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ABSTRACT

ON THE COMPLEXITY OF SHAPES EMBEDDED IN ZN

Arslan, Mazlum Ferhat
M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Sibel Tarı

September 2019, 71 pages

Shape complexity is a hard-to-quantify quality, mainly due to its relative nature. In

common view, circles are considered to be the simplest shapes. However, when im-

plemented in computer, none of the circularity measures yield the expected scores for

the circle. This is because digital domain (Zn) realizations of circles are only approx-

imations to the ideal form. Consequently, complexity orders computed in reference to

circle are unstable. As a remedy, we consider squares to be the simplest shapes rela-

tive to which multi-scale complexity orders are to be constructed. Whereas measuring

roundness is encountered more often in literature quantifying rectangularity emerges

as a specific interest due to applications ranging from landscape ecology, urban plan-

ning, and computer-aided production. Using the connection between L∞ and squares

we effectively encode squareness-adapted multi-scale simplification through which

we obtain entropy-like multi-scale shape complexity measure. In contrast to usual

diffusion based ones, our multi-scale simplification exhibits a local behavior where

curves become locally flat instead of getting rounder. Proposed complexity measure

is tested on binary images containing noisy shapes; Kendall-τ distances from the ex-

pected order are reported. The measure is compared against its L2 counterpart in
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terms of robustness under noise and scale. Finally, partial orders are constructed on

the shapes based on their complexities with respect to different scales and various

complexity measures.

Keywords: Shape Complexity, Information Theory, Infinity Laplacian, Squareness,

Rectangularity, Partial Order, Level Set-Based Analysis

vi



ÖZ

ZN ’DE GÖMÜLÜ ŞEKİLLERİN KARMAŞIKLIĞI ÜZERİNE

Arslan, Mazlum Ferhat
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Sibel Tarı

Eylül 2019, 71 sayfa

Şekil karmaşıklığı göreceli doğasından ötürü nicelendirilmesi zor olan bir niteliktir.

Genel görüşün en basit şekillerin daireler olduğu yönünde olmasına karşın dairesel-

lik ölçen yöntemler bilgisayar temelli uygulanmalarında daireler için ideal sonuçları

vermemektedir. Bunun sebebi dairelerin dijital ortamda (Zn), ideal formlarının yak-

laşık gerçekleştirilmeleri olarak zuhur etmesidir. Dolayısıyla daireler temel alınarak

yapılan karmaşıklık sıralamaları istikrarsızdır. Çözüm olarak kareleri en basit şekiller

olarak ele alıyor ve bu temelde çoklu ölçekli karmaşıklık ölçümleri oluşturuyoruz.

Literatürde dairesellik ölçümleriyle daha sık karşılaşılmasına karşın dikdörtgensel-

lik ölçümleri de peyzaj ekolojisi, şehir planlama ve bilgisayar destekli üretim gibi

uygulamalar dolayısıyla öne çıkmaktadır. L∞ uzayı ve kareler arasındaki bağlantı-

dan yararlanarak karelik temelli çoklu ölçekli basitleştirmeler kodluyor ve bunlardan

entropi benzeri çoklu ölçekli şekil karmaşıklığı ölçümleri elde ediyoruz. Sıklıkla kul-

lanılan yayılım temelli basitleştirmede görülen şekil kıvrımlarının yuvarlaklaşması

davranışının aksine, önerdiğimiz basitleştirmede kıvrımlar yerel olarak düzleşmek-

tedir. Önerilen karmaşıklık ölçümü istatistiksel olarak oluşturulmuş gürültülü siyah

beyaz şekiller üzerinde test edilmiş ve beklenen sıralamalara olan Kendall-τ mesa-
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feleri raporlanmıştır. Ölçüm, L2 karşılığı ile gürültü ve ölçek altındaki değişimler

karşısındaki sağlamlıkları bakımından karşılaştırılmıştır. Son olarak, önerilen yönte-

min farklı ölçeklerdeki uygulamaları ve farklı karmaşıklık sıralamaları kullanılarak

şekiller üzerinde kısmi sıralamalar oluşturulmuştur.

Anahtar Kelimeler: Şekil Karmaşıklığı, Bilgi Kuramı, L∞ Laplasyen, Karelik, Dik-

dörtgenlik, Kısmi Sıralama, Eşdüzey Eğrileri Temelli Analiz
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CHAPTER 1

INTRODUCTION

By complexity of an object we mean how easy it is to describe its certain aspects in

terms of certain tools. If the object is some data that is to be transmitted digitally, we

may consider Shannon entropy [1] -or some variant of it, such as LMC complexity

[2]-, or if the data is to be specified, we may consider Kolmogorov complexity [3]

as the complexity of the data. If the object is a dynamical system, representability

of patterns of trajectories in the phase space can be considered as an indicator of the

complexity of the system. Examples can be enriched. The gist is, for a given object,

the complexity has to do with how it is of interest (i.e. transmitting the data, or

specifying it), and what tools are available to describe it (i.e. it is easier to construct

a circle if compasses are available, or a triangle if rulers are available). Therefore,

complexity is relative and not well-defined.

1.1 Shape Complexity

In our take on the shape complexity, shapes are considered by how constructible they

are by a digital computer. In the scope of this thesis, the word shape is used to

refer to compact subsets of two or more dimensional integer spaces with proper grid

cell topology, i.e. eight connected in two dimensions, twenty-six connected in three

dimensions etc. In the literature other definitions of shapes and other considerations

of shape complexity exist as can be inferred from the brief overview presented below.

Earliest interests in shape complexity can be traced back to the isoperimetric problem

which is the problem of finding which contour, among those of equal perimeters,

encloses the maximal area. Note that this is a geometrical consideration of complexity

1



of shapes. From this problem follows the form factor, a measure given by 4πA/P 2 for

a two dimensional shape of perimeter P and areaA, and is maximized for circles. The

form factor and its variants that manipulate the original arithmetically are reviewed

by Ritter and Cooper [4]. For a comprehensive account of the isoperimetric problem,

the reader is referred to [5].

An early modern work on shape complexity is the seminal work of Attneave [6].

There, it is demonstrated that complexity appeared to be determined by symmetry,

the number of turns and differences in degrees between successive turns in the con-

tour (shape boundary). Results further supporting the effect of number of turns on

the perceived complexity of a shape are reported by Thomas [7]. In [8], Arnoult

uses the form factor, along with number of independent sides, angular variability and

symmetry, to account for the judgments of the complexity experiments on humans.

A recent experimental work on predicting perceived visual complexity of abstract

patterns using computational measures is reported in [9] where mirror symmetry is

found to be an important predictor of complexity. Since these works report results

from experiments on humans1, they represent the perceptual shape complexity.

It is seen that both geometrical and perceptual accounts of shape complexity consider

circles to be the simplest shapes. This raises the question “why circles?".

1.1.1 Circles: the simplest shapes, traditionally

Primary motivation for considering circles, or spheres, as the simplest shapes is that

physical forces tend to form these shapes. For example, the moon and the sun are

spherical, as other celestial objects that can be observed with the naked eye. Larger

snowballs form by rolling a smaller one on a snowy surface, further, under certain

conditions, snowballs can form on their own. Occasional bumps on an angled object

is more likely to occur at its bulges, forcing it to be more spherical.

Observations of such phenomena by humans have formed the biases of human vision

towards comprehension of matter, deeply. So deeply that, much before axiomatizing

the properties of circle, humans were able to utilize them by inventing the wheel.
1 For a detailed review of visual complexity with emphasis on psychological studies, the reader is referred to

[10].
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The geometric definition and properties of circle bring forth another motivation for

it to be considered as the simplest shape: it is maximally symmetric, has uniform

curvature and can be identified by just a center and a radius. The maximal symmetry

of circle especially reinforces the idea of the simplest shape in terms of the human

vision.

Later, with the foundation of information theory, the property of being identified by

just a center and a radius, from which the center can be disregarded as it does not have

an effect on circleness, made explicit that a circle can be represented with minimal

amount of information, the radius alone.

1.1.2 Problems

Methods based on the assumption of circles being the simplest objects, however, yield

inconsistent results when implemented.

In [11], Rosenfeld shows that the form factor is not minimized by digital circles,

but rather for octagons or diamonds, depending on how the perimeter of shape is

measured.

Another measure that attains its minimum for circles is Danielsson’s shape factor

which theoretically has a minimum value of one [12]. However, in [13] a digital

cross is shown to attain a value lesser than one.

A similar result for a measure that theoretically attains its minimum for circles is

given in Sec. 4.3. There, it is shown that a square attains a lower complexity score

than a circle when computed.

Then, the indicated problems with such methods are twofold: first, they are not min-

imized by digital circles, second their behavior can change with how concepts like

perimeter are computed. As a result, the measurements are inconsistent.

3



1.2 Discrete Space versus Continuous Space

Even though circle’s simplicity is well-founded, methods based on this foundation

fail to evaluate the digital circles as the simplest objects and yield inconsistent results.

The problem has to do with the different structures of the spaces in which the methods

are developed and implemented. One is continuous and the other discrete. On one,

calculus can be invented, on the other approximated. Furthermore, digital computers

are limited physically and have finite resources. Therefore, methods based on the

consideration of circles as the simplest shape remain as ideals whose implementations

in the non-fitting media fall short of consistency and preciseness.

Notions of continuous space, such as perimeter, do not extend trivially to the discrete

space [14]. Nor does the idea of circles. In the discrete space, any realization of circle

violates the defining properties of circle. For example, having equidistant (as mea-

sured by the Euclidean metric) boundary points to an enclosed point is left unsatisfied

due to the lack of corresponding points in space. Similarly, it is not possible to satisfy

the property of having uniform curvature, for curvature does not extend properly to

the discrete space either.

1.2.1 Squares: the simplest shapes in the discrete space

In the discrete space, there are shapes that can be approximately represented without

losing their properties. These are the rectangles whose sides are parallel to the grid

axes. However, although an approximation to such a rectangle is again a rectangle, in

general, it is not the same rectangle. For example, the aspect ratio of the approximated

rectangle can be distorted.

Of specific interest among rectangles are the squares, for the properties of being a

square, which involves the aspect ratio, is left unchanged upon approximations. This

is regardless of how the notion of length is defined in the discrete setting. Since the

ideal square and the constructed square carry the same properties, and given the grid

axes, a square can be described by just a side length, we consider the squares as the

natural simplest shapes in the discrete space. Remark also that squares satisfy the

property of being equidistant (as measured in L∞) to an enclosed center.
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1.3 Relative Nature of Shape Complexity

Complexity is relative, and so is the shape complexity. In this thesis, the relative

nature of shape complexity is addressed in two aspects. The first is that dictated by the

structure of the space. Continuous versus discrete space discussions and consideration

of squares as the simplest shapes fall under this aspect. The second is that due to bias.

This bias might be caused by exposure to objects of similar shapes, or by practical

concerns such as having a machine capable of producing certain shapes with more

ease than others.

In contrast to the objective first aspect, the second aspect is subjective. Should the

subjective biases not agree with each other on the order between the shapes based on

the perceived complexities, the linear order fails to be established on the shapes. For

example, if the complexity is perceived in terms of boundary regularity and symmetry,

it is possible that a shape with more regular boundary to have less symmetry compared

to another shape.

1.4 More on Computational Literature

Vast majority of the related literature is on roundness.

