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ABSTRACT

SEMI DYNAMIC LIGHT MAPS

Öztürk, Bekir
M.S., Department of Multimedia Informatics

Supervisor: Assoc. Prof. Dr. Ahmet Oğuz Akyüz

September 2019, 58 pages

One of the biggest challenges of real-time graphics applications is to maintain high

frame rates while producing realistically lit results. Many realistic lighting effects

such as indirect illumination, ambient occlusion, soft shadows, and caustics are either

too complex to render in real-time with today’s hardware or cause significant hits to

frame rates. Light mapping technique offers to precompute the lighting of the scene to

speed up expensive lighting calculations at run-time. This allows rendering high qual-

ity lights from a high number of light sources even on low-end devices. The primary

drawback of this technique is that scene state that is dependent on the precomputed

data cannot be changed at run-time. This includes intensity, color, and position of

light sources as well as position and visibility state of light map illuminated objects.

This property of light maps significantly decreases the interactability of applications.

In this thesis, we present a method to remove some of these restrictions at the cost

of additional texture memory and small CPU/GPU workload. This allows changing

color and intensity properties of selected light sources at run-time while keeping the

benefits of light mapping technique. It is also becomes possible to change visibility

state of selected objects. Our algorithm computes the light maps separately for each
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light source. Regions shadowed by each selected object are also captured and stored.

These maps are later combined at run-time to correctly illuminate the scene. Despite

the increase in the generation time of precomputed data, the overhead of the method

at run-time is low enough to make it useful in many real-time applications.

Keywords: Light mapping, global illumination, indirect illumination
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ÖZ

YARI DİNAMİK IŞIK HARİTALARI

Öztürk, Bekir
Yüksek Lisans, Çokluortam Bilişimi Bölümü

Tez Yöneticisi: Doç. Dr. Ahmet Oğuz Akyüz

Eylül 2019 , 58 sayfa

Gerçek zamanlı grafik uygulamaların başlıca zorluklarından biri gerçekçi ışıklandır-

malara sahip sonuçlar elde ederken yüksek kare sayısı değerini koruyabilmektir. Do-

laylı aydınlatma, ambient occlusion, yumuşak gölgeler, geçirgen yüzeylerde ışık kı-

rılmaları gibi etkilerin günümüz donanımlarında gerçek zamanlı resmedilmesi çoğun-

lukla mümkün değildir. Mümkün olduğu durumlarda ise kare sayısında ciddi düşüş-

lere sebep olmaktadır. Işık haritalama yöntemi yüksek donanım gerektiren gerçekçi

ışık hesaplamalarını ön aşamada gerçekleştirerek sahnenin gerçek zamanlı resme-

dilmesini hızlandırmaktadır. Bu yöntem, çok sayıda ışık kaynağı tarafından yayılan

ışığın gerçekçi davranışlarının alt seviye donanımlarda dahi gerçek zamanlı işlene-

bilmesine olanak sağlamaktadır. Işık haritalama yönteminin en büyük eksiği, sahne-

nin önceden gerçekleştirilen ışık hesaplamaları sırasında kaydedilmiş olan vaziyeti-

nin uygulamanın çalışması esnasında değiştirilmemesini şart koşmasıdır. Bu durum

ışık kaynaklarının konum, renk ve ışık şiddetlerinin; nesnelerin ise konum ve gö-

rünürlük durumlarının değiştirilememesi anlamına gelmektedir. Işık haritalarının bu

özelliği, bu tekniğin etkileşimli birçok uygulamada kullanılmasının önüne geçmek-

tedir. Bu tezde, doku belleğinde, işlemci ve ekran kartı iş yükünde bir miktar artışa
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karşılık, bahsedilen kısıtların bir kısmını ortadan kaldıracak bir yöntem önerilmiştir.

Kaldırılan kısıtlamalar, seçilen ışık kaynaklarında ışık renginin ve şiddetinin değişti-

rilebilmesinin yanı sıra seçilen nesnelerde nesne görünürlüğünün değiştirilebilmesini

mümkün kılmaktadır. Önerilen yöntemde ışık haritaları her bir ışık kaynağı için ayrı

olarak hesaplanmaktadır. Nesnelerin oluşturduğu gölgeler de ön hesaplamalar sıra-

sında tespit edilerek haritalara eklenir. Bu haritalar uygulamanın çalışması esnasında

birleştirilerek sahnenin o anki vaziyetine uygun ışık haritaları üretilir. Ön hesaplama

sürelerindeki artışa rağmen, yöntemin çalışma esnasında iş yükü bir çok uygulamada

kullanılmasını imkan sağlayacak şekilde azdır.

Anahtar Kelimeler: Işık haritalama, günışığı aydınlığı, dolaylı aydınlatma
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CHAPTER 1

INTRODUCTION

Lighting is a very important aspect of rendering that significantly affects the real-
ism of generated image. Many high quality rendering techniques use a ray tracing
based approach to simulate the behaviour of light [3] [4]. These methods yield very
good looking results that are sometimes indistinguishable from photographs. Lights
reflecting off of surfaces, refractions, subsurface scattering are some of the effects
that can be simulated with these methods. However, it is often not possible to use
these methods in real-time applications since rendering times are too high to achieve
high frame rates in today’s hardware. A common approach to this problem is to use
precomputed data [3] [5] [6] [7]. This data contains information about the lighting
of the scene. At run-time, an efficient method is used to compute correct light values
and generate realistically lit images using this data. One of the mainly used lighting
techniques in real-time applications is light mapping [8] [9]. In this technique, all
the surfaces in the scene are uniquely mapped to a texture called light map. During
the precomputations, lighting of the scene is simulated using a high quality realis-
tic method. Received light per unit area is calculated and stored in texels for all the
surfaces in the scene. This operation is known as "baking". At run-time, lighting of
a point can easily be calculated by looking up the value from the light map. Light
maps don’t store information about the source of the light. Multiple light sources can
contribute to the value of a single texel. A great advantage of this is that light map
size and run time performance is independent of the number of lights in the scene.
Area lights, indirect illumination, ambient occlusion [10] are some of the effects that
can be efficiently used with light mapping as can be seen in Figure 1.1.

There are also drawbacks of using light mapping. In common implementations of
light mapping, texels contain only intensity value. Direction of the light is not stored.
For this reason, light maps are said to be ’view independent’. This means that view-
dependent techniques cannot be simulated using light maps, such as specular high-
lights and bump mapping.

Another and possibly the biggest drawback of using light maps is the restrictions
imposed on the scene’s state. After baking of the light map is complete, light received
at any point in the scene is already decided. Therefore, no actions can be taken
to change the lighting of the scene without re-baking the light map. For instance;
intensity, color or position of the light sources cannot be changed. Objects cannot
be moved or removed from the scene. Newly added objects will not be illuminated.
Removed objects will continue to cast shadows. These problems can be avoided by
excluding these objects and light sources from light maps. In this case, realism of the
rendered image will significantly drop since lighting calculations will have to be done
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Figure 1.1: Using high quality rendering techniques, light maps (left) can generate
more realistic results than real-time lighting (right).

using real-time low quality methods. These restrictions strictly limit the interactivity
of applications.

In this thesis, a method is proposed to allow changes to selected objects and light
sources without compromising the realism offered by light mapping. Specifically,
proposed method allows the following modifications: changing the color and inten-
sity of light sources, removing or adding objects to the scene. Unlike common light
mapping methods, light map is generated separately for each light source. This makes
it possible to change the intensity and color of each light source independently. Ex-
ecuting an additional step at run-time is necessary to combine light source specific
maps into a final light map. Similarly, shadows of objects are stored independently in
additional maps. Depending on the visibility state of the object, shadows are applied
into the final light map.
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CHAPTER 2

RELATED WORK

2.1 Precomputed Data in Computer Graphics

Precomputing lighting to reduce rendering times is a very common procedure used
in many high quality rendering techniques [11] [12] [4] [13] [14]. Main idea consists
of processing lights and geometry in the scene and storing the results in vertices,
textures, files or memory to be used during rendering. In this section some of the
techniques that benefit from precomputed lighting is reviewed.

