorithm when Johnson’s algorithm condition is 



 

 

 

41 

 

not satisfied. It is obvious that, due to its iterative insertion method, the NEH 

algorithm produces relatively better solutions. 

 

Table 4.11. Example: 6th step of the NEH algorithm for (F3||Cmax) problem 

 

Completion times  Completion times 

j    k 1 2 3  j    k 1 2 3 

1 3 11 21  1 3 11 21 

3 11 17 34  3 11 17 34 

4 23 33 50  2 23 32 46 

2 35 44 62  4 35 45 62 
         

j    k 1 2 3  j    k 1 2 3 

3 8 14 27  3 8 14 27 

1 11 22 37  1 11 22 37 

4 23 33 53  2 23 32 49 

2 35 44 65  4 35 45 65 
         

j    k 1 2 3  j    k 1 2 3 

3 8 14 27  3 8 14 27 

4 20 30 46  2 20 29 41 

1 23 38 56  1 23 37 51 

2 35 47 68  4 35 47 67 
         

j    k 1 2 3  j    k 1 2 3 

3 8 14 27  3 8 14 27 

4 20 30 46  2 20 29 41 

2 32 41 58  4 32 42 58 

1 35 49 68  1 35 50 68 

 

Bottleneck Heuristic (BH): According to the study of Paternina Arboleda et al. 

(2008), it is also called Theory of Constraints (TOC)-based heuristic for an HFS 

scheduling problem. The steps of this heuristic are described below: 

 

Step 1: Identify the bottleneck stage: 
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• For each stage k, the flow ratio is computed (Equation (4.18)). 

 

FRk=∑
p

jk

mk

n

j=1

 ∀k∈K (4.18) 

 

• Stage with the maximum FRk value is chosen as the bottleneck stage. Let b 

denote the bottleneck stage. 

 

• Release time of job j for stage b is calculated (Equation (4.19)). 

 

Rj=∑ p
jk

b-1

k=1

 ∀j∈J (4.19) 

 

• Due date of job j for stage b is calculated (Equation (4.20)). 

 

Dj=∑FRk- ∑ p
jk

c

k=b+1

c

k=1

 ∀j∈J (4.20) 

 

Step 2: Sequence the bottleneck stage: 

 

• Schedule the jobs in non-decreasing order of Rj. If there is a tie, rank the jobs 

in non-decreasing order of Dj. If there is a tie again, rank the jobs in non-

decreasing order of processing times. 

 

• Schedule the jobs on the machines of the bottleneck stage according to the 

preceding ranking.  

 

Step 3: Sequence the non-bottleneck stages: 
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• Stages before the bottleneck stage b: Schedule the jobs in non-decreasing order 

of Dj. If there is a tie, rank the jobs in non-decreasing order of Rj. If there is a 

tie again, rank the jobs in non-decreasing order of processing times. 

 

• Stages after the bottleneck stage b: Schedule the jobs according to FAM and 

ECT strategies. 

 

In order to comprehend BH, following problem is used as an example (Table 4.12): 

 

Table 4.12. Example (HF3, P2, 1, P2||Cmax) problem for BH 

 

j    c 1 2 3 

1 3 8 10 

2 12 9 12 

3 8 6 13 

4 12 10 16 

PP 2 1 2 

 

Step 1: See Tables 4.13, 4.14, and 4.15. 

 

Table 4.13. Example: Flow ratio table for each stage 

 

c 1 2 3 

FRk 17.5 33 25.5 

 

• According to Table 4.13, stage 2 is identified as the bottleneck stage. 

 

Step 2: See Table 4.16. 
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Table 4.14. Example: Release times of jobs for the bottleneck stage 

 

j Rj 

1 3 

2 12 

3 8 

4 12 

 

Table 4.15. Example: Due dates of jobs for the bottleneck stage 

 

j Dj 

1 66 

2 64 

3 63 

4 60 

 

Table 4.16. Example: Table for scheduling the bottleneck stage 

 

Stage 2 PP 1 

j PP 1 Rj Dj pj2 start finish 

1 [1] 3 66 8 3 11 

2 [4] 12 64 9 27 36 

3 [2] 8 63 6 11 17 

4 [3] 12 60 10 17 27 

 

Step 3: See Table 4.17. 

 

• Since stage 3 is scheduled according to FAM and ECT strategies, the job 

sequence for this stage is J1-J3-J4-J2. Therefore, the final schedule is shown 

in Table 4.18. 

 

This example problem is solved by the proposed CP model (in Chapter 5 

below) to optimality, and the optimal makespan value is found to be 48. 
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Hence, BH provides the optimal solution for this example problem as seen in 

the table. 

 

Table 4.17. Example: Scheduling the stage before the bottleneck stage 

 

Stage 1 PP 1 PP 2 

j PP 1 PP 2 Rj Dj pj1 start finish start finish 

1 [1]   0 3 3 0 3     

2   [4] 0 27 12     8 20 

3   [2] 0 11 8     0 8 

4 [3]   0 17 12 3 15     

 

Table 4.18. Example: Final schedule with the BH 

 

Completion times 

j   c 1 2 3 

1 3 11 21 

3 8 17 30 

4 15 27 43 

2 20 36 48 

PP 2 1 2 

 

In the following chapter, we discuss the solution approaches that we propose in this 

study:  

 

o A Constraint Programming (CP) model as an exact method 

 

o A Hybrid Algorithm (HA) as a heuristic method 

 

o A Galactic Swarm Optimization (GSO) as a metaheuristic method 
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CHAPTER 5  

 

5. PROPOSED SOLUTION METHODS 

 

We propose a Constraint Programming (CP) model, a Hybrid Algorithm (HA), and a 

Galactic Swarm Optimization (GSO) metaheuristic algorithm in order to provide 

stabilized efficiency and especially effectiveness for HFS scheduling problems.  

 

Different from the MILP model in terms of definitions, but the same in terms of the 

assumptions, in the CP model, instead of binary and continuous decision variables, 

the processing time of a job at a stage is modelled as an interval length decision 

variable having the size of the processing time of the job at the stage. Moreover, the 

relationships between these operations are modeled with precedence constraints. The 

assignments of these operations to parallel identical machines at each stage are 

modeled with the cumulative function of the CP model as a resource constraint. This 

CP model is inspired by the model based on the study of Laborie et al. (2011). 

 

Furthermore, we propose a Hybrid Algorithm (HA) that consists of three phases. In 

the first phase, the HA calculates a Global Lower Bound (GLB) value as in the study 

of Santos et al. (1995) in order to measure the quality of the solution. In the second 

phase, in order to obtain the random order of the jobs determined initially at the 

beginning of the first stage, two dispatching rules, FAM and ECT, particularly 

powerful for HFS scheduling are used at the beginning of each stage. The reason why 

these dispatching rules FAM as a machine allocation strategy and ECT as a job 

sequencing strategy at each stage are chosen is that FAM maximizes machine 

utilization and ECT minimizes job idleness simultaneously in order to shorten the 

makespan. By this way, the schedule which is generated by the algorithm approaches 

to a non-delay schedule for the purpose of obtaining near optimal or optimal makespan 
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value if possible. The makespan value is then compared to the GLB. If the makespan 

is observed to be equal to the GLB, then the optimal schedule is obtained. Most of the 

time, this case is observed for small to some medium instances within an acceptable 

computational time. The larger the problem size, the more difficult the problem 

becomes due to the NP-hardness property of the HFS scheduling problem. On the 

other hand, if the makespan value is observed to be close to the GLB, then a near-

optimal schedule is obtained with a makespan value within a relatively acceptable gap 

from the GLB value. This case is commonly observed for the problems of medium to 

large sizes. In medium size instances, the gap from the GLB is relatively smaller than 

the gap in large size instances. Therefore, it is obvious that the larger the problem size 

is, the bigger the gap is. In the third and last phase of the HA, the sequence of this 

generated schedule with the best available makespan value for the test problem is 

recorded for comparison purposes. 

 

We propose another solution method for the HFS scheduling problem which is a new 

metaheuristic approach inspired by the motion of stars and superclusters inside 

galaxies, based on the study of Muthiah-Nakarajan and Noel (2016). This 

metaheuristic is called Galactic Swarm Optimization (GSO) which balances 

exploration and exploitation phases for a proper global search. In this chapter, GSO is 

explained in detail with all of its phases. Similar to HA, GSO also uses FAM and ECT 

strategies to form its cost function in order to compute the makespan value for a given 

HFS scheduling problem. Similar to the HA, the performance of GSO varies according 

to the problem instance size in terms of effectiveness and efficiency.  

 

In the following sections, we elaborate more on these three methods proposed. 

 

5.1. Constraint Programming (CP) Model 

 

The CP model (Laborie et al., 2011) is a new method to find solutions for scheduling 

and other combinatorial optimization problems. In order to deal with the complexity 



 

 

 

49 

 

of real-world problems for especially large-scale scheduling problems, the CP model 

becomes a powerful and invaluable tool. Rather than using an imperative 

programming language, the CP model uses a declarative programming language 

which simplifies the scheduling of jobs to machines with resource constraints. The 

automatic search algorithm of the CP model is complete, and it uses Tree Search 

(Depth First) and Constraint Propagation. This automatic search algorithm starts with 

first reducing the set of possible values in the domain of decision variables according 

to constraint propagations. When any further reduction is not possible in the domain 

of decision variables, the CP model backtracks according to depth search and starts 

the whole procedure in order to find a feasible or a better solution for the objective 

function value.  

 

The following example is used as an illustration for understanding the CP model with 

its depth search and constraint propagation strategies based on Google OR-Tools 

(2018): 

 

How can 4 queens be placed on a 4x4 chessboard so that no two of them attack each 

other? (In chess, a queen can attack horizontally, vertically, and diagonally.) 

 

Placing the first queen in the upper left corner reduces the domain of the objective 

functions with the application of constraint propagation. Then, the second queen is 

placed and thus the domain of the objective functions is reduced again with constraint 

propagation. After placing the third queen, it is seen that this solution is infeasible due 

to constraint propagation according to the location of the third queen shown in Table 

5.1. 

 

Due to the fact that the solution above is infeasible, the location of the second queen 

is changed. Constraint propagation is repeated according to the new location of the 

second queen. After placing the third queen, it is seen that this solution is infeasible 
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due to constraint propagation according to the new location of the third queen shown 

in Table 5.2. 

 

Table 5.1. Example: 1st iteration of CP 

 

Q X X X  Q X X X  Q X X X 

X X      X X Q X  X X Q X 

X   X    X X X X  X X X X 

X     X  X   X X  X Q X X 

 

Table 5.2. Example: 2nd iteration of CP 

 

Q X X X  Q X X X  Q X X X 

X X      X X X Q  X X X Q 

X   X    X   X X  X Q X X 

X     X  X X   X  X X X X 

 

Since an infeasible solution is encountered again, the location of the second queen is 

changed once more. Constraint propagation is applied again according to the new 

location of the second queen. After placing the third queen, it is seen that this solution 

is infeasible due to constraint propagation according to the new location of the third 

queen shown in Table 5.3. 

 

Table 5.3. Example: 3rd iteration of CP 

 

Q X X X  Q X X X  Q X X X 

X X      X X X    X X X Q 

X   X    X Q X X  X Q X X 

X     X  X X X X  X X X X 

 

Because the third iteration of the CP approach yields an infeasible solution, in the 

fourth, fifth and sixth iterations, the second queen is placed at new available locations. 
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However, a feasible solution is not reached in any of the iterations. By this iterative 

manner, depth search is completed for the first location of the first queen as shown in 

Table 5.4. 

 

Table 5.4. Example: 4th, 5th and 6th iterations of CP 

 

4th 

Q X X X  Q X X X  Q X X X 

X X      X X X X  X X X X 

X   X    X X X Q  X X X Q 

X     X  X   X X  X Q X X 

               

5th  

Q X X X  Q X X X  Q X X X 

X X      X X   X  X X Q X 

X   X    X X X    X X X X 

X     X  X Q X X  X Q X X 

               

6th 

Q X X X  Q X X X  Q X X X 

X X      X X X    X X X Q 

X   X    X X X X  X X X X 

X     X  X X Q X  X X Q X 

 

In the seventh iteration, the first queen is placed to the intersection of the first row and 

the second column as its new location. According to this new location of the first 

queen, the second queen is placed at the first available location. By placing each queen 

at the available location, constraint propagation is applied according to these 

placements. Then, the third queen is placed at the available location. After the last 

constraint propagation is completed according to the location of the third queen, the 

fourth queen is placed at the final position as shown in Table 5.5. 

 

By synchronously using depth search and constraint propagation, the CP approach 

drastically decreases the memory usage and the solution time. Therefore, the CP 

approach seems to be promising, when MILP model is inefficient to optimally solve 

especially real-life size instances. 
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Table 5.5. Example: 7th iteration of CP 

 

X Q X X  X Q X X  X Q X X  X Q X X 

X X X    X X X Q  X X X Q  X X X Q 

  X   X    X X X  Q X X X  Q X X X 

  X        X   X  X X   X  X X Q X 

 

For our HFS scheduling problem, following expressions are used in the CP model to 

represent the corresponding expressions described in the MILP model: 

 

The CP model 

 

Sets 

 

J: number of jobs: j={1, …, n}  

K: number of stages: k={1, …, c} 

L: number of parallel identical machines at each stage: l={1, …, mk} 

 

Parameters 

 

pjk: processing time of job j at stage k 

 

Decision Variables 

 

opjk: the interval length of job j’s operation time at stage k 

Objective Function 

 

minimize max
j∈J

(endOf(opjk)) (5.1) 
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Constraints 

 

subject to   

   

endBeforeStart(opj,k−1, opjk) ∀j∈J, ∀k∈K: k>1 (5.2) 

   

∑ pulse(op
jk

,1)≤mk

n

j=1

 ∀k∈K (5.3) 

 

In this CP model, decision variable is described as an interval. The functions endOf 

and endBeforeStart, represent the precedence relationships of the interval length 

decision variables. Finally, pulse is the critical function representing the number of 

parallel identical machines as a resource constraint which is a cumulative function of 

the CP model. If this problem were a traditional flow shop scheduling problem, instead 

of constraint (5.3) of the CP model, constraint (5.4) would be used in the CP model. 