Due to several shortcomings of the form factor, many other measures, similar in the

spirit to the form factor, are proposed. A review of them is given by Montero and

Bribiesca [13].

Several roundness measures (circularity, ellipticity) are proposed by Rosin [15]. Mara-

gos [16] used multiscale morphological openings and closings with convex struc-

turing elements to obtain entropy-like shape-size complexity measure. Page et.al.

[17] associated shape complexity with entropy of boundary curvature. Chen and

Sundaram [18] use correlates of Kolmogorov complexity on shape features such as

boundary curvature, and promote designing efficient shape rejection algorithms that

incorporate shape complexity. Ritter and Cooper [4] propose a measure of circularity

that induces orders which are preserved under changes in resolution on shapes. Genc-

tav and Tari propose a multi-scale measure of circularity [19] and a local measure of

deviation from a disc [20].
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Methods measuring rectangularity and squareness are proposed by Rosin [21, 15],

and by Rosin and Žunić [22, 23].

Historically, relativistic rectangle discriminability is addressed in [24].

Quantifying rectangularity is emerging as a specific interest due to applications. These

include, but are not restricted to, urban planning and landscape ecology [25], road

extraction [26], proper alignment of parts on a robotic production line and image

segmentation.

1.5 Outline

The first aspect of relative nature of shape complexity -the structure of the space in

which shapes are represented- is addressed in Chapter 2. We argue that this structure

defines a natural simple shape, and study the case for digital domain in Chapter 2.

This is achieved by constructing a field -which could be considered as a well-behaving

chessboard (L∞) distance transform- inside shapes. The field is given by a differential

equation whose differential part is governed by the infinity Laplacian (the Laplacian

in L∞). The Shannon entropy of the distribution acquired by restricting the con-

structed field to the level sets of the chessboard distance transform is then considered

as the complexity of the shape.

In Chapter 6, by giving an analytical solution to this differential equation, the con-

nection between the proposed field and the chessboard distance transform is shown.

The interested reader may jump to Chapter 6 right after reading Sec. 2.2.

The second aspect of relativity -that arising from bias- is studied under Chapter 3 by

reducing this kind of relativity to the question of “given a shape that is considered

simple, what are the complexities of other shapes?". This is achieved by extending

the method of Chapter 2 by replacing entropy with a relative entropy measure.

In Chapter 4 comparisons between entropy and relative entropy measurements in L∞

and in Euclidean space are presented.

Since complexity is not well-defined, it is not possible to devise measures that at-

tribute absolute scores of complexity to shapes. Because of this, complexity of shapes
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cannot be mapped to real numbers, that is, a linear order on shapes cannot be induced

by their complexity scores. Instead of a linear order, by using multiple measurements

of complexity, it is possible to construct a partial order on shapes. This is examined

under Chapter 5.
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CHAPTER 2

ENTROPY MEASUREMENTS IN L∞

2.1 Motivation

Although the consideration of circles, as simplest shapes is legitimate in ideal settings

and has profound connections with physical reality, it is not in accordance with the

computational view. Primary reasons for this dissonance are the finiteness of com-

puter memory and prevention of the realization of circles, a task that demands infinite

precision, by the abstraction of computer memory as a subset of Zn.

Even though circles can be realized approximately in the digital setting, its defining

properties, such as uniform curvature and having equidistant boundary points to an

enclosed point, are left unsatisfied. As a result, methods that measure complexity of

shapes in reference to circles do not yield the expected result for circles when imple-

mented in computer. It is also possible for such methods to assign lower complexity

values to shapes other than circles than that assigned to circles. Consequently, they

are inconsistent.

On the other hand, approximations to rectangles whose sides are parallel to the chosen

axes yield rectangles. As such, measuring complexity in reference to a rectangle is

expected to be less prone to the cause of inconsistency seen in methods aiming to

quantify circularity.

2.2 Method

Starting with the following observations in Euclidean setting:
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– For a shape S, its distance transform’s successive upper level sets correspond

to its successive erosions using disc structuring element.

– If we shrink shape boundary ∂S by moving its points where the distance trav-

eled in the direction of inward normal is proportional to the boundary curvature

at the point, the boundary deforms towards a curve of uniform curvature, i.e., a

circle. The regions closed by successive shape boundaries are adaptive erosions

and form a multi-scale shape representation.

– For a shape with uniform boundary curvature namely disc, the distance trans-

form’s upper level sets agree with adaptive erosions. As the shape deviates from

disc, the discrepancy between the respective sets increase. The discrepancy is

higher for those sets that are nearer to boundary and lower for those sets that

are nearer to center.

Suppose we are able to embed boundaries of successive adaptive erosions as level

sets of a field f on S. Then the congruency between f and the distance transform can

be measured by how uniform f is at a level set of distance transform. If S is a disc,

then the restriction of f to a level set of the distance transform will be uniform. In

this setting, the normalized (rescaled to [0, 1]) distance transform t serve as a natural

scale parameter because in the direction of increasing t the level sets of f take more

circular form due to adaptive erosions. It can be said that the field implicitly encodes

curvature, and in fact in Euclidean setting, it correlates with curvature. However, the

concept encoded by such a field is more primitive than curvature. The field construc-

tion can be extended to spaces other than Euclidean. In that case, the field encode

some other concept, e.g. of having 90° angles.

The proposed method has two components:

1. construction of field f in the proper space whose unit balls have the desired

reference shape;

2. measurement of the uniformity of the restriction of f to a certain level of t

acquired in the proper metric space, i.e. entropy of the distribution.

The ideal simple shapes that can be realized in Zn, which we consider as a more

10



suitable space for computation as discussed in Sec. 2.1, are rectangles. Therefore, a

proper space should be chosen such that the level sets of f and t for a rectangle should

agree with each other. We employ L∞ as one such proper space, since its unit balls

are squares.

To avoid later confusion, the constructed field f is referred to as f∞S , where the su-

perscript indicates that the field is constructed in L∞ and the subscript indicates that

it is constructed for shape S. Similarly, distance transform is referred to as t∞.

2.2.1 Constructing f∞S

The field constructed by the proposed linear diffusion equation in [27](
∆− 1

ρ2

)
f = −1 subject to f

∣∣∣
∂S

= 0 (2.1)

is a field that embeds the boundaries of successive adaptive erosions as its level sets,

as demanded. Yet, the embedded erosions are those acquired by a disc structuring

element. This is due to the chosen metric, the Euclidean metric, whose minimizer is

a disc. However, since the only term responsible for encoding metric information in

Eq. (2.1) is the Laplace operator, it is replaced by the infinity Laplacian [28]. The

PDE to be solved in S then becomes(
∆∞ −

1

ρ2

)
f∞S = −1 subject to f∞S

∣∣∣
∂S

= 0 (2.2)

where ∆∞ is the Laplace operator in L∞. We note that ∆∞g is the minimizer of∫
|∇g|p as p → ∞. Parameter ρ is chosen proportional to the shape radius as mea-

sured in L∞. This choice ensures the robustness of solutions under changes in scale.

After its construction, f∞S is normalized to [0, 1], which renders the constant on the

right hand side of Eq. (2.2) devoid of meaning, so long as the sign is preserved. To

acquire numerical solutions, the first order approximation to Laplace operator in L∞,

as given by Obermann [29] under the assumption of equidistant grid points

∆∞f
∞
S (x) ≈

(
max
y∈B(x)

f∞S (y) + min
y∈B(x)

f∞S (y)

)
− 2f∞S (x) (2.3)

is used, where B(x) denotes a unit ball centered at x. Note that the expression

Eq. (2.3) corresponds to difference between forward and backward morphological

derivatives [30, 31].
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Points at a system governed by Eq. (2.2) generates and cumulates the values of field.

Each point introduces an increment to the neighborhood average (which is propor-

tional to (max fS + min fS) in L∞ [32]). Amount of increment is decided by the

screening parameter 1/ρ2. This increment creates level sets increasing away from the

boundary and these level sets can be viewed as embeddings of gradual deformations

of ∂S towards a curve possessing features of the reference shape as determined by

the ball of chosen metric space. The maximum value of field is attained at the points

with maximum distance to the boundaries, as they are the points of most cumulation.

An illustration of the level sets of the constructed fields is given in Fig. 2.1 that are

acquired in (a) L∞ and (b) L2. The level curves in (a) becomes locally flat whereas

the ones in (b) gets rounder. For solutions in L2, this behavior was shown in [27]

to be related to the curvature of level sets, such that at points of higher curvature

propagation along the normal direction is faster than points of lower curvature.

(a) (b)

Figure 2.1: Local behavior of L∞ versus global behavior of L2

In Fig. 2.2, the effect of the simplest (rectangular) appendages on a square-shaped

body is displayed. These appendages affect the field only in a region determined by

their widths. Outside these regions, appendages are disregarded.

2.2.2 Measuring multi-scale congruence

After constructing f∞S , normalized distance transform t∞ inside S is acquired. This

is followed by partitioning values of f∞S at a level set of t∞ into a fixed number of

bins (in our implementation, 1024). A pseudo probability distribution is acquired by

normalizing the count in each bin. Then the Shannon entropy at level set t∞ = t0,

Et0 , of this distribution is calculated as the complexity of shape S. The process
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S0 S1 S2 S3

f∞S0
f∞S1

f∞S2
f∞S3

Figure 2.2: Successive addition of rectangular appendages to S0 (square of edge width 128 pixels)

and the acquired field solutions in L∞. Introduced appendage is of width 96 pixels for S1, 64 pixels

for S2, and 32 pixels for S3.

is visualized in Fig. 2.3 using S3 of Fig. 2.2; the black lines correspond to level

sets of f∞S at 0.01, 0.3, 0.6, 0.9, and blue dotted lines correspond to those of t∞ at

0.2, 0.5, 0.8.

Figure 2.3: Measuring complexity in L∞

Note that the field f∞S can be regarded as a well-behaving chessboard distance trans-

form as will be shown rigorously in Chapter 6. Its level sets agree with level sets

of distance transform whenever the boundary ∂S is isotropic in the sense of chosen

metric. The discrepancy between f∞S and t∞ is due to the smoothed propagation of

level sets of f∞S in comparison to those of t∞.
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An important property observed in f∞S that is not present in f 2
S (the field governed

by Eq. (2.1) and constructed in L2) is the presence of a level for appendages beyond

which the effect of the appendage of the field disappears. This level is called a cutoff

level tc of an appendage. tc is not an intrinsic number of a shape, rather it emerges

from appending a shape to another. tc is determined by the ratio of contacting width

of the appendage to the width of the main body.

The discrepancy between f∞S and t∞ is observed to reach its local maximum around

tcs. To see this, consider the level set t∞ = 0.5 of Fig. 2.3. Outgrowth on the left

side of this level set crosses numerous level sets of f∞S3
, whereas, for t∞ > 0.5 cor-

responding level sets of t∞ and f∞S3
are in agreement locally on this side. Therefore,

E0.5 is significantly higher than E0.5+ε. Similarly, for t∞ < 0.5, deviation of t∞ from

f∞S3
is lower. As a consequence, complexity reaches a local maximum at t∞ = 0.5.