2.1.1 Photon Mapping

Photon mapping is one of the techniques that takes advantage of a precomputed light
data [3]. During the first pass of this two-pass method, a large number of photons
are sent from each light source into the scene. Traveling photons are stored on the
surfaces they hit. During the second pass, rays are sent from eye into the scene and
value of each pixel is calculated using the photons stored around the point within a
certain radius.

To generate realistic results, a large number of photons is required [15]. This signifi-
cantly increases memory requirements since photons cannot be removed from mem-
ory until rendering completes. Instead of storing photons, Good and Taylor [7] used
a Spherical Harmonic Light Map to store accumulated photons as spherical harmonic
coefficients [6]. With this method, required memory is independent of the number of
emitted photons.

Hachisuka et al. [1] proposed another method to accumulate photons incrementally
without keeping them all in memory. After rendering the scene with raytracing, any
number of photon tracing passes with limited number of photons can be issued as
can be seen in Figure 2.1. Each pass requires the statistical data generated at the
end of the previous step. Because of this requirement, all passes need to be executed
sequentially. Each completed pass provides a better quality lighting as photon count
increases and photon accumulation radius for each intersection point decreases.

Knaus and Zwicker later removed the data carried over from one photon tracing pass
to the other to allow executing passes in parallel [16].
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Figure 2.1: With progressive photon mapping, number of photons can be progres-
sively increased without allocating additional memory. Figure is taken from [1]

2.1.2 Environment Mapping

Rendering reflections often requires expensive raytracing operations which is not pos-
sible in interactive applications [17] [18]. Environment maps (EM) store the reflec-
tions around a point to approximate the results in much shorter times for mirror-like
objects [19] [20] [21]. Generation of an EM starts with selecting a point within or near
reflective objects. From this point, scene view is captured and saved into textures.
Capturing can happen in multiple ways. Earlier implementations used raytracing and
only captured a single direction or two opposite directions, storing them in one and
two textures respectively [5] [22]. Today, cube maps are frequently used since they
accurately capture the view for most general purpose applications [23]. When ren-
dering a point, reflected color is sampled from EMs instead of sending a reflected ray
into the scene.

In cases where reflective object is greatly distant from the surrounding environment,
changes to the position of the object can be ignored during reflection calculations.
However, in small environments with large reflective objects, an environment map
can only be used around the point it was captured [24] [23]. When reflective object
is moved, a different EM captured at the new point should be used. Capturing a new
EM for every possible position of the object is impractical, if not impossible. One of
the solutions to this problem is to generate a limited number of EMs along the path
of the moving object [25] [26]. Two closest EMs can then be blended. Distance of
the object to EMs can be used as blending weight. However, this approach yields un-
realistic results as objects appear and disappear from reflections when weight shifts
from one EM to the next. Instead of simple blending, Meyer and Loscos [27] offered
a solution to reconstruct a new EM at the object’s position. This method uses a height
map to calculate intersection of a reflected ray with the environment instead of using
raytracing. Therefore, it works best with 2.5 dimensional, urban-like environments.
However, a voxel based approach can be used in full 3D environments. Unlike com-
mon EMs, EMs proposed in this method also store the distance of each intersection
point to the capture point of the EM. During rendering, reflected ray is generated and
its intersection with the environment is calculated using the height map. Then, light
coming from the direction of the point is sampled from two EMs. If both EMs have a
direct line of sight to the point, final reflected color is computed by blending the two
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sampled values. Depending on the scene setup, however, EMs might not always see
this point. This can happen when there is an object blocking the view of an EM. This
situation can be detected using the distance value stored in EMs. If stored distance in
the direction of intersection point is smaller than the distance to the intersection point,
it can be concluded that intersection point was occluded by a closer object. Sampled
value cannot be used to calculate reflections in this case.

Environment maps can be also used to render reflections on diffuse surfaces. For a
point on a diffuse surface with normal N , this requires accumulating values sampled
from EM for each reflected direction R where R · N > 0 holds. Although this is
a very heavy operation to execute in real-time, it can be precomputed into a texture
called "Diffuse Reflection Map" [22]. Resulting texture looks like a blurred version
of the EM and and can be scaled down to lower resolutions without compromising
quality.

2.1.3 Irradiance Maps

Miller’s Diffuse Reflection Maps is an effective way to calculate reflections on diffuse
surfaces. It offers good quality and only requires a single sample to fetch reflection
at any direction. However, generating DRMs takes a considerable amount of time
as integrating over a hemisphere of EM is required for each pixel of DRM. Ramam-
moorthi and Hanrahan showed that using only 9 parameters, any diffuse reflection
map can be closely estimated [6]. The main idea is to use spherical harmonic coeffi-
cients. Due to the blurry nature of DRMs, values of high frequency coefficients are
small enough to be neglected. Therefore, using only 3 lowest frequencies (constant,
linear and quadratic) is sufficient. When compared to the generation of DRMs, calcu-
lating spherical harmonics coefficients takes significantly less time since integration
over EM is only needed to be done 9 times as opposed to once for each pixel.

On static objects where coefficients are stored on the surface, all the possible reflected
directions on a surface point form a hemisphere instead of a sphere. This is because a
point can only be viewed from one side and no reflected directions exists on the back
side of the surface. Taking advantage of this fact, Habel and Wimmer showed that
it is sufficient to use only 6 spherical harmonics coefficients for irradiance normal
mapping [28] of static objects. Instead of a full sphere, these 6 coefficients represent
a hemisphere. Unused hemisphere is completely omitted.

2.2 Textures in Graphics

Catmull was the first to map textures onto 3D objects [29]. It was later used in many
different work to increase the detail of rendered surfaces [24] [30] [31]. In this sec-
tion, we will briefly review a common usage of texture mapping in real-time render-
ing, namely bump mapping.
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2.2.1 Bump Mapping

Early renderers, both offline and real-time, generated images with perfectly smooth
surfaces [21]. This significantly decreases the realism of the results as surfaces are
rarely that smooth in real life. Using higher number of polygons to add bumps and
wrinkles is one of the solutions, but it quickly increases render times. Another method
is to use diffuse textures [29]. However, it is not possible to correctly illuminate
details on diffuse textures as they only contain color information.

To fix this problem, Blinn mapped 2D surface normal data onto 3D objects [32].
Normal direction of each point on the surface was updated using the mapped texture
and lighting was calculated using new normal vector. This allowed for much realistic
bump details while keeping the polygon count unchanged. This method was later used
in other studies [33] [34] and various improvements was proposed to add hardware
support for bump maps [35] [36] [37] [38].

Bump maps only affect the surface normal per pixel and does not modify the geom-
etry. Therefore, bumps of a surface does not change the object’s silhouette as can be
seen in Figure 2.2.

Figure 2.2: On the left, a cylinder bumped with horizontal stripes is shown. Right
image is the same cylinder rendered as a silhouette. Notice that bumps don’t con-
tribute to the object’s silhouette since geometry is not changed. Bump effect is only
illusionary.

2.3 Light Mapping

In previous section, we reviewed some methods that store lighting in various formats
and structures. Even though the methods offer great contributions to efficient render-
ing methods, each method has some disadvantages that makes it unsuitable for generic
cases. Light mapping is a technique that uses textures to store irradiance of diffuse
surfaces [39] [8]. Each surface represented in the texture is uniquely mapped to it
via texture coordinates. Resulting texture is known as "light map" and the process of
generating a light map is called "baking". During rendering, all lighting calculations
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of baked objects are omitted and light value sampled from light map is used instead.
For any environment, size of the light map is only dependent on the surface area of
mapped objects and texel size in world units. Therefore, neither required memory nor
rendering time increases as following properties increase:

• Quality of captured lighting

• Vertex count

• Light count.