 

noOverlap(opjk)  ∀j∈J, ∀k∈K (5.4) 

 

In the CP model, the difference between the constraint (5.3) model and the constraint 

(5.4) is illustrated in Figure 5.1. 

 

 

pulse 

 

 

 

noOverlap 

Figure 5.1. pulse vs. noOverlap in the CP model 

 

Pulse makes operations of the jobs overlap at a given stage on the parallel identical 

machines. On the other hand, the function noOverlap sequences the operations of jobs 

for a given stage without overlapping. If the problem were a traditional flow shop, 

noOverlap does exactly what is expected from it. However, our problem is an HFS 

Stage 1

Stage 1
    

    

    
    



 

 

 

54 

 

scheduling problem and thus we actually want the operations of jobs to overlap at a 

given stage until the parallel identical machines at this stage are filled up with these 

operations. Figure 5.2 shows that how exactly pulse works for the HFS scheduling 

problem with two jobs (j=1, 2) at stage 1 having two parallel identical machines (PP 

1 and PP 2). 

 

 

 

Figure 5.2. The role of pulse cumulative function in the CP model for the HFS 

scheduling problem 

 

Due to the fact that opjk is the interval length decision variable, it takes only positive 

integer values which cover (4.4), (4.10), and (4.11) domain constraints in the MILP 

model. Moreover, in order to describe this interval length decision variable, the 

processing times of the jobs whose units of measure are hours are converted to 

minutes. Since the allocations of jobs to machines are performed with a depth search 

and constraint propagation in the CP model, (4.8) and (4.9) sign constraints in the 

MILP model are satisfied after the optimal solution of the CP model is obtained. 

Objective function (5.1) in the CP model corresponds to objective function (4.1) in 

the MILP model, covers the constraint (4.7) and tries to minimize the makespan. 

Constraint (5.2) in the CP model is similar to constraint (4.3) in MILP model and 

covers it. Constraint (5.3) in the CP model covers constraints (4.2), (4.5), and (4.6) in 

the MILP model. Constraint (5.3) allows the jobs to be scheduled one by one up to the 

number of parallel identical machines at a given stage. Therefore, the number of jobs 

processed in parallel at a given stage never exceeds the number of parallel identical 

machines at that stage. 

 

In order to understand the CP model, the example HFS scheduling problem in the 

study of Santos et al. (1995) is optimally solved with this CP model. The example 

PP 1

PP 2
Stage 1
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problem is represented in Table 5.6 and a Gantt Chart generated by the CP Optimizer 

of IBM ILOG CPLEX 12.6 is shown in Figure 5.3. 

 

Table 5.6. The example problem (HF3, P2||Cmax) 

 

j  c 1 2 3 

1 3 5 9 

2 7 1 4 

3 2 7 4 

4 8 2 2 

5 6 3 7 

PP 2 2 2 

 

 

 

Figure 5.3. Gantt Chart of the example problem solution generated by CP Optimizer 

 

At the first stage, jobs 1 and 2 are scheduled to the two parallel identical machines, 

concurrently. Interval [1][1] (op11) is represented with [stage][job] structure to obtain 

stage-based Gantt Chart from the CP Optimizer of IBM ILOG CPLEX 12.6. After job 

1 is completed on the first machine of the first stage, on this machine, job 5 is 

scheduled. Job 3 and 4 are scheduled consecutively, after job 2 is completed on the 
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second machine of the first stage. At the second stage, jobs 1 and 2 are scheduled to 

parallel identical machines. After job 1 is completed on the first machine and job 2 is 

completed on the second machine at the second stage, jobs 3 and 5 are scheduled to 

these machines, concurrently. After the completion of job 4 at the first stage, it can be 

scheduled to either one of the machines at the second stage, however, according to 

FAM strategy, it is scheduled on the second machine at the second stage. At the last 

stage, again, jobs 1 and 2 are scheduled to the parallel identical machines, 

concurrently. After job 1 is completed on the first machine at the last stage, job 3 is 

scheduled. Jobs 5 and then 4 are scheduled to the second machine at the last stage, 

after job 2 is completed. By this way, the schedule having the shortest length (21 units) 

is obtained for this example problem, which is (HF3, P2||Cmax) of Santos et al. (1995). 

 

5.2. Hybrid Algorithm (HA) 

 

We propose an HA inspired by the GLB of Santos et al. (1995). With the inclusion of 

the GLB, the solution quality of HA heuristic is always under control, even though the 

job sequence is randomly generated. In the following sections, we explain the concept 

of the HA in detail. 

 

5.2.1. Global Lower Bound (GLB) 

 

The development of the GLB value is executed by a stage-based approach. For each 

stage, the lower bound value is denoted by LB(k), k=1, …, c. Moreover, there is also 

a job-based lower bound which is denoted by LB(0). Then the GLB value is equal to 

the maximum value of a set consisting of LB(0) and LB(k) values for all k=1, …, c. 

LB(0) and LB(k) are explained in Equations (5.5) and (5.6). 

 

LB(0)= max
j∈J

(∑ p
jk

c

k=1

)  (5.5) 

   



 

 

 

57 

 

LB(k)=
1

mk

×(∑LSAjk

mk

j=1

+∑ p
jk

n

j=1

+∑RSAjk

mk

j=1

) ∀k∈K (5.6) 

 

LSA is the left-hand side total processing times for jobs from stage 1 to k−1 sequenced 

in non-decreasing order represented by Equation (5.6.1). Moreover, RSA is the right-

hand side total processing times for jobs from stage k+1 to c sequenced in non-

decreasing order represented by Equation (5.6.2). 

 

LSAjk=∑ p
jk'

k-1

k
'
=1

 else 0 if k=1 ∀j∈J, ∀k∈K: 1<k≤c (5.6.1) 

   

RSAjk= ∑ p
jk'

 else 0 if k=c

c

k
'
=k+1

 ∀j∈J, ∀k∈K: 1≤k<c (5.6.2) 

 

Equation (5.5) represents the calculation of the job-based lower bound value which is 

equal to the maximum of all job-based lower bound values. Equation (5.6) shows all 

of the stage-based lower bound values’ calculations. If the processing times of the jobs 

are integer, then LB(𝑘) value is simply rounded up. Finally, the GLB is the maximum 

value of a set consisting of LB(0) and LB(𝑘) values as in Equation (5.7).  

 

GLB=max [LB(0), max
k∈K

(LB(k))]  (5.7) 

 

For better comprehension, the following example (Table 5.7) is used to illustrate the 

computation of the GLB: 

 

• Step 1: LB(0) computation (Table 5.8). 

 

• Step 2: Sum of the processing times of the jobs for each stage (Table 5.9). 
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Table 5.7. Example: (HF3, P2||Cmax) problem for GLB computation 

 

j    c 1 2 3 

1 3 8 10 

2 12 9 12 

3 8 6 13 

4 12 10 16 

PP 2 2 2 

 

Table 5.8. Example: (HF3, P2||Cmax) problem job-based lower bound computation 

 

j    c 1 2 3 𝐋𝐁(𝟎) 

1 3 8 10 21 

2 12 9 12 33 

3 8 6 13 27 

4 12 10 16 38 

PP 2 2 2  
 

Table 5.9. Example: (HF3, P2||Cmax) problem sum of the processing times of the 

jobs 

 

j       c 1 2 3 

1 3 8 10 

2 12 9 12 

3 8 6 13 

4 12 10 16 

Total 35 33 51 

PP 2 2 2 

 

• Step 3: Lower bound calculations for each stage (Tables 5.10, 5.11, and 5.12). 

 



 

 

 

59 

 

LB(1)=(1/2)×[0+35+(18+19)]=36 

 

Table 5.10. Example: (HF3, P2||Cmax) problem calculation of LB(1) 

 

j       c 1 2+3  j       c 1 2+3 

1 3 18  1 3 18 

2 12 21  3 8 19 

3 8 19  2 12 21 

4 12 26  4 12 26 

Total 35   Total 35  

PP 2   PP 2  

 

LB(2)=(1/2)×[(3+8)+33+(10+12)]=33 

 

Table 5.11. Example: (HF3, P2||Cmax) problem calculation of LB(2) 

 

j      c 1 2 3   j     c 1 2 3  j      c 1 2 3 

1 3 8 10  1 3 8 10  1 3 8 10 

2 12 9 12  3 8 6 13  2 12 9 12 

3 8 6 13  2 12 9 12  3 8 6 13 

4 12 10 16  4 12 10 16  4 12 10 16 

Total  33   Total  33   Total  33  

PP  2   PP  2   PP  2  

 

LB(3)=(1/2)×[(11+14)+51+0]=38 

 

• Step 4: Global lower bound calculation. 

 

GLB=max(38, max(36, 33, 38))=38 

 

The schedules in Figures 5.4 and 5.5 are generated by the proposed HA in order to 

show the lowest gap value possible.  
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These schedules makespan values’ gap away from the GLB is calculated as in 

Equation (5.8). 

 

Table 5.12. Example: (HF3, P2||Cmax) problem calculation of LB(3) 

 

j       c 1+2 3   j      c 1+2 3 

1 11 10  1 11 10 

2 21 12  3 14 13 

3 14 13  2 21 12 

4 22 16  4 22 16 

Total  51  Total  51 

PP  2  PP  2 

 

 

 

Figure 5.4. Gannt chart of sequence J1-J3-J4-J2 

 

 

 

Figure 5.5. Gannt chart of sequence J3-J1-J4-J2 

 

Gap=
Cmax-GLB

GLB
 (5.8) 

 

For these schedules, gap value is equal to 7.89 %. Since the optimal makespan value 

is greater than or equal to the GLB value, there is a probability that this gap is zero. 
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Therefore, this problem is also solved with the CP model, and the makespan value is 

found that it is equal to 41 which is thr optimal solution for this problem. 

 

5.2.2. First Available Machine (FAM) and Earliest Completion Time (ECT) 

Strategies 

 

FAM is a dynamic strategy that is always chasing the machines at a stage to see the 

machine with the earliest finish time among the parallel identical machines for a given 

stage. Therefore, FAM simply outperforms other methods for machine allocation to 

jobs, since FAM is a dynamic strategy depends on the time. By means of FAM 

strategy, machine utilization increases. Table 5.13 is used to illustrate the FAM 

dispatching rule. 

 

Table 5.13. Example: The application of FAM strategy for the first stage 

 

Stage 1 J3-J1-J4-J2 

PP     FT   

1 → J3 8   

2 → J1 3   

       

2 → J4 15   

1 → J3 8   

       

1 → J2 20   

2 → J4 15   

 

For job sequence J3-J1-J4-J2, finish times at machine 1 and 2 are respectively equal 

to p31=8 and p11=3 for the first stage. In order to process job 4 at stage 1, the machine 

with minimum finish time is selected. Therefore, job 4 is loaded to machine 2 after it 

completes the processing of J1. New finish time for machine 2 is equal to 3+p41=15. 

According to the sequence, job 2 is the last job to be processed at stage 1. For this 

purpose, job 2 is loaded to machine 1 after it completes the processing of job 3, since 
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machine 1 has the minimum finish time (8≤15) compared to machine 2’s finish time 

which is now equal to 15. At the end, machine 1’s finish time is updated. The finish 

time of machine 1 is now equal 8+p21=20. 

 

ECT is the job sequencing strategy at the beginning of each stage after FAM 

dispatching rule is applied at the previous stage. The aim of ECT job sequencing rule 

is to minimize job waiting time. In this way, with FAM and ECT rules applied together 

to an HFS problem, the makespan value is tried to be decreased as much as possible. 

Based on the definition of a non-delay schedule, with this proposed Hybrid Algorithm 

(HA), the makespan value of any HFS problem approaches to the optimal solution as 

much as possible. ECT job sequencing rule is illustrated through an example in Table 

5.14. 

 

Table 5.14. Example: The application of ECT job sequencing rule at stage 2 

 

FAM    FAM 

Stage 1 Completion times    Stage 2 Completion times 

3 8  ECT  1 11 

1 3  →  3 14 

4 15    4 25 

2 20    2 29 

PP 2    PP 2 

 

For job sequence J3-J1-J4-J2, the completion times of the jobs at the end of the first 

stage are calculated according to FAM dispatching rule. As a result, job 1 has the 

shortest completion time at the end of the first stage, despite the fact that it is scheduled 

to the first stage at the 2nd order of the sequence. Using the ECT job sequencing rule, 

the order of jobs changes and thus updates as J1-J3-J4-J2 at the beginning of the 

second stage. Since, coincidentally, the completion times of the jobs result in a non-

decreasing order at the end of the second stage, ECT keeps this same sequence at the 
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beginning of the third stage. Ties are broken with the machine having the lowest index 

for FAM dispatching rule and with the job having the lowest index for ECT rule.  

 

The gap value determines how good the generated schedule’s makespan value is. The 

sequence of the jobs at the beginning of the first stage is selected randomly, the fitness 

of which depends on how far the makespan value is from the GLB. Therefore, in order 

to ensure that the proposed algorithm is not stuck in the local optima, the job sequence 

at the first stage is randomly generated for each iteration as a random search method. 

In the first iteration, for a given HFS problem, the GLB value is calculated. Then, by 

using randomly generated sequence at the first stage, makespan value is calculated 

with FAM and ECT strategies for this problem. After that, calculated makespan value 

is checked whether it is equal to the GLB value or not. If it is equal to the GLB value, 

then the solution reached is certainly optimal. Otherwise, the gap value is calculated, 

and the next iteration is initiated. In the next iteration, for a new randomly generated 

sequence at the first stage, new makespan value is calculated. If this new makespan 

value is smaller than GLB(1+Gap) value, this new sequence is accepted as a better 

solution, thus, gap value is updated for the next iteration according to this new 

makespan value. This loop continues until the stopping criterion is reached. In the HA, 

the stopping criterion is the number of iterations. This gap strategy is the reason why 

this proposed HA is powerful and easy to implement for any variant of HFS 

scheduling problems.  