2.3 Implementation Details

Discretizing Eq. (2.2), we obtain

max
y∈B(x)

f∞S (y) + min
y∈B(x)

f∞S (y)−
(

2 +
1

ρ2

)
f∞S (x) + 1 = 0 (2.4)

The field f∞S is constructed using the explicit scheme

f
(k+1)
S (x)− f (k)

S (x)

∆k
= max

y∈B(x)
f
(k)
S (y)+ min

y∈B(x)
f
(k)
S (y)−

(
2 +

1

ρ2

)
f
(k)
S (x)+1 (2.5)

where f (k)
S (x) is the constructed field at the kth step, and f (0)

S ≡ 0. Convergence

conditions imposed on this scheme are

1. maximum absolute value, max |∆f (k)
S |, of RHS of Eq. (2.5) is below some

threshold, ε1,

2. max |∆f (k+1)
S −∆f

(k)
S | ≤ ε2

In our implementation ε1 = N × 10−7 and ε2 = N × 10−11 are used where N is the

number of nonzeros of the shape.
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We can improve this solution by using our insight about the correlation of fS with

the distance transform, and construct a systems based solution. In doing so we use

the distance transform of S in L∞ to guide us about the locations of local maxima

and minima of each point. With this initial guess, we construct A~x = b where A is a

sparse matrix and solve for ~x. Pointwise error of the acquired solution is calculated

using the LHS of Eq. (2.4), and this error is fedback to ~x. This process is iterated

by using the ~x acquired in the last step as our next guess about the location of local

maxima and minima. Convergence condition for the iteration on the systems solution

is either having

1. max ∆f
(k)
S = 0, or

2. max |∆f (k+1)
S −∆f

(k)
S | ≤ ε3

In our implementation ε3 = N × 10−7.

Since correction of small errors via systems solutions is more costly than correction

via the purely iterative scheme, ε3 is chosen to be greater than ε2. If the iteration on

systems solution converged with the second convergence condition, acquired solution

is passed to the purely iterative scheme as the initial condition.

2.4 Sample Results

In presented figures that display complexity order of shapes, single arrows are from

simpler shapes to more complex shapes, and double arrows indicate equal complexity

scores. Whenever there is equivalence among a group of shapes, the equivalent shapes

are displayed inside a rectangular box.

The first experiment is designed to demonstrate the use of multi-scale measurements

in L∞. Three shapes are constructed by successively adding appendages of widths

96, 64, and 32 pixels to a base square with side length 128 pixels. The first order,

displayed in Fig. 2.4 (a), holds for all t∞ ∈ {0.01, 0.02, . . . , 0.25}, where t = 1/4

is the cutoff level for appendages of interacting surface width 32 pixels when ap-

pended to a shape of radius 128 pixels. The second order, Fig. 2.4 (b), holds for all

t∞ ∈ {0.26, 0.27, . . . , 0.50}. At this level f∞S2
and f∞S3

are the same and are more
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complex than the other two shapes. Fig. 2.4 (c) and (d) display the orderings for

t∞ ∈ {0.51, 0.52, . . . , 0.75} and t∞ ∈ {0} ∪ {0.76, 0.77, . . . , 1.00], respectively.

Plots of entropy measurements versus t∞ are given in Fig. 2.5.

(a)

(b)

(c)

(d)

Figure 2.4: Multi-scale orderings of squares with rectangular appendages

In the second experiment, we consider a set of four rectangular shapes obtained by

adding four appendages to a base square at a variety of positions. We experiment by

uniformly varying t∞. The ordering based on values collected near boundary, i.e. for

small values of t∞, is shown in Fig. 2.6 (a). The first shape has the lowest whereas the

other three share the same complexity score. The behavior is uniformly observed for

t ∈ {0.01, 0.02, . . . , 0.25}. As t∞ increases further, all four shapes attain the same

complexity score (Fig. 2.6 (b)). Recall that effects of protrusions are local in L∞

solutions. Hence, any irregularity caused on the field occurs around joints. Since the

shapes introducing sixteen corners (the last three shapes) are indistinguishable from

one another locally around joints, they have the same complexity scores. The shape

that introduces twelve vertices (the first shape from left), however, can be told apart

based on its local properties: it has only four joints, in contrast to eight joints of the

other three shapes.
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Figure 2.5: Complexity scores of S0, S1, S2 and S3 of Fig. 2.2 versus the scale parameter

This result can be interpreted in terms of the physical process of joining smaller

squares to a larger square. In doing so, one can either use an existing corner, or

find a specified point along the edge to use as the joint point of the squares. Locating

a new point would require more effort than using an existing point, therefore, is a

more complex process.

(a)

(b)

Figure 2.6: Multi-scale orderings of squares of varying locations of rectangular appendages

In the third experiment, we observe the joint effect of the placement, size and number

of appendages. We construct a set of shapes by varying these three properties. The

appendage placement is chosen in two ways: at the center or the corner. The size

(width) of appendages is also chosen in two ways: 32 or 80 pixels. Finally, the

number of the appendages is chosen in three ways: 1, 2 or 4. Ordering obtained by our

method using values collected at t∞ ∈ {0.01, 0.02, . . . , 0.25} is shown in Fig. 2.7 (a).
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The order is based on the number of appendages first, and between equals, width of

appendages is taken into account. That is, it induces a dictionary order. Ordering

obtained using values collected at {0.26, 0.27, . . . , 0.62} is shown in Fig. 2.7 (b). At

this scale all shapes with 32 pixel width appendages attain the same complexity score,

0. Finally, ordering induced using values collected at {0} ∪ {0.63, 0.64, . . . , 1.00} is

shown in Fig. 2.7 (c). Here, all shapes attain the same complexity score.

(a)

(b)

(c)

Figure 2.7: Multi-scale orderings of squares with varying number, width and location of rectangular

appendages

Next, a real-life rectangular shape example, a house plan (P4), is considered. As

simpler references, shapes P0, P1, P2 and P3 are constructed. Boundaries of these

shapes are displayed in Fig. 2.8. P0 is a plan of four disconnected identical rooms of

side lengths 128 pixels, P1 is constructed by connecting the rooms with apertures of

32 pixels, P2 is constructed by adding an obstacle to one of the rooms aligned with

the vertical aperture and of size 32× 4 pixels, and P3 is constructed by expanding the

length of apertures of P2 to 80 pixels. As more complex references two bat silhouettes

taken from MPEG7-dataset are used.

In Fig. 2.9 complexity scores of these shapes are shown. The complexity of P4 is

higher than that of P0, P1, and P2 at all scales, and is lower than that of bat10 and bat20

at all scales except at t∞ = 0.95 where the complexity of P4 is higher than bat10’s.

The complexity of P3 is higher than P4’s at t∞ ∈ {0.44, 0.45, . . . , 0.62} and drops to

0 at t∞ = 0.63. This drop is explained by the cutoff level tc = 0.625(= 80px/128px)
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∂P0 ∂P1 ∂P2 ∂P3 ∂P4

Figure 2.8: House plan P4 and simpler shapes of similar properties.

of the apertures of P3.

Figure 2.9: Complexity scores of a house plan, its four simpler versions and two bats taken from

MPEG7 dataset versus the scale parameter

2.4.1 Noisy shapes

Fifty random datasets are created by adding noise to a square of side length 128

using a stochastic noise addition algorithm with differing amount of noise (# ∈
{50, 100, 150, 200}), and varying noise factors (nf ∈ {1/64, 1/32, 1/20, 1/16}),
which results in sixteen shapes in each of the datasets. The noise factor nf determines

the width and height of noise stochastically based on the radius of shape. Pseudocode

is given in Algorithm 1. The function normRand returns random numbers from the

normal distribution. It takes mean µ of the distribution as its first parameter, standard

deviation σ as its second parameter, and a third parameter that determines how many
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numbers are output. The functions drawLinesX and drawLinesY add noise in

outwards x and y directions from a random point on shape boundary.

Two of the created datasets are shown in Fig. 2.10.

Algorithm 1 Noise generation
function ADDNOISE(S, nf )

µ← nf× GETSHAPERADIUS(S)

width← NORMRAND(µ, µ/3, 1)

xn ← NORMRAND(µ, µ/3, width)

yn ← NORMRAND(µ, µ/3, width)

P ← POINTONBOUNDARY(S)

S ′ ← DRAWLINESX(S, P, xn)

S ′ ← DRAWLINESY(S ′, P, yn)

S ′ ← MORPHOLOGICALCLOSING(S ′, squareµ)

return S ′

Figure 2.10: Two of fifty datasets consisting of sixteen noisy squares

In the first experiment, we fix the noise factor and then at each noise factor calculate

modified Kendall τ correlation between the expected order ( i.e. the order with respect

to number of noise applications) and the obtained order. Correlations are calculated

for all fifty random datasets. The top four rows of Table 2.1 show the results for

each noise factor. The entries are the averaged modified Kendall τ scores. Respective

standard errors of the estimation are depicted in the top four rows of Table 2.2.
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We note that the modified Kendall τ returns +1 for equal pairs regardless of the

reference ordering. This is motivated by the equal complexity scores arising only for

the complexity score of 0, meaning that the noise is completely disregarded.

Table 2.1: Averages of modified τ correlation coefficients of entropy measurements in L∞ over the

fifty datasets of noisy squares

nf
t∞

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1/64 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1/32 0.82 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1/20 0.96 0.94 0.92 0.94 1.00 1.00 1.00 1.00 1.00
1/16 1.00 0.95 0.87 0.85 0.88 0.93 0.98 1.00 1.00

#
t∞

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00
150 1.00 0.98 0.98 0.98 1.00 1.00 1.00 1.00 1.00
200 1.00 0.99 0.98 0.99 1.00 1.00 1.00 1.00 1.00

Table 2.2: Standard deviations of modified τ correlations of entropy measurements in L∞ over the

fifty datasets of noisy squares

nf
t∞

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1/64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1/32 0.22 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1/20 0.11 0.13 0.19 0.15 0.00 0.00 0.00 0.00 0.00
1/16 0.00 0.12 0.21 0.28 0.24 0.16 0.10 0.00 0.00

#
t∞

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100 0.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.00
150 0.00 0.08 0.08 0.08 0.00 0.00 0.00 0.00 0.00
200 0.00 0.05 0.08 0.07 0.00 0.00 0.00 0.00 0.00

In the second part of the experiment, we fix the number of noise addition (amount of

noise) and then at each number calculate modified Kendall τ correlation between the

expected order ( i.e. the order with respect to noise factor) and the obtained order.

The results are given in the respective bottom four rows of Table 2.1 and Table 2.2.

The agreement between the induced orderings and the expected orderings increase

with t∞, which is in accordance with the claim that effects of noise are disregarded at
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higher t∞s.

Table 2.3: Modified τ correlation coefficients averaged over fifty datasets of noisy squares between

rankings by
∑
Et∞ and rankings by control parameters for each control parameter

nf 1/64 1/32 1/20 1/16

τ 0.99 0.99 0.98 0.95

# 50 100 150 200

τ 1.00 1.00 1.00 0.99

Instead of using entropy measurements at a given scale, measurements at all scales

can be used. A simple way to do this is to calculate
∑
Et∞ , a single number repre-

senting the complexity, for each shape. The modified Kendall τ scores acquired from

this measurement are presented in Table 2.3.

2.4.2 Three-dimensional shapes

The methods developed in this chapter can easily be generalized to shapes of arbitrary

dimensions. For the three-dimensional case, using 26 immediate neighbors of a grid

point as B(x) in the discretization Eq. (2.3) is sufficient to construct the field at three-

dimensions. The construction of L∞ distance transform in three-dimensions follows

trivially. In this subsection, an experiment with the generalization of the method to

three-dimensions is displayed.