One of the very interesting usages of textures to store indirect illumination was used
in game Prototype 2 [2]. Global illumination needs to be rendered for large game
zones as well as static and dynamic objects in it. Player also has the ability to climb
buildings and glide down which requires a solution that works on multiple height
levels. A single 512x512 texture with mipmaps was used to store indirect illumination
and ambient occlusion of an entire zone. An example texture can be seen in Figure
2.3. Since most of the details are on the ground, including street lights, stores, walls,
trees, post boxes; bouncing light is mostly present at this level. Therefore, the original
light map is used at ground level. As height increases, lower quality mipmaps are
used. First mipmap levels from the ground has only a few meters between them,
while higher level mipmaps cover larger distances in height.

Figure 2.3: Each mipmap level stores the indirect lighting of a horizontal slice of the
zone. Each pixel stores the indirect lighting of a vertical slice within the horizontal
slice. Image taken from [2].

2.3.1 Baking

There are two common methods used for storing baked data in scene. First one in-
volves storing light data in vertex attributes. Second method uses textures and sam-
ples light value of each pixel in pixel shader [40]. Vertex-based method is more
efficient since it doesn’t require large textures and it doesn’t do texture sampling at
pixel shader. It also avoids costs of generating non-overlapping UV coordinates for
triangles prior to baking. For large polygons under detailed lighting, however, storing
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light values in vertices often results in low quality results [41]. Texture-based method
offers better details independent of triangle size if memory requirements can be met.

To cope with the shortcomings of vertex-based method, one of the very common
methods is dividing existing polygons into smaller ones [41] [42] [43] [9]. Li et
al. [44] subdivided mesh into smaller triangles where required. An input lightmap
texture is analyzed and necessary subdivision level is calculated for each triangle.
This results in a higher number of triangles. However, lightmap texture can be com-
pletely removed after vertex baking is complete. According to the presented results,
rendering time of vertex-baked subdivided meshes are comparable to texture-baked
unmodified meshes, while memory requirements are significantly reduced [44].

For most of the triangles in a typical scene, vertex-baking is sufficient. Rest of the
triangles, however, cannot be lit with vertex stored light data since it is not possi-
ble to store high frequency details on only 3 vertices. Schäfer et al. [45] merged
vertex-baking and texture-based-baking into a hybrid solution. Proposed method uses
vertices to store lighting by default for efficiency reasons. For triangles where vertex
storage is insufficient and quick changes in lighting causes artifacts, textures are used.
An algorithm first detects for which triangles the texture-based approach is required.
Texture coordinates for light map sampling are only generated for these triangles.
To prevent artifacts at the shared edge of two triangles that use different methods, a
custom shader is used for blending.

2.3.2 Reacting to Changes

In most light baking methods, a change in the scene requires a complete re-baking
of light maps, even if the change is only affecting a small part of the scene. Long
baking times prevent designers to quickly iterate and achieve the desired look. Using
a Many-Light Global Illumination approach, Luksch et al. [46] proposed a method to
update only changed parts of the light map. Procedure involves detecting virtual point
lights that were affected by the changes in the scene. These VPLs are then removed
from the corresponding point cluster and new VPLs are generated according to the
new state of the scene.

In another study, Luksch et al. [47] has combined multiple virtual point lights into
virtual polygon lights to reduce baking time of light maps. Despite the overhead of
grouping VPLs into polygon lights, this method provides a significant speedup to
overall baking process. To allow interactive editing, light map is temporarily gener-
ated with a direct-indirect hybrid illumination method when a light source or object
is moved. This process starts with subtracting the affected light from light map and
a real-time direct illumination is temporarily used for these light sources. As high
quality light map with indirect illumination is generated, it is blended together with
existing one. While this allows faster iterations during editing, light map generation
times are not low enough to be used in real-time applications, even on high-end de-
vices. Depending on the application, however, baking light-maps at run-time is not
always impossible. Hoffman and Mitchell has managed to update the light map of
an outdoor environment for the changing light conditions [48]. Baking time was re-
duced to 6 seconds with the help of approximations and precomputations. Although
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this cannot be considered real-time, it provides some sense of interactivity.

2.3.3 Directional Light Maps

Conventional light maps store diffuse reflection of each texel and view direction does
not change how the rendered point looks. For this reason, light maps are said to
be "view-independent" [10] [9]. While this allows for faster rendering in interactive
applications, it prevents using some of the view-dependent methods such as normal
mapping. To add directionality to light maps, 3 light maps were used instead of
one in Valve’s Source Engine [49]. Each of the light maps store light coming from
one direction where each direction is a basis vector of a pre-defined basis in tangent
space.
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CHAPTER 3

LIGHT MAPPING

In this chapter, details of light mapping technique will be given.

Light mapping of a scene starts after models are created and placed. Light sources
should also be placed and adjusted with correct color and intensity settings to produce
the desired look. Rendered image of a sample scene that is ready to be light mapped
is given in Figure 3.1.

Figure 3.1: Sample scene consists of 4 point light sources of different colors and 1
slightly yellow directional light source. The only objects are a small cube and a plane.

Light mapping requires that each of the objects that will have its lights precomputed
should be uniquely mapped to a region on the light map. Figure 3.2 shows how the
triangles in the scene are mapped. Large rectangle on the left represents the surface
of the ground plane on the light map. 6 rectangles on the bottom-right of the light
map belongs to the 6 surfaces of the cube.

Since each surface is mapped to a limited number of pixels on light map, resolution
of the light map is significantly important at determining the quality of the results.
Especially around the areas where a hard shadow is generated by a bright light source,
a higher resolution is necessary to capture the sharp changes in the lighting (Figure
3.3). As an alternative to increasing the resolution of the light map, surfaces that
contain sharp changes in the lighting can be assigned to larger areas on the light map.
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Figure 3.2: Light map uniquely maps the surface of each object.

Figure 3.3: Sharp changes in the lighting cannot be correctly captured in low resolu-
tion light maps as shown in the left image. This issue is much less noticeable on the
right image which uses 16 times more pixels for the same light map.

Surface area is another important factor at determining the size of the mapped area
of a surface. Larger surfaces should be mapped to larger areas on the light map than
small surfaces to provide a uniform light map resolution in world space. An example
of this can be seen in Figure 3.2 where the plane has a much larger area in the light
map than the cube.

During the generation of the texture coordinates that maps each surface to the light
map, it is important to have padding between the surfaces that do not share an edge in
the geometry. This necessity originates from the filtering of the light map at run-time.
To avoid pixelated results caused by using point filtering during the sampling of the
light map, bilinear or trilinear filtering is frequently used. This means that the value
sampled from a pixel will be affected by the neighboring pixels. When sampling
the light value of a surface from a light map with no padding between the surfaces,
sampled value will contain some of the light from the neighboring pixel. In the cases
where the neighboring pixel belongs to a non-neighboring surface, light from that
surface will incorrectly contribute to the illumination.
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The next and the final offline step of light mapping is the generation of light map.
Finding the correct values for the initially black pixels of the light map is the main
objective of this step. A ray-tracing based method like photon mapping can be used to
trace the light traveling within the scene. Intensity and color of the light are stored in
the light map where the photon is absorbed by the surface (Figure 3.4). This process
is known as "light map baking".

Figure 3.4: Final light map of Dungeon scene.