 

5.2.3. Pseudo Code and Flowchart of the Hybrid Algorithm (HA) 

 

The proposed HA for (HFc, Pm||Cmax) problems is presented in the following pseudo 

code where π represents the sequence of the jobs. 

 

Hybrid Algorithm (HA) 

1: Load HFS problem data 

2: Calculate LB(0) job-based LB 

3: Calculate LSA 
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Hybrid Algorithm (HA) (cont’d) 

4: Calculate RSA 
5: Calculate LB(k) stage-based LB 

6: GLB=max(LB(0), LB(k)) 

7: Initialization: generate π randomly 

8: Scheduling the first stage: 

9: For j=1:m1 

10:      Allocate the empty machines for the jobs up to m1 

11:      Find the completion times of jobs up to m1 

12:      Find the FTs of machines 

13: EndFor 

14: For j=m1+1:n 

15:      Find the machine with the minimum FT  
16:      Allocate the FAM for the remaining jobs 

17:      Find the completion times of remaining jobs 

18:      Update the FTs of machines 

19: EndFor 

20: Scheduling the other stages: 

21: For k=2:c 

22:      Apply the ECT based on the completion times of jobs at the previous stage 

23:      Based on the ECT, reorder the jobs which is a new sequence at the current stage 

24:      For j=1:mk 

25:           Allocate the empty machines for the jobs up to mk 

26:           Find the completion times of jobs up to mk 
27:           Find the FTs of machines 

28:      EndFor 

29:      For j=mk+1:n 

30:           Find the machine with the minimum FT 

31:           Allocate the FAM for the remaining jobs 

32:           Find the completion times of remaining jobs 

33:           Update the FTs of machines 

34:      EndFor 

35: EndFor 

36: Calculate 𝐶𝑚𝑎𝑥 

37: If Cmax=GLB then Cmax is optimal and STOP 
38: Else Gap=(Cmax−GLB)/GLB 

39:      Set the counter and the number of iterations 

40:      do 

41:           Initialization: generate π’ randomly 

42:           Scheduling the first stage: 

43:           For j=1:m1 

44:                Allocate the empty machines for the jobs up to m1 

45:                Find the completion times of jobs up to m1 

46:                Find the FTs of machines 

47:           EndFor 

48:           For j=m1+1:n 
49:                Find the machine with the minimum FT  

50:                Allocate the FAM for the remaining jobs 

51:                Find the completion times of remaining jobs 

52:                Update the FTs of machines 

53:           EndFor 

54:           Scheduling the other stages: 

55:           For k=2:c 
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Hybrid Algorithm (HA) (cont’d) 

56:                Apply the ECT based on the completion times of jobs at the previous stage 
57:                Based on the ECT, reorder the jobs which is a new sequence at the current stage 

58:                For j=1:mk 

59:                     Allocate the empty machines for the jobs up to mk 

60:                     Find the completion times of jobs up to mk 

61:                     Find the FTs of machines 

62:                EndFor 

63:                For j=mk+1:n 

64:                     Find the machine with the minimum FT 

65:                     Allocate the FAM for the remaining jobs 

66:                     Find the completion times of remaining jobs 

67:                     Update the FTs of machines 
68:                EndFor 

69:           EndFor 

70:           Calculate Cmax’ 

71:           If Cmax’<GLB(1+Gap) 

72:                Cmax= Cmax’ 

73:                Gap=(Cmax−GLB)/GLB 

74:           EndIf 

75:      While counter<iteration 

76: EndIf 

77: Return Cmax  

78: STOP 

 

The flowchart of the proposed HA heuristic is as well presented in Figure 5.6. 
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Figure 5.6. The flowchart of the HA 



 

 

 

67 

 

5.3. Galactic Swarm Optimization (GSO) 

 

GSO is a new evolutionary based metaheuristic algorithm inspired by the motion of 

stars and super-clusters inside galaxies in order to find the global optima of a given 

optimization problem based on the study by Muthiah-Nakarajan and Noel (2016). This 

metaheuristic consists of two levels, adjusting the balance between exploration 

(diversification) and exploitation (intensification) phases for a given optimization 

problem. In many metaheuristic algorithms, in order to explore better solutions or in 

other words not to be stuck in local optima while exploiting, a lot of parameter 

optimization processes are required. For instance, in GA, the number of iterations, 

population size, crossover and mutation rates, and the selection strategy should be 

considered carefully. On the other hand, the structure of GSO has already been 

designed to manage the trade-off between diversification and intensification. 

Moreover, GSO is such a flexible metaheuristic that, in its two phases, different types 

of metaheuristic algorithms can be used such as GA, TS, ACO and SA.  

 

5.3.1. GSO in HFS Scheduling 

 

In this study, in the levels of GSO metaheuristic, PSO method by Eberhart and 

Kennedy (1995) is used in order to let the stars and the super-clusters in the galaxy 

find better solutions. Like particles in PSO, in GSO, each star and super-cluster has its 

own position and velocity values. In the first level of GSO, in order to update the 

velocity of a star s at time t+1 Equation (5.9) is used. 

 

vxs
t+1=w1vxs

t +c1r1(pxs
t -xs

t)+c2r2(g
xs
t -xs

t ) (5.9) 

 

In Equation (5.10), 𝐿  represents the number of iterations in the first level of GSO and 

k represents the current iteration value. In Equation (5.9), c1 is the cognitive 

acceleration coefficient which makes star s to learn from its best personal position 

where p
xs
t  is equal to the best personal position of star s at time t and xs

t  is equal to the 
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position of star s at time t. Similarly, c2 is the social acceleration coefficient which 

makes stars s learn from the global best position where g
xs
t  is equal to the global best 

position at time t. In Equation (5.9), r1 and r2 are uniformly distributed random 

numbers between 0 and 1. In Equation (5.9), w1 is the inertia weight determining the 

balance between local and global searches. In the first level of GSO, 𝑤  is linearly 

decreasing according to the Equation (5.10). After calculating vxs
t+1, the position of star 

s at time t+1 is computed via Equation (5.11). 

 

w1=1-k/(L1+1) (5.10) 

 

xs
t+1=xs

t +vxs
t+1 (5.11) 

 

After completing the first level, or in other words, the exploration phase, the second 

level of GSO is initiated. Global best positions from the first level are passed to the 

second level of GSO in order to form a super-cluster.  Now, the exploitation phase is 

starting with the application of PSO once again to the stars in this super-cluster. From 

now on, the position of star s in super-cluster at time t is represented by y
s
t . Similarly, 

the velocity of star s in super-cluster at time t is represented by vys
t . Therefore, Equation 

(5.12) is the new velocity update equation. 

 

vys
t+1=w2vys

t +c3r3 (p
ys
t -y

s
t)+c4r4(g

ys
t -y

s
t ) (5.12) 

 

In Equation (5.13), k is the current iteration value whereas L2 is the number of 

iterations in the second level of GSO. Similar to c1 and c2 in the first level, c3 and c4 

are cognitive and social acceleration coefficients in the second level of GSO, 

respectively. r3 and r4 are random numbers between 0 and 1. Like w1 in the first level, 

w2 is the inertia weight in the second level of GSO. It also decreases linearly according 

to the Equation (5.13). After calculatingvys
t+1, in order to compute the position of star s 

in super-cluster, Equation (5.14) is used. 
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w2=1-k/(L2+1) (5.13) 

 

y
s
t+1=y

s
t +vys

t+1 (5.14) 

 

In this study, initial position and velocity values are generated randomly according to 

the Equations (5.15) and (5.16) based on the study of Taşgetiren et al. (2007). 

 

xs
0=xmin+(xmax-xmin)rand() (5.15) 

  

vxs
0 =vmin+(vmax-vmin)rand() (5.16) 

 

In Equation (5.15), xmin=0, xmax=4and in Equation (5.16), vmin=−4, vmax=4. On the other 

hand, continuous velocity values are restricted in the range [−4, 4]. vys
0  is also restricted 

in the same range. Moreover, and again based on the study of Taşgetiren et al. (2007), 

c1, c2, c3, and c4 are equal to 2. Furthermore, w1 and w2  values start from “1” and they 

decrease linearly according to the number of iterations in the first and the second levels 

of the GSO based on the Equations (5.10) and (5.13), respectively. However, they are 

never to be decreased below 0.4. The number of iterations in the first level of the GSO, 

L1 is equal to the number of jobs n. Similarly, the number of stars in each cluster inside 

the galaxy is also equal to the number of jobs n. However, in order to increase 

diversification, the number of clusters in the galaxy is set to n+5. Similarly, the number 

of iterations in the second level of the GSO, L2 is also set to  n+5. 

 

Since the position values of stars are continuous but not discrete, they turn out to be 

insufficient to represent the decision variables for a combinatorial optimization 

problem. Due to the fact that HFS scheduling problem is a combinatorial optimization 

problem with the positions of the jobs as its decision variables, Smallest Position 

Value (SPV) rule based on the study of Taşgetiren et al. (2007) is applied to the 

position values of stars. In order to comprehend how SPV works, Table 5.15 is used 

for an illustrative example: 
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Table 5.15. Example: The application of SPV rule 

 

Job 1 2 3 4 5 

Position values 2.922 −2.574 −1.426 1.251 2.402 

Job Position 5 1 2 3 4 

Job Sequence (𝝅) 2 3 4 5 1 

 

According to the updated position values in Table 5.15, job 2 has the smallest position 

value. Therefore, its job position is equal to 1. Job 2 is followed by job 3 having the 

second smallest position value. Hence, it takes the job position 2. The third smallest 

position value belongs to job 4. Thus, job position 3 belongs to it. Job 5 has the fourth 

smallest position value and, so, it takes the job position 4. Finally, job 1 has the largest 

position value among all. Therefore, it takes the last job position. By this way, we have 

a candidate job sequence for stage 1 to be evaluated.  

 

Similar to the HA, the GSO uses FAM and ECT in order to form its cost function. 

Therefore, the makespan value of each job permutation 𝜋 alternative is calculated in 

the same way. 

 

At the end of the second iteration in the GSO, in order to improve the solution quality 

without hindering the solution time, Insertion Heuristic (IH) and Local Search (LS) 

methods are applied to the global solution obtained. By this way, it is thought that if 

there is a chance for improvement, then global solution can be improved. In the IH, a 

job is inserted to different job positions one by one by swapping the job in that 

position. If the new job permutation is better than the previous one in terms of 

makespan value, global job permutation is updated, thus, new job permutation is made 

to be equal to it. This process continues until each job is inserted to each job position 

except inserted job’s current job position. Therefore, the number of iterations for the 

IH is determined by the number of jobs n. When a better job permutation is obtained, 

the procedure goes on by trying the next job instead of restarting. Otherwise, solution 

time is extended, if the procedure is restarted when encountered with a better 
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permutation. The IH builds up its search method based on providing a better 

permutation. Otherwise, it keeps the previous permutation as the global solution and, 

naturally, it tries to improve this solution. After the IH is completed, swap mutation 

which is randomly changing two jobs’ positions at a time, is applied to the latest global 

solution as an LS method. The number of iterations in the LS is equal to 𝐿  which is 

thought to be sufficient to obtain a better permutation, if possible, without hindering 

the solution time. The GSO is a powerful metaheuristic providing a good global 

solution. Therefore, the IH and LS methods have a slight effect on that solution. 

However, solution time is not drastically hindered by these methods, hence, they are 

still applied to that solution in order to find hopefully a better one. 

 

In the next section of the proposed GSO metaheuristic, pseudo code of the approach 

is presented in order to clarify the mechanism of this method. 

 

5.3.2. Pseudo Code of the GSO Metaheuristic 

 

In order to clarify the proposed GSO for (HFc, Pm||Cmax) problem, the following 

pseudo code is designed. 