Ten shapes are constructed by successively appending smaller cubes of side length

16 at the center of the surfaces of a larger cube of side length 64. The constructed

shapes are displayed in Fig.2.11 from two views. The names of the shapes indicate

the number of appendages, and their locations, if needed. Subscript a indicates a

preference towards opposite surfaces when appending a smaller cube, and b indicates

adjacent surfaces are preferred.

Complexity scores of these shapes are shown in Fig.2.12 for t∞ ∈ {0, 0.01, . . . , 0.3}.
For t∞ >= 0.26, all shapes attain a complexity score of 0. Note that tc = 0.25 for

the appended smaller cubes. S0 is the simplest shape, as expected, with a complex-
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ity score of 0 uniformly across all values of t∞ and the complexity increases with

increasing amount of appendages. The location of appendages has no effect on the

measured complexities, since their fields of interactions are not intersecting. These

results are in alignment with the results of two-dimensional shapes.

Figure 2.11: Cubes of varying number of cubic appendages. Top row: azimuthal angle of 20 degrees,

elevation angle of 15 degrees; bottom row: azimuthal angle of 200 degrees, elevation angle of 15

degrees.

Figure 2.12: Complexity scores of cubes versus the scale parameter
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CHAPTER 3

RELATIVE MEASUREMENTS IN L∞

3.1 Motivation

Shape complexity is a relative property. Depending on which shapes are taken as

simple, order of other shapes based on complexity change.

Therefore, constructing a framework that is capable of evaluating shape complexity

with respect to arbitrary shapes is of importance. However, it is not easy to ensure the

consistency of such a flexible framework. To overcome this, we propose a framework

based on the method developed in Chapter 2, for it is built on assumptions agreeing

with the discrete structure of the digital shape space.

3.2 Method

Entropy is a measure of information content of a distribution relative to uniform distri-

bution. A more general measure can be obtained by replacing the uniform distribution

(which is the reference) with a more general one. Kullback-Leibler divergence, also

known as relative entropy, is one available way to measure information content of a

distribution P relative to another distribution Q [33]. It is defined as

DKL(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
.

DKL(P ||Q) is defined only if Q(x) = 0 implies P (x) = 0, that is, suppP ⊂
suppQ. This, however, is not necessarily satisfied for arbitrary distributions. Hence,

we modify DKL(P ||Q) to address these by defining
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D∗(P ||Q) = min
k∈{−d,−d+1,...,d}

∑
x∈suppQ(k)

P (x) log
P (x)

Q(k)(x)
−

∑
x 6∈suppQ(k)

P (x) logP (x)

(3.1)

where Q(k) is the k-times pushed distribution and d is a small number compared to

the total number of bins. In our implementation, number of bins N is 210 = 1024 and

d is 22 = 4 which accounts for a minimization region of (2d+ 1)/N ≈ 0.9%, and the

distributions are diffused according to

P (k+1)(x) = P (k)(x) + α[P (k)(x− 1) + P (k)(x+ 1)− 2P (k)(x)]

64 times prior to calculatingD∗(P ||Q), where P (0) = P and α = 0.1. Both introduc-

ing a minimization over k and diffusing the distributions aims to solve the problems

due to discrete calculation of the real field fS and its further discretization to acquire

distributions.

The proposed D∗(P ||Q) agrees with DKL(P ||Q) whenever suppP ⊂ suppQ upto

the difference due to minimization over k. Otherwise, the additional term akin to

Shannon entropy penalizes P based on its nonzeros lying outside the support of Q.

3.3 Results

In this section, results acquired by using D∗(P ||Q) are presented under three tests.

The first of these tests is done on simple shapes of squares and circles, and shapes

acquired from them by appending similar shapes, respectively. In the second test, a

dataset consisting of twenty shapes from MPEG7 datasets are used. Finally, we test

the relative entropy with respect to the noiseless disc on datasets composed of noisy

discs.

3.3.1 Test 1

In this test, we experiment with relative measurement on two datasets composed of

shapes of varying number of appendages. One of the datasets is prepared by append-

ing rectangular shapes to a square, and the other by appending circular appendages to
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a disc. Appendages are positioned either at the top, bottom, right or left of the main

shape. Shapes are named according to the present number of appendages, i.e. disc

with four appendages is called D4, and a square with four appendages is called S4.

For different possible positions of appendages subscripts a and b are used, where a

indicates appendages are on opposite sides.

3.3.1.1 Squares with rectangular appendages

S0 S1 S2a S2b S3 S4

Figure 3.1: Squares with rectangular appendages

The dataset used in this part of the test is displayed in Fig. 3.1. Side length of S0 is

256 pixels. The other shapes are acquired by successively appending squares of side

length 128 pixels at the center of each side.

Measurements with respect to S0 are displayed in Fig. 3.2. The order on shapes

based on their complexities are stable for all t∞, except t∞ = 0.02, and is based solely

on the number of parts at where the shapes can be distinguished from one another,

i.e. for t∞ ≤ 0.50. For t∞ > 0.50, all of the shapes attain the same score, since

t∞ = 0.50 is the cutoff level. The instability at t∞ = 0.02 holds only for the order

between S3 and S4.

The same order is also established by using entropy on this dataset as shown in

Sec. 4.2.

Measurements with respect to S4 are displayed in Fig. 3.3. This time complexity

scores show stable behavior for all t∞. Before the cutoff level tc = 0.5, the induced

order is based on the number of parts again, though in a reverse fashion.
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Figure 3.2: Complexities of rectangular shapes with respect to S0

Figure 3.3: Complexities of rectangular shapes with respect to S4

Measurements with respect to S2a are not as easy to reason about as the above two

measurements. For example, S1 and S3 could be expected to be of same complexity

if it is deduced from the earlier examples that the measurements amount to counting

the appendages. However, since the area betweenD(S0 ||S4) andD(S1 ||S4) is much

higher than that betweenD(S1 ||S4) andD(S2 ||S4), it is clear that the behavior is not

homogeneous. This, together with the observation that the area between D(S4 ||S0)

and D(S3 ||S0) is lower than that between D(S3 ||S0) and D(S2 ||S0), implies that

adding an appendage is a simpler process than removing one. The results of the

measurements are displayed in Fig. 3.4. The induced order on these shapes is similar

to a dictionary order that orders, first, based on the difference of the number of ap-

pendages with the reference shape, and between equals, orders based on whether an

appendage is added or removed.
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Figure 3.4: Complexities of rectangular shapes with respect to S2a

Table 3.1: Integrals of complexity scores with respect to S0, S4 and S2a

S0 S1 S2a S2b S3 S4∫
D∗(. ||S0) 0.00 1.95 3.36 3.36 4.48 5.38∫
D∗(. ||S4) 0.40 0.14 0.04 0.04 0.01 0.00∫
D∗(. ||S2a) 0.21 0.03 0.00 0.00 0.01 0.05

Notice that the range of complexity scores changes significantly between the mea-

surements with respect to S0, S4 and S2a. In Table 3.1 the areas under each curve are

given. Based on these scores, order of shapes with respect to S0, S4 and S2a can be

established without worrying about which interval of t∞ should be used.

3.3.1.2 Discs with circular appendages

D0 D1 D2a D2b D3 D4

Figure 3.5: Discs with circular appendages

As the second case, discs with circular appendages are tested on. The shapes are as

displayed in Fig. 3.5. They are acquired by successively appending discs of radius 64

pixels to a disc, D0, of radius 128 pixels.
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Measurements with respect to D0 are displayed in Fig. 3.6. Plots show that the

complexity of discs increases with increasing number of appendages. The order be-

tween the shapes is stable across all t∞ < 0.71.

Figure 3.6: Complexities of circular shapes with respect to D0

Measurements with respect toD4 are displayed in Fig. 3.7. The results are similar

to the results of the square equivalent: complexities of shapes decrease with increas-

ing number of appendages.

Figure 3.7: Complexities of circular shapes with respect to D4

Measurements with respect to D2a are displayed in Fig. 3.8. The expected order

on the shapes is established at t = 0.02 and maintained until t = 0.70. This results

are in alignment with those of S2a, except here, an instability is observed at t = 0.01.

However, keeping in mind that discs are very unnatural shapes in the imposed scheme,

the results of this test can be regarded as successful.
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Figure 3.8: Complexities of circular shapes with respect to D2a

Table 3.2: Integrals of complexity scores with respect to D0, D4 and D2a

D0 D1 D2a D2b D3 D4∫
D∗(. ||D0) 0.00 2.68 4.55 4.55 5.94 7.03∫
D∗(. ||D4) 0.33 0.10 0.03 0.03 0.01 0.00∫
D∗(. ||D2a) 0.19 0.02 0.00 0.00 0.01 0.03

The cutoff level for discs is observed to be t∞ = 0.70. We note that this value is in

accordance with the ratio of side length of maximal square that can be fitted inside a

disc, and the disc’s radius which is
√

2/2 ≈ 0.7071.

Similar to the case of rectangular shapes, the range of complexity scores reduces

when measurements are relative to D4 and D2a. Table 3.2 lists areas under each plot.

3.3.2 Test 2

In the second test relative measurements are made on ‘device3’ of MPEG7 datasets.

The complexity versus scale parameter of each shape with respect to the designated

reference shapes are displayed in Fig. 3.9. The median filtered results are displayed

in Fig. 3.10. The first three references are chosen as the representative shapes of three

groups as clustered perceptually. The other two references are chosen to compare

the relative measurement with respect to shapes from the same group. To be able to

discuss the result with more ease, we will refer the first three shapes as the square
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group, fourth to eighth shapes as the oval group, ninth and tenth shapes as the curvy

group, eleventh to fifteenth shapes as the concave group, and the rest as the cut group.

We note that the first two shapes, S1 and S2, of the square group are identical. So are

S12 and S13.

Measurements with respect to the first reference shape are considered in detail

for their instructive behavior.

The lowest complexity scores are acquired by the shapes in the square group. The

noisy square in the group, S3, has nonzero complexity at only small scales. There, it

reaches zero at t = 0.14 first, and after t = 0.37 it is completely zero. In between

these scales it attains nonzero complexity scores occasionally, although the scores at

those scales are very low around 0.04.

Next, we consider the oval group. The group has varying amount of circular prop-

erties. Although the shapes in the group attain low complexity scores, none of their

complexity scores reach absolute zero before t = 0.98. This could be because of the

absence of notion of corners in these group.

It is noteworthy to mention that S7, despite not reaching absolute zero, attains very

low complexity scores (around 0.005), at mid-scales (t = 0.45), and maintains them

at higher scales. The difference between S7 and the others is that the presence of

circularity is accompanied by protrusiveness at where the square’s corners would be.

In a sense, S7 has ‘fake’ corners.

We also remark that for S5 and its noisy version, S6, the noise helps to attain lower

scores at high scales, while it causes an increase at small scales. In fact, the lowest∫
D∗(. ||S1) in this group is attained by S6.

The shapes in the curvy group have distinctive complexity profiles. Their complexi-

ties are similar to each other, however, S9 is slightly more complex than S10 at almost

all scales. We remark that this is despite the presence of corners in S9.