At run-time, the light map texture should be loaded onto GPU. During the color eval-
uation of a point on a baked surface, the light map is sampled. Sampling happens with
the texture coordinates generated during the offline stage (Figure 3.5). The acquired
light value is then multiplied by the albedo of the surface to produce the final color of
the point.
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Figure 3.5: The light that is visible in the rendered image is not computed at run-time.
It is simply retrieved from the light map from the correct regions.
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CHAPTER 4

ALGORITHM

In this section, a detailed explanation of the algorithm will be given. Similar to clas-
sical light mapping approaches explained in Chapter 3, operations happen in 2 major
stages: offline and run-time. Each stage will be explained separately.

A sample scene was used to better explain each of the steps in both stages. The scene
consist of a plane, a box, a cylinder, and a sphere. There is one point light source
above the objects with a slightly yellow color. A rendered image and the light map of
the scene is given in Figure 4.1.

Figure 4.1: Image on the left shows the rendered sample environment. Right image
is the light map.

4.1 Offline Stage

4.1.1 Marking of Semi Dynamic Objects and Light Sources

Each baked light source that will have semi dynamic properties needs to be processed
during offline stage. This process is time consuming as it requires multiple light map
baking operations. It also increases the amount of memory used at run-time. There-
fore, it is important to consider a light source "semi dynamic" only if its properties
need to be modified at run-time. At this step, we mark each light source that needs
to be semi dynamic. This allows us to distinguish fully static light sources from semi
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dynamic light sources during both offline and run-time stages.

Similarly, each baked object that needs to be shown or hidden at run-time needs to be
processed accordingly during offline stage. This increases the time spent on precom-
putations as well as memory requirements at run-time. To avoid these costs, an object
should only be considered semi dynamic if its visibility state needs to be changed
at run-time. Together with light sources, each object that needs to be semi dynamic
is marked at this step. This allows us to distinguish fully static objects from semi
dynamic objects during both offline and run-time stages.

In the sample scene mentioned above (Figure 4.1), sphere, cylinder, box, and the only
light source of the scene was marked as semi dynamic. Ground plane is not marked.
It will be fully static at run-time.

4.1.2 Calculating Contribution of Static Light Sources

Static light sources and objects are known to not change during run-time. Therefore,
generating separate maps to store their contributions is unnecessarily. Very similar to
generating a conventional light map, baking the light maps with these light sources
and objects can be used to calculate the contribution of static components of the scene.

Algorithm 1 explains this process.

Algorithm 1 Calculating the contribution of static light sources and objects
1: for each light source l that is marked as semi dynamic do
2: Turn off l
3: end for
4: for each object o that is marked as semi dynamic do
5: Set o to not cast any shadows
6: end for
7: B ← Generate light maps by "baking", which will contain the contribution of

static light sources and objects.
8: return B

Resulting map is called the "Base Map" of the scene and can be represented with B.

4.1.3 Calculating Contribution of Each Light Source

To be able to change properties of a light source, its contribution to scene’s lighting
needs to be known. In this step, we will calculate contribution of semi dynamic light
source l to the light map of the scene. Resulting map is called "Contribution Map of
l" and it is represented by Cl.

This process is explained in Algorithm 2.

Acquired contribution map is a single channel texture that stores all the texels that are
illuminated by the light source as well as the intensity of the light at each texel.
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Algorithm 2 Calculating the contribution of light source
1: for each light source k in the scene do
2: Turn off k
3: end for
4: for each semi dynamic object o in the scene do
5: Set o to not cast any shadows
6: end for
7: Turn on l
8: l.color ← white
9: l.intensity ← 1

10: t← Generate the light map of the scene.
11: Remove 2 of the channels of t. {Since all the channels store the same data, which

2 of the channels to discard is unimportant.}
12: return t

Figure 4.2: Image on the left shows the state of the scene during the calculation of
the contribution map of the light source. Image on the right is the contribution map
of the light source.

As mentioned, color and intensity of the light source was set to white and 1 respec-
tively. This allows us to store the contribution maps in a more compact way. If color
of the light source was preserved in this process, generated map would contain 3 chan-
nels. However, since each texel in this map is enlightened by the same light source,
color of each pixel would be the same. Storing the color as auxiliary data instead of
including it in every pixel on the map significantly reduces the storage space costs as
only one of the channels needs to be stored. Setting intensity of the light source to 1
allows us to ignore it at run-time stage calculations. This way, contribution map of a
light source can directly be multiplied by the desired intensity value at run-time.

4.1.4 Calculating Contribution of Each Object

In classical light mapping, changes to the baked objects at run-time are not reflected to
light map. In most cases, this results in a completely wrong lighting of the scene. For
instance, a baked cube under a light source will continue to cast shadow even after it
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was removed from the scene. It is necessary to know all the affected pixels of the light
map as well as the severity of the effect at each pixel to correctly remove the shadow.
In this stage, we calculate the effect of each object to the scene’s illumination. With
semi dynamic lights, however, scene does not have a single state. Whenever a light
source is turned on or off, scene state changes. Effect of the object to the illumination
of the scene should be calculated separately for each state. This quickly becomes
unmanageable as semi dynamic light source count increases, since a scene with n
light sources has 2n states.

Fortunately, an object’s effect does not need to be calculated separately for each state
of the scene. Instead of storing the effect of the object to the light map, we can store
the effect of the object to a light’s contribution map. In this case, state of other lights
becomes irrelevant for two reasons:

1. A light source’s contribution to a scene’s light map is independent of other light
sources.

2. Amount of light of a single light source that is blocked by an object is indepen-
dent of other light sources in the scene.

Therefore, the effect of each object to each light’s contribution map is calculated.
For each semi dynamic object, n calculations are necessary for a scene with n semi
dynamic light sources.

Steps given in Algorithm 3 is executed to calculate the effect of semi dynamic object
o to semi dynamic light l.

Algorithm 3 Calculating the contribution of semi dynamic object o to semi dynamic
light l

1: for each light source k in the scene do
2: Turn off k
3: end for
4: for each semi dynamic object m in the scene do
5: Set m to not cast any shadows
6: end for
7: Turn on l
8: l.color ← white
9: l.intensity ← 1

10: Set o to cast shadows
11: t← Generate the light map of the scene.
12: Remove 2 of the channels of t. {Since all the channels store the same data, which

2 of the channels to discard is unimportant.}
13: t← Cl − t {Illustrated in Figure 4.3}
14: return t

Resulting map is called the "shadow map of object o on light l" and it can be repre-
sented with Sol .

The acquired shadow map stores all the texels that were illuminated by light source l
and was shadowed by object o. Value of each pixel also stores how much of the light
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Figure 4.3: Shadow maps store how much light is shadowed by an object from a light
source. On the left, shadowed contribution maps that are used to generate shadow
maps is shown for each object. Resulting shadow maps are shown on the right.
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was shadowed. For fully opaque objects, intensity of the shadow is the same as the
intensity of the light at that point. This results in a completely black shadow since
no light can pass through the object. For semi-transparent objects, however, some of
the light may still be illuminating the texel. Semi-transparent objects are beyond the
scope of this thesis.

4.1.5 Reducing Texture Size

Light maps store the light falling onto the polygons of baked objects. Each poly-
gon that receives light should have a unique area on the light map. This means that
increasing the polygon surface area causes an increase in the light map size. It is pos-
sible to reduce the light map size by removing polygons that don’t receive any light.
However, this is rarely useful as almost all of the polygons in a typical scene receive
some light from a light source.

Contribution maps are different in this regard. Despite being as large as the light map
of the scene, contribution maps only contain light from a single light source. For
scenes where a single light source only illuminates a small part of the environment,
contribution maps contain many black regions with zero light. These regions can be
removed to reduce the memory requirements.

The same logic can also be applied to shadow maps. In an exemplary shadow map Sol ,
only the region that was being illuminated by light source l which was then shadowed
by object o contains non-zero pixels. This corresponds to a small area within the
texture as can be seen in Figure 4.4. All the remaining area in the map contains black
pixels which can be discarded.