 

Galactic Swarm Optimization (GSO) 

1: Initialization: xmin=0, xmax=4, vmin=-4, vmax=4, c1=c2=c3=c4=2 

2: For 1:n+5 

3:      For 1:𝑛 

4:           Randomly generate xs
0 & p

xs
0 ~rand(xmin, xmax) and vxs

0 ~rand(vmin, vmax) 

5:           Apply SPV to xs
0 and p

xs
0  

6:           If Cmax(xs
0)<Cmax(p

xs
0 ) 

7:                p
xs
0 =xs

0 

8:           EndIf 

9:      EndFor 

10:      g
xs
0 =p

xs
0 (1) 

11:      For 2:n 

12:           If Cmax(p
xs
0 )<Cmax(g

xs
0 ) 

13:                g
xs
0 =p

xs
0  

14:           EndIf 

15:      EndFor 

16: EndFor 
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Galactic Swarm Optimizaton (GSO) (cont’d) 

17: galaxy=g
xs
0 (1) 

18: For 2:n+5 

19:           If Cmax(g
xs
0 )<Cmax(galaxy) 

20:                galaxy=g
xs
0  

21:           EndIf 

22: EndFor 

23: Level 1 (Exploration): 

24: For 1:n+5 

25:      For 0:L1-1 
26:           Equation (5.10) and check w1<0.4 condition 

27:                For 1:n 

28:                     r1 & r2~rand() 

29:                     Equation (5.9) and restrict vxs
t+1~[-4, 4] 

30:                     Equation (5.11) and apply SPV xs
t+1 

31:                     If Cmax(xs
t+1)<Cmax(p

xs
t+1) 

32:                          p
xs
t+1=xs

t+1 

33:                               If Cmax(p
xs
t+1)<Cmax(gxs

t+1) 

34:                                    g
xs
t+1=p

xs
t+1 

35:                                         If Cmax(g
xs
t+1)<Cmax(galaxy) 

36:                                              galaxy=g
xs
t+1 

37:                                         EndIf  

38:                               EndIf  

39:                     EndIf  

40:                EndFor 

41:      EndFor 

42: EndFor 

43: Forming the super-cluster and initialization: vmin=-4, vmax=4 

44: For 1:n+5 

45:      y
s
0=g

xs
t+1 

46:      vys
0 ~rand(vmin, vmax) 

47:      p
ys
0 =y

s
0 

48: EndFor 

49: Level 2 (Exploitation): 

50: For 0:L2-1 

51:      Equation (5.13) and check w2<0.4 condition 

52:           For 1:n+5 

53:                r3 & r4~rand() 

54:                Equation (5.12) and restrict vys
t+1~[-4, 4] 

55:                Equation (5.14) where galaxy=g
ys
t+1 and apply SPV y

s
t+1 

56:                If Cmax(y
s
t+1)<Cmax(p

ys
t+1) 

57:                     p
ys
t+1=y

s
t+1 

58:                     If Cmax(p
ys
t+1)<Cmax(galaxy) 

59:                          galaxy=p
ys
t+1 

60:                     EndIf 

61:                EndIf 

62:           EndFor 

63: EndFor 

64: Return galaxy 
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Galactic Swarm Optimization (GSO) (cont’d) 

65: Initialization of the Insertin Heuristic (IH):  

66: galaxy_copy=galaxy 

67: For i=1:n 

68:      For j=1:n 

69:           If i≠j 

70:                galaxy(j)=galaxy_copy(i) 

71:                galaxy(i)=galaxy_copy(j) 

72:                If Cmax(galaxy)<Cmax(galaxy_copy) 

73:                     galaxy_copy=galaxy (update) 

74:                Else galaxy=galaxy_copy (reset) 

75:                EndIf 

76:           EndIf 

77:      EndFor 

78: EndFor 

79: Initialization of the Local Search (LS) (Swap mutation): 

80: For 1:L2 

81: r=randperm(length(galaxy_copy)) (random permutation of jobs’ indices) 

82: g=galaxy_copy (copy galaxy_copy) 

83: g([r(1) r(2)])=galaxy_copy([r(2) r(1)]) (randomly select two indices to swap jobs on them) 

84:      If Cmax(g)<Cmax(galaxy_copy) 

85:           galaxy_copy=g 
86:      EndIf 

87: EndFor 

88: Return galaxy_copy  

89: STOP 
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CHAPTER 6  

 

6. CASE STUDY IN THE AEROSPACE COMPANY 

 

In this chapter, we attempt to propose a Hybrid Flow Shop (HFS) configuration to the 

company which is currently operating as a Hybrid Job Shop (HJS). Furthermore, we 

present alternative methods to schedule the designed HFS so as to meet the demand 

for the required panels of the A320 fuselage. 

 

For the case study, first of all, an HFS configuration is required to be designed. Since 

the current manufacturing environment is an HJS with longer lead times and complex 

material handling systems, an HFS configuration turns out to be necessary for shorter 

lead times and less complex material handling systems than the previous one. In this 

chapter, for better comprehension of these problems in the case study, the current 

manufacturing system operating as an HJS is explained in detail.  

 

In order to convert the current HJS manufacturing environment to an HFS 

configuration, firstly, all required data such as demand, capacity, production and 

machine availability information are collected.  

 

Secondly, after data collection is completed, in the data analysis and interpretation, 

due to the fact that processing times and machine availability data are stochastic, we 

fit each of them to the distribution with the best goodness value. Before fitting machine 

availability data to the best distribution, we cleanse them from the outliers falling far 

away from the conglomerated values according to their plots. Since processing times 

data are less polluted with the outliers considered as negligible according to their plots, 

we directly fit each of processing times data to the best available distribution by 

skipping the data cleansing process.  
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Thirdly, after data analysis and interpretation are completed, Cycle Time (CT) is 

calculated according to demand and capacity data. The source module of Discrete-

Event Simulation (DES) model creates each type of panel according to this cycle time. 

From production data, routes of the parts are obtained to be realized in DES model as 

an HFS configuration. The processing times of the jobs and the breakdowns of the 

machines are defined in DES model according to the outputs of data analysis and 

interpretation.  

 

Then, with Minimum number of Machines (MoM) calculation for each stage, the 

number of parallel identical machines is determined for each stage according to the 

results from the DES model. By this way, HJS environment is converted to an HFS 

configuration. In MoM calculations, if demand per year is satisfied for each type of 

panel, then there is no need for an additional machine for any stage. However, if there 

is a bottleneck stage and/or demand is not satisfied then, the number of parallel 

identical machines is increased by one unit for this stage according to the results of 

DES model runs.  

 

After the conversion of HJS to an HFS configuration by means of the DES model, the 

job sequences obtained by the solution methods are inserted to the source module. 

Then DES model is run for a single production of each panel (job) in order to obtain 

the makespan value of each job sequence inserted to the source module. The solution 

method for HFS scheduling problem that gives the best makespan value identifies the 

best solution method for the case study.  

 

In order to understand how an HFS configuration is converted from HJS environment 

by means of the DES model, the phases of this process are explained explicitly in the 

following sections. 
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6.1. Products: Panels of Fuselage 

 

The company is Turkey’s technology leader in design, development, modernization, 

manufacturing, integration, and life cycle support of integrated aerospace systems 

with a remarkable number of products from fixed and rotary wing air platforms to 

Unmanned Air Vehicles (UAV)s and satellites.  

 

The company, ranking among the top hundred global companies in aerospace and 

defense industry, based its business on six strategic areas which are Aerostructure, 

Aircraft, Helicopter, UAV Systems, Space Systems, and National Combat Aircraft 

groups with the provision of related integrated logistics support. 

 

Today, the company is conducting A320 Section-18 Panels (ABS) of Fuselage and 

AIRBUS-PAG SA Section-19 Shells & Barrel (S19) Programs which are two of the 

projects under the Aerostructure Group. 

 

The main and strategic assembly parts (load items) of these two programs are the 

panels. Before completion of the assembly process, the panels are called “skins” 

(detail parts) in the manufacturing area. In ABS project, there are seven types of panels 

which are upper, lower 1, lower 2, left forward side, right forward side, left rear side, 

and right rear side skins. On the other hand, in S19 project, there are six types of panels 

which are upper middle, upper left, upper right, lower left, lower right and lower 

middle skins. In skin manufacturing, the batch size of each panel is equal to one, due 

to the difficulties of materials handling in Hybrid Job Shop (HJS) configuration, the 

size of panels being too big to be maneuvered in an HJS configuration, and in the 

assembly of the fuselage, the usage of each panel is only one unit. Table 6.1 lists the 

panels making up the center fuselage of Airbus A320 with the potential annual demand 

values. 
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Table 6.1. Panels of the center fuselage of Airbus A320 

 

   Panels of 

Sections 

Project 

ABS 
Description 

Annual 

Demand 

F
in

a
l 

P
ro

d
u

ct
: 

A
ir

b
u

s 
A

3
2
0
 

S
u

b
-a

se
em

b
ly

 P
a
rt

: 
C

en
te

r 
F

u
se

la
g
e
 

S
ec

ti
o
n

-1
8
 

1 

S18 

UPPER SKIN 

960 

2 LOWER SKIN 1 

3 LOWER SKIN 2 

4 LEFT FORWARD SIDE SKIN 

5 RIGHT FORWARD SIDE SKIN 

6 LEFT REAR SIDE SKIN 

7 RIGHT REAR SIDE SKIN 

S
ec

ti
o
n

-1
9
 

8 

S19 

UPPER MIDDLE SKIN 

720 

9 UPPER LEFT SKIN 

10 UPPER RIGHT SKIN 

11 LOWER LEFT SKIN 

12 LOWER RIGHT SKIN 

13 LOWER MIDDLE SKIN 

 

In order to manufacture the panels, several operations (each corresponding to a 

separate stage of manufacturing) must be performed on the panels taking into account 

the precedence relationships among these operations. Except the raw material issue, 

in order to manufacture a single panel, 19 sequential operations shown on Table 6.2 

are performed. 

 

Table 6.2. Operations routing for any panel manufacturing 

 

Stage No Stage Name  

0 Raw Material Issue (Cycle Time) 

1 First Cut 

2 Roll 

3 Clean Ops1 (Alkali Clean1 & Vapor Degrease1) 

4 Heat Treatment 

5 Refrigerator 

6 Stretch Press 

Continued on next page 
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Table 6.2. – Continued from previous page 

Stage No Stage Name  

7 Clean Ops2 (Alkali Clean2 & Vapor Degrease2) 

8 Deburr1, Drill Hole & Remove Tab 

9 Mechanic Mill 

10 Vapor Degrease3 

11 Hand Form 

12 Deburr2 & Hand Finish 

13 Conductivity, Dimensional & Hardness Inspection 

14 Pre-Penetrant Etch Ops 

15 Non-Destructive Penetrant Inspection 

16 Mask & Wet Blast & Surface Inspection Ops 

17 Tartaric Sulfuric Acid Anodize Ops 

18 Paint Ops 

19 Paint Inspection 

 

One of the major problems is that the panels are carried out and in five different 

buildings in order to manufacture them. If the revisit is counted as well, total number 

of buildings that panels visit is six. Moreover, complex materials handling is used both 

during operations and transportation among buildings. Due to the fact that the physical 

manufacturing area is too large to control, there are lots of quality and coordination 

problems that cause assembly line to stop occasionally. 

 

Furthermore, due to the lack of quality, some of the operations, especially manual 

finish tasks require more time than their standard processing times. Therefore, any 

excessive work on the panels extends the manufacturing lead time which causes 

unplanned stoppages and bottlenecks not only in the assembly line, but also in the 

manufacturing process itself. Because the panels are manufactured in an HJS 

environment, there is always accumulating WIP in front of the machines. These WIP 

accumulations make a stack of parts where they scrap each other by scratching. Since 

the panels have bigger sizes, unbalanced WIP accumulations in both manufacturing 

and assembly areas hinder the movement of the other parts. Also, they affect the 

quality of other parts, negatively, because of the frictions.  



 

 

 

80 

 

Another disadvantage of the existing HJS configuration in panel manufacturing is that 

it is almost impossible to purchase and locate new machines in parallel to the existing 

ones without altering the layout. The HJS configuration currently has almost no free 

space to make small adjustments such as paralleling the bottleneck machines and 

installing smart materials handling methods including conveyor belts, Automated 

Guided Vehicles (AGV) or Automated Storage-Retrieval Systems (AS-RS) rather 

than local cranes, carts, trolleys and dollies. Paralleling machines is useful for not only 

handling bottleneck operations, but also offering volume flexibility and streamlining 

the operations in the form of a flow line in case of increasing demand and product 

variety.  

 

In this case study, we first address the conversion of the current HJS environment as 

an HFS configuration and then the scheduling of manufacturing in this converted HFS 

configuration: 

 

- A Discrete-Event Simulation (DES) model is developed and utilized so as to 

obtain the minimum number of parallel identical machines at each 

manufacturing stage in the HFS, taking into account the practical restrictions 

and the expected demand value. 

 

- For the HFS scheduling problem part of the case study, we utilize several 

solution methods for scheduling the HFS with the objective of minimizing the 

makespan, expecting a growing demand for panels in the near future. 

 

6.2. Production Processes 

 

For each panel, the production process starts with issuing related raw material. The 

specification of raw material, such as the measure of raw material already matching 

with its required stock size to manufacture the panels and whether heat treatment has 

already been applied to raw material or not, affects the first cut and heat treatment 
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processes.  Briefly, under both conditions, first cut and heat treatment operations are 

not required in order to prepare raw material for metallic manufacturing. However, 

there is a slight difference among the panels 1, 2 and 3. While both operations are not 

applied to panel 1, only first cut operation is applied to panels 2 and 3. On the other 

hand, these conditions are not valid for the other panels. But, if stock-sized material 

has already been available, raw material is sometimes provided without first cut 

process for S19 panels 9, 10, 11, and 12 under the condition of urgent demand. 

However, most of the time, this approach is impractical due to the high price of raw 

material.  

 

After the completion of the issuance of raw material, production goes on with first cut 

operations. In this operation, firstly, raw material is loaded to the related manual 

cutting machine from its pallet. After that, with the help of saw and ruler on the 

machine, raw material is cut in order to bring its dimensional measures to the required 

stock size. In the final phase of first cut operations, stock-sized raw material is 

unloaded from the machine and loaded to an empty pallet previously prepared with 

the help of a forklift and a hooked crane during cutting operation until all of the empty 

pallets are loaded with materials one by one. These operations form stages 0 and 1 that 

are executed in Building 200 (B200) where the warehouse of raw material and first 

cut machines are located. These stages are shown on the partial layout of B200 in 

Figure 6.1. 

 

After the completion of the first cut operations, the pallets filled with the panels shown 

in Figure 6.2 are loaded to a truck with the support of a forklift in order to transport 

stock-sized materials from one location to another, because first cut operations are 

performed in a different building which is the main warehouse of the raw materials. 

Even though the first cut operations are under the roof of metallic manufacturing, the 

other operations belonging to this class are still performed in a different building 

which is the structural manufacturing and assembly facility.  
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Figure 6.1. Production stages 0 and 1 in Building B200 
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Therefore, a transportation operation is required, however, if current HJS environment 

is converted to an HFS configuration, this waste can be eliminated. 

 

 

 

Figure 6.2. Loaded pallet to be transported with the related work orders 

 

When transportation operation is completed, the chips on the panels are removed by 

alkali clean and rinse tanks with the help of vacuum manipulator shown in Figure 6.3. 

On the other hand, if current HJS environment were converted to HFS configuration, 

excessive materials handling tools and motions waste would have been removed. 

 

First, with the vacuum manipulator, the panel is lifted from the pallet and loaded to an 

empty transportation cart previously prepared. Then, by the moving crane, 

transportation cart is sinked into alkali clean tank and then it is lifted and sinked into 

rinse tank, in succession. By this way, cleansing operations are completed before the 

heat treatment process which is the succeeding stage. 