For the shapes in concave group, although the complexities drop to near zero around

t = 0.3, it is not until around t = 0.75 for any of them to reach the absolute zero. At

small scales, it is seen that the complexity scores are much higher than those of the

noisy square. The complexities increase with increasing amount of deformation.
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Figure 3.9: Plots of complexities for twenty shapes taken from MPEG7 dataset measured with respect

to five reference shapes.
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Figure 3.10: Plots of median filtered complexities for twenty shapes taken from MPEG7 dataset

measured with respect to five reference shapes.
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S11 attains the lowest complexity as measured by
∫
D∗(. ||S1), whereas S15 attains

the highest.

S13 and its noisy version, S14 have very similar plots. It is seen that the noise causes

an increase in the shape complexity at low scales.

The shapes in the cut group have much higher complexity scores than the other

shapes, and reach -or even get close to- zero at only very high scales. S17 has higher

complexity at low scales, and lower complexity at high scales than S16, similar to the

case between S6 and S5.

Measurements with respect to the second reference shape are considered next.

The first thing to mention is the general drop on the complexity scores. This is because

the distributions acquired from the reference shape now has a wider support which

causes most of the shapes to evade the penalty term.

Comparing S13 with S14 it is seen that the noise causes small increases at low scales,

similar to the case for the complexity of S3 as measured with respect to S1. The most

complex shape in terms of
∫
D∗(. ||S13) among the concave group is S15, and the

least -except S12 and S13- is S11. This is in line with the discussions of S2a under

Subsec. 3.3.1: additive deformations are regarded less complex than subtractive ones,

provided they are done “in the same manner".

The curvy group, again, attains distinctive complexity profiles, for which dominant

non-zero complexities are localized around t = 0.40. The complexity scores of S9

is found to be greater than or equal to S10’s at 61% of the probed scales. Also, the

integral of complexity score for S9 is 1.68 times that of S10’s complexity score.

Among the oval group, the scores of S5 and S6 are noteworthy. The noisy one is less

complex at 76% of the probed scales. In terms of the integrals of complexity scores,

S5 attains 2 times the score of S6, which concludes that it can be considered more

complex in general.

S7 is the least complex and S8 is the most complex of the group in terms of complexity

integrals.

The complexities of the shapes in the cut group are seen to reduce at lower scales com-
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pared to the complexities assigned by the first reference shape. More interestingly, at

high scales, they attain the same complexity trends as they attained with respect to the

first reference shape. This is because the reference shape S13 is basically considered

as a square at high scales which is shown by D∗(S13 ||S1).

Measurements with respect to the third, fourth and fifth reference shapes are

discussed together.

Notice first that the ranges of complexity scores have reduced further. This further

supports the role of spread of support of the reference shape on the range of the

complexity scores, as discussed above.

The shapes that are not in the cut group attain very similar complexity profiles, in

that, they attain a low complexity score at low scales, and more or less maintain it

until high scales. Nonetheless, discriminative information is subtly provided. For

example, the shapes in the curvy group follow a slightly positive trend until around

t = 0.70 that is not present in the shapes of other groups. The profiles of the concave

group depict low complexity scores until around t = 0.20, after which they attain a

complexity scores which is maintained until around t = 0.75. For the square group,

the profiles and complexity scores are almost identical to those of the concave group

for t > 0.35. However, at lower scales the shapes in the square group attain higher

complexity scores than the shapes of concave group. This indicates that near the

boundary, square group is more complex than the concave group with respect to the

shapes of cut group.

The profiles for the cut group change the most under changes of reference. Rather

than maintaining a stable complexity score, the scores change over the scales. It is

seen that S16, S17 and S18 with respect to the fourth and fifth references have similar

profiles. Among these shapes S17 attains the lowest complexity integral with respect

to the fourth reference, and S16 attains the lowest complexity integral with respect to

the fifth reference. In both cases, S18 is the most complex shape among these three

shapes.

It is also seen that the noise of S17 is not attenuated under measurements with respect

to S16.
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Figure 3.11: Two of fifty datasets, each consisting of sixteen noisy discs

3.3.3 Test 3

For this test, fifty noisy datasets each composed of sixteen shapes are constructed.

Noisy shapes are acquired by adding noise to a disc of radius 64 pixels using the

algorithm presented in Subsec. 2.4.1, except, instead of a square structuring element,

a disc structuring element is used. Two of the created datasets are shown in Fig. 3.11.

Table 3.3: Averages of modified τ correlation coefficients of pointwise relative entropy measurements

in L∞ with respect to a disc over the fifty datasets of noisy discs

nf
t∞

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1/64 0.86 0.87 0.77 0.72 0.67 0.68 0.55 0.63 0.49
1/32 0.69 0.34 0.41 0.37 0.50 0.54 0.51 0.29 0.36
1/20 0.73 0.62 0.08 0.20 0.09 0.13 0.10 0.27 0.17
1/16 0.66 0.55 0.07 0.31 0.17 0.16 0.13 0.08 0.17

#
t∞

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50 0.94 0.85 0.71 0.75 0.71 0.77 0.76 0.76 0.61
100 0.96 0.87 0.61 0.54 0.66 0.72 0.59 0.67 0.54
150 0.96 0.83 0.47 0.61 0.51 0.70 0.63 0.59 0.47
200 0.94 0.81 0.41 0.65 0.65 0.67 0.53 0.56 0.45

Measurements relative to the base disc of radius 64 pixels are carried out. Induced

order on the shapes by these measurements are expected to be based on the amount

of noise.
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Table 3.4: Averages of modified τ correlation coefficients of regional relative entropy measurements

in L∞ with respect to a disc over the fifty datasets of noisy discs

nf
t∞

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9

1/64 0.97 0.87 0.75 0.69 0.67 0.56 0.67 0.67 0.56 0.59
1/32 0.87 0.62 0.33 0.33 0.42 0.49 0.57 0.49 0.43 0.37
1/20 0.80 0.57 0.31 0.30 0.16 0.14 0.31 0.28 0.26 0.18
1/16 0.77 0.46 0.31 0.33 0.29 0.16 0.31 0.19 0.24 0.26

#
t∞

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9

50 0.99 0.87 0.74 0.81 0.78 0.75 0.86 0.83 0.81 0.64
100 0.99 0.89 0.69 0.71 0.60 0.71 0.80 0.78 0.77 0.67
150 1.00 0.86 0.67 0.66 0.63 0.60 0.75 0.74 0.72 0.61
200 0.99 0.85 0.65 0.67 0.64 0.61 0.75 0.64 0.69 0.58

Averaged modified Kendall τ coefficients as a measure of correlation between the

expected complexity ranks and the induced orders at t∞ ∈ {0.1, 0.2, . . . , 0.9} are re-

ported in Table 3.3. All of the coefficients are positive, with a minimum of 0.07 and

a maximum of 0.96, implying that relative measurement can be used as a measure-

ment of circularity. However, the coefficients decay with increase in t∞ indicating

that noise is not attenuated well.

Compared with the scores of entropy measurements on noisy squares, Table 2.1, it

is seen that these scores are very low. For more accurate rankings, sums of relative

entropy measurements over intervals of 0.1 of t∞ are calculated. In doing so ten mea-

surements are acquired for each control parameter. The averaged modified Kendall τ

coefficients are reported in Table 3.4. In the table, I0 denotes the interval (0, 0.1], I1

denotes (0.1, 0.2], and so on. The correlations follow a similar trend as t∞ increases,

yet are improved, with a minimum of 0.14 and a maximum of 1.00.

Lastly, in Table 3.5, τ correlations of expected complexity ranks with sums of rel-

ative measurements over all t∞ are presented. The correlations increase drastically,

attaining a much better minimum of 0.73 and a maximum of 0.97.

All three tables show that it is easier to detect differences in grouped noise (as deter-

mined by nf ) than to detect differences in scattered noise (as determined by #): The

average of Kendall τ correlations over all fixed-nfs is 0.41 for pointwise-t, 0.46 for
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Table 3.5: Modified τ correlation coefficients averaged over fifty datasets of noisy discs between

rankings by
∑
D∗(. ||D64) in L∞ and rankings by control parameters for each control parameter

nf 1/64 1/32 1/20 1/16

τ 0.97 0.83 0.73 0.77

# 50 100 150 200

τ 0.91 0.97 0.99 0.97

regional-t, and 0.83 for all-t measurements; whereas over all fixed-#s, it is 0.68 for

pointwise-t, 0.75 for regional-t and 0.96 for total-t measurements.
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CHAPTER 4

COMPARISON OF L2 AND L∞ MEASUREMENTS IN TERMS OF

ENTROPY AND RELATIVE ENTROPY

A multi-scale method for measuring circularity can be acquired by using the Eu-

clidean metric in constructing the field and the distance transform, instead of L∞

metric. The field to be constructed is governed by

(
∆− 1

ρ2

)
fES = −1 subject to fES

∣∣∣
∂S

= 0, (4.1)

and has been proposed in [27].

The constructed field encodes a smooth transformation of the shape boundary to a

more circular form as its level sets. This behavior is depicted in Fig. 4.1 for a cir-

cle and a square where level sets of circle remain circular, and level sets of square

transform into a circle.

Figure 4.1: Level sets of constructed fields in L2 for a square and a circle

In this chapter, entropy and relative entropy measurements in the Euclidean setting

are compared with the proposed measurements.

41



4.1 Noisy Shapes

In this section, entropy measurements in L2 are tested on the fifty datasets of noisy

discs which are used in Subsec. 3.3.3 and exemplified by Fig. 3.11, and relative en-

tropy measurements in L2 are tested on the fifty datasets of noisy squares which are

used in Subsec. 2.4.1 and exemplified by Fig. 2.10. The results are compared against

the results of entropy and relative entropy measurements in L∞.

4.1.1 Entropy measurements in L2

For entropy measurements in L2, adding noise to a disc corresponds to increasing the

complexity of the shape. Hence, measurements are expected to yield orderings based

on the amount of noise on the noisy discs. Modified Kendall τ correlation coefficients

are computed to measure the similarity between the assigned complexity scores and

the expected ones at tE ∈ {0.1, 0.2, . . . 0.9}. Results are presented in Table 4.1 as

averages over fifty datasets, and in Table 4.2 as standard deviations of τ coefficients

among fifty datasets.

Table 4.1: Averages of modified τ correlation coefficients of entropy measurements in L2 over the

fifty datasets of noisy discs

nf
tE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1/64 0.89 0.93 0.94 0.79 0.81 0.68 0.43 0.48 0.25
1/32 0.96 0.97 0.94 0.91 0.88 0.87 0.71 0.72 0.47
1/20 0.93 0.92 0.91 0.89 0.87 0.85 0.81 0.82 0.68
1/16 0.84 0.93 0.92 0.90 0.91 0.90 0.87 0.80 0.70

#
tE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50 1.00 1.00 0.99 0.97 0.99 0.93 0.90 0.88 0.67
100 1.00 1.00 1.00 1.00 0.99 0.96 0.95 0.92 0.85
150 0.99 0.99 0.99 1.00 1.00 0.99 0.97 0.95 0.89
200 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.98 0.95

Of the possible outcomes ranging from -1 to 1, all the entries of Table 4.1 are≥ 0.25,

with an average of 0.89 over all scales and control parameters. This indicates that the

measure responds to noise in the expected way.
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Table 4.2: Standard deviations of modified τ correlation coefficients of entropy measurements in L2

over the fifty datasets of noisy discs

nf
tE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1/64 0.17 0.13 0.15 0.20 0.22 0.28 0.33 0.43 0.56
1/32 0.11 0.10 0.15 0.16 0.18 0.18 0.28 0.29 0.39
1/20 0.14 0.14 0.19 0.21 0.18 0.19 0.18 0.20 0.30
1/16 0.24 0.15 0.16 0.17 0.15 0.17 0.20 0.26 0.29

#
tE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50 0.00 0.00 0.05 0.09 0.07 0.13 0.15 0.16 0.28
100 0.00 0.00 0.00 0.00 0.05 0.11 0.12 0.14 0.24
150 0.05 0.05 0.05 0.00 0.00 0.05 0.09 0.12 0.18
200 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.08 0.12

τ coefficients decrease with increasing tE , similar to the relative measurements in L∞

and in contrast to the entropy measurements in L∞. This decrease can be reasoned to

be caused by the unattenuated boundary noise propagating through the field.