Figure 4.4: Shadow maps are mostly black and contain little data. Unused texture
space can be saved.

Similar to contribution and shadow maps, base maps may also contain unused sec-
tions. In fact, in scenes where there are no static light sources, base map is completely
black.

For each base map, contribution map, and shadow map that was generated so far,
Algorithm 4 is executed.

Each of the textures generated at line 14 is called a "Light Patch".
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Algorithm 4
1: for each map m from all base, contribution, and shadow maps do
2: for each baked object o in the scene do
3: let b a bounding box on the light map with zero area
4: let a← o.mappedAreaOnLightMap
5: for each pixel p in m within the borders of a do
6: if p 6= black then
7: enlarge b to contain p
8: end if
9: end for

10: if b.area 6= 0 then
11: t← create a black texture with dimensions b.width and b.height
12: t.channelCount← m.channelCount
13: Copy all the pixels within b from m into t
14: Store t
15: end if
16: end for
17: end for

Reconstruction of base maps, contribution maps, and shadow maps from light patches
will be necessary in later stages. However, this cannot be done using only light
patches. This is because it is not known from which position each light patch was
taken. Therefore, position data of each light patch needs to be stored. This data is
stored in an array as pairs where each pair consists of

• Texture, representing the light patch,

• Position in the light map that the given patch was taken from.

In our implementation, position represents the index of the leftmost-bottom pixel of
the light patch in light map.

In the last step, many textures were generated. These textures are significantly small
compared to the size of the light map. They also store only a single channel data.
Using many small textures creates a significant overhead during rendering compared
to using a few large textures, since it is not possible to take advantage of batching
[50], [51].

In this step, all the light patches are combined into large textures called atlases. Be-
cause of hardware limitations on texture sizes, it is not always possible to put all
the light patches into a single texture atlas. In this case, multiple smaller atlases are
generated.

Figure 4.5 gives a brief explanation of the process, which happens in the following
steps:

1: let patches be an array containing all the light patches.
2: let postponedPatches be an empty array.
3: sort patches first by channelCount and then by max(width, height), both in

decreasing order
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Figure 4.5: Light patches are placed into atlases, where each channel contains some
of the patches.

4: while patches.size() 6= 0 do
5: t← An empty atlas texture of the smallest size with 3 channels is created. {In

our implementation, smallest size is 256x256 pixels.}
6: for each light patch p in patches do
7: select a channel c in t
8: area ← starting from the leftmost-bottom pixel, search c for an empty area

large enough to store p
9: if area is found then

10: copy p into area area of channel c of texture t
11: else if not searched in all the channels yet then
12: go to line 7 and try with a different channel
13: else
14: option ← DECIDE(enlarge, createnewtexture) {Atlas size is insuf-

ficient. Either a new atlas will be created or t will be enlarged. Decision
making of this process will be explained later.}
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15: if option = enlarge then
16: enlarge the texture
17: goto line 8
18: else
19: place p into postponedPatches
20: end if
21: end if
22: end for
23: patches.clear()
24: SWAP (patches, postponedPatches)
25: end while

In line 14, a decision needed to be made to decide whether to create a new atlas or to
double the size of the existing atlas. It is not possible to choose one option over the
other since both options has some advantages and disadvantages. Always choosing
to enlarge the existing atlas creates unnecessarily large atlases in most cases. Always
choosing to create a new atlas results in a large number of small atlases, which defeats
the purpose of atlasing.

For instance, consider the case where an atlas of size X was generated and filled with
light patches. Placing the next light patch has failed because of insufficient space in
the atlas. Atlas size will be increased to 4X , of which 3X will be completely empty,
if we choose to double width and height components. If light patch is small and there
are no other light patches to fill the rest of the space, most of the 3X will be wasted.
If, however, total size of the rest of the light patches is close to or greater than 3X , it
results in a better batching to store all of them in the existing atlas, instead of creating
a new one.

Therefore, the choice is made by comparing size of the current atlas Sizea to the total
size of all the remaining light patches Sizel. If

Sizea ∗ 2 < Sizel

and current atlas is below the texture size limit of the hardware, dimensions of the
atlas are doubled. Otherwise, a new atlas is created.

In later stages, atlases will be used to access each light patch. To be able to retrieve a
light patch from generated atlases, following data is necessary:

• Index of the atlas

• Channels containing the data of the light patch

• Position of the leftmost-bottom pixel of the patch within the atlas

• Size of the patch

This data is stored in a file to be used in run-time stage.

23



4.2 Run-Time Stage

In light mapping, static objects use light maps to correctly illuminate surfaces. At
this stage will be focusing on constructing a light map from light patch atlases that
were generated during offline stage. Unlike conventional light maps, constructed light
map will contain correct illumination of baked surfaces according to the scene state
at run-time.

Steps in this stage will need to be executed at least once at the beginning of the
application to generate the first light map. First light map can be used until the scene
state changes. A change in the scene’s state can be caused by

• changing the intensity of a semi dynamic light source

• changing the color of a semi dynamic light source

• showing or hiding a semi dynamic object.

Since existing light map cannot be used to correctly illuminate the scene after a
change, generating a new light map is necessary before rendering the next frame.

4.2.1 Reconstructing Base Maps

Before processing of the semi dynamic objects and light sources begin, static light
sources are handled. At this step, base map that was created during offline stage will
be reconstructed using light patches. This process is given in Algorithm 5.

Algorithm 5 Reconstructing the base map
1: A three-channel black texture t is created. Size of this texture is the same as the

size of the scene’s light map.
2: for each light patch p in the atlas do
3: if p belongs to base map then
4: Using the auxiliary data stored at 4.1.5, determine the original position of p.

5: To the determined position on t, copy pixels of p from containing atlas as
shown in Figure 4.6.

6: end if
7: end for
8: return t

4.2.2 Reconstructing Contribution Maps

Reconstruction of the light map requires combining the contribution of each baked or
semi dynamic light source. Therefore, reconstruction the contribution map of each
semi dynamic light source necessary.
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Algorithm 6 Reconstructing the contribution maps
1: for each semi dynamic light source l do
2: if l.turnedOn 6= true then
3: continue
4: end if
5: t← create a single channel black texture where size of the texture is the same

as the size of the scene’s light map.
6: for each light patch p that belongs to l do
7: area← p.mappedAreaOnLightMap
8: copy p into area area of t as shown in Figure 4.6
9: end for

10: t is the contribution map of l
11: end for

This process happens in the following steps:

Each contribution map stores the unshadowed light from a single semi dynamic light
source. Depending on which semi dynamic objects are displayed, some regions of
these maps will need to be shadowed. There is also no color information stored yet,
since contribution maps contain intensity only.

For simplicity, algorithm given here stores a light map sized texture for each semi
dynamic light source. This may not be desired since required texture memory will
linearly increase with each light source. Fortunately, storing all the contribution maps
is not necessary. Final effect of a single light source can be calculated independently
of other light sources. Therefore, it is possible to sequentially process each light
source so that a total of one light map sized texture will be used for any number of
light sources.

This algorithm can also be implemented in other ways to take advantage of a GPU.
Instead of copying values pixel by pixel on CPU, an orthographic camera can be used
to generate the same results by rendering correctly positioned quads with an additive
shader. An example of this technique is explained in 4.2.3.

4.2.3 Shadowing Contribution Maps

Contribution maps store the full potential of a semi dynamic light source at illuminat-
ing a scene. Displayed semi dynamic objects, however, will shadow some of the light
from these light sources.

In this step, we remove the light shadowed by semi dynamic objects to acquire "Shad-
owed Contribution Maps". A shadowed contribution map for light l can be repre-
sented with sCl.