 

Now, the panels are located on transportation carts as a batch whose quantity varies 

from 4 to 8 according to their thickness value. The panels are first loaded to oven 
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loading apparatus with the help of a vacuum manipulator and fixed crane, due to the 

fact that this process is performed while the panels are still flat. 

 

 

 

Figure 6.3. Alkali clean vacuum manipulator with the fixed crane 

 

And again, with the help of the moving crane, oven loading apparatus is lifted and 

loaded to oven in order to make the panels reach their required finish condition in a 

predetermined period of oven time. After dwelling time is up, oven loading apparatus 

is removed from oven via the moving crane. Then, the panels are reloaded to 

transportation carts via vacuum manipulator and fixed crane. At the final stage of this 

process, transportation carts are transferred to the refrigerator by technicians, 

manually, in order to complete cooling process of the panels for a predetermined 

period of cooling time. This transportation requires materials handling manually 

which can be reduced or even eliminated in an HFS environment. 
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Before removing transportation carts from the refrigerator manually after the 

completion of the cooling process, the related stretch form tool is loaded to the stretch 

form machine with the help of the mega crane. Each panel has its own unique stretch 

form tool which is designed, manufactured, and dedicated to the panel’s particular 

geometric structure. In an HFS conversion, there needs to be more than one stretch 

form machine. However, batch size of each panel type must be one only due to the 

high cost of stretch form tools. By this way, excessive tool cost is eliminated. 

Furthermore, in order to initiate assembly operations of the fuselage without stopping, 

each type of panel is to be completed in the same manufacturing line, one after the 

other. 

 

The panels, removed from the refrigerator, are loaded to the stretch form machine one 

by one after each panel’s stretch process is completed. But, this time, due to the fact 

that the panels are formed, they are transferred from regular transportation carts to the 

formed panels’ transportation carts when the panels are unloaded from the stretch 

machine with the help of the mega crane. After that, alkali clean and rinse processes 

are repeated. However, because the materials handling is slightly different from 

previous process, loading and unloading processes also differ. Because different types 

of transportation carts require different types of materials handling systems, non-

value-added costs drastically increase. Therefore, an HFS conversion is thought to 

decrease the non-value-added costs in terms of automated materials handling systems 

implementation. 

 

With the completion of cleansing process, transportation carts are transferred to 

drilling and removing tab area in order to prepare the panels for mechanical milling 

process. In order to connect the panels to related milling fixture on mechanical milling 

machine, the panels are drilled. With the help of fixed crane and robotic cutting 

machine shown in Figure 6.4. Although the tabs of the panels are required for the 

stretching process, they are actually excess materials on the panels which are removed 

for further processes. Therefore, the tabs of the panels are removed with the help of 
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the same machine. Then, again, the panels are unloaded from the robotic cutting 

machine and loaded to the formed panels’ transportation carts with the help of the 

fixed crane. 

 

After transporting the panels to the mechanical milling machine, with the help of the 

fixed crane, the panels are loaded to the mechanical milling machine. There are two 

entrance doors each with its own fixed crane at both sides of the machine. A panel is 

loaded to its milling fixture which is slided into the machine from a door with the help 

of constant crane. While the loaded panel is processed by the machine, without waiting 

for the completion time of this panel’s milling process, the other panel is prepared 

outside of the machine (external setup) and loaded to its milling fixture which is slided 

into the machine from the other door with the help of the opposite fixed crane after 

unloading the processed panel. 

 

 

 

Figure 6.4. Robotic cutting machine 



 

 

 

87 

 

By this way, loading and unloading operations of the panels are following each other 

without leaving the machine idle. Due to the fact that it takes too much time to process 

a single panel on this machine, this external setup operation is pretty useful for 

increasing the daily output. After converting the HJS environment to an HFS 

configuration, it may not be feasible to parallel this milling machine due to the high 

cost of it. Similar to the stretch form machine, batch size must be again equal to 1 in 

order to avoid excessive milling fixture tool cost. 

 

After the completion of mechanical milling process, alkali cleaning and rinsing 

processes are repeated. Then, for hand forming and deburring operations, the panels 

are transported to hand finish area. If there is a forming problem on the panel, it is 

corrected by manual hammering. After hammering operation, chips from previous 

operations and traces from hammering operation are deburred in order to increase the 

surface quality of the panels for incoming dimensional inspection which also checks 

the surface quality and the correction of the panel. Hand finish processes are applied 

to both sides of a panel with the help of specially designed carts according to the 

panel’s form and geometric structure. 

 

Firstly, inner area of the panel is deburred and dimensionally inspected. After that, 

outer area of the panel is deburred and dimensionally inspected. By this way, hand 

finish and dimensional inspection processes are completed consecutively. 

 

Before transporting parts to the facility of chemical processes, parts are loaded to the 

building-to-building transportation carts for further processes.  

 

The manufacturing stages above are all located in Building 10 (B10) which is the core 

facility including both manufacturing and assembly operations. The sequence of the 

stages executed in B10 is shown on its partial layout in Figure 6.5. 
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As it can be seen in Figure 6.5, the HJS environment causes a lot of non-value-added 

activities adversely affecting the lead time and the quality of the panels. Therefore, an 

HFS configuration must be implemented in order to decrease materials handling 

complexity and thus lowering lead times and improving quality. 

 

After the panels are transported to the chemical processes facility, they are loaded to 

the white carts with the help of the moving crane and manual labor for further 

processes. By this way, empty building-to-building carts are sent back for maintaining 

the loop between metallic production in the structural manufacturing facility and 

surface preparation in the chemical processes facility.  

 

At this point of the manufacturing process, the panels are in another building which is 

the third different facility named as Building 20 (B20). Converting HJS the 

environment to an HFS configuration, wastes resulting from waiting, transportation, 

and quality can be decreased by eliminating the panel movements among buildings 

via different types of transportation carts. Especially, quality defects may be reduced, 

some of which cause a panel to be reworked for unpredictable rework times increasing 

manufacturing lead time or even stopping a panel which leads to a shortage in the 

assembly line depending on the severity of error. Some of these defects can be 

tolerable and corrected by rework process whereas some of them can make a panel 

totally scrap and permanently useless. 

 

Before non-destructive inspection, which is also called penetrant inspection, pre-

penetrant etch operation is applied to the panels in order to increase the surface quality. 

Since this is a chemical process, rinse operation must also be applied afterwards. These 

two consecutive operations have their own tanks in which the panels are sinked into 

one by one with the help of the moving crane in order to meet the required dwelling 

times. 

 

 



 

 

 

89 

 

 

 

Figure 6.5. Metallic manufacturing stages in Building B10 
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After pre-penetrant etch and its rinse operation, the panels are sinked into infiltration 

liquid for penetrant inspection. After completion of penetrant inspection, the panels 

are transported to wet blast operation area. In this process, the panels are put into a 

cabinet with a spraying system, one by one after masking process is completed.  

 

After surface quality is satisfied with surface inspection, for other chemical processes, 

the panels are ready to be transported to another building which is the fourth different 

facility named as Building 220 (B220) and has much bigger tanks than the tanks of 

B20. In this facility, tartaric sulfuric acid anodize with its rinse operation, sealant with 

its rinse operation and drying in oven operation are applied to the panels, successively. 

Surface operations applied to the panels are shown in Figures 6.6 and 6.7, on the 

partial layouts of B20 and B220, respectively. 

 

All of the operations related to the painting process are applied to the panels in the 

painting process facility which is the fifth and the final building utilized in the 

manufacturing process of the panels. Painting process operations are executed in 

Building 40 (B40) as shown in Figure 6.8. 

 

After all painting operations are completed, under the condition that the panels are 

suitable for the assembly line according to the final inspection, they are sent back to 

B10 where assembly of the panels takes place, including riveting and mating, 

packaging and final inspection. Assembly of the panels so as to obtain the center 

fuselage is out of the scope of this study. 
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6.2.1. Data Analysis 

 

The relevant data are collected with the help of Structural Query Language (SQL) 

from RDBMS. Related tables are connected to each other with the SQL queries in 

SAP Business Objects Crystal Reports 2008. Moreover, in order to retrieve the unit 

processing times of each panel in each stage for all occurrences, some functions are 

developed. Query codes with the syntax of Microsoft Object Linking and Embedding, 

DataBase (OLE DB) Provider for SQL Server and the functions with related attributes 

from the tables of RDBMS are compiled by Crystal Reports. 

 

All of the outputs having overall 143,119 raw records are exported to MS Office Excel 

2016 as a single spreadsheet for each panel type in a given stage with the average of 

processing times per quantity in a work order. Manufacturing stages 3, 4, 5, 7, 10, and 

17 are metallurgical surface operations and they have standard processing times 

according to the specifications of the panels based on their manufacturing data 

packages. Similarly, machine failure data are obtained from JAVA-based Materials 

Requirement Planning (MRP) in ERP system.  

 

All of the outputs having overall 1936 raw records are exported to MS Office Excel 

2016 as spreadsheets for the stages 3, 4, 6, 7, 9, 10, 15, and 18. Upon collection of raw 

data related to unit processing times of panels for each stage and machine availability 

of each stage, data analysis and interpretation phase follow. 

 

Two types of data, processing times and machine availability, are required to be 

analyzed due to their uncertainty. Since outliers heavily affect machine availability, in 

order to get realistic breakdown information from this data, we cleanse them through 

plotting. By this way, total of 1936 raw records are cleansed and reduced to 1143 

meaningful data. In detail, machine availability data are reduced from 103 to 98 for 

stages 3, 7, and 10, from 101 to 73 for stage 4, from 500 to 276 for stage 9, from 118 
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to 107 for stage 15, and from 829 to 304 for stage 18. On the other hand, the number 

of machine availability data for stage 6 remain the same and equal 285.  

 

Machine availability data are related to breakdown occurrences. Breakdown 

occurrences are interpreted by both durations and frequencies for the stages at the 

same time. By this way, necessary information about breakdowns is obtained for the 

DES model developed for the company’s case scenario. The completion of data 

cleansing process is followed by fitting the data to one of the available distributions 

with the best goodness value in MATLAB R2018b.  

 

After fitting the data to the best available distribution according to data’s pattern 

observed on histogram, by using this distribution’s parameter values, we calculate its 

mean to be determined as a processing time for each type of panel at each stage. This 

analysis is executed for the processing times of all panels at all stages of 

manufacturing.  

 

A sample of data interpretations are accessible in Appendices (Appendix A). These 

data interpretations derived by the MATLAB function of Sheppard (2012) are used as 

the processing times of the panels at the manufacturing stages and the failures of 

parallel identical machines at the stages in the DES model’s resource modules. 

 

6.2.2. DES Model Design for an HFS Configuration 

 

In order to start developing the DES model, first, the cycle time per panel is calculated 

based on Equation 6.1 according to the most demanded panel.  

CT= ⌊
300 days

960×13 units×types
×

3 shifts

days
×

7.5 hrs

shifts
×

60 min

hrs
⌋=

32 min

units×types
 (6.1) 
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Assembling the highest annual demand of fuselage which is 960 is supported by the 

resource capacity, i.e, 300 working days each with 3 shifts lasting 7.5 hours. Since the 

fuselage requires 13 types of panels, CT is calculated based on (960x13) panels/year. 

After that, CT in Equation 6.1 is rounded down to the largest integer to be introduced 

as an interval value having minutes as its unit of measure for the source module. 

Moreover, by being rounded down, CT value ensures that each type of panel can be 

manufactured during the cycle time. 

 

For determining the number of parallel identical machines at each stage k, MoMk is 

calculated based on Equation (6.2). 

 

MoMk= ⌈
σ p

jk
n
j=1 ×Dj

Ck

⌉ ∀k∈K (6.2) 

 

Dj represents the demand of panel j per year. Ck identifies the yearly capacity of a 

machine at stage k. The example in Table 6.3 shows how  

MoMk value is calculated for the cooling stage. 

 

As it is observed in Table 6.1, in order to satisfy the yearly demand of panels, given 

the capacity of the cooling machine (refrigerator), the cooling stage requires at least 5 

refrigerators. 

 

Table 6.3. MoMk calculation for the cooling stage 

 

REFRIGERATOR 

panel, j p
jk

 (hrs) Dj (per year) p
jk
×Dj Ck (300 days × 3 shifts × 7.5 hrs) MoMk 

1 0 960 0 6750 0 

2 0 960 0 6750 0 

3 0 960 0 6750 0 

Comtinued on next page 
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Table 6.3. – Continued from previous page 

REFRIGERATOR 

panel, j p
jk

 (hrs) Dj (per year) p
jk
×Dj Ck (300 days × 3 shifts × 7.5 hrs) MoMk 

4 4 960 3840 6750 0.57 

5 4 960 3840 6750 0.57 

6 4 960 3840 6750 0.57 

7 4 960 3840 6750 0.57 

8 4 720 2880 6750 0.43 

9 4 720 2880 6750 0.43 

10 4 720 2880 6750 0.43 

11 4 720 2880 6750 0.43 

12 4 720 2880 6750 0.43 

13 4 720 2880 6750 0.43 

      4.84 

        rounded up 5 

 

Similarly, MoMk calculations for the the other stages are accessible in Appendices 

(Appendix B). After a few runs with the DES model developed in Tecnomatix Plant 

Simulation 14, MoMk values are updated iteratively with adjusted the Dj values and, 

as a result, the minimum number of parallel identical machines for each stage is 

determined in order to satisfy the highest annual demand. Table 6.4 lists the number 

of parallel identical machines for each stage as obtained from the DES model of the 

suggested HFS configuration for panel production in the company. 

 

All of the required data are obtained now in order to illustrate the DES model 

physically. 

 

DES model design starts with the creation of its source module shown in Figure 6.9. 