Table 4.3: Modified τ correlation coefficients averaged over fifty datasets of noisy discs between

rankings by
∑
EtE and rankings by control parameters for each control parameter

nf 1/64 1/32 1/20 1/16

τ 0.89 0.91 0.93 0.93

# 50 100 150 200

τ 0.99 0.99 1.00 1.00

In Table 4.3, modified τ correlation coefficients between rankings by
∑
EtE for each

control parameter and rankings by control parameters are presented. The coefficients

for fixed nfs increases as nf increase. In both of the presented tables it is seen that

detecting differences in number of noise addition is harder than detecting differences

in noise factors.

We compare these results, first, with results of entropy measurements in L∞ on noisy

squares (cf. Tables 2.1 and 2.3), since both of the measurements are on the noisy

balls of the respective metrics. The performances of measurements compete on small

scales, especially on t = 0.2 and t = 0.3, with several dominances of L2 over L∞.
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Nevertheless, when sums over control parameters are considered, results in L∞ out-

perform those in L2 at all scales.

It can be concluded from this comparison that entropy in L∞ as a measurement of

squareness is more reliable than entropy in L2 is as a measurement of circularity.

Secondly, we compare the results of entropy measurements in L2 with the results of

relative entropy measurements with respect to a disc of radius 64 on noisy discs in L∞

(cf. Tables 3.3, 3.4 and 3.5). Except for nf = 1/64 at t ∈ {0.7, 0.8, 0.9}, pointwise-

t measurements in L2 outperform pointwise-t measurements in L∞, especially for

nf = 1/20 and nf = 1/16 where τ correlation differences attain an average of 0.60

and a maximum of 0.85. The situation is similar with L∞ regional-t measurements,

despite the improvements. Comparing all-t measurements, it is seen that L2 performs

much better than relative L∞ measurements on fixed-nf , except for nf = 1/64, and

performs better on fixed-# scores, although not as drastically as it does for fixed-nf .

It is as expected that relative entropy in L∞ to be outperformed by entropy in L2 on

noisy discs. This is because discs are the implicit references in L2, whereas a specific

disc is given as an explicit reference to relative measurements in L∞.

4.1.2 Relative entropy measurements in L2

Table 4.4: Averages of modified τ correlation coefficients of pointwise relative entropy measurements

in L2 with respect to a square over the fifty datasets of noisy squares

nf
tE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1/64 0.21 90.13 90.11 90.52 90.21 0.09 0.85 0.67 90.05
1/32 0.91 0.90 0.86 0.86 0.68 0.73 0.62 0.85 0.49
1/20 0.92 0.91 0.89 0.87 0.73 0.79 0.75 0.72 0.70
1/16 0.86 0.83 0.83 0.81 0.69 0.77 0.77 0.73 0.71

#
tE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50 0.97 0.91 0.93 0.81 0.65 0.82 0.91 0.94 0.81
100 1.00 0.99 0.98 0.95 0.71 0.79 0.95 0.93 0.90
150 0.99 0.99 0.97 0.97 0.78 0.89 0.91 0.91 0.92
200 0.98 0.99 0.98 0.97 0.87 0.93 0.93 0.91 0.95

Now, we consider the relative entropy measurements in L2 with respect to a square of
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side length 128 on the noisy square datasets. It is assumed that the relative measure-

ment corresponds to a measure of squareness. Therefore, it is expected to reflect the

amount of noise in the assigned complexity scores.

First, consider the correlations of the induced orders with those determined by the

control parameters at tE ∈ {0.1, 0.2, . . . , 0.9}. In Table 4.4, the averaged τ coeffi-

cients are given.

Except for the five negative ones, coefficients indicate positive correlation with the ex-

pected orders. The overall average of the given coefficients is 0.76 when the scores for

nf = 1/64 are counted, and 0.84 when they are discounted. The negative scores indi-

cate that L2 relative entropy measurements are not able to tell the difference between

added amount of noise when the added noise has a low shape radius. However, the

negative scores with a minimum of 90.52 already signal an instability of the method.

Table 4.5: Averages of modified τ correlation coefficients of regional relative entropy measurements

in L2 with respect to a square over the fifty datasets of noisy squares

nf
tE

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9

1/64 1.00 0.79 90.07 90.35 90.25 0.43 0.83 0.85 0.85 0.41
1/32 0.97 0.91 0.79 0.88 0.77 0.87 0.79 0.69 0.85 0.69
1/20 0.94 0.92 0.90 0.92 0.89 0.89 0.83 0.77 0.83 0.68
1/16 0.87 0.87 0.85 0.87 0.81 0.79 0.75 0.77 0.75 0.65

#
tE

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9

50 0.99 0.97 0.91 0.97 0.85 0.93 0.90 0.85 0.95 0.88
100 1.00 1.00 0.95 0.99 0.94 0.94 0.95 0.89 0.96 0.94
150 1.00 0.99 0.97 0.99 0.95 0.98 0.97 0.95 0.94 0.88
200 0.99 1.00 0.97 0.99 0.95 0.95 0.95 0.93 0.98 0.93

Table 4.5 reports the averaged τ coefficients of induced order by using regional com-

plexity scores.

The coefficients are seen to increase significantly with a new minimum of 90.35 and

three negative values. Clearly, the instability seen for nf = 1/64 is present despite

using regional complexity scores. The overall average of the coefficients increase to

0.84. If the scores for nf = 1/64 are discarded this number increases to 0.89.
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There is a downwards trend in τ coefficients of both the pointwise-t and regional-t

measurements with increase in the scale parameter. Note that this trend, out of four

considerations of noisy shapes, has not been seen only for entropy measurements in

L∞.

Table 4.6: Modified τ correlation coefficients averaged over fifty datasets of noisy squares between

rankings by
∑
D∗(. ||S128) in L2 and rankings by control parameters for each control parameter

nf 1/64 1/32 1/20 1/16

τ 0.89 0.92 0.93 0.90

# 50 100 150 200

τ 0.97 0.99 1.00 1.00

In Table 4.6 τ coefficients for measurements using all complexity scores are given. It

is seen that the instable behavior for nf = 1/64 disappeared now. The τ coefficient

for nf = 1/64 indicates that, in fact, relative L2 measurements are able to account

for noise of low shape radius, but it is able to do so only considering all the scales.

Comparing the pointwise-t results with the pointwise-t of L∞ on squares (Table 2.1),

it is seen that L∞ is more successful at all t except at t = 0.1 for nf = 1/32 and

t = 0.2 for # = 150. Similar outranking of pointwise-t of L∞ over regional-t results

also holds. When the all-t results are considered, except for # = 200 measurements,

L2 is outperformed by L∞.

As in the case of relative L∞ measurements and entropy measurements in L2 on

discs, it was expected that L2 to be surpassed by L∞ as the squares are the implicit

references of L∞.

We now turn to compare the performances of relative L2 and L∞ (cf. Tables 3.3, 3.4,

and 3.5).

The overall mean of relative pointwise-t measurements in L∞ is 0.59, and is worse

than the mean of L2, even when nf = 1/64 measurements are included. For the

regional-t measurements the overall τ coefficient mean is 0.61 for L∞, versus 0.84.

The all-t measurements favor L∞ in nf = 1/64 only.

Based on these, it can be said that L2 method extends statistically better to a relative
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measure than L∞. However, it should be noted that L2 depicts an instable behavior

which is not overcome by regional-t measurements, that crosses off the multi-scale

usability of the extended relative measure.

4.2 Appendages

The orders induced by entropy measurements inL2 andL∞ on two datasets composed

of shapes of varying number of appendages are compared. One of the datasets is

prepared by appending rectangular shapes to a square, and the other by appending

circular appendages to a disc. Appendages are positioned either at the top, bottom,

right or left of the main shape. Datasets are as presented in Fig. 3.1 and Fig. 3.5.

(a) t∞ ∈ {0.01, 0.02, . . . , 0.50}

(b) t∞ ∈ {0} ∪ {0.51, 0.52, . . . , 1}

Figure 4.2: Multi-scale orderings of squares of varying number of rectangular appendages in L∞

The order induced on the rectangular set by f∞S is displayed in Fig. 4.2. Until the

cutoff level 0.5, the ordering is based on number of parts and is stable. Distinction

between the two shapes with two appendages, S2a and S2b is not present, due to

measurement’s local behavior.

Fig. 4.3 displays the dominant orders induced on the circular set by fES . The shown

orders are not stable outside the indicated ranges of tE . Plots of entropy measure-

ments on the discs versus the scale parameter is displayed in Fig. 4.4
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(a) tE ∈ {0.01, 0.02, . . . , 0.15}

(b) tE ∈ {0.16, 0.17, . . . , 0.49}

(c) tE ∈ {0.54, 0.55, . . . , 0.70}

Figure 4.3: Multi-scale orderings of discs of varying number of circular appendages in L2

Near boundary measurements, shown in Fig. 4.3 (a), are based on number of parts

except forD4. Note thatD4 is the most symmetrical shape afterD0. It is also seen that

D2a is simpler than D2b for all tE ∈ (0, 1) even though the order among other shapes

change with changing scale. These indicate the presence of complexity reducing

effect of symmetry across all scales.

As tE increases, symmetry plays a more dominant role in on the complexity of the

shapes. The change in the orderings of D1 and D2a attained at tE = 0.50 is main-

tained stably for tE ∈ {0.50, 0.51, . . . , 0.99}.

Figure 4.4: Entropy measurements in L2 versus the scale parameter on discs with varying number of

circular appendages
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It is noteworthy to mention that for the dominant behavior of tE in {0.70, 0.71, . . . ,

0.99} shown in Fig. 4.3 (c) the order between D1 and D3, each with one symmetry

axis, is sensitive.

Comparing the results of entropy measurements in L∞ on squares with those of L2

on discs, it is seen that measurements in L∞ are more stable and predictable than

the measurements in L2. On the other hand, global properties such as symmetry is

captured in L2 with its impact varying with scale, whereas in L∞ it is disregarded.

For a detailed analysis of relative entropy measurements on these two datasets in L∞,

we refer the reader to Subsec. 3.3.1.

4.3 Effects of Form and Size

Under this section we compare the effect of size on the complexity scores of shapes

as acquired from entropy measurements in L2 and L∞, and from the inverse form

factor given as P 2/4πA.

Figure 4.5: Entropy measurements in L2 versus the scale parameter on discs of radii 16, 64, 128, 512,

and squares of side lengths 32, 128, 256, 1024

Fig. 4.5 displays the complexity scores in L2 versus the scale parameter tE for discs

of radii 16, 64, 128, 512, and squares of side lengths 32, 128, 256, 1024. The plots

show that

1. discs do not attain zero-complexity,
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2. it is possible for a square’s complexity scores to be lower than a disc,

3. discs are inclined to attain lesser scores with increasing size,

4. squares attain higher scores with increasing size.