The following algorithm is executed in a virtual 3D environment and explains the
steps for shadowing a contribution map:

1: for each semi dynamic light source l do
2: let Cl be the contribution map of l generated in the previous section.
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Figure 4.7: Depending on which semi dynamic objects are enabled, previously gen-
erated contribution map is shadowed.
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3: let camera be an orthographic camera. Aspect ratio of the camera is 1. Camera
is set to render onto Cl. This can be done using frame buffers in OpenGL.

4: for each semi dynamic object o in the scene do
5: for each light patch p that belongs to Sol do
6: area← p.mappedAreaOnLightMap
7: q ← a quad is placed in front of the camera. Using the auxiliary data

generated during 4.1.5 for p; position, size, and texture coordinates of the
quad is determined. From the camera’s view, quad is aligned perfectly to
the position where light will be removed from Cl. Texture coordinates of
the quad map to the region that contains the light patch in the atlas.

8: for rendering of this quad select a shader that subtracts calculated values
from target texture.

9: select the atlas texture that contains p to be used by the shader.
10: end for
11: end for
12: camera.render() { After rendering completes, Cl will have light removed

from regions where a semi dynamic object was casting shadow. At this step,
shadowed contribution map of light l is ready.}

13: end for

Shader used in step 8 was programmed in a way that it subtracts values from render
target. Values that will be subtracted will be sampled from light patches. Despite
being stored in a 3-channel atlas, light patches in this step has only one channel.
Therefore, only the correct channel should be retrieved from the atlas. This process
is also handled by this shader. Which channel to use is passed to the shader as a
mask stored in 3 floats. Only the selected channel has value set to 1. Values for other
channels is set to zero.

float3 atlasSample = sampleTexture(atlas, uv);
float shadowedLight = dot(atlasSample, channelMask);
return shadowedLight;

In the shader code above, dot product was used to get the resulting value. This allows
for retrieving the correct value regardless of the channel, while avoiding using if
statements that cause branching on GPUs.

4.2.4 Generating The Final Light Map

In previous section, we have acquired shadowed contribution maps which contain the
light falling onto each texel per light source. Desired light map is expected to contain
the total amount of light falling onto each texel. In this section, we will combine
shadowed contribution of each light source and the base map to generate the final
light map.

One of the very important properties of light sources has been omitted so far: color.
Since the intensity of the light source is already available in the maps, color can easily
be applied by a simple multiplication.
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Generation of the final light map happens in the following steps:
1: let t be the light map of the scene
2: t.fill(black)
3: t← t+B {copy basemap onto texture}
4: for each reconstructed shadowed contribution map sCl do
5: for each pixel p sampled from sCl do
6: c = p ∗ l.intensity
7: c = c ∗ l.color { This will convert pixel from single channel to 3-channel.}
8: t[p] = t[p] + c { Copy calculated value onto final light map. }
9: end for

10: end for
11: t contains the light map of the scene.

During the generation of final light map, three important actions were taken to ensure
that resulting light map reflected the current state of the scene:

1. Contribution map of a light source is only processed if the light source was
turned on.

2. Shadow maps of an object is processed only if the object was not hidden.

3. Values added to the final light map from a light source was multiplied by the
intensity and the color of that light source.

Similar to the approach explained in section 4.2.3, operations in this section can be
executed with the help of a GPU. In our implementation, a shader was used to multi-
ply and add pixels onto target texture.

4.2.5 Updating The Light Map

Since light maps only represent the lighting of the scene for a single state, changes
to the scene will invalidate the existing light map. In this case, light map should
be regenerated. This can simply be accomplished by repeating the run-time stage
algorithms explained so far in order. This correctly generates a new light map, and
the time that is needed to update the light map is independent of how many objects
or light sources were modified. However, in cases where only the contribution of
a small number of light sources were changed, repeating the whole process is not
needed. Existing light map can be updated with only a few steps.

Consider the case where there are n semi dynamic light sources in a scene. Contribu-
tion of a light source was changed by one of the two means:

• color or intensity of the light source was changed

• visibility of a semi dynamic object that can shadow this light source was changed

Updating the light map has become necessary. Reconstructing the light map would re-
quire reconstructing n shadowed contribution maps (one for each light source). These
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maps can then be colorized and combined with the base map to generate the final map.
Since the update was caused by a change in the contribution of only one light source,
the same light map can be generated in a simpler way as explained in Algorithm 7.

Algorithm 7 Efficiently updating the light map
1: let l be the light source that was modified
2: let t be the existing light map
3: scm ← calculate shadowed contribution map of l as explained in 4.2.3 for the

scene state before it was modified
4: scm← scm ∗ l.previousColor ∗ l.previousIntensity
5: t← t− scm
6: scm ← calculate shadowed contribution map of l as explained in 4.2.3 for the

scene state after it was modified
7: scm← scm ∗ l.newColor ∗ l.newIntensity
8: t← t+ scm
9: return t

In Algorithm 7, shadowed contribution map of l was calculated and stored in scm
twice. If visibility of semi dynamic objects has not changed, a single calculation is
sufficient and the value of scm can be reused. Otherwise, recalculation of shadowed
contribution map is necessary since newly calculated map will contain different shad-
ows than previous one. If change happens only in the color or intensity of a light
source and not in any of the objects, the algorithm can be further simplified as in
Algorithm 8.

Algorithm 8 Efficiently updating the light map (Only a light source changes)
1: let l be the light source that was modified
2: let t be the existing light map
3: scm← calculate shadowed contribution map of l as explained in 4.2.3
4: c← l.newColor ∗ l.newIntensity − l.previousColor ∗ l.previousIntensity
5: t← t+ scm ∗ c
6: return t

For updating the contribution of a single light source, Algorithm 7 executes 2 shad-
owed contribution map generation operations. If the light map reconstruction op-
eration was executed from the beginning without using the existing light map, n
shadowed contribution map generations would be needed for n light sources. Which
method to use for updating the light map can be decided in the following way:
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1: let n be the total number of semi dynamic light sources
2: let m be the number of semi dynamic light sources, for which the contribution

must be recalculated.
3: if 2 ∗m < n then
4: modify existing light map without a complete recalculation
5: else
6: recalculate the light map from the beginning
7: end if
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CHAPTER 5

RESULTS

In this chapter, results of the algorithm for different scenes will be presented. Baking
times, storage size of generated light maps, required memory at run-time, processing
costs at run-time will be compared. Input scenes used in the comparisons differ in
semi dynamic light count, semi dynamic object count and total surface area of baked
objects.

All tests are executed on a desktop computer with following specifications:

• Intel i7-4790 3.6GHz CPU

• NVIDIA GeForce GTX 770 2GB

• 8 GB RAM

• Samsung 840 EVO 250GB SSD

Sample scenes used in the tests are described as follows:

• Library Scene: is a small, rectangular, indoor environment with all four walls
covered with bookshelves. Longer edge of the room has 4 bookshelves on each
side where short edge has 3, adding up to 14 bookshelves in total. There are
2 additional bookshelf pairs at the center of the room with a small distance
between the pairs. Lights are evenly distributed within the room and all the
lights are at the same height from the ground. All of the shelves create some
shadow on at least one other shelf. Most illuminated points in the map receive
light from 3 different light sources. Scene consists of 26000 triangles defined
by 40000 vertices.

• Cemetery Scene: is a square outdoor environment with a single large plane as
the ground. On the ground, there are gravestones, trees, statues, and rocks.
There is one dim directional light source in the scene. Other light sources are
point light sources evenly distributed throughout the environment. Shadows of
objects rarely overlap. Aside from the self shadowing of objects, all the shadow
generated by the objects fall onto the ground plane. Scene consists of 55000
triangles defined by 75000 vertices.