By changing “Mobile Unit (MU) selection” area from “Sequence Cyclical” to 

“Sequence”, the DES model is run for a single unit production of each panel. 
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Table 6.4. MoMk values in the HFS 

 

k Stage MoMk  

1 FIRST CUT 1 

2 ROLL 1 

3 CLEAN OPS1 (ALKALI CLEAN1 & VAPOR DEGREASE1) 1 

4 HEAT TREATMENT 2 

5 REFRIGERATOR 7 

6 STRETCH PRESS 6 

7 CLEAN OPS2 (ALKALI CLEAN2 & VAPOR DEGREASE2) 1 

8 DEBURR1, DRILL HOLE & REMOVE TAB 3 

9 MECHANIC MILL 7 

10 VAPOR DEGREASE3 1 

11 HAND FORM 1 

12 DEBURR2 & HAND FINISH 6 

13 CONDUCTIVITY, DIMENSIONAL & HARDNESS INSPECTION 2 

14 PRE-PENETRANT ETCH OPS 1 

15 NON-DESTRUCTIVE PENETRANT INSPECTION 2 

16 MASK & WET BLAST & SURFACE INSPECTION OPS 1 

17 TARTARIC SULFURIC ACID ANODIZE OPS 1 

18 PAINT OPS 5 

19 PAINT INSPECTION 1 

 

This option is used for measuring the makespan values of different job (panel) 

sequences obtained by different scheduling methods. On the other hand, “Sequence 

Cyclical” option is only used for running the DES model based on the predetermined 

simulation length which is equal to 300 days according to CT calculation in order to 

determine the minimum number of parallel identical machines for each stage. Job 

sequence is altered via the panel type table shown in Figure 6.10. After creating the 

source module, stages are created as the resource modules, having determined the 

number of parallel identical machines at each stage. Each resource module represents 

the corresponding stage with an infinite buffer for WIP accumulation. 
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Figure 6.9. The source module of the DES model 

 

 

 

Figure 6.10. Initial sequence table of panel (skin) type inserted to source module 
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Figures 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, and 6.17 are used to illustrate one of the 

resource modules, heat treatment stage, of the DES model with its infinite 

(capacity=500 panels) buffer (backlog of jobs). 

 

 

 

Figure 6.11. The resource module structure of heat treatment stage 

 

 

 

Figure 6.12. Heat treatment stage backlog 
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Figure 6.13. Heat treatment stage processing times (hrs) table of panels 

 

 

 

Figure 6.14. Heat treatment stage with 2 parallel identical ovens 

 



 

 

 

102 

 

 

 

Figure 6.15. Heat treatment stage with the processing times table of panels 

 

 

 

Figure 6.16. Heat treatment stage with failure distribution 
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Figure 6.17. Heat treatment stage with failure frequency and duration 

 

Some of the stages are skipped by some of the panels (Figure 6.13). Processing times 

of all panels at the stages are listed in Appendices (Appendix C). 

 

After calculating the mean values of processing times of the panels for each stage 

based on the fit distribution, the mean processing times are inserted to the resource 

modules with panel type tables rather than the stochastic counterparts, since the 

processing times are assumed as deterministic in the DES model. However, fitting 

them to the best available distributions is only used for data analysis and interpretation 

phase in order to cleanse the data collected via SQL queries from RDBMS to obtain 

meaningful values from them based on the mean values of the best available 

distributions.  

 

In the DES model designed with Tecnomatix Plant Simulation 14, Weibull 

distribution is exponentiated to obtain exponential distribution via Equation (6.3). 
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f(x)=
k

λ
(
x

λ
)

k-1

e-(x λ⁄ )k
 x≥0 is the pdf of Weibull distribution (6.3) 

 

When k=1 in the pdf of the Weibull Distribution f(x)=λ-1e-xλ
-1

 is the pdf of the 

exponential distribution. The failure of the resource occurs in Tecnomatix Plant 

Simulation 14 according to the Figure 6.18 for given start (a resource begins 

operating),  duration (a failure occurs), and interval (a resource begins operating again) 

values based on the study by Bangsow (2015). 

 

 

 

Figure 6.18. Failure settings of a resource in Tecnomatix Plant Simulation 14 

 

The physical appearance of the DES model designed with Tecnomatix Plant 

Simulation 14 is shown in Figures 6.19 and 6.20. 

 

First of all, event controller shown in Figure 6.21 determines the simulation speed and 

length. Simulation length is set as 300 days. Moreover, it generates a report which 

summarizes the simulation after a run is completed. The summary report of a DES 

model run is shown in Figure 6.22. The summary report gives statistics like which 

panel is drained by which drain module, mean life time of each panel, throughput of 

each panel, utilization percentages of production, transport and storage to derive 

value-added percentage with its portion bar. Summary report is used for checking the 

throughput for each panel at the end of simulation run in order to determine whether 

the simulated HFS configuration has sufficient capacity to satisfy panels’ annual 

demand or not. The reason why value-added is low is that we try to find the minimum 

number of parallel identical machines utilized at each stage by providing infinite 

buffers between stages in order to satisfy panels’ demand per year. 
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Figure 6.21. Event controller as one of the simulation settings 

 

 

 

Figure 6.22. Summary report generated at the end of a simulation run 

 

Therefore, storage has the highest utilization percentage due to the fact that buffers 

are highly utilized at all times during a simulation run. Another reason why value-

added is low is that the processing times among stages vary drastically. While some 

of the operations last for hours, the others last for minutes, resulting in unbalances 

among the stages causing bulky WIP accumulation.   
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Secondly, shift calendar determines the number of shifts with hours for working days 

required. In the simulation run, there are 3 shifts, each of them with 7.5 hours in total 

300 day/year. The frame of shift calendar is shown in Figure 6.23. 

 

 

 

Figure 6.23. The frame of shift calendar 

 

Finally, bottleneck analyzer shows the utilizations of the resource modules. It helps us 

to identify the bottleneck resources so that we can increase the number of identical 

parallel machines at a particular bottleneck stage. This tool and MoMk values support 

each other by feedbacking one another iteratively based on the simulation runs results 

and at the end of the iterations, the minimum number of parallel identical machines, 

required for each stage, is determined. Figure 6.24 shows the bottleneck analyzer with 

its outcome. In order to determine the exact MoMk values, the utilizations of the stages 

obtained from bottleneck analyzer’s outcome shown on Figure 6.24 are used with the 

precalculated MoMk values. For example, the stage with the highest utilization is the 

candidate whose number of parallel identical machines is increased by one based on 

simulation the runs results and its precalculated MoMk value. Bottleneck analyzer also 

helps to configure its outcome with its frame for different options as shown in Figure 

6.25. 
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Figure 6.24. The frame of bottleneck analyzer  

 

 

 

Figure 6.25. The frame of bottleneck analyzer with its outcomes displayed on the 

complete DES model 
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Another useful tool is the drain module which helps to measure the effectiveness of 

the HFS scheduling methods the sequences of which are inserted to DES model source 

module. Drain module provides detailed statistics table for each type of panel. Figure 

6.26 shows the drain module frame with its statistics table. 

 

As it is seen in Figure 6.26, with time attribute, the makespan for a given sequnce is 

obtained by sorting this attribute in descending order at the end of the simulation run. 

Therefore, at the end of simulation run, in time attribute, panel with the highest 

completion time value determines the makespan for a sequence inserted to DES model 

source module. 
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6.3. Computational Study 

 

So far, data retrieval from RDBMS, processing the retrieved data and designing the 

DES model based on these data are covered. Having obtained an HFS configuration 

for the panel productşon for the fuselage under consideration, scheduling the HFS 

becomes the issue. Therefore, this section covers all aspects of the computational 

study on scheduling the HFS which is supported by the DES model in detail. For this 

purpose, several different software packages are used for different solution methods. 

MILP and CP models are coded via Optimization Programming Language (OPL) in 

IBM ILOG CPLEX 12.6. Dispatching rules are applied with LEKIN 3.3 and 

MATLAB R2018b. The renowned heuristic algorithms are implemented with both 

MS Excel 2019 and MATLAB R2018b. The proposed HA heuristic and GSO 

metaheuristic methods are coded in MATLAB R2018b. Moreover, LEKIN outputs 

and Excel spreadsheets of dispatching rules are provided also in Appendices 

(Appendix D). In this phase, the results of the computational studies with the case HFS 

scheduling problem are shared.  

 

The HFS scheduling problem in the case study consists of 13 jobs and 19 stages some 

of which have more than one identical machine in parallel. Table 6.5 shows that the 

makespan values obtained from the scheduling methods some of whose job sequences 

are also inserted to the DES model in order to observe the job sequences under the 

condition of machine breakdowns. 

 

Since the scheduling methods with the symbol * do not use the FAM and ECT 

strategies, for the first stage, the job sequences obtained from them are not inserted to 

the DES model source module. Therefore, there are no related Cmax values for them at 

the end of a simulation run in the DES model also using the FAM and ECT strategies. 

 

 

 



 

 

 

113 

 

Table 6.5. The results of the scheduling methods for the case study 

 

  

Current Solution Methods Proposed Solution Methods 

CPLEX LEKIN FAM and ECT 

BH* 

CP Optimizer 
FAM and 

ECT 

M
IL

P
*
 

S
P

T
*
 

L
P

T
*
 

S
IR

O
 

S
T

P
T

 

L
T

P
T

 

P
a
lm

er
 

C
D

S
 

N
E

H
 

C
P

*
 

H
A

 

G
S

O
 

C
m
a
x

 (
h

rs
) 

29.18 32.87 33.13 31.78 33.03 32.59 32.53 31.08 29.76 32.53 28.98 29.29 29.34 

C
P

U
 (

se
c)

 

8485.21 1 1 0.168 0.199 0.171 0.199 0.169 0.185 0.258 51.63 303.26 601.74 

C
m
a
x
 (

h
rs

) 
D

E
S

 

- - - 34.96 37.84 37.67 36.74 34.59 33.32 - - 32.29 32.42 

 

MILP model is solved in 8485.21 seconds via CPLEX to near-optimality where 

relative MILP gap is equal to 1.2 % (a stopping criterion to obtain the best feasible 

solution), since the HFS scheduling problem is NP-hard in the strong sense (Table 

6.6). This means that the obtained solution is very close to the optimal. On the other 

hand, the CP model solves the problem to optimality within a very short computational 

time (Table 6.7). Both MILP and CP models are measured in terms of Cmax and CPU 

times. Therefore, the roles of the other solution methods have vital importance to 

determine the job sequence in order to obtain the best makespan value.  

 

Table 6.6. The completion times with the MILP model 

 

Job, j cj19 

1 24.00 

2 20.90 

3 20.67 

Continued on next page 
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Table 6.6 – Continued from previous stage 

Job, j cj19 

4 24.40 

5 28.80 

6 24.20 

7 22.84 

8 25.96 

9 29.18 

10 27.58 

11 28.30 

12 28.58 

13 27.97 

 

Table 6.7. The start and end times of jobs with the CP model 

 

Job, j Stage, k Start End 

1 19 23.72 23.93 

2 19 23.18 23.42 

3 19 27.63 27.78 

4 19 28.12 28.32 

5 19 22.23 22.47 

6 19 27.03 27.23 

7 19 20.52 20.70 

8 19 25.13 25.38 

9 19 28.60 28.98 

10 19 26.68 27.03 

11 19 27.78 28.12 

12 19 28.32 28.60 

13 19 27.23 27.63 
 

The job sequences of the dispatching rules (SPT & LPT) are obtained by LEKIN 3.3 

with ease and their Cmax values are recorded. The results of the other algorithms SIRO, 

STPT, LTPT, CDS, Palmer and NEH are derived via MS Office Excel 2019 

spreadsheets and their job sequences plugged into FAM and ECT strategies via 

MATLAB R2018b. The job sequences of CDS, Palmer and NEH are also presented 
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in Appendices (Appendix E). Moreover, in order to implement the NEH algorithm, 

DES model is reduced to the traditional flow shop for getting makespan values of 

partial job sequences in NEH algorithm. Cmax values of the renowned heuristic 

algorithms are also recorded. Furthermore, BH is coded via MATLAB R2018b and 

its Cmax value is also recorded with CPU time. According to this algorithm, the 

bottleneck stage is stage 12 and whole scheduling process is executed according to 

this stage based on the rules of BH as explained in Chapter 4.  

 

Consequently, CP provides the optimal solution. The second-best solution method is 

MILP model. However, to supply this good solution, MILP model spends a 

remarkable amount of time. The third best and the fourth best solution methods are 

our proposed approaches which are HA and GSO. HA is set to a million iteration to 

yield this result. On the other hand, the setup of GSO has already been explained in 

detail in Chapter 5. Both of them provide promising results in terms of both 

effectiveness and efficiency with a good balance between solution quality and time. 

All solution methods are run on the computer with Intel® Core™ i5-8265U CPU @ 

1.60 GHz 1.80 GHz and 7.82 / 8.00 GB RAM with 64-bit operating system. 

 

According to the simulation runs results for the HFS scheduling problem represented 

as (HFc, Pm|skip, unavail(brkdwn)|Cmax) configuration, the proposed HA and GSO 

yield the best results among other solution methods using FAM and ECT strategies, 

which is parallel to their solutions in (HFc, Pm|skip|Cmax) configuration. 
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CHAPTER 7  

 

7. COMPUTATIONAL STUDY 

 

In order to assess the performance of the proposed CP, HA, and GSO, we use the test 

problems of Carlier and Neron (2001) and we compare the proposed algorithms 

against PSO of Liao et al. (2012), QIA of Niu et al. (2009), AIS of Engin and Doyen 

(2004), GA of Besbes et al. (2006), ACO and Ant Colony System (ACS) of Khalouli 

et al. (2009), and B&B of Carlier and Neron (2001). 

 

The test problems vary from 10 jobs and 5 stages to 15 jobs and 10 stages. Processing 

times of the jobs are uniformly distributed between 3 and 20. The notation used for 

problem description is defined below through an example problem, that is, j10c5a2. 

 

• j10: 10 jobs. 