These results are in harmony with the continuous versus discrete setting discussions

carried out in Sec. 1.2. In permitting the use of Euclidean metric, the theory treats

digital shapes as approximations to the ideal forms. Hence, with more accurate ap-

proximations, a digital shape exhibits properties of the ideal form more strongly. As

a result, as the accuracy of the approximation increase, squares are regarded more

complex and discs simpler. This is not without exceptions though: a disc of radius 16

is observed to be simpler than discs of radii 64 and 128.

Since discs do not attain zero-complexity, it is possible for other shapes to attain

lower complexity scores than a disc. This is readily shown in the plot 4.5 where a

square of side length 32 attains a lower complexity than a disc of radius 64 almost

at all tE ∈ (0, 1). This is a more serious problem than that of size-variance of the

complexity scores, because the order among an approximation to the simplest shape,

i.e. a disc, and an approximation to another shape, i.e. a square, is opposite to what is

expected. That is, when implemented, the theory contradicts its axioms.

Figure 4.6: Entropy measurements in L∞ versus the scale parameter on discs of radii 16, 64, 128,

and 512; and squares of side lengths 32, 128, 256, and 1024

Now, consider the case of entropy measurements in L∞, plots of which are displayed

in Fig. 4.6. First, it is seen that, all of the squares attain zero-complexity for all

50



t∞. Since this is the lowest permitted complexity score, it is not possible for another

shape to attain a lower score than a square. It also means that the complexity scores

for squares are scale independent. Second, complexities of the discs increase with

increase in size almost at all t∞ ∈ (0, 1). This is because of the reducing presence of

polygonal properties.

In Fig. 4.7, the resulting order using the inverse form factor is shown where the shapes

are represented in log scale. It is seen that squares are found to be more complex than

circles, and have increasing complexity scores with increasing size. Scores of discs,

on the other hand, do not monotonically increase with increasing size: disc of radius

512 is less complex than disc of radius 128.

The inverse form factor is expected to attain its minimum for discs. However, the dia-

mond attains the lowest score, as has been shown by Rosenfeld [11]. Moreover, since

the accuracy of the approximation increases with increasing size, discs of larger radii

should attain lower complexity, but the acquired results do not show an inclination

towards such a trend.

Figure 4.7: Order induced by the inverse form factor on a diamond of side length 48, discs of radii

16, 64, 128, 512, and squares of side lengths 32, 128, 256, 1024. The shapes are displayed in log scale.
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CHAPTER 5

PARTIAL ORDER ON SHAPES

5.1 Motivation

Complexity is not well-defined. Since shapes are inherently infinite dimensional,

there is no finite set of features that can account for all the variability of a shape [34].

Therefore, there is no canonical way of measuring shape complexity. As shown in

Chapter 4 neither of the discussed methods is better than the others in all aspects.

It is, however, of practical concern to compare the shapes based on different com-

plexity considerations. Under such circumstances, although a linear order cannot be

established on the set of all shapes, it is possible to establish a partial order.

Partial order mainly differs from linear order by the presence of incomparable pairs

of objects. From a constructed partial order, subsets of given shapes -chains- can be

extracted on which a linear order is established.

5.2 Sample Results

In the following results, partial orders are constructed by using (≤) relation for each

of the indicated measurements. The partial orders are represented with Hasse dia-

grams.

First, consider theL2 andL∞-entropy measurements on discs with circular appendages

(see Fig. 4.3). If the results of L2 at t = 0.4 and t = 0.7 are used, the resulting partial

order is as shown in Fig. 5.1 (a). This partial order has four chains. It, for example,

depicts that it is not possible to tell whether D1 or D2a is more complex, since the
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used measurements do not agree on their order.

Adding the measurement at t = 0.1 to the set of used measurements, we obtain the

partial order shown in Fig. 5.1 (b). The difference between the two is the incompa-

rability of D1 with D4. Since the measurements of L2 at lower scales dominantly

correspond to boundary regularity, E0.1(D1) ≤ E0.1(D4).

It is also possible to use averages of the complexity scores. Partial order constructed

using averaged L∞-entropy scores at t ∈ {0.10, 0.11, . . . , 0.25} (low-t) and L2-

entropy at t ∈ {0.75, 0.76, . . . , 0.90} (high-t) is displayed in Fig. 5.1 (c). Since

L∞-entropy at low scales tends to measure complexity based on the number of ap-

pendages -except between D4 and D3 because D4’s boundary regularity outweighs

its complexity due to the extra appendage-D4 is incomparable withD1, D2a andD2b.

(a) (b) (c)

Figure 5.1: The obtained partial orders on discs with circular appendages using (a) L2-entropy at

t = 0.4 and t = 0.7, (b) L2-entropy at t = 0.1, t = 0.4 and t = 0.7, (c) L∞-entropy averaged at low-t

and L2-entropy averaged at high-t

Next, we turn to the measurements of L∞-entropy on ‘device3’ of MPEG7 dataset. In

Fig. 5.2 (a), measurements averaged at low-t and t ∈ {0, 0.01, . . . , 1} (all-t) are used.

The first three shapes are ordered linearly based on the deformations of square. The

third shape is followed by three others in different branches, each with a different kind

of deformation: more concave, more oval, or more curved. All of them are considered

less complex than the shapes of the cut group. Among the shapes of the cut group,

the most complex is the one with curvy cuts.

Restricting ourselves to high-t, instead of all-t, in averaging the complexity scores,
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we get the result displayed in Fig. 5.2 (b). At high scales, it is seen that the concave

shape with sharp edges is not more complex than the third shape anymore. In fact,

the shapes in the concave group are considered as practically squares at these scales

(see: Fig. 3.9). The rest of the relationships are seen to be preserved.

The complete picture using the first set of measurements on ‘device3’ is given in

Fig. 5.4.

As a last example, we construct a mixed set of shapes from MPEG7 dataset. In

Fig. 5.3 (a) partial order on this set using L∞-entropy measurements at low-t and

high-t is displayed. The linear orders based on the respective measurements are given

in Fig. 5.3 (b) and (c). At low-t, the boundary’s rectangularity is considered, hence,

faces attain lesser complexity scores than elephant and jar. However, at high-t, non-

rectangular properties of faces are not attenuated as successfully as those of elephant

and jar, both of which have a more rectangular body, especially elephant. Therefore,

based on the used measurements elephant, faces and jar are incomparable with each

other.

In both of the measurements, cup is considered as the least complex shape, and dog

the most complex.

55



(a)

(b)

Figure 5.2: The obtained partial orders on shapes from ‘device3’ using L∞-entropy measurements

averaged at (a) low-t and all-t, (b) low-t and high-t
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(a) (b) (c)

Figure 5.3: The obtained partial order (a) on a dataset consisting of a cup, jar, elephant, dog, and two

human faces using L∞-entropy measurements at low-t (b) and high-t (c)

Figure 5.4: The partial order on all shapes -except for the duplicates- of ‘device3’ using L∞-entropy

measurements averaged at low-t and all-t
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CHAPTER 6

ANALYTICAL SOLUTIONS OF SPE

In this chapter the connection between the screened Poisson equation in L∞ and L∞

distance transform is shown. Based on the analytical solutions for a square, a local

measurement of rectangularity is proposed.

6.1 Analytical Solution of SPE in L∞ for a Square

To acquire analytical solutions of SPE in L∞ the following observations are made use

of

1. in one dimension, partial derivatives in L∞ are the same as in L2, such as ∂
∂x

,
∂2

∂x2
,

2. value of f∞S at a point is completely determined by its relation to the boundaries.

Figure 6.1: A square with sides aligned with

grid axes

Note that, subjecting f∞S to square-boundary

condition in L∞ necessitates the equivalence

of values at points that are equidistant to

the boundaries and the origin. To make this

more clear, consider the points P1 and P2 as

given in Fig. 6.1. Their distances to the near-

est boundary and to the origin are the same,

hence values of f∞S are the same at P1 and

P2. Furthermore, this holds for all points in

R1 whose y coordinates are the same, and

identical arguments apply for points in R2
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that share the same x coordinate. That is to say, ∂f∞S /∂x = 0 inR1, and ∂f∞S /∂y = 0

in R2. With these, in each of the regions R1 and R2, the problem of solving Eq. (2.2)

reduces to a one-dimensional problem,

∂2f∞S
∂y2

− 1

ρ2
f∞S = −1, for |y| ≥ |x|

∂2f∞S
∂x2

− 1

ρ2
f∞S = −1, for |y| < |x|

subject to f∞S
∣∣∣
∂S

= 0.

(6.1)

Solving for the homogeneous part inR1, we get f∞S,h = A exp{y/ρ}+B exp{−y/ρ},
and for inhomogeneous part f∞S,p = ρ2. Due to the symmetry of the boundary condi-

tions, acquired solution is invariant under y 7→ −y changes. This dictates A = B.

Applying the boundary condition we acquire

f∞S

∣∣∣
R1

= −ρ2 e

e2 + 1

(
exp

{y
ρ

}
+ exp

{
− y

ρ

})
+ ρ2.

Following the same steps, solution in R2 is acquired, and the joint solution is given in

the closed form

f∞S (x, y) = −ρ2 e

e2 + 1

(
exp

{max {|x|, |y|}
ρ

}
+ exp

{
− max {|x|, |y|}

ρ

})
+ ρ2.

(6.2)

In this form the solution is not translation invariant. To satisfy translation invariancy,

implicit reference to origin can be removed by reformulating the solution in terms

of the L∞ (chessboard) distance transform. Note that max {|x|, |y|} = ‖~p‖∞ where

~p = (x, y). Thus, we can rewrite Eq. (6.2) as

f∞S

∣∣∣
S

= −ρ2 e

e2 + 1

(
exp {t′∞}+ exp {−t′∞}

)
+ ρ2. (6.3)

where t′∞ = 1 − t∞. Since f∞S = f∞S (t∞) for a square, it is now straightforward to

see that the level sets of f∞S and t∞ agrees. Moreover, Eq. (6.3) is also the solution

for cubes of arbitrary dimensions, i.e. n-cubes. The respective solutions for n-cubes

can be acquired by following the same construction given above.
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6.2 A Local Measurement of Rectangularity

In Fig. 6.2, the difference between the analytical solution and numerical solution

for a square of side length 256 is displayed. The maximum absolute difference,

max(|fanalytical − fnumerical|) is 0.00091. The error rate of the numerically acquired

field is ∫
|fanalytical − fnumerical|∫

fanalytical
≈ 0.00102.

This difference is due to the calculation of the field to a first order approximation.

Figure 6.2: The difference between the analytical and numerical solutions for a square of side length

256

Similar to the circularity measurement proposed in [20], the discrepancy between the

analytical and numerical solutions can be used as a local measurement of rectangu-

larity. The differences between the numerically acquired solution and the analytical

solution given by Eq. (6.3) is used as the rectangular-discrepancy field. This amounts

to calculating error for the SPE field due to assuming that a given point is located

inside a rectangle whose size is determined by the shape’s radius and location is de-

termined by the given point’s distance to the closest boundary.

The rectangular-discrepancy field for squares with two appendages are shown in

Fig. 6.3. In the figure, edges of the shapes are added manually.