• Dungeon Scene: is a room with large walls and small objects. There are statues,
wheels, a table, a candle, a gravestone, and a painting in the room. There are 8
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point light sources. Shadows of the objects in the room mostly do not overlap.
Scene consists of 2200 triangles defined by 3400 vertices.

Figure 5.1: Images of samples scenes Library (left) and Dungeon (right)

5.1 Baking Times

Most time consuming process of light mapping is baking. Depending on the com-
plexity of the scene and the quality of the results, baking can take seconds to days.
Semi dynamic light maps require repeating the baking process many times. A differ-
ent scene state is captured with every bake and the results are compared to generate
contribution maps (4.1.3) and shadow maps (4.1.4). Therefore, time spent on bak-
ing semi dynamic light maps is significantly higher than baking of conventional light
maps.

There are multiple factors that are unique to semi dynamic light maps that affect the
baking times. These factors and their effects will be discussed in this section.

5.1.1 Number of Semi Dynamic Light Sources

For a scene with n semi dynamic lights and no semi dynamic objects, baking process
needs to be repeated an additional n times. Initially this might look like the time spent
on generating the light maps will be n times more. However, this is not the case thanks
to photon mapping based light map generation approaches. For the conventional case,
a single baking operation requires casting p photons per light. In total, n ∗ p photons
are cast for n light sources. For semi dynamic case, each baking process only casts
photons from a single light source. Each of the n operations casts only p photons
which adds up to n ∗ p photons in total. Therefore, baking times increase at a much
lower speed than semi dynamic light source count. This relation can be observed in
Figure 5.2. Total semi dynamic light map generation times are given in Figure 5.3.

Aside from the advantage gained over photon based baking methods, there are other
factors that decrease the time spent on consecutive baking operations. For instance,
light map uv generation for static surfaces and scene geometry processing are only
needed to be done once during the first baking operation. This data can be used in the
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Figure 5.2: For a scene with n semi dynamic light sources, n + 1 baking operations
are required. This looks like the baking times will be n + 1 times the baking time of
conventional light maps. Yellow line shows this expected rate. Blue and red lines are
the actual rate of bake time compared to conventional light maps. Notice how slowly
bake times increase compared to the expected.

remaining bakes, further lowering the cost of additional bakings. Compared to the
first bake operation, average time spent on each of the remaining bake operations can
be seen in Figure 5.4.

Generation of semi dynamic light maps does not only consist of multiple executions
of baking operations. There is also the cost of processing the generated maps as
shown in Figure 5.5. This cost depends on many factors including light count, area of
overlapping shadows, surface area of illuminated semi dynamic objects, vertex count
of all the baked objects etc. It is also dependent on the implementation.

5.1.2 Number of Semi Dynamic Objects

Number of semi dynamic objects is another factor that significantly affects light map
generation times. For a scene with n semi dynamic light sources, marking an object as
semi dynamic requires n more baking operations. Total baking operations needed for
a scene with n semi dynamic light sources and m semi dynamic objects is 1 + n ∗m.
However, this does not mean that the baking will take n ∗m times more, as explained
in section 5.1.1.

Similar to the results observed in section 5.1.1, average time spent on a single bake
operation quickly decreases with increased number of semi dynamic objects. This
can be observed in Figure 5.8.
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Figure 5.3: In sample Library and Cemetery scenes which contain 8 light sources,
light maps were generated for 8 times where each time an additional light source
is marked as semi dynamic. Each additional semi dynamic light source causes an
increase in the baking time.

36



# of bake operations

Co
st

 o
f  

ea
ch

 b
ak

e 
op

er
at

io
n

0.00%

25.00%

50.00%

75.00%

100.00%

125.00%

2 4 6 8

Cemetery Library Dungeon

Time spent on each bake operation 

Figure 5.4: Average time spent on each bake operation decreases with each additional
bake.

Number of required baking operations can be reduced if object/light interactions can
be determined earlier. Normally, light maps are baked for each object/light pair. If it
can be determined that the object does not receive any light from the light source, this
baking operation can be omitted. Measuring the distance between the light source and
the object can be used to determine the interaction. If the distance is large enough,
the light reaching the object can be ignored. Note that this only holds if there are no
mirror-like surfaces in the scene which reflects more light than they receive. Other-
wise, light can travel any distance without losing energy.

5.2 Storage Space

Conventional light maps require storing textures that are large enough to contain
uniquely mapped regions for each baked object in the scene. When surface area of
baked objects increase, required light map size increases as well. Light maps do not
group lights by their sources. Total accumulated light is stored in each texel. There-
fore, increasing the number of light sources does not increase the size of the light
map.

Semi dynamic light maps are different in this regard. Even though fully static light
is still accumulated in texels, light from semi dynamic light sources are stored sepa-
rately. Therefore, storage size is expected to grow as more light sources are marked
as semi dynamic.

When storing light of each light source in a different map, using a single channel
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Figure 5.5: Maps generated by baking process should be processed, which increases
the generation time of semi dynamic light maps. Graphs show light map generation
times for Library (top) and Cemetery (bottom) scenes.
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Figure 5.6: Bake times increase slowly compared to the increase in the number of
semi dynamic objects. However, semi dynamic light maps can still take significantly
longer to generate than conventional light maps. Note how generation of light maps
for the Library scene where there are 8 semi dynamic light sources and 10 semi
dynamic objects takes almost 24 times longer.
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Figure 5.7: Semi dynamic light map generation times in sample scenes Library and
Cemetery which contain 8 and 1 semi dynamic light sources respectively. It is impor-
tant to note that baking times for Library scene increase much faster than Cemetery
scene. This is expected since Library scene contains 7 times more light sources than
Cemetery scene.
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Figure 5.8: Average time spent on a single baking operation significantly decreases
as the number of consecutive bake operations increases.

texture is sufficient instead of a three channel texture. This is possible because all the
pixels in the map contains the same color value with different intensities. Color of the
map can be stored independently in a small data structure. Since space required to
store the color is very small compared to the size of the texture, storage requirement
of the color can be ignored. In this case, the following can be stated:

• Using light accumulating texels, storing light from n different light sources
requires exactly 3 channels.

• Using separate channels for each light source, storing light from n different
light sources requires n channels.

Please note that if n is less than 3 for a texel, using separate channels for each light
source occupies less storage. For this reason, storage space can increase or decrease
depending on the scene. For scenes where each texel receives light from 3 or more
light sources, storage space typically increases. For scenes where light from different
sources do not frequently overlap, storage requirements can be lower than conven-
tional light maps.

For performance and compatibility reasons, size of atlases and light maps generated
in this thesis are all power of two (256x256, 512x512, 1024x1024 etc.). Since it is not
always possible to fully fill this space, almost all maps contain some unused regions.
To better present the increase in the actual used space, only the regions that contain
non-zero pixels are measured in Figure 5.9.

In Cemetery scene, light sources are distributed coarsely and light from different light
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sources rarely overlap. There is only one directional light that overlaps with every
other light source. Since most of the texels are only illuminated by at most 2 different
light sources, storing contribution of each light source in a different channel reduces
required texture space.

5.3 Run-Time Memory

Reconstruction of the semi dynamic light map is a crucial step that needs to be exe-
cuted before the first frame is rendered at run-time. Reconstruction requires copying
light patches from atlases into initially a black light map texture. Therefore, atlases
needs to be loaded into memory.

During the reconstruction of light maps, contribution of each light source needs to
be calculated. Contribution maps can only be generated on black textures. It is not
possible to directly construct contribution maps on the existing light map without
using an intermediate texture. Therefore, an additional texture at the size of the light
map is required as well. For scenes where there are multiple textures used as light
maps, only one intermediate texture at the same size with the largest light map is
sufficient.

Figure 5.10 show the additional required texture memory to construct and update semi
dynamic light maps in sample scenes. Since required memory is mainly dependent
on the atlas size, it can be observed that the graphs for required texture memory is
very similar to the graphs for required storage space.