 

• c5: 5 stages. 

 

• a: number of parallel identical machines at the stages. 

 

• 2: index of a problem instance. 

 

The number of parallel identical machines at the stages varies according to the “letter” 

before the index of an instance for a given problem: 

 

• a: there is a single machine in the middle stage and there are three machines 

at other stages. 
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• b: there is a single machine at the first stage and there are three machines at 

the other stages. 

 

• c: there are two machines at the middle stage and there are three machines at 

the other stages. 

 

• d: there are three machines at all stages. 

 

We solve 76 test problems and report the Cmax values together with CPU times in Table 

7.1. Instance 60 is discarded from the test runs because it has a structural fault. 

However, the indices of instances remain the same for comparison purposes. 

 

For the algorithms with the symbol *, only the makespan values of them are reported 

in their papers. Furthermore, the problem instances in bold represent harder problems. 

The letter a in “CPU” column means that the solution of the instance could not be 

reached within 1600 seconds. The letter b in “CPU” column means that B&B could 

not reach the optimal solution within 1600 seconds. The letter c in “CPU” column 

means that the solution, which B&B reaches, is not optimal, and also, this solution is 

not reached within 1600 seconds.  

 

Since j10c5a* type problems are easy to solve, all algorithms yield the optimal 

solution in a short time. HA is slightly better than the other two proposed solution 

methods in terms of only solution time for all instances. However, solution times of 

the proposed algorithms are acceptable, since they are all below 1600 seconds.  

 

Like j10c5a*, j10c5b* type problems are also easy to solve. Therefore, all algortihms 

yield the optimal solutions for all problems. The difference occurs in solution times 

on average, again, and PSO is slightly better than the other algorithms.  
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However, the solution times of the proposed algorithms, CP, HA, and GSO, are 

acceptable, since they are below 1600 seconds. 

 

j10c5c* type problems are one of the hardest problem group. PSO, B&B and CP reach 

optimality for all instances. On the other hand, HA could not solve only j10c5c3 

instance to optimality. Moreover, GSO solves only j10c5c1 to optimality. However, 

the solutions of the problems that HA and GSO could not solve to optimality, are only 

1 time unit away from the optimal solution. Therefore, the results of HA and GSO are 

still promising and their solution times are below 1600 seconds. Furthermore, CP is 

faster than PSO for j10c5c3 instance. CP is dominantly better than the other solution 

algorithms. For every instance, HA is better than QIA. For only instance 16, GSO 

performs equal to QIA, for other instances, GSO is better than QIA. For instance 14, 

HA and GSO perform also better than AIS and GA, since they solve this instance 

within a solution time below 1600 seconds. For instance 19, HA and GSO performs 

better than GA, since they reach a promising solution only 1 unit away from the 

optimal solution within 1600 seconds for this instance.  

 

Like j10c5c*, j10c5d* type problems are one of the hardest group. Despite the fact 

that they are hard to solve, HA and GSO could not solve only j10c5d2 and j10c5d5 

instances to optimality. However, since their makespan values are only 1 unit away 

from the optimal solution, both HA and GSO are promising in terms of effectiveness 

and efficiency. PSO, B&B and CP solve all instances to optimality. For instance 18, 

HA and GSO perform also better than B&B in terms of the solution time. For instance 

19, HA and GSO perform better than ACO in terms of solution quality. For instance 

20, HA is faster than B&B. For instance 23, HA and GSO perform faster than B&B 

to reach optimality. 

 

j10c10a* is another easy problem type whose instances are all solved to optimality by 

all algorithms. Since the solution times of the proposed solution methods are below 



 

 

 

124 

 

1600 seconds, the solutions provided are acceptable, and hence, CP, HA, and GSO are 

still promising. 

 

Like j10c10a*, j10c10b* type problems are easy to solve, and they are solved to 

optimality by all algorithms (except QIA) within a solution time of 1600 seconds. 

 

One of the hardest problem types, j10c10c*, could not be solved optimality with ease. 

Instance 36 is solved to optimality by only CP and almost optimal solutions are 

reached by HA and GSO within a solution time below 1600 seconds. Therefore, even 

though PSO, AIS, and GA reach the makespan value equal to 115 for instance 36, they 

could not reach this solution within 1600 seconds. CP also solves instance 37 to 

optimality while the other algorithms, except B&B, fail to do so. However, for 

instance 37, PSO’s solutions are better than HA and GSO. Nevertheless, PSO could 

not reach its solution within 1600 seconds and the solutions of HA and GSO are only 

2 units away from PSO’s solution and only 3 units away from CP’s solution which is 

optimal. Moreover, HA and GSO reach their solutions within 1600 seconds for 

instance 37. Instance 38 is the only problem in this set to be solved to optimality by 

all solution methods except ACO, ACS, and B&B. However, PSO, AIS, and GA could 

not reach to optimality within 1600 seconds. Therefore, for this instance, it can be said 

that the proposed solution methods are better than PSO. Instance 39 is solved to 

optimality by only CP. On the other hand, PSO, AIS, GA, HA and GSO reach a 

solution which is only 1 unit far from the optimal solution. However, PSO, AIS, and 

GA reach the same solution but in a larger time than 1600 seconds for this instance. 

Therefore, it can be said that the proposed solution methods perform better than PSO, 

AIS and GA for this instance. Instance 40 is solved to optimality by only PSO and CP. 

However, PSO could not reach its solution within 1600 seconds for this instance. 

Therefore, the proposed CP model is better than PSO for this instance. Moreover, HA 

and GSO reach a solution only 1 unit far from the optimal solution within 1600 

seconds. Therefore, the proposed HA heuristic and GSO metaheuristic still seem 

promising. Instance 41 is solved to optimality by only CP, while PSO, AIS, GA, HA, 
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and GSO reach a solution only 2 units far from the optimal solution. While HA and 

GSO reach their solutions within 1600 seconds, the other algorithms could not reach 

the same solution within 1600 seconds. Therefore, for this instance, CP is the superior 

method, and HA and GSO perform better than PSO only in terms of efficiency. CP is 

superior to others in terms of both effectiveness and efficiency. Both HA and GSO are 

better than AIS and GA in terms of only solution time, since they reach the same 

solution with the same gap from the optimal solution provided by CP. For instances 

38, 39, and 41, HA and GSO perform better than ACO. While CP is superior to all of 

the solution methods again, HA and GSO are better than ACS and B&B for all of the 

instances except the instance 37, since B&B provides the optimal solution within 1600 

seconds. However, for other instances, B&B provides solutions which are not optimal 

within solution times higher than 1600 seconds. According to the results, GSO and 

especially CP are promising. 

 

Another easy problem type j15c5a* is solved to optimality by all solution methods. 

By the increase in the number of jobs from 10 to 15, the solution time of GSO 

increases. However, since the solution times of GSO are below 1600 seconds, GSO is 

still promising. 

 

Like j15c5a*, j15c5b* type problems are also easy to solve. Therefore, all of the 

solution methods solve all of the instances to optimality in short computational times. 

 

Another group of the hardest problems is j15c5c* type problem. Only instance 59 is 

solved to optimality by all of the solution methods. On the other hand, other instances 

are solved to optimality by only PSO and CP. PSO uses too much time to solve 

instance 55, while the proposed CP model solves it in a very short time. Moreover, 

PSO could not reach the optimal solution for instance 58 within 1600 seconds, while 

CP could solve it in 7 seconds only. Therefore, it can be said that for these instances, 

CP is better than PSO in general. On the other hand, HA and GSO provide promising 

solutions within acceptable amounts of time.  
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Another hard problem group is j15c5d*. Both PSO and CP solve all of the instances 

to optimality. However, PSO could not reach these solutions within 1600 seconds. 

Therefore, CP is better than PSO for these instances. On the other hand, HA and GSO 

find solutions only 1 unit or 2 units far from the optimal solution within 1600 seconds. 

Thus, they are still promising solution methods. GSO is better than HA for instance 

64, while HA is better than GSO for instance 65. CP is the best solution method in 

terms of both effectiveness and efficiency as expected, since CP solves all of the 

instances to optimality. On the other hand, HA and GSO are better than ACO for the 

instances 57, 61, 62, 63, 64, and 65. Moreover, GSO is also better than AIS and HA 

for the instance 64 in terms of efficiency compared to AIS and in terms of 

effectiveness compared to HA.  HA and GSO are better than ACS and B&B for the 

instances 57, 58, 62, 63, 64, and 65.  

 

Although the number of stages increases, since a type configuration is easy to solve, 

all of the instances in j15c10a* group are solved to optimality by all solution methods. 

Due to the increments in both the number of jobs and stages, GSO requires more time 

to solve the problems. However, since the solution time is below 1600 seconds for all 

instances, GSO still seems to be promising.   

 

Similar to j15c10a*, j15c10b* type problems are also easy to solve, because b type 

configuration is easy to solve. All of the solution methods reach optimality within 

solution times below 1600 seconds. Therefore, the proposed solution methods are still 

promising. 

  

Since PSO is stronger than at least one of QIA, AIS, GA, ACO, ACS, and B&B for 

hard cases (c and d type configurations), the proposed solution methods are also better 

than at least one of QIA, AIS, GA, ACO, ACS, and B&B for these cases. 
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According to the results of the computational study, the proposed solution methods 

seem to be promising even for hard problem instances. 

 

Moreover, regardless of the problem type, CP provides optimal solution for all 

problem instances. Furthermore, HA and GSO never violate 1600 seconds rule and 

provide optimal solutions for most of the instances. Another important deduction is 

that if the bottleneck stage is explicitly shown, the problem becomes easier to solve. 

For example, a and b type configurations have a single machine in the middle and the 

first stages, respectively. If the processing times of the jobs do not vary drastically 

from stage to stage, it is expected that the stage having one machine is the bottleneck. 

Since, for these configurations, it is easy to identify the bottleneck stage, the problem 

is open to manipulation, and thus, it becomes easier to solve. On the other hand, if the 

bottleneck stage is hard to spot like in configurations c and d, it becomes harder to 

obtain the optimal solution . Briefly, it can be said that an HFS scheduling problem 

could be easier to solve, if one of the stages has only one machine. So, there is a high 

probability that the stages having only one machine are candidates to be the 

bottleneck. Nevertheless, the impact of the jobs’ processing times should not be 

underestimated while identifying the bottleneck stage as explained in Chapter 4 as one 

of the steps for BH. 

 

According to Table 7.2, for most of the instances, LB (Neron et al., 2001) is equal to 

GLB (Santos et al., 1995). However, LB is better than GLB when LB is not equal to 

GLB. Therefore, it can be said that LB is strong enough to represent HFS problems. 

On the other hand, since, for most of the instances, LB is equal to GLB and it is simple 

to calculate GLB in terms of method and time, GLB is also useful lower bound to 

represent HFS problems and thus, it can easily be used as a part of an algorithm like 

in our proposed heuristic solution method HA. 
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Table 7.2. LB vs. GLB in the test problems 

 

Comparison Number of test problems % 

GLB>LB 5 6.58 

LB>GLB 24 31.58 

GLB=LB 47 61.84 
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CHAPTER 8  

 

8. CONCLUSION AND FURTHER RESEARCH ISSUES 

 

Although the HFS scheduling problem is NP-hard in the strong sense, HFS 

configuration is still a good and common choice for having a flexible production 

system, when many problems related to the deliveries of products are encountered in 

industry. Obviously, these problems are caused by lack of quality and longer lead 

times due to insufficient capacity and materials handling systems. Also, HFS 

configuration is can be improved either from product layout when conventional flow 

shop production is not sufficient or from process layout by means of separating parts 

with relatively high demand that have similar manufacturing routings. In this study, 

motivated by the HJS in fuselage’s panel production in the aerospace company, we 

propose a DES-based framwework that helps in improving the existing HJS 

configuration towards an HFS configuration. The DES model thus developed for an 

HFS can be used at least for determining the number of parallel identical machines at 

each stage. The DES tool can help in designing an HFS to streamline the material flow 

for some parts/products that are similar in their processing requirements, based on 

expected demand volumes and cycle time as well. The DES model developed 

especially fits well for (HFc, Pm|skip, unavail(brkdwn)|Cmax) problem environment. 

For the scheduling problem in HFS, we propose a CP model, an HA heuristic and a 

GSO metaheuristic with an IH and an LS algorithm as alternatives to the available 

solution methods in the literature. It is shown that the proposed solution methods yield 

better results in terms of effectiveness compared to these solution methods and in 

terms of efficiency compared to MILP model. The proposed solution methods also 

provide better results for the case study as a large instance, when compared to the 

renowned heuristic algorithms in the literature. Since each iteration is tried to be 

completely independent  from the other iterations, HA is ensured to be not stuck in 
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local optima with its random search strategy. Furthermore, HA’s random search 

strategy is supported with the hybridization of a machine allocation rule FAM and a 

job sequencing rule ECT that are particularly effective for HFS scheduling problems. 

By this way, the same permutation schedule through the stages is prevented and the 

schedule is tried to be made as close as possible to a non-delay structure. Since the 

optimal schedule is located in a subset of a non-delay schedule set, by the use of HA, 

it is aimed to have optimal schedules for any problem instances, if possible. If not, a 

strong GLB, inspired by a previous study in the literature, is calculated in order to 

cope with the large instance sizes for which getting the optimal solution is not possible 

within a polynomial time. With the guidance of GLB in HA, the results show that a 

and b type configurations are solved to optimality, while c and d type configurations 

(hard ones) are solved to near-optimality. 

 

On the other hand, CP model has its own unique structure. Since it has a declarative 

programming language rather than an imperative programming language like MILP 

model has, it becomes easy to model an HFS scheduling problem by constraint 

programming. Moreover, CP model’s constraint propagation and depth first search 

techniques accelarate the reduction process of decision variables domain. Thus, CP 

model is highy efficient. Furthermore, CP model is the strongest method among all 

solution methods covered in this study regardless of its simplicity. Therefore, we 

highly recommend the use of the CP model, since it is the key to solve HFS scheduling 

problems to optimality. Because it is proven that HFS scheduling problems are 

strongly NP-hard, what CP model provides is absolutely incredible. CP model’s 

unmatched power is shown with both the case study and test problems by comparing 

it to other solution methods developed earlier in the literature and here in this study. 