Due to the significant change in the maximum difference value (∼ 0.0009 against

∼ 0.25), the error due to numerical imprecision is not visible in this figure. Areas of

disagreement mark the appendages and their region of effect.
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Figure 6.3: The rectangular-discrepancy field for squares with two appendages. The boundaries are

added manually.

As a more complex example, the discrepancy field for an elephant is shown in Fig. 6.4.

It is seen that the areas of highest disagreement are the legs and trunk, followed by

the tail, ivories and head.

Figure 6.4: The rectangular-discrepancy field for an elephant silhouette. The boundaries are added

manually.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

In this thesis, computational shape complexity is investigated. The investigation is

guided by the discrete nature of digital computers and the relative nature of complex-

ity. The aim of the chapters and the flow between them is as follows: By addressing

the discrete nature of digital computers, it is reasoned that squares are the simplest

shapes. In this vein, a measure for quantifying shape complexity is developed in

Chapter 2. By addressing the relative nature of complexity, this method is extended

to a relative measure of complexity in Chapter 3. The needed comparisons are made

in Chapter 4 between the developed methods and their Euclidean equivalents. It is

shown that neither of the methods are canonical for considerations of complexity, i.e.

their performances change with differing views of complexity. This leads to the idea

of constructing partial orders, which is investigated in Chapter 5 in the light of the

findings of prior chapters. Chapter 6 aims to prove a claim made in Chapter 2 and

does so by giving a novel analytical solution to the field proposed there.

In Chapter 2 a multi-scale shape complexity measure is proposed. The proposed

measure relies on the realizability of squares in the digital space, and the fact that

they are the circles in L∞. Based on this a differential equation governed by infinity

Laplacian is used to embed level sets inside shapes. The embedded level sets are

smoothed versions of level sets of L∞ distance transform. By restricting the field

to the level sets of the distance transform, and partitioning these values into bins a

distribution is acquired. The entropy of this distribution is then gives the complexity

of the shape at a scale, where level sets of the normalized distance transform serves

as a natural scale parameter. Since the level sets of proposed field and the distance

transform agree for a square, the squares emerge as the simplest shape. Although the
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measure is formulated in continuous space, its restriction to digital space has desirable

properties which are listed below.

– Up to first order approximation, the field is governed by morphological oper-

ators (Subsec. 2.2.1). Hence, it inherits their properties, notably, the computa-

tional robustness.

– Level sets of the proposed field becomes locally flat (Fig. 2.1). Therefore, sim-

plicity is in the favor of shapes whose boundaries aligned with the grid axes.

– A cutoff level emerges for rectangular appendages (Figures 2.3 and 2.4) and for

apertures (Fig. 2.9) beyond which they no effect on the field.

– Orders on shapes with changing number, width and location of rectangular ap-

pendages are like the dictionary order (Fig. 2.7). This shows that discrimination

between such physical variations is intrinsically encoded in the proposed mea-

sure.

– Perceptually more complex objects such as bats with regards to house plans are

also considered as more complex by the measure (Fig. 2.9).

– Orders on shapes are very robust under additive noise (Subsec. 2.4.1).

– The proposed field and measure can be generalized to n-dimensions (Sub-

sec. 2.4.2).

Notice that neither of these properties are especially addressed, rather they emerged

from addressing the computational aspects of shapes.

In Chapter 3 the method is extended to a relative one to address the relative nature

of shape complexity. This is done by calculating Kullback-Leibler (KL) divergence

(with an additional penalty term) between the acquired distributions from a shape and

the reference shape at the same scale. The remarks from this chapter are listed below.

– The modified divergence measureD∗(P ||Q) agrees with KL divergence when-

ever the support of P is a subset of the support of Q. In other words, the mod-
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ified divergence extends KL divergence, in that, whenever KL divergence is

applicable, it is used.

– Relative measurements are able to induce order on shapes of varying number

of identical appendages. Given the shape with least number of appendages,

the order is characterized by increasing number of appendages (Figures 3.2

and 3.6); and given the shape with highest number of appendages the order is

characterized by decreasing number of appendages (Figures 3.3 and 3.7).

– For relative measurements, adding an appendage is a similar process than re-

moving one (Figures 3.4 and 3.8.

– Range of complexity changes significantly with the chosen reference shape.

This is reasoned to be caused by the reference shape’s support’s range.

– Complexity trends of shapes carry significant information that is available to

manipulate by tools other than KL-divergence. For example, the location of

the peaks indicate the reason for complexity; and so does the location of last

nonzero (Fig. 3.9).

– The trends suggest clusters in accordance with human vision.

– Relative measurements are able to account for the amount of noise present on

the noisy versions of the given reference shape (Tables 3.3, 3.4 and 3.5). How-

ever, they are not as reliable as the non-relative measure.

– The accountability of relative measurements in handling noise increases signif-

icantly when regional complexity scores are used in estimating the order on the

shapes.

In Chapter 4 comparisons between the developed methods, and their Euclidean equiv-

alents are carried out on noisy shapes, shapes with appendages and shapes with differ-

ent forms and sizes. The behavior of the field constructed in L2 is also given. Results

of the comparisons are listed below.

– The performance of L2-entropy on noisy discs is worse than the performance

of L∞-entropy on noisy squares (Tables 4.1, 4.3, 2.1 and 2.3).
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– It is observed that detecting differences in applications of noise adding algo-

rithm (i.e., changes in #) is harder than detecting differences in the noise factor

for the L2-entropy (Tables 4.1 and 4.3).

– L2-entropy yields worse results at higher scales, which indicates that noise

propagates through the constructed field (Table 4.1).

– L2-relative entropy measurements on squares depict instable behavior with neg-

ative Kendall τ coefficients (Tables 4.4 and 4.5). However, they perform better

than L∞-relative entropy measurements on discs overall.

– Both of the tested relative measurements perform worse than the entropy mea-

surements. This is expected since the reference shape is given explicitly in rela-

tive entropy measurements, and implicitly in entropy measurements. Nonethe-

less, relative measurements do have their use cases: when the reference shape

is not the minimizing shape of some metric for which the discretization of the

Laplacian is known.

– L2-entropy measurements yield instable orders across the scale parameter. How-

ever, they grasp global properties such as symmetry in higher scales (Fig. 4.3).

– L2-entropy measurements showed that (Fig. 4.5)

◦ discs do not attain zero-complexity,

◦ it is possible for a square’s complexity scores to be lower than a disc,

◦ discs are inclined to attain lesser scores with increasing size,

◦ squares attain higher scores with increasing size.

– For both of the tested methods (L2 and form factor) that assumed circles to be

the simplest shapes, other shapes were found simpler (Figures 4.5 and 4.7).

– L∞-entropy evaluated the complexity of squares as 0 regardless of their size,

and ordered discs based on their sizes. This is due to the reducing presence of

polygonal properties with increasing size.

In Chapter 5 partial orders on discs with appendages, shapes from ‘device3’, and a

mixed dataset consisting of silhouettes of a cup, jar, elephant, dog, and two human
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faces are presented. It is emphasized that the order between the shapes is dynamic

and depends on how they are perceived.

In Chapter 6 analytical solution of SPE in L∞ for a square is given. The solution

supports the claim that the proposed field is a well-behaving chessboard distance

transform.

Using the analytical solution for a square, a local measurement of rectangularity is

established. Results are shown for squares with two appendages and an elephant

silhouette. The resulting discrepancy field suggests that the local measurement can

be used for image segmentation.
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[23] J. Žunić and P. L. Rosin, “Measuring shapes with desired convex polygons,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.

70



[24] D. J. Weintraub, “Rectangle discriminability: Perceptual relativity and the law

of pragnanz.,” Journal of Experimental Psychology, vol. 88, no. 1, p. 1, 1971.

[25] D. Moser, H. G. Zechmeister, C. Plutzar, N. Sauberer, T. Wrbka, and G. Grab-

herr, “Landscape patch shape complexity as an effective measure for plant

species richness in rural landscapes,” Landscape Ecology, vol. 17, no. 7,

pp. 657–669, 2002.

[26] J. Hu, A. Razdan, J. C. Femiani, M. Cui, and P. Wonka, “Road network ex-

traction and intersection detection from aerial images by tracking road foot-

prints,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 12,

pp. 4144–4157, 2007.

[27] Z. S. G. Tari, J. Shah, and H. Pien, “A computationally efficient shape analysis

via level sets,” in Proceedings of the Workshop on Mathematical Methods in

Biomedical Image Analysis, pp. 234–243, IEEE, 1996.

[28] G. Aronsson, “On the partial differential equation u2xuxx + 2uxuyuxy +u2yuyy =

0,” Arkiv för Matematik, vol. 7, no. 5, pp. 395–425, 1968.

[29] A. Oberman, “A convergent difference scheme for the infinity laplacian: con-

struction of absolutely minimizing lipschitz extensions,” Mathematics of Com-

putation, vol. 74, no. 251, pp. 1217–1230, 2005.

[30] P. Maragos, “Differential morphology and image processing,” IEEE Transac-

tions on Image Processing, vol. 5, no. 6, pp. 922–937, 1996.

[31] R. W. Brockett and P. Maragos, “Evolution equations for continuous-scale mor-

phology,” in [Proceedings] ICASSP-92: 1992 IEEE International Conference

on Acoustics, Speech, and Signal Processing, vol. 3, pp. 125–128, IEEE, 1992.

[32] J. A. Cuesta and C. Matrán, “Conditional bounds and best l∞-approximations in

probability spaces,” Journal of Approximation Theory, vol. 56, no. 1, pp. 1–12,

1989.

[33] S. Kullback, Information Theory and Statistics. Courier Corporation, 1997.

[34] E. Sharon and D. Mumford, “2d-shape analysis using conformal mapping,” In-

ternational Journal of Computer Vision, vol. 70, no. 1, pp. 55–75, 2006.

71


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Shape Complexity
	Circles: the simplest shapes, traditionally
	Problems

	Discrete Space versus Continuous Space
	Squares: the simplest shapes in the discrete space

	Relative Nature of Shape Complexity
	More on Computational Literature
	Outline

	ENTROPY MEASUREMENTS IN L
	Motivation
	Method
	Constructing fS
	Measuring multi-scale congruence

	Implementation Details
	Sample Results
	Noisy shapes
	Three-dimensional shapes


	RELATIVE MEASUREMENTS IN L
	Motivation
	Method
	Results
	Test 1
	Squares with rectangular appendages
	Measurements with respect to S0
	Measurements with respect to S4
	Measurements with respect to S2a

	Discs with circular appendages
	Measurements with respect to D0
	Measurements with respect to D4
	Measurements with respect to D2a


	Test 2
	Measurements with respect to the first reference shape
	Measurements with respect to the second reference shape
	Measurements with respect to the third, fourth and fifth reference shapes


	Test 3


	COMPARISON OF L2 AND L MEASUREMENTS IN TERMS OF ENTROPY AND RELATIVE ENTROPY
	Noisy Shapes
	Entropy measurements in L2
	Relative entropy measurements in L2

	Appendages
	Effects of Form and Size

	PARTIAL ORDER ON SHAPES
	Motivation
	Sample Results

	ANALYTICAL SOLUTIONS OF SPE
	Analytical Solution of SPE in L for a Square
	A Local Measurement of Rectangularity

	SUMMARY AND CONCLUSIONS
	REFERENCES