Auxiliary data is another factor that increases run-time memory requirements. This
data maps light patches from atlases to light maps. In our implementation, each
mapping costs 35 bytes. Total memory required by auxiliary data in Library and
Cemetery scenes can be seen in Figure 5.11. Size of this data is usually very small
compared to atlas size and can be ignored.

5.4 Run-Time Processing Costs

Before the first frame and whenever the scene state changes, light maps need to be
regenerated at run-time. Depending on the number of light patches, light map and
atlas sizes cost of this process may increase. In our tests, generation of light maps
took as low as 1 milliseconds on average. In complex scenes with 8 semi dynamic
light sources and 8 semi dynamic objects, cost went as high as 1.97 milliseconds
(Figure 5.12 and 5.13). Even though we believe that these numbers are low and can
be afforded in many applications on a large variety of hardware, it may effect the
smoothness of some applications running on low-end devices. However, it should be
noted that updating of the light maps is only necessary when a change in the scene’s
lighting state occurs. Unless color or intensity of a semi dynamic light source changes
or a semi dynamic object is shown or hidden, there is no need to execute light map
generation process.

In the case of an extreme scenario where the cost of updating the light map causes a

42



freeze noticeable by the user, update process can be divided into smaller tasks to be
executed over multiple frames. In this case, contribution of only some of the lights can
be calculated in each frame. During the last frame where the update will be reflected
to the screen, previously generated maps can be quickly combined to generate the
updated light map. When implemented in CPU, this process can also be executed in
multiple threads to take advantage of multi core CPUs.
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Figure 5.9: Semi dynamic light maps efficiently store light values for texels which
only receive light from at most 2 light sources. This allows reduced storage size of
light maps. Semi dynamic objects, however, always cause an increase in the storage.
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Figure 5.10: Semi dynamic objects usually increase required memory since each semi
dynamic object uses additional texture space in the atlas. This does not always apply
to semi dynamic light sources which can be more efficiently stored as explained in
5.9.
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Figure 5.11: In Cemetery scene, semi dynamic objects only cast shadows to the
ground. A single light patch is usually sufficient to store the shadows. Therefore,
auxiliary data increases very slowly when semi dynamic object count increases in the
graph below.
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Figure 5.12: Run-time processing costs start as low as 0.25 milliseconds, but can be
significant in complex scenes.
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Figure 5.13: The cost of updating the light maps at run-time can increase to significant
values. However, it is possible to keep a relatively smooth frame rate by executing
the update operation in multiple frames or in separate threads.
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CHAPTER 6

CONCLUSIONS

In this thesis, we proposed a new method to remove some of the restrictions of light
mapping. By storing the contribution of light sources in separate textures, our method
allows modifications to light color and intensity at run-time. Similarly, shadows of
each object is detected and stored during offline stage. This makes it possible to show
or hide baked objects without re-baking the light maps. Parts of the precomputed
textures which do not contain any light is removed to reduce storage requirements. At
run-time, these textures are merged and colored to create the light map that correctly
represents the state of the scene. When there is a change in the state of the scene, this
process is repeated to update the light map.

With aforementioned restrictions removed, light maps can be used in interactive ap-
plications with partly dynamic objects and light sources. This way, the run-time ben-
efits of light maps can be retained while user is offered more ways to interact with the
environment. For instance, a street light at an outdoor environment with night time
lighting can be fully baked, and the player can shoot the light with a gun to turn it off.
Without semi dynamic light maps, simulating such scenario would require either cal-
culating the illumination at run-time or removing the user’s ability to shoot the light.
First option would mean less realistic results and higher system resources. Second
option restricts the player and reduces the interactivity of the application.

A wide range of applications can benefit from using semi dynamic light maps. The
cost of using semi dynamic light maps, however, is open to debate. As the desired in-
teractivity of the scene increases, associated costs of generating and updating the light
maps increases as well. The costs include precomputation times at offline stage, stor-
age space requirements, computational costs at run-time and memory requirements at
run-time.

Precomputation of light maps is usually the most time consuming step of conventional
light mapping. With semi dynamic light maps, this cost quickly increases as the
number of semi dynamic lights and objects increase. In our tests, precomputation of
light maps took up to 25 times the time of precomputing conventional light maps.
This value was observed in a scene where there are 8 semi dynamic light sources
and 10 semi dynamic objects, however it can go much higher when more objects and
light sources are marked as semi dynamic. On the other hand, this process is suitable
for parallel execution, and significant speed ups can be achieved by using additional
hardware.

Storage space requirements of semi dynamic light maps can be lower than conven-
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tional light maps as well as higher. Most graphics applications today use a large
number of textures for diffuse and normal mapping of 3D environments. We believe
that the increase in the storage space will be insignificant compared to the total size
of the application. Storage size can also be kept low by limiting the number of semi
dynamic light sources and objects.

Increased run-time memory is another important drawback of semi dynamic light
maps. While a conventionally light mapped scene only requires the light map to be
on memory, light patch atlases are also needed in semi dynamic light mapping.

We believe computational costs at run-time should be affordable in most applications
since these costs appear only when an update to the light map is necessary. It is also
possible to reduce this cost by taking advantage of multi-threading.

6.1 Limitations

6.1.1 Color Bleeding

Color bleeding can be explained by a surface’s ability to partially absorb an incoming
light and cause a change in it’s color before reflecting it. This light later falls on
another surface, causing an illumination. In this case, reflective object may appear
to be illuminating surrounding objects. For instance, white light reflected from a red
wall produces reddish colors on the floor in Figure 6.1.

Figure 6.1: Red color "bleeds" from the cube to the floor.

One of the limitations of semi dynamic light mapping is the lack of support for color
bleeding. Since each semi dynamic light source is stored only as intensity in one of
the channels of a texture, a light source can only cast light of a single color. Color
bleeding, however, causes a single light source to generate illumination of multiple
colors. As long as semi dynamic objects and light source are not involved, it is still
possible to use color bleeding with static light sources and static objects.
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6.1.2 Indirect Illumination with Semi Dynamic Objects

Indirect illumination happens when a light illuminates a point after being reflected
from at least one surface. Semi dynamic light mapping assumes that an object can
only cause a reduction in the illumination. In other words, existence of an object
cannot result in an increased illumination of another object. Therefore, semi dynamic
light maps ignore the light reflected from semi dynamic objects. Semi dynamic ob-
jects can still receive indirect illumination. It is also possible to use indirect illumina-
tion with fully baked objects and semi dynamic light sources.

6.1.3 Static Light Sources with Semi Dynamic Objects

Another limitation of semi dynamic light mapping is the interaction between semi
dynamic objects and static light sources. Shadows of objects are only stored for semi
dynamic light sources. An object’s affect to the base map is unknown at run-time.
Therefore, semi dynamic objects should not be illuminated by static light sources.
When such a case is encountered, one of the following options can be chosen:

• Mark each light source that illuminates the semi dynamic object as semi dy-
namic.

• Unmark the object so that it is no longer semi dynamic.

• Ignore the conflict. In this case, object will not cast any shadows to the light
emitted from static light sources.

6.2 Future Work

Supporting indirect illumination caused by semi dynamic objects may be possible if
each semi dynamic object is also treated as a light source. This will likely increase the
precomputation, storage and run-time costs. Tests can be done to check if the costs
are low enough to make the method useful in some applications.

Shadow maps store how much light was removed. For fully opaque objects, the
amount of the removed light always equals to the amount of existing light. In this
case, storing the amount of removed light is unnecessary. Using a single bit to store
if a texel is shadowed or not is sufficient. This can decrease the storage space costs.
However, computational costs at run-time might increase since additional bitwise op-
erations will need to be performed.
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