Therefore, we address our proposed CP model as one of exact approaches including 

B&B and MILP model to solve the HFS scheduling problems to optimality.  

 

The other proposed solution method is the GSO method enhanced with both IH and 

LS algorithms. GSO’s exploration and exploitation phases are developed carefully in 
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order to escape from local optima. The parameter setup of GSO is inspired by the 

study published earlier in the literature. The performance of GSO is promising, due to 

the fact that it yields good solutions for the case study and test problems in terms of 

both effectiveness and efficiency. The GSO method is the first one which effectively 

and efficiently applies GSO to HFS scheduling problems. 

 

Due to the fact that this study is inspired by a case study in an aerospace company, not 

only are these proposed solution methods useful for researchers to make them extend 

for further studies, but also they are so capable that they are adaptive for other real-

world scenarios in different industries for practitioners. 

 

Similar to the literature, in this study, the objective is also minimizing the makespan. 

However, real world scenarios require more than one objective, not only the makespan 

but also energy consumption rates and especially cost items. Therefore, there is a 

potential that this study can be extended to cover these objectives at the same time as 

a Multi-Criteria Decision Making (MCDM) problem or one by one as smaller 

subproblems. However, these real world scenario objectives, like energy consumption 

rates and cost items, include the usage of electricity power and the cost of inventory 

holding or more. Measuring these objectives is not easy for most of the cases.  

 

Other than the objective functions, there is an another potential for an extension in the 

constraints of the HFS configuration. Rather than snsd included in the processing times 

of the jobs, ssd may be used to represent the setup times where setup changeovers 

depend on the sequence of the jobs. Furthermore, for much smaller but more products, 

there is a possibility to cover them with a group technology method in order to form 

product families for batching them in the HFS configuration. By this way, new 

objectives arise such as the number of tool changeovers between consecutive batch 

families or the batch family with the maximum completion time. Nevertheless, 

approximately 60% of the literature, the makespan is the most common objective 

function in HFS scheduling problems. 



 

 

 

132 

 

 

With the advancements in technology, solution methods are enhanced or hybridized 

with different techniques in order to improve the solution quality. In this study, the 

proposed HA guided with GLB and GSO that are enhanced with IH and LS focus on 

the exploration of different regions for a predetermined number of iterations as a 

diversification strategy hybridized with the DES model with its parameters CT and 

MoMk. Since HA and GSO dynamically improve the makespan according to FAM and 

ECT strategies, they are also addressed as hybrid solution methods. Moreover, rather 

than metaheuristics, hyper-heurisctic is the new kid on the block which seeks to select, 

combine, generate or adapt several simpler heuristics with the contribution of Machine 

Learning (ML) techniques. The advantage of hyper-heuristics is that they do not try 

to solve the problem directly like a metaheuristic whose search region is bounded. 

Instead, they try to find the best metaheuristic, for example, the one which yields the 

better results among others. Hence, we address this study’s approach as a hyper-

heuristic, beacuse with the design of the DES model, several solution methods can be 

simulated in almost-real HFS environment including uncertainty sources as well and 

the best among them all can be selected as the best scheduling method. 
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APPENDICES 

 

A. Some Plots for the Collection, Analysis and Interpretation of the Data 

 

Processing Times Data 

 

 

 

Figure 0.1. The histogram of panel 2’s stretching stage processing time data from 

2140 raw records 
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Figure 0.2. The best distribution with its mean=1.8920 hrs for panel 2’s stretching 

stage processing time data 

 

Machine Breakdown Data 

 

 

 

Figure 0.3. Breakdown duration plots of heat treatment stage before cleansing 

process (2010-2017 data) 
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Figure 0.4. Breakdown duration plots of heat treatment stage after cleansing process 

(2010-2017 data) 

 

 

 

Figure 0.5. The histogram of heat treatment stage’s breakdown duration from 73 

cleansed records (2010-2017 data) 
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Figure 0.6. The best distribution with its mean=4.3306 hours for heat treatment 

stage’s breakdown duration (2010-2017 data) 

 

 

 

Figure 0.7. Breakdown frequency plots of heat treatment stage before cleansing 

process (2010-2017 data) 
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Figure 0.8. Breakdown frequency plots of heat treatment stage after cleansing 

process (2010-2017 data) 

 

 

 

Figure 0.9. The histogram of heat treatment stage’s breakdown frequency from 73 

cleansed records (2010-2017 data) 
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Figure 0.10. The best distribution with its mean=36.6027 days for heat treatment 

stage’s breakdown frequency (2010-2017 data) 
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B. MoMk Calculations for the Case Study 
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C. Processing Times of the Jobs 

 

Table 0.2. The processing times of the jobs at each stage (hours) 

 

k       j 
1 2 3 4 5 6 7 8 9 10 11 12 13 

p
1k

 p
2k

 p
3k

 p
4k

 p
5k

 p
6k

 p
7k

 p
8k

 p
9k

 p
10k

 p
11k

 p
12k

 p
13k

 

1 0 0.42 0.44 0 0 0 0 0.63 0.74 0.9 1.04 0.92 0.52 

2 0 0 0 0 0 0 0 0 0 0 0 0 0.96 

3 0.25 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

4 0 0 0 1 1 1 1 1 1 1 1 1 1 

5 0 0 0 4 4 4 4 4 4 4 4 4 4 

6 2.01 1.89 1.85 2.55 2.54 2.47 2.56 2.22 3.17 3.26 3.36 3.43 2.31 

7 0.25 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 

8 0 0 0 1.65 1.6 1.72 1.69 1.77 1.3 1.49 1.79 1.18 1.09 

9 1.3 0.86 0.83 3.69 3.67 3.54 3.58 3.3 3.48 3.5 5.2 3.9 3.33 

10 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 

11 1.15 0.75 0.43 0 0 0 0 0 0 0 0 0 1.47 

12 2.41 2.45 1.14 2.78 2.87 2.86 2.78 3.62 4.69 3.94 4.74 3.81 3.75 

13 0.16 0.15 0.12 0.85 0.85 0.83 0.79 0.52 0.7 0.58 0.59 0.62 0.54 

14 0 0 0 0.62 0.68 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 

15 0 0 0 0.94 0.92 0.84 0.88 0.68 0.69 0.68 0.89 0.74 0.7 

16 0.59 0.62 0.61 0 0.66 0 0.56 0 0 0 0 0 0 

17 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

18 1.34 1.62 1.02 1.42 1.47 1.54 1.33 3.98 3.09 3.42 3.47 3.42 4.37 

19 0.21 0.23 0.14 0.2 0.22 0.2 0.18 0.25 0.38 0.34 0.33 0.28 0.39 
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D. LEKIN Outputs and Excel Spreadsheets of Dispatching Rules 

 

SPT (Cmax in minutes) 

 

 

 

Figure 0.11. SPT rule performance table 
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LPT (Cmax in minutes) 

 

 

 

Figure 0.12. LPT rule performance table 
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STPT 

 

Table 0.3. The job sequence with the STPT rule 

 

k             j 3 2 1 6 4 7 5 8 10 9 12 13 11 

1 0.44 0.42 0.00 0.00 0.00 0.00 0.00 0.63 0.90 0.74 0.92 0.52 1.04 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.00 

3 0.00 0.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

4 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

5 0.00 0.00 0.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 

6 1.85 1.89 2.01 2.47 2.55 2.56 2.54 2.22 3.26 3.17 3.43 2.31 3.36 

7 0.25 0.25 0.25 0.00 0.00 0.00 0.00 0.25 0.25 0.25 0.25 0.25 0.25 

8 0.00 0.00 0.00 1.72 1.65 1.69 1.60 1.77 1.49 1.30 1.18 1.09 1.79 

9 0.83 0.86 1.30 3.54 3.69 3.58 3.67 3.30 3.50 3.48 3.90 3.33 5.20 

10 0.25 0.25 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

11 0.43 0.75 1.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.47 0.00 

12 1.14 2.45 2.41 2.86 2.78 2.78 2.87 3.62 3.94 4.69 3.81 3.75 4.74 

13 0.12 0.15 0.16 0.83 0.85 0.79 0.85 0.52 0.58 0.70 0.62 0.54 0.59 

14 0.00 0.00 0.00 0.65 0.62 0.65 0.68 0.65 0.65 0.65 0.65 0.65 0.65 

15 0.00 0.00 0.00 0.84 0.94 0.88 0.92 0.68 0.68 0.69 0.74 0.70 0.89 

16 0.61 0.62 0.59 0.00 0.00 0.56 0.66 0.00 0.00 0.00 0.00 0.00 0.00 

17 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

18 1.02 1.62 1.34 1.54 1.42 1.33 1.47 3.98 3.42 3.09 3.42 4.37 3.47 

19 0.14 0.23 0.21 0.20 0.20 0.18 0.22 0.25 0.34 0.38 0.28 0.39 0.33 

Total 7.48 9.89 10.32 20.30 20.35 20.65 21.13 23.52 24.66 24.79 24.85 25.98 27.96 
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LTPT 

 

Table 0.4. The job sequence with the LTPT rule 

 

k           j 11 13 12 9 10 8 5 7 4 6 1 2 3 

 1 1.04 0.52 0.92 0.74 0.90 0.63 0.00 0.00 0.00 0.00 0.00 0.42 0.44 

2 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.00 0.00 

4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 

5 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 0.00 0.00 0.00 

6 3.36 2.31 3.43 3.17 3.26 2.22 2.54 2.56 2.55 2.47 2.01 1.89 1.85 

7 0.25 0.25 0.25 0.25 0.25 0.25 0.00 0.00 0.00 0.00 0.25 0.25 0.25 

8 1.79 1.09 1.18 1.30 1.49 1.77 1.60 1.69 1.65 1.72 0.00 0.00 0.00 

9 5.20 3.33 3.90 3.48 3.50 3.30 3.67 3.58 3.69 3.54 1.30 0.86 0.83 

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.25 0.25 

11 0.00 1.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.15 0.75 0.43 

12 4.74 3.75 3.81 4.69 3.94 3.62 2.87 2.78 2.78 2.86 2.41 2.45 1.14 

13 0.59 0.54 0.62 0.70 0.58 0.52 0.85 0.79 0.85 0.83 0.16 0.15 0.12 

14 0.65 0.65 0.65 0.65 0.65 0.65 0.68 0.65 0.62 0.65 0.00 0.00 0.00 

15 0.89 0.70 0.74 0.69 0.68 0.68 0.92 0.88 0.94 0.84 0.00 0.00 0.00 

16 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.56 0.00 0.00 0.59 0.62 0.61 

17 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

18 3.47 4.37 3.42 3.09 3.42 3.98 1.47 1.33 1.42 1.54 1.34 1.62 1.02 

19 0.33 0.39 0.28 0.38 0.34 0.25 0.22 0.18 0.20 0.20 0.21 0.23 0.14 

Total 27.96 25.98 24.85 24.79 24.66 23.52 21.13 20.65 20.35 20.30 10.32 9.89 7.48 
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E. Outputs of the Renowned Heuristic Algorithms 

 

Palmer’s Heuristic (Results after flow shop reduction) 
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CDS Algorithm (Results after flow shop reduction) 

 

Table 0.6. The job sequence with the CDS algorithm 

 

Iteration 
Job position 

Cmax 
1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1 4 5 6 7 13 9 10 11 12 8 2 3 33.12 

2 1 4 5 6 7 2 8 9 10 12 13 11 3 32.53 

3 1 4 5 6 7 2 3 8 9 10 12 11 13 33.55 

4 1 2 3 4 5 6 7 8 13 11 10 9 12 32.57 

5 1 2 3 4 5 6 7 13 11 8 10 9 12 32.47 

6 1 2 3 6 5 4 7 8 13 11 10 9 12 32.57 

7 1 2 3 6 5 4 7 8 13 11 9 10 12 32.57 

8 1 2 3 5 4 6 7 8 9 11 13 10 12 32.92 

9 1 2 3 5 6 4 7 13 11 9 10 12 8 32.92 

10 1 2 3 5 6 4 7 13 11 9 10 12 8 32.92 

11 3 2 1 5 6 4 7 8 9 13 11 12 10 33.17 

12 3 2 1 5 4 6 7 8 13 11 9 10 12 32.82 

13 3 2 1 7 6 4 5 8 13 11 9 10 12 32.82 

14 3 2 1 4 7 6 5 13 11 9 10 12 8 33.17 

15 3 2 1 6 7 4 5 8 13 11 9 10 12 32.82 

16 3 2 1 6 4 7 8 5 9 10 12 11 13 33.85 

17 2 1 6 4 7 8 5 9 10 12 13 11 3 32.82 

18 1 6 4 7 5 13 11 9 10 12 8 2 3 32.67 
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NEH Algorithm (Results after flow shop reduction) 

 

Table 0.7. The job sequence with the NEH algorithm 

 

j Tj  
Iteration 

Job Position 

13 9.30  1 2 3 4 5 6 7 8 9 10 11 12 13 

11 8.11  1 11 13                       

10 7.37  2 11 13 10                     

12 7.34  3 11 13 12 10                   

9 7.29  4 11 13 12 10 9                 

8 6.93  5 11 8 13 12 10 9               

5 6.42  6 11 5 8 13 12 10 9             

7 6.18  7 11 5 8 13 7 12 10 9           

4 5.69  8 4 11 5 8 13 7 12 10 9         

6 5.68  9 4 11 5 8 6 13 7 12 10 9       

1 4.37  10 4 11 5 8 6 13 1 7 12 10 9     

2 4.17  11 4 11 5 8 6 13 1 7 12 10 9 2   

3 3.40  12 4 11 5 8 6 13 1 7 12 10 9 3 2 

 